
13-th IEEE International Conference on Peer-to-Peer Computing

Cloud-assisted Dissemination in Social Overlays
Giuliano Mega, Alberto Montresor, and Gian Pietro Picco

Department of Information Engineering and Computer Science (DISI), University of Trento, Italy
Email: {mega, montresor, picco}@disi.unitn.it

Abstract—Decentralized social networks are an emerging solu-
tion to the privacy issues plaguing mainstream centralized archi-
tectures. Social overlays—overlay networks mirroring the social
relationships among node owners—are particularly intriguing,
as they limit communication within one’s friend circle. Previous
work investigated efficient protocols for P2P dissemination in
social overlays, but also showed that the churn induced by users,
combined with the topology constraints posed by these overlays,
may yield unacceptable latency. In this paper, we combine P2P
dissemination on the social overlay with occasional access to the
cloud. When updates from a friend are not received for a long
time, the cloud serves as an external channel to verify their pres-
ence. The outcome is disseminated in a P2P fashion, quenching
cloud access from other nodes and speeding dissemination of
existing updates. We show that our protocol performs close to
centralized architectures and incurs only modest monetary costs.

I. INTRODUCTION

Online social networks (OSNs) play a key role in the
way we communicate over the Internet, having attracted
billions of users worldwide. Unfortunately, this popularity is
accompanied by concerns about privacy [3]. The root of the
problem lies in the centralized architecture of mainstream
OSNs, which requires users to surrender control of sensitive
and personal data. As a consequence, interest in decentralized
alternatives [8] has greatly increased in the last few years.

In this context, peer-to-peer (P2P) OSNs appear as an in-
teresting option, as they allow decentralization to be achieved
while allowing end users to participate with existing resources.
P2P has, however, two main drawbacks: i) open membership
and decentralization creates important privacy and security
issues [17]; and ii) unpredictable and skewed peer availabil-
ity [19] leads to performance and reliability issues. In [13],
we have advocated the use of social overlays (SOs)—overlay
networks that mirror and underlying social network—as a way
to either solve or greatly mitigate the former. We proposed a
simple system that could provide arguably the most important
functionality of OSNs: the ability to browse profile pages of
friends, and post updates to them. Timely dissemination of
profile updates to friends emerged as the key problem to be
solved. Such proposal is in stark contrast with most of the
literature on P2P OSNs (e.g. [4], [5], [12]), which relies on
distributed hash tables (DHTs) for dissemination and storage.

Yet, SOs had limitations of their own: indeed, we show
in [14] that SOs cannot cope well with peer churn, mostly
because they cannot be reconfigured to compensate for missing
nodes, leading to transient partitions and update dissemina-
tion times larger than 3 hours for 1% of the receivers—
unacceptable for a world-scale service like today’s Facebook.

The problem of any purely decentralized dissemination
protocol for SOs is that the latter does not provide enough

“options” to propagate updates in the presence of churn.
Our idea is simple and yet effective: create an out-of-band
channel that can “patch” connectivity if and when needed, by
leveraging the persistence and ubiquity of cloud services. Our
scheme works as follows. The bulk of update dissemination is
still carried out in a P2P fashion on the SO. Specifically, we
reuse the gossip-based protocol described in [13]. In addition,
each node u is associated to a profile store hosted on the
cloud. Updates to u’s profile are first written to the store, then
disseminated over the SO. Therefore, the profile store of u
contains an always-available, consistent copy of u’s profile.

The availability of the profile store is key in overcoming the
aforementioned delays in the propagation of profile updates.
When a node v, friend of u, has not heard any update from
u for a predefined time interval, it assumes that the update
has been delayed, and verifies if this is the case by polling
the profile store. In principle, this naı̈ve solution is enough
to overcome the limitations above. However, cloud access has
a monetary cost, and we show that this solution has a poor
performance/money tradeoff. We improve over this baseline
by disseminating the outcome of polling the profile store back
on the SO. This has the beneficial effect of quenching cloud
accesses from other nodes (i.e., saving money) and speeding
update dissemination. Results show that, compared to fully
decentralized solutions, our hybrid one reduces maximum
delays from hours to minutes, average delays from minutes
to seconds, and incurs only a small cost to users.

While our approach inevitably reveals some information
to the cloud provider—a limitation shared with other pro-
posals [6]—we argue that it is still a significant departure
from the status quo of centralized systems, in that the service
agreement of the latter implies that user information is fully
surrendered, while the service of cloud providers promises data
confidentiality. Data is in any case stored encrypted, providing
an extra level of safety against prying eyes.

II. SYSTEM MODEL

We represent the social overlay as an undirected graph G =
(VG, EG). We define the ego network Gv of a node v ∈ VG
as the subgraph of G composed of v, the friends of v, and
the edges among them. To simplify exposition, we use the
words “user” and “node” interchangeably, assuming there is a
one-to-one mapping between nodes and users. Every user u is
associated to a unique profile page pp(u) that might contain
textual posts, pictures, comments from friends, among others.
Such pieces of content are usually small objects under 150 kB,
the size of a Facebook picture. While users also share larger
objects such as videos, we argue that most of them are not part

978-1-4799-0521-8/13/$31.00 ©2013 IEEE

13-th IEEE International Conference on Peer-to-Peer Computing

of profile pages themselves, but rather linked from third-party
services such as YouTube or Flickr.

Two nodes are able to communicate as long as they are
online at the same time. We further do not model network
transmission latencies since, as we will later see, these are
relatively small w.r.t. to other sources of delay.

We assume clocks to be loosely synchronized, within the
order of minutes. This can be easily achieved by NTP.

At any point in time, the nodes of the P2P network are either
logged in (online) or out (offline). To drive this online/offline
behavior, we adopt the well-known availability model of
Yao et al. [19]. In the particular instance of the model we
adopt, both session (online time between a login and the next
logout) and inter-session lengths (offline time between a logout
and the next login) are exponentially distributed, with averages
of 0.5 and 1.0 hours, respectively. In line with other works
in the literature [16], we use exponential instead of heavy-
tailed distributions because the latter would make simulations
intractable. Heterogeneity is modelled as in [19].

We assume the existence of a highly available cloud service
which nodes can access to store and retrieve data, allowing
users to create personal storage areas under their control, i.e,
they can selectively allow/deny read/write access to others.

User profiles are small (a few GB) and likely within the free
quota currently allowed by some cloud providers. However, to
better elucidate the trade-off between delay and monetary cost,
we adopt the requester-pays billing scheme of Amazon S3 [2],
where users accessing data are charged for it. This establishes
the basis for the fair cost model of our solution: a user might
opt to either go directly to the cloud and pay to immediately
download updates from his friends, or use the free P2P
network instead, possibly at a performance penalty.

In S3, costs can be broken down into three components:
storage, bandwidth and request. Storage is normally cheap: at
the time of writing, the yearly cost for 1 GB is around $1.
Since storage costs do not impact our figures to a measurable
extent, we choose to abstract them away altogether. Similar
considerations hold for bandwidth: updates are small and, as
shown later, our protocol works by favoring many lightweight
requests over fewer, larger requests. The cost per request,
however, cannot be ignored. In S3, a user pays 0.01¢ for every
10, 000 GET requests, or every 1, 000 PUT requests. The cost
per read is the dominant in our case, and is therefore the one
we focus on in this paper.

III. PROBLEM STATEMENT

The problem of update dissemination has been described
in [13] and consists in diffusing copies of small profile updates
posted by a sender node to a set of receiver nodes over an
SO, with an acceptable delay. In particular, let Gu be the ego
network of some node u. We want to be able to disseminate
updates from a sender node v ∈ V (Gu) to all other receivers
in V (Gu). Note that it could be that v = u, i.e., the sender is
posting an update to its own profile, or v 6= u , e.g. when v
replies to a previous post in the profile of u. Further, to reap
the benefits of friend-to-friend cooperation, avoid spamming
uninterested nodes, and avoid leaking updates to nodes who

are not supposed to see them, we want to disseminate this
update using only nodes from Gu itself.

Disseminating updates with low latency over ego networks
can be done efficiently when nodes are always online, as
shown in [13]. When availability is taken into account, how-
ever, things get more difficult [14]. Absent nodes might create
transient disruptions on the network, introducing communica-
tion delays. We consider two notions of delay. The first one
is network-centric, defined as the total time elapsed from the
instant t0 at which an update is posted by a source v to the
instant tw at which it is received by a receiver w. We refer to
this metric as the end-to-end delay from v to w w.r.t. t0, or
ed(v, w, t0). It can be easily computed as tw − t0.

Being network-centric, ed is not representative of user
experience. We capture the latter by measuring how long a user
had to wait online before receiving an update. The intuition
is that a receiver that logs in infrequently does not care if an
update was posted long ago (i.e., with a high ed), provided it
is received shortly after login. We refer to this metric as the
receiver delay from v to w w.r.t. t0, or rd(v, w, t0).

As we have demonstrated in our previous work [14], update
dissemination over a purely P2P is not practical: average
receiver delays are in the order of hours for a significant
fraction (1%) of the nodes, and remains above tens of minutes
for over 10% of the nodes, leading to poor user experience.

Our goal is to solve the dissemination problem while provid-
ing an acceptable user experience. Formally, we want ensure
a target delay bound δ on the receiver delay rd. Capping
rd, however, is not enough, as it allows some undesirable
situations to emerge [15].

We therefore choose to allow a soft delay bound on ed
instead. The idea is that as soon as the target delay bound δ is
crossed, the system must deliver the update at the next login
of the receiver. We express this by adding some slack time to
the bound δ in case w is offline. This slack time represents the
residual offline time Roff of w until its next login. Formally:

ed(v, w, t0) ≤
{
δ if w online at t0 + δ

δ +Roff otherwise
(1)

The slack time is a random variable, whose probability
distribution results directly from the availability model. Since
the slack is composed entirely of offline time, it does not count
as receiver delay, so that Equation (1) implies rd(v, w, t0) ≤ δ
as well. The goal of this paper is providing a hybrid cloud/P2P
dissemination protocol which can honor the soft latency bound
of Equation (1) while being efficient and low-cost.

IV. CLOUD-ASSISTED DISSEMINATION

The need for cloud resources arises because the social over-
lay cannot provide acceptable delays to all source/destination
pairs in the network. This happens because the absence of
certain nodes can create transient partitions that disrupt com-
munication paths and introduce delay. We need to “patch”
such partitions somehow. A simple way to do so would be
associating each node u to an alias ũ of itself in the cloud,
which gets activated on-demand should u be offline.

Unfortunately this solution has several drawbacks. Both on-
demand (e.g. EC2 [2]) and full-blown instances tend to be

2

13-th IEEE International Conference on Peer-to-Peer Computing

expensive (i.e. more than $100/year). Further, we want to avoid
exposing the full memory state of the running software to
the cloud provider, as this might reveal sensitive information
(e.g. private keys). Finally, such solution requires nodes on
the critical path of transient partitions to use and pay for an
alias—not a feasible strategy in general.

The aforementioned problems led us to an alternative solu-
tion where ũ is no longer a full clone of u, but rather a simple
high-availability profile store in which pp(u) is kept.

To publish an update to to pp(u), a user v simply writes
it directly to ũ. Access control can be easily handled by
primitives provided by services such as Amazon’s S3 [2]. By
adopting the requester-pays model of S3, we ensure that each
user has complete control over costs. To minimize exposure
of sensitive data to the cloud provider, all data stored in ũ is
encrypted. This is in stark contrast with centralized solutions
such as Facebook, whose business model effectively precludes
storing encrypted data from being acceptable practice.

However, differently from cloud aliases, profile stores are
passive in that they cannot initiate interactions with other
nodes. Therefore, to actively overcome the transient partitions
that cause delays, we resort to periodic polling.
Naı̈ve approach. In its simplest form, our protocol works by
having each node w ∈ V (Gu) independently poll ũ every δ
time instants, retrieving any updates to pp(u) posted in the
meantime. If w happens to be offline after δ time instants
have passed, then w accesses the cloud immediately once
it logs back in. This simple protocol, which we refer to as
PUREPOLL, allows us to circumvent the transient partitions
through an out-of-band channel, satisfying Equation (1).
Hybrid approach. While simple, PUREPOLL is wasteful in
that it disregards the existence of low-delay paths in the social
overlay which could be used to our advantage. To understand
how, note that if we were to discard all paths in the social
overlay that have delays above or close to the delay bound δ
we wish to maintain we would be left with a set of disjoint
groups for which the internal delays are low. We call these
delay groups. To get a message disseminated over a set of
delay groups while respecting the delay bound δ, all we have
to do is to ensure that at least one node in each of these groups
actually accesses the cloud every δ time instants.

The second method we propose, named HYBRID, does just
that. Each node w ∈ V (Gu) keeps track of the last instant in
time at which it heard any news from u. Whenever w goes for
more than δ time instants without hearing from u, it polls the
profile store of u to see if there are updates. If so, w downloads
them from the cloud and pushes them into the social overlay
by means of the push gossip protocol of [13]. Otherwise, w
pushes a special QUENCH message that contains the time t0
at which w accessed the cloud and found nothing new. This
message serves to inform other nodes that, as of t0, there are
no new updates, and that they can therefore refrain themselves
from accessing the cloud for an extra δ time instants. We call
this mechanism access quenching.

To see how HYBRID approximates the ideal situation of
dissemination over delay groups described previously, note
that if two nodes belong to the same delay group then one

will likely hear from the access of the other, resulting in
quenching. If two nodes do not belong to the same delay
group, instead, it is unlikely that they hear each other in time
to promote quenching, and two separate cloud accesses will
ensue. Therefore, the protocol adjusts to the delay characteris-
tics of the surrounding network, and provides a self-organizing
mechanism for bridging transient partitions by polling.
Randomizing cloud accesses. A side effect of the protocol
we described is that it induces nodes belonging to the same
delay group to synchronize their accesses to the profile store.

We address the problem by scattering access times near t0+
δ as follows. First, we divide δ into a fixed component ψ
and a random component α, such that δ = ψ + α. Then,
let T be a random variable drawn from a uniform distribution
U(0, α). When node w1 accesses the cloud and, later, when w2

receives the QUENCH message, we now set their access times
to t0+ψ+T. This causes w1 and w2 to have slightly different
access times after t0+ψ which, provided α is sufficiently large,
is enough to make quenching effective. Since 0 ≤ T ≤ α, this
implies ψ + T ≤ δ, i.e., the modified protocol still honours
the soft bounds of Equation (1).

V. EVALUATION

We evaluate our protocol towards two goals: 1) providing
supporting evidence that it performs significantly better than
a pure P2P approach, and it is competitive with centralized
approaches; 2) estimating its monetary and network costs.

A. Baselines
We compare our protocol against three baselines: i) PURE-

POLL, which is the naı̈ve protocol of Section IV; ii) PUREP2P,
which disseminates updates exclusively over the social overlay
with no cloud assistance; and iii) SERVER, which emulates a
centralized approach akin to Facebook. This is achieved by
adding a special server node which is connected to all the
others, manages all profile pages, and can relay updates with
zero delay. This represents the best performance reference for
our system. Clearly, we wish to perform as close as possible
to SERVER, while incurring only modest monetary costs.

B. Experimental Setting
Protocols are evaluated over a sample of 700 ego networks

picked uniformly at random from the Orkut crawl of Mislove
et al. [1]. This is the same sample we used in [14], and a
detailed description can be found there. For each sample, we
pick one source node v ∈ V (Gu) uniformly at random and
we repeat the following experiment 100 times. First, we run
the simulation for a burn-in period, in which no measurement
is taken. After burn-in, the experiment progresses by waiting
for the first login of the source v, at which point we cause v
to post an update to pp(u). This marks the beginning of our
measurement session, which proceeds until the update reaches
all destinations in V (Gu)/{v}. The simulation then ends.

C. Metrics

Delay. In this paper, we focus on average end-to-end and re-
ceiver delays, which we refer to as aed and ard, respectively.
We compute estimates for each source/destination pair (v, w).

3

13-th IEEE International Conference on Peer-to-Peer Computing

Monetary cost. We estimate yearly running costs for each
node w ∈ V (Gu), denoted ycs(w, u) by first estimating,
from simulation, the average number of accesses-per-hour
performed by w while keeping up-to-date with u’s profile and
then multiplying it by the number of hours in a year, and then
by the price of a get request.

Finally, to get an estimate of the overall yearly
spendings ĉs(w) of w, we would need to compute∑

m∈V (Gw) ycs(w,m). In practice this means computing es-
timates for thousands of ego networks, which is intractable
given the high costs of these simulations. We therefore choose
to use two distinct approximations for ĉs(w) instead: i) a
flat approximation, in which we multiply ycs(w, u) by the
average size of the ego networks in our sample, and ii) a degree
approximation, in which we multiply ycs(w, u) by the degree
of w in the social network. The first approximation works by
applying a fixed penalty to all nodes, while the second assumes
that costs increase linearly with the number of friends. Given
our fixed computational budget, these cost models represent a
tradeoff we had to make by favouring accurate estimates for
delay at the expense of accurate estimates for cost.
Network cost. To assess the usage of network resources, we
estimate from simulation the number of messages a node w
has to process per time unit while keeping up-to-date (and
helping disseminate) updates from her friend u. We then apply
the same flat and degree approximations to obtain overall costs
(i.e. how many messages a node has to process to help and
keep up with all friends), with the same caveats as before.

D. Results

We use the notation HYBRID/ψ/α to refer to the variant of
HYBRID with parameters ψ and α, with unit given in minutes,
and the notation PUREPOLL/δ, to refer to the PUREPOLL
variant with target delay bound δ.

We simulate two versions of HYBRID, HYBRID/30/14,
and HYBRID/15/14. These parameter settings, as we later
show, provide good performance in terms of delay and cost.
However, as explained in Section IV, the target delay bound of
HYBRID is randomized, and varies in [ψ, ψ+α] with average
ψ + α/2. Since PUREPOLL is not randomized, we compare
each setting of HYBRID to three settings of PUREPOLL:
i) “fast”, PUREPOLL/ψ; ii) “intermediate”, PUREPOLL/(ψ+
α/2); iii) “slow”, PUREPOLL/(ψ + α).

This yields six PUREPOLL variants: three (δ ∈ {30, 37, 44})
to compare against HYBRID/30/14 and three (δ ∈
{15, 22, 29}) to compare against HYBRID/15/14. Since
PUREPOLL/30 and PUREPOLL/29 behave essentially the
same, we do not show the former and use the latter. Finally, to
understand at which point PUREPOLL can overtake HYBRID,
we add a seventh setting for PUREPOLL in which we set δ = 5.
Delay. Figure 1 shows cumulative distribution functions
(CDFs) for receiver and end-to-end delays of HYBRID and
baselines. Since rd is always zero for SERVER, we omit it
from the plot. Complementary statistics are given in Table I.

The data confirms the results of [14]. PUREP2P suffers from
significant performance issues and its ard distribution has
long tail, with a maximum of 2.9 hours, and a 99th percentile

Fig. 1. CDFs for aed and ard for all source/destination pairs.

of 1.5h—unacceptable for a Facebook-scale system. Further,
the data shows that our cloud-based alternatives—HYBRID and
PUREPOLL—effectively solve the problem of the long delay
tail by putting a bound on rd, which can be seen from the
much smaller maximum and 99th percentiles.

Finally, we see that HYBRID outperforms its associated
PUREPOLL variants while providing a better experience for
most users across all parameter settings, even as we com-
pare HYBRID/30/14 to PUREPOLL/5. By combining both
approaches, HYBRID effectively reconciles the best of both
worlds: the fast performance of PUREP2P for the regions of
the network that exhibit low delay—which can be seen in
Figure 1a as the nearly vertical shape of the CDF up until the
60th percentile—with the ability of mitigating the long delay
tails of PUREPOLL. Table I shows that HYBRID has maximum
and 99th percentile ard values which are comparable to those
of their fast PUREPOLL counterparts, with HYBRID being
faster. Indeed, HYBRID/30/14 and HYBRID/15/14 perform
around 837% and 685% percent faster, on average, than
PUREPOLL/29 and PUREPOLL/15, respectively.

Figure 1b shows that HYBRID significantly improves end-
to-end delays as well, particularly at lower percentiles: the
polling period, never smaller than δ, is a barrier to PUREPOLL
but not for HYBRID. Further, HYBRID is much closer to
SERVER than PUREP2P.
Monetary cost. Yearly cost figures are provided in Table II.
We use the current Amazon S3 pricing [2], as per the model of
Section II. Again, the costs for HYBRID are generally lower
than their associated PUREPOLL variants. Costs are attractive
under the flat model, with HYBRID/15/14 presenting good
cost/latency tradeoff. The other side of the coin is given by the

ard

avg. 99th max.
PUREP2P 5.76m 1.5h 2.9h
HYBRID/30/14 48s 9.8m 15.2m
HYBRID/15/14 35s 7.2m 13.5m
PUREPOLL/44 9.94m 22.9m 27.1m
PUREPOLL/37 8.9m 21.6m 26.4m
PUREPOLL/29 6.7m 14.5m 16.6m
PUREPOLL/22 5.2m 11.9m 14.3m
PUREPOLL/15 4m 10.7m 12.3m
PUREPOLL/5 1.2m 2.8m 4.5m
SERVER 0 0 0

TABLE I
DISSEMINATION DELAY (m = MINUTE, s = SECOND, d = DAY).

4

13-th IEEE International Conference on Peer-to-Peer Computing

flat (USD) degree (USD)
avg. 99th max. avg. 99th max.

HYBRID/30/14 1 2.9 3.4 1.25 9 230
HYBRID/15/14 1.42 3.9 4.66 1.72 12.4 304
PUREPOLL/44 1.84 2.38 2.9 2.5 17.4 282
PUREPOLL/37 2.13 2.8 3.47 2.9 20.3 324
PUREPOLL/29 2.63 3.59 3.81 3.57 25 390
PUREPOLL/22 3.32 4.72 4.88 4.51 31.6 483
PUREPOLL/15 5 9.5 20 9.5 48 737
PUREPOLL/5 13 27 64 17 128 1909

TABLE II
YEARLY COSTS, IN US DOLLARS.

avg. 90th 95th 99th max.
node degree 197.5 409 658 2 897 33 313
HYBRID/30/14 (degree) 25.98 43.17 77.9 298.16 9 498
HYBRID/15/14 (degree) 26.02 43.17 77.6 294.73 9 472
HYBRID/30/14 (flat) 11.64 32.60 46 73.2 178
HYBRID/15/14 (flat) 11.8 33 56 74.8 168

TABLE III
NETWORK COST, IN QUENCH MESSAGES PER SECOND.

degree model, which reaches high maximum values. Such high
values, however, all originate from a small set of extremely
connected nodes, the most connected having 33 313 friends
(more details in [15]). For nodes with less than 1 000 friends,
however, costs for HYBRID/30/7 and HYBRID/15/7 are no
larger than $15 and $21 a year, respectively (i.e. cheaper than
hosting solutions such as EC2 [2] or low-cost hosting [9]).

Even if some users do get a large number of friends, we still
do not expect to see these high costs in practice: users with
huge ego networks are likely to trim friends they do not want
to keep in touch so often, bringing down costs considerably.
Network cost. We focus here on the propagation of QUENCH

messages and its impact on the underlying P2P network, for
two reasons: i) costs incurred by updates relate to user posting
frequencies and habits, which are variables beyond our control;
ii) bandwidth available for actual updates is ultimately given
by whatever is available, minus QUENCH overhead, which we
measure here. Cost statistics are are presented in Table III.

Assuming a QUENCH message has a size of around 48b (40b
for a TCP/IP header plus 8b for identifier and timestamp),
costs are reasonable for a large fraction of the nodes: 90%
process less than 40 msgs/s ∼ 2 kB/s, even under the degree
approximation. Maximum values, however, are clearly too
high, again due to high degree nodes (above 1 000 friends).
We argue, however, that such nodes are unlikely to fare well
in any decentralized OSN architecture we know of.

VI. RELATED WORK

A number of P2P OSNs have been proposed recently [4],
[5], [12]. Most of these are directly based on DHTs and, as
such, are different from our work. Safebook [5], however, uses
an SO implicitly to anonymize transmissions. Since SOs are
inherently partition-prone, the techniques we use here could
be of use in rendering it practical. A similar observation holds
for other SO-based proposals [7], [10], [18].

The idea improving P2P performance with cloud resources
is not new. Cloud helpers are proposed in [11] to increase

availability in a friend-to-friend (F2F) backup system. In
backup, however, high availability is relevant to the data
owner only. Further, objects are larger and time requirements
are less stringent, shifting concerns to throughput instead of
latency. Confidant [6] directly targets OSNs by relying on
cloud aliases. Data is kept only at the P2P layer, replicated
only among friends, while aliases act as coordinators tracking
replicas and membership (i.e., who replicates what, who is
online). In this setting, churn becomes a challenge to the
availability of data, instead of its dissemination.

VII. CONCLUSIONS AND FUTURE WORK

Social overlays are an interesting option for building decen-
tralized OSNs, but their susceptibility to transient partitioning
under churn renders key functionality such as fast dissemi-
nation of profile updates difficult to implement efficiently. In
this paper, we have presented a solution to these inefficiencies,
by introducing a protocol that leverages a highly available
cloud infrastructure to adaptively support the overlay when and
where needed, without sacrificing the fundamental property
of allowing communication only among friends. We show
that delays can be dramatically improved and monetary costs
limited for users with less than one thousand friends. However,
network costs, albeit acceptable, can be optimized further. We
intend to address this issue by investigating a combination of
the current push approach with an anti-entropy mechanism.

REFERENCES

[1] A. Mislove et al. Measurement and analysis of online social networks.
In Proc. Internet Measurement Conf., 2007.

[2] Amazon AWS website. http://aws.amazon.com/, [August 2013].
[3] D. Boyd and E. Hargittai. Facebook privacy settings: Who cares? First

Monday, 15(8), 2010.
[4] S. Buchegger, D. Schiöberg, L.-H. Vu, and A. Datta. PeerSoN: P2P

social networking – early experiences and insights. Proc. Workshop on
Social Network Systems (SNS’09), 2009.

[5] L. A. Cutillo, R. Molva, and T. Strufe. Safebook: A privacy-preserving
online social network leveraging on real-life trust. IEEE Communica-
tions, 47(12):94–101, Dec. 2009.

[6] D. Liu et al. Confidant: Protecting OSN Data without Locking it Up.
In Proc. Conf. Middleware, 2011.

[7] A. Datta and R. Sharma. GoDisco: Selective gossip based dissemination
of information in social community based overlays. In Proc. of Intl.
Conf. Distributed Computing and Networking (ICDCN’11), 2011.

[8] Diaspora website. https://joindiaspora.com/, [March 2013].
[9] Dreamhost website. http://dreamhost.com/, [March 2013].

[10] Freenet website. http://www.freenet.org, [March 2013].
[11] R. Gracia-Tinedo, M. Sanchez-Arigas, and P. Garcia-Lopez. F2box:

Cloudifying F2F storage systems with high availability correlation. In
Proc. IEEE Conf. on Cloud Computing, 2012.

[12] K. Graffi, C. Gross, P. Mukherjee, A. Kovacevic, and R. Steinmetz. Life-
Social.KOM: a P2P-Based platform for secure online social networks.
In Proc. Conf. P2P Computing (P2P’10), 2010.

[13] G. Mega, A. Montresor, and G. P. Picco. Efficient dissemination in
decentralized social networks. In Proc. Conf. P2P Computing, 2011.

[14] G. Mega, A. Montresor, and G. P. Picco. On churn and communication
delays in social overlays. In Proc. Conf. P2P Computing, 2012.

[15] G. Mega, A. Montresor, and G. P. Picco. Cloud-assisted dissemination
in social overlays. Technical Report DISI-13-031, Univ. of Trento, 2013.

[16] A. Singh, G. Urdaneta, M. van Steen, and R. Vitenberg. Robust overlays
for privacy-preserving data dissemination over a social graph. In Proc.
Intl. Conf. Dist. Computing Sys. (ICDCS), 2012.

[17] T. Paul et al. Exploring decentralization dimensions of social networking
services: Adversaries and availability. In Proc. Workshop on Hot Topics
in Interdisciplinary Social Networks Research, 2012.

[18] Tonika website. http://5ttt.org, [March 2013].
[19] Z. Yao et al. Modeling heterogeneous user churn and local resilience

of unstructured P2P networks. In Proc. of ICNP’06, 2006.

5

