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Abstract—Peer-to-peer systems based on an overlay network
that mirrors the social relationships among the nodes’ owners
are increasingly attracting interest. Yet, the churn induced by
the availability of users raises the question—still unanswered—of
whether these social overlays represent a viable solution. Indeed,
although constraining communication to take place only among
“friends” brings many benefits, it also introduces significant
limitations when healing the overlay in the presence of churn.

This paper puts forth two contributions. First, we show
through simulation on real datasets that churn induces relevant
delays in information dissemination, which may ultimately ham-
per the practical application of social overlays. Yet, identifying
opportunities for improvement and evaluating design alternatives
through simulation is impractical, due to the size of the target
networks, the large parameter space, and the many sources
of randomness involved. Therefore, in our second contribution
we combine analytical and simulation techniques to enable the
estimation of dissemination delays at a practical cost.

I. INTRODUCTION

Social networks are complex networks that arise from the
interaction patterns of social beings. Apart from possessing
a number of well-known structural properties [18], these
networks present unique opportunities for system developers
to build computer systems that are more secure, robust, and
privacy-friendly [3]. In this study, we are interested in a
particular instantiation of this opportunity, in which users are
“represented” in the network by their computers or personal
devices, and communication links are restricted, by design,
to pairs of devices whose owners are friends. Given that the
current Internet is not organized in this way, such a network
must necessarily be deployed as an overlay network, which
we refer to as a social overlay (SO).
Social overlays. The idea of assembling a computer network
whose links mirror those of an existing social network is
not new. Indeed, social overlays have increasingly found their
way into research proposals and applications over the last few
years, ranging from censorship-resistant storage systems [2],
to new ways of structuring the Internet [3]. The use of a social
overlay implies a decentralized, peer-to-peer architecture: not
surprisingly, the most widely-known, SO-based system in use,
Freenet [2], is commonly ascribed to the class of P2P systems.

Social overlays have recently been proposed as a substrate
for information dissemination. In [8] this is realized as a form
of publish-subscribe over the social overlay. Instead, the work
in [13] proposes an architecture for decentralized online social
networks where the dissemination of information (e.g., profile
updates) from a user to its corresponding ego network (i.e., the

portion of the SO including the user, her friends, and the social
links among them) is realized solely atop the social overlay.

By restricting communication to friends, social overlays are
expected to improve, by design, privacy (non-friends do not
see the information disseminated), locality (due to network
homophily), and cooperation (due to friendship).
Churn and communication delays. An issue hitherto un-
explored, however, is the one of churn. Like any other P2P
system, those based on social overlays must cope with the fact
that users are allowed to join and leave the network of their
own volition, according to availability patterns known to be
highly heterogeneous [20]. This is a well-studied problem in
P2P systems. For instance, common “synthetic” overlays (e.g.
[16]) deal with joins and leaves by automatically rewiring the
connections among neighbors. In performing this self-healing
process, however, they are free to choose how to establish
connectivity between the remaining nodes: constraints are
imposed only for optimizing system parameters, or respecting
certain overlay invariants. Social overlays do not enjoy the
same luxury, as their defining property is that connectivity is
allowed only among 1-hop friends. Breaking this constraint
would break their essence. However, this very same constraint
severely reduces the “opportunities for healing” in the presence
of churn, and may render the system unreliable and inefficient.

For instance, suppose some information (e.g., a profile up-
date) is injected in the system by a peer u, to be disseminated
to all of u’s friends, including a friend v. Due to their usage
habits, however, it so happens that u and v are never online at
the same time. To relay the message to v, the system would
have to find a third peer w to broker the message, such that w
is online at the same time as u, and then later at the same time
as v. Further, w must be a friend of both u and v. Clearly, a
peer w satisfying these conditions might not exist, causing the
message to traverse a chain of friends acting as brokers before
it can actually reach v—assuming it ever does. Moreover, the
longer this chain, the greater the delay experienced by the
receiver v, as one broker must wait for the next one to come
online before passing the message forward. If this delay is too
large, the applicability of the solution becomes limited.

In this study, we focus on the notion of delay as the metric
determining the practical usability of the system. Intuitively, if
a message from a user takes “too long” to be delivered to any
of her friends, the system may become unusable for practical
purposes. In Section II we define precisely our system model,
while in Section III we formally define the problem and the
metrics—end-to-end delay and receiver delay—we use.



Goals and contributions. In this context, the research ques-
tions at the heart of this paper are two:

1) Does the constraint of using only “friend links” limit the
applicability of social overlays?

2) If so, how can we mitigate the effects of churn on social
overlays?

We investigate the answer to these questions by putting forth
two contributions.

First, we analyze and compare a pure SO-based solution
against a mainstream server-based solution (e.g., representative
of those used by online social networks), using simulation
from real datasets combined with a well-known availability
model [20]. As we show in Section IV, 1% of the receivers
experience a delay greater than 3 hours. This result may appear
good, and it is for applications (e.g., data storage [2]) that
are not sensitive to delay. Also, 1% may seem at first a small
percentage. However, when considering large-scale, interactive
applications such as Facebook or Twitter, this result would
translate into an unacceptable user experience for millions of
users. Since the culprit is churn, we also compare against a
solution where a variable fraction of the nodes composing
the SO are assumed to be fixed. This allows us to glance at
opportunities for improvement that could be easily harvested
by, say, assuming that some of the peers are willing to rely
on cloud computing services to provide a continuous online
presence. Note that this would still preserve many of the
desirable properties achieved by SOs, by placing the decision
about where to put the data into the hands of the users, rather
than of the online social network providers (e.g., Facebook).

We argue that the simulation study above is a valuable
indication that indeed churn is a concern for social overlays,
therefore partially answering question 1. Nevertheless, a more
articulate answer, as well as the answer to question 2, both
require a level of analysis that can hardly be supported by a
simulation study alone, due to i) the sheer size of the networks
to be considered when working with social network datasets,
ii) the large parameter space inherent to modeling availability,
e.g., the many ways in which it can be mapped on network
nodes; and iii) the many sources of randomness involved, with
heavy-tailed distributions increasing the number of repetitions
required to obtain meaningful results.

Therefore, our second contribution, detailed in Section V,
revolves around an analytical model of dissemination over
social overlays. Specifically, we present:

1) a hybrid analytical/simulation framework which enables
us to determine, at a practical cost, an upper bound to
dissemination delays;

2) algorithms for identifying key graph substructures that,
as we show, are responsible for a substantial fraction of
the observed delays.

The paper is completed by a concise overview of related
works in Section VI, and by final remarks in Section VII.

II. SYSTEM MODEL

Definitions and notation. We represent a social network as
an undirected graph G = (V,E) where V represents users

and E is the friend relationship between them. For each user
u ∈ V , the function f : V → 2V maps users to their set of
friends. The ego network Gu = ({f(u) ∪ u}, Eu) of a user u
is defined as the subgraph of G induced by u, its friends f(u),
and the set of interconnections Eu among them. We assume
without loss of generality that there is a one-to-one mapping
between users and nodes in the system.

A. Availability Model

Our system is a P2P network with |V | participants, where
each user u can be either logged in (online) or out (offline) at
a given time instant t. In this context, we were faced with two
options when it came to specifying online/offline behavior.

The first option we considered was to use one of the
publicly-available traces from measurement studies of P2P
systems (e.g., [15]) and, more recently, from instant mes-
saging applications (e.g., [17]). Although directly applying
real datasets is appealing, it is also a challenge in itself in
our context, since: i) size: the social graphs required for our
experiments are much larger than the networks captured by
availability traces, and it is unclear how to employ the latter
to simulate the former without biasing the results; ii) duration:
even the longest traces available are too short to accommodate
a sufficient number of decorrelated experiments; iii) noise:
most traces contain high rates of permanent departures (e.g.,
due to peer aliasing [15]), which affect the statistical properties
of peer sessions, and in general introduce unacceptable bias.

We therefore chose a second option, namely, the use of a
well-known synthetic churn model, hereafter referred to as the
Yao model [20]. This model is derived from the statistical be-
havior of measurement studies in the context of P2P systems,
and therefore provides us with a good approximation of real
peer behavior, while avoiding the aforementioned problems
associated with the use of the actual real data.

The Yao model associates an alternating renewal process
to each node u ∈ V . In these processes, both session lengths
(online time between a login and the next logout) and inter-
session lengths (offline time between a logout and the next
login) of a node u are given by random variables Xu

on and
Xu

off , drawn from node-specific distributions Fuon and Fuoff .
Although the analysis tools we later develop are independent

of these distributions, we consider in this paper one of the
instantiations of the model proposed by [20], in which both
Fuon and Fuoff are shifted Pareto distributions pareto[α, β] with
parameters α and β and average β/(α− 1). Their cumulative
distribution function (CDF) is given by:

pareto[α, β](x) = 1− (1 + x/β)−α, x > 0, α > 1

This distribution is heavy-tailed, being known for accurately
modeling the skewed availability patterns characteristic of
P2P systems [15]. Let the average session and intersession
lengths for node u be `uon = E(Xu

on) and `uoff = E(Xu
off ),

respectively. Then, the asymptotic availability of u is [20]:

au = lim
t→∞

P(u is on-line at time t) =
`uon

`uon + `uoff

(1)



B. Heterogeneity

Heterogeneous user availabilities are modelled once again
as in Yao et al. [20], by drawing the `on and `off shown in
Eq. (1) from yet another pair of shifted Pareto distributions.
For session lengths, we use pareto[3, 1] yielding E(`on) = 0.5
hours. For inter-session lengths we use pareto[3, 2], yielding
E(`off ) = 1 hour. These averages, again, coincide with those
of measurement studies found in the literature [14].

With those in place, we set a session length distribution
for each node u to be Fuon = pareto[3, 2 · `on ] and the inter-
session length distribution Foff = pareto[3, 2 · `off ]. Note that,
under those settings, E(Xon) = `on and E(Xoff ) = `off .

Each node u ∈ V is then associated to a pair of distributions
(Fuon , F

u
off ). We call the set AG of all of these pairs, one per

node, the availability assignment of graph G.

III. PROBLEM STATEMENT

Given an arbitrary connected graph G = (V,E) and its
availability assignment AG, we want to understand how long
it takes for a message to propagate between an arbitrary pair of
vertices u, v. A lower bound for such communication delay can
be obtained by studying the temporal connectivity of G under
AG. The problem is deeply connected to the study of temporal
paths, defined next. Note that this problem formulation is very
general, as G can represent an entire social network just as
well as some subgraph of it, such as an ego network.

We say that an edge e = (u, v) ∈ E is active when both u
and v are online at the same time. Each edge e is associated
to a infinite set I(e) of disjoint activation intervals, which
represent the periods of time in which e is active. An interval
[s, f ] ∈ I(e) starts at time s and finishes at time f .

Let P = {e1, · · · , en} be a path between u and v in G.
We say that a temporal path T = (P, S) exists between nodes
u and v if and only if there exists a sequence of intervals
S = [s1, f2], [s2, f2], . . . , [sn, fn] such that [si, fi] ∈ I(ei)
(1 ≤ i ≤ n) and si ≤ fi+1 (1 ≤ i < n). In other words, a
temporal path only exists if there is a sequence of activation
intervals for which the edges of P are activated one after the
other, allowing a message to be propagated from u to v. The
idea is illustrated in Fig. 1a: as the edges become active in
sequence, a message can flow from node u towards node v.
We say that the temporal path T materializes the underlying
path P or, equivalently, that T is a materialization of P .

For a given temporal path T , we define s(T ) = s1 and
f(T ) = sn as the time instants at which the first and last
edges of T get activated, respectively. The duration ∆(T ) of
a temporal path can then be defined as f(T )−s(T ). The idea
is illustrated in Fig. 1b, which shows the activation intervals of
Fig. 1a as they develop in time. The duration of the temporal
path in the diagram is given by ∆(T ) = t4 − t1.

Note that many temporal paths form between u and v over
time, but we are only interested in those that form after u has
actually something it wants to transmit to v. The earliest time
instant when this may happen is when u logs in. Therefore,
we choose to (pessimistically) measure the communication
delay w.r.t. the login events of u, rather than the duration of
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Fig. 1. Two views of a temporal path.

the temporal paths connecting u and v. This is equivalent to
assuming that a node u sends a message as soon as it logs in.

The idea is illustrated again in Fig. 1b, where pd(P, t0)
represents the communication delay along the temporal path
materializing P , measured w.r.t. the login event of u at t0
instead of the beginning of the first activation interval at t1.
The communication delay, in this case, is given by t4 − t0.

Formally, let t0 be a time instant at which u has logged
in. For a given path P ∈ G between u and v, let M(P, t0)
represent the set of all temporal paths T that materialize P ,
such that s(T ) > t0. We define the path delay of P w.r.t. t0
as:

pd(P, t0) = min{f(T )− t0 : T ∈M(P, t0)}

This notion captures the communication delay among u and
v over a single path. In general, however, if several temporal
paths materialize between u and v, the path that actually
carries the message sent from u is the one that forms first.
Based on this intuition, we can now define the end-to-end
delay ed(u, v, t0) among two nodes u and v w.r.t. t0 as the
smallest path delay, also w.r.t. t0, over the set P(u, v) of all
paths connecting u and v in G:

ed(u, v, t0) = min{pd(P, t0) : P ∈ P(u, v)}

For a given set of time instants L = {t0, · · · , tn} represent-
ing logins of u, we can compute the average end-to-end delay
w.r.t. v as:

aed(u, v, L) =
1

|L|
∑
ti∈L

ed(u, v, ti) (2)

The end-to-end delay is, by nature, a network-level metric.
From an application and user perspective, however, what really
matters is the delay experienced by the receiver of a message.
For instance, a receiver that logs in very infrequently would
not really care whether a message was sent a long time ago,
as long as it is received shortly after login.

We therefore define a second, application-level metric based
on the fraction of time that the receiver spends online, i.e., with
a chance of getting the message. Let up(v, t) : V ×R→ R be



the function yielding the total uptime of node v ∈ V , i.e., the
accrued time v spent online until some time instant t. Now, let
t0 be an instant when a sender u logs in. We define the receiver
delay rd(u, v, t0) between u and v w.r.t. t0 as the total time
that v spends online between the sending and the receipt of the
message sent by u, i.e., in the interval [t0, t0 + ed(u, v, t0)].
Using the up function, we can express this as:

rd(u, v, t0) = up(v, t0 + ed(u, v, t0))− up(v, t0) (3)

Similarly to end-to-end delay, we can define an average
receiver delay w.r.t. a set of login events L = {t0, · · · , tn} of
node u as:

ard(u, v, L) =
1

|L|
∑
ti∈L

rd(u, v, ti)

The two metrics, ed and rd, are related. By recalling from
Eq. (1) that the asymptotic availability av of node v expresses
the average fraction of time that v spends online, we can
approximate rd as:

rd(u, v, t0) ∼ av · ed(u, v, t0) (4)

The practical impact of this relation is that the analytical
model in Section V can focus on end-to-end delay, as receiver
delay can be derived from it. Before illustrating our model,
however, we turn our attention to determining whether churn
poses a threat to the practical application of social overlays.

IV. CAN SOCIAL OVERLAYS SUPPORT COMMUNICATION
UNDER CHURN?

A simple approach to answering this question is by means
of plain, discrete-event simulations. If we simulate the churn
model and collect enough ed and rd values, we can obtain
aed and ard values that are “close enough” to the “population
averages” for these values. These simple simulations entail
simulating all events in all nodes in the graph. We call them
full simulations, in contrast with the smaller-scale simulations
we exploit in Section V.

We now describe in detail how we designed these simula-
tions, along with our specific experimental setting. Although
the latter is limited by the relatively small scale of the
experiment and the specific choice of parameters, the results
point at the fact that a pure P2P social overlay fails to perform
acceptably under churn. This calls for a more comprehensive
study, for which full simulations do not represent an adequate
tool, motivating the contribution put forth in Section V.

A. Simulation Design

To simplify the discussion, we focus this subsection on the
simulations for the average end-to-end delay aed. Later, we
discuss briefly how to use the very same method to directly
obtain values for the average receiver delay ard.

Estimating aed by full simulations amounts to running the
churn model in a discrete event simulator and directly observ-
ing a large number of ed values. The way this simulation
works is described in Algorithm 1. Initially, we set all nodes
to “logged out” (line 3). We then remove the bias introduced

Algorithm 1: FullSimulation
Input: Graph G = (V,E), number of repetitions n,

burn-in time δb, source node u.

forall v ∈ V do aed [v]← 0 % avg. comm. delay1

for i← 1 to n do2

U ← ∅ % nodes currently logged in3

R← ∅ % nodes reached from u so far4

forall v ∈ V do ed [v]← ⊥ % comm. delay5

while R 6= V do6

e← nextSimulationEvent()7

if e.type = LOGIN then U ← U ∪ {e.node}8

else U ← U − {e.node}9

if e.time ≥ δb and e.type = LOGIN then10

if e.node = u and u /∈ R then11

R← {u}12

ed [u]← e.time13

if u ∈ R then14

Reachable(G, R, U , ed , e.time)15

for v ∈ V do16

aed [v]← aed [v] + (ed [v]− ed [u])17

forall v ∈ V do aed [v]← aed [v]/n18

return aed19

by this initial state by running the churn simulation for a
burn-in time δb (line 10) until the number of nodes logged
in stabilizes. We have empirically established δb = 48 hours
to be sufficient for most practical cases, where we observe
stable-state parameters similar to what described in [20].

The simulation progresses by identifying which nodes are
“reachable” from the source u. A node v becomes reachable
when the first temporal path starting from the source reaches
it. The first node to become reachable is the source u itself.
This happens when u logs in for the first time (line 11–12).

Then, for each subsequent login event (from any node), we
check whether there are any nodes that, previously unreachable
from u, are now reachable, using Algorithm 2. We start a
breadth-first-search (BFS) from each member v of the set of

Algorithm 2: Reachable
Input: G = (V,E), R, U , ed from Alg. 1 and time t.

Q← R ∩ U1

while Q 6= ∅ do2

v ← extract(Q); % Remove in FIFO order3

forall (v, w) ∈ E do4

if w ∈ U and ed [w] = ⊥ then5

ed [w]← t6

R← R ∪ {w}7

Q← Q ∪ {w}8



Metric Value
Number of Vertices 137892
Number of Edges Edges 1460043
Avg. Clustering Coefficient 0.112
Average Egonet Size 197.5

TABLE I
STATISTICS FOR EGO NETWORK SAMPLE.

nodes Q = R∩U reachable from u and currently online. The
BFS visits a node w if it is online (w ∈ U ) and has not been
visited before (ed [w] = ⊥). When w is visited, ed [w] is set
to the current time and w is added to both Q and R.

The ed values generated for each experiment are our
samples taken from the underlying, unknown distribution of
ed values between u and v. These get accumulated in an array
(line 16) which, at the end of the whole procedure, is divided
by the number of repetitions to yield the aed values.

The average receiver delay ard can be obtained by keeping
track of the accrued uptimes for each node, so that we can
have an implementation of the up(v, t) function required by
Eq. (3). When the source u logs in for the first time (line
12), we take a snapshot of the uptimes of all nodes, and store
them in an auxiliary array. These are the values of up(v, t0)
of Eq. (3). Then, whenever a node v becomes reachable at
instant t1 we compute rd(v, t0) = up(v, t1)− up(v, t0).

B. Experimental Setting

We perform full simulations over ego networks extracted
from the Orkut crawl in [5]. The original graph contains
3 million vertices (3 million ego networks), 223 million
(undirected) edges, and has an average clustering coefficient
of 0.171. We single out 700 of these ego networks uniformly
at random. This sample includes around 5% of the vertices
in the graph, and its average clustering coefficient is slightly
smaller, as shown in the statistics in Table I.

We chose ego networks because i) they allow us to focus
on relatively smaller networks, for which simulations are
nonetheless already expensive, and ii) dissemination over ego
networks is often a building block in SO-based approaches,
including our own [13].

For each ego network Gu in our sample, we:
1) select a node v ∈ Gu uniformly at random;
2) perform 100 000 full simulation runs taking v as a source;
3) estimate aed and ard from v to all other nodes in Gu.
This yields delay estimates for a total of 137 260

source/destination pairs, coming from 7× 108 full simulation

u

(a) Ego network Gu.

server

u

(b) Gu with server
node.

fixed node

u

(c) Gu with 3 fixed
nodes.

Fig. 2. The three types of experiments.

(a) (b)

Fig. 3. CDFs for average end-to-end and receiver delay.

runs. The high number of repetitions – another complication of
the approach based purely on simulations – is required because
the underlying distribution of the ed and rd metrics is heavily
skewed (possibly heavy-tailed), meaning that it is not possible
to obtain an accurate approximation of the average unless we
run a very large amount of repetitions, so that “rare events”
that impact the average have the opportunity to unfold [10].

As a baseline for comparison, we adopt a hypothetical
“server-based” approach which mimics current centralized
solutions like Facebook. To that end, we add a special node
to the graph which is connected to all other nodes, and which
is also available (up) 100% of the time. This allows us to
understand, for a given availability assignment, what is the
best achievable end-to-end delay. Needless to say, the receiver
delay under such a setting will always be equal to zero. This
is illustrated in Fig. 2b, where we add the special node to the
ego network depicted in Fig. 2a.

We also perform another kind of experiment, where we
select a percentage of the nodes in the overlay uniformly
at random and make them fixed; i.e., we make them always
online. Note that, as illustrated in Fig. 2c, this is different from
the “server” approach – we do not add any new nodes here,
we change existing nodes so that they are always available.
This allows us to understand whether and how performance
numbers change as we “patch up the holes” in the network,
as well as how much “patching” we need before performance
becomes acceptable. Also note that, unlike the server-based
approach, this experimental setting mimics decentralized sys-
tems such as Diaspora [1], in which a percentage of the nodes
might choose to run their nodes in paid, cloud-hosting services.

C. Results and Discussion

Fig. 3 shows the cumulative distributions for the values we
obtained for aed and ard, against their baselines, as well
as for varying proportions of fixed nodes (15%, 50%, and
75%). Plots are truncated near the largest 90th percentile, with
complementary information provided in Table II.

The experiment, despite the aforementioned limitations,
reveals a number of important properties and issues. The
first one is the generally high values for aed, which can be
seen all across the board. Averages are no less than 1 hour
and 48 minutes, and maximum values are as high as 724



Average 99th Perc. Maximum
aed ard aed ard aed ard

0% fixed 2.36h 14 mins 17.8h 3.6h 724h 10h
15% fixed 2.35h 14 mins 16.1h 3.0h 719h 9.5h
50% fixed 1.88h 7 mins 14h 2.7h 262h 8.9h
75% fixed 1.61h 2 mins 12h 1.4h 167h 7h
server 1.48h 0 11.7h 0 111h 0

TABLE II
STATISTICS FOR COMMUNICATION DELAY.

hours (a month). The fact that even the server-based approach
exhibits significantly high values means, however, that most
of this delay is likely due to receivers that come online very
infrequently. This is confirmed by the comparatively much
lower values of ard, which remain in the order of minutes,
on average, and hours, in the worst case.

By examining ard values closely, however, a number of
observations can be made. First, the maximum values are un-
acceptably high (10 hours for a purely P2P solution), and seem
to decrease quite slowly, even as we add a large percentage of
fixed nodes. Second, as Fig. 3b shows, although performance
is acceptable for a large portion of the users (on the order of
tens of seconds for around 50% of the users), curves flatten
significantly as we approach the 90th percentile, with receiver
delays never lower than 1h for the slowest 1%, even with 75%
of fixed nodes. The pure P2P approach performs particularly
poorly, with receiver delays nearing 1 hour already at the 90th

percentile, and climbing to 3.6 hours at the 99th percentile.
Given that this constrained experiment already reveals

significant performance issues, we conclude this section by
pointing out that a deeper, more comprehensive investigation
is required if we are to understand under which availability
conditions social overlays are viable. Yet, to base this investi-
gation on full simulations is simply not feasible, because:

1) Social network datasets are large. Claiming something
meaningful about social networks under churn entails
studying a large number of them, which translates into
prohibitively high simulation costs.

2) Parameter choices are large. The experiments in this sec-
tion are run with a single, randomly-generated availability
assignment, as described in Sec. II. Properly exploring the
parameter space would entail experimenting with more of
these assignments, including ones with different distri-
bution parameters, varying assumptions of correlation/no
correlation among graph-structural (e.g., node degree)
and node properties (e.g., availability), among others. The
costs of each assignment gets multiplied by the size of
the datasets, yielding even higher simulation costs.

3) Distributions are heavy-tailed. Adding to the previous
issues, skewed and heavy-tailed distributions both in the
availability model and the observed metrics mean a large
number of repetitions is required before reliable results
can be obtained, further increasing the costs.

The combination of these issues ultimately renders full
simulations an impractical approach for studying the problem
at hand, motivating a quest for more efficient alternatives.

V. TOWARDS AN ANALYTICAL MODEL

In this section, we present our first results towards such
an alternative: a partial, hybrid model which uses simple
analytical results at its core, and fills in the remaining gaps
with simulations. Our current model allows us to determine
an upper bound for the average end-to-end delay, as well
as to identify key graph substructures that, as we will show,
determine a significant fraction of the observed delay values.

Given the relation between ed and rd expressed by Eq. (4)
we focus our model only on the end-to-end delay ed.

A. Formation of Temporal Paths

The key observation behind our model lies in something
we briefly mentioned in Sec. II: that the only requirement for
nodes u and v to be able to communicate over a graph G
is that some temporal path forms between them – we do not
really care which one. We can gain insight on how to model
the end-to-end delay between two vertices u and v, then, by
reasoning probabilistically about the time it takes for some
temporal path T to materialize a path P between them.

Let P = {e1, ..., em} be a path between u and v in
G = (V,E). For each edge ei = (wi, wi+1) ∈ P , let Xei

be the random variable representing the time elapsed between
a (randomly picked) login event of wi and the beginning of
the next activation interval of ei. We refer to Xei as the edge
delay of ei. Given that our churn model is probabilistic, we
can also represent the duration of a temporal path – i.e, the
time it takes for a temporal path T to materialize P – as a
random variable ∆P . We can then express the path delay DP

of a path P as:
DP = Xe1 + ∆P (5)

Note that Eq. (5) is just a restatement of the notion of path
delay pd laid out in Sec. III, but expressed this time as a sum
of random variables. Now, we claim that:

∆P ∼
m∑
i=2

Xei

(5)⇒ DP ∼
m∑
i=1

Xei (6)

In other words, we claim that the duration of a temporal
path is approximately equal to the sum of the delays of its
edges, except for the first, which always contributes with zero.
To understand why, think of a temporal path with a single
edge, and note that it will always have duration zero, since
its materialization happens instantaneously at the instant of
activation of its single edge.

Substituting this claim back into Eq. (5) yields the final
result of the equation, namely, that the delay of a path is
approximately equal to the sum of the delay of its edges.

We are not yet able to prove whether Eq. (6) holds as an
equality, but we could experimentally verify that:

E(DP ) ∼
m∑
i=1

E(Xei) (7)

that is, even if there are effects (e.g., residuals) unaccounted
for in Eq. (6), these are empirically negligible from the
point of view of the expectation. An explanation of how
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Fig. 4. Two simple graphs.

we conduct this empirical validation, as well as numerical
evidence supporting our assertion, is given in Sec. V-D1.

B. Bounding from Above

Given the previous results, we can provide an upper bound
to the average end-to-end delay. For a pair of nodes u, v, let
Cu,v be the random variable representing the end-to-end delay
between them. The upper bound follows from the observation
that the following holds for any path P between u and v:

E(Cu,v) ≤ E(DP )

This inequality states that the expected end-to-end delay
among two nodes is always smaller than the expected delay
of any single path connecting them. To see why this is true,
it helps to think of the delay for a path P in terms of
probabilities. Suppose we had a single path P1 connecting
u and v, as in Fig. 4a, and that u were to log in the system
at time t0 = 0. The probability that at least one path gets
materialized between u and v by time t is thus given by the
probability that the delay for this path is smaller than t, or
P[DP1 ≤ t].

Now, without loss of generality, assume that we had two
disjoint paths P1, P2 connecting u and v in G instead of just
one (Fig. 4b), while everything else remains the same. In this
case, the probability that at least one path gets materialized
by time t is given by P[DP1

≤ t ∨ DP2
≤ t] (i.e., the

probability that the delay of P1 or P2 is smaller than t), which
is obviously higher than the probability of one single path
being materialized by time t.

This intuition extends to E(Cu,v): the average end-to-end
delay between nodes u and v is always less than or equal to
the expected delay time E(DP ) of any individual path P with
equality holding if and only if P is the only path in the graph
that connects u and v. This also implies that computing the
“true” value of E(Cu,v) would require us to account for the
effects of all paths connecting u and v.

There is one particular path, however, that is “closest” to
E(Cu,v) than any other: the path Pmin for which E(DPmin

)
is the smallest (i.e., the “fastest path” between u and v). Using
Eq. (7), we can find Pmin through the following procedure:

1) Assign edge weights. Given the graph G = (V,E) and its
availability assignment AG, we assign to each edge e ∈ E
a weight he = E(Xe), i.e., equal to its expected delay. As
we discuss later, we can compute an estimate for E(Xe)
by means of simulations which are much simpler than the
full simulations of Sec. IV-A. Once we have the weights
he for all edges in the graph, computing an estimate for
the expected path delay E(DP ) for any arbitrary path P
in G becomes, by virtue of Eq. (6), a matter of summing

Algorithm 3: EstimateEdgeDelay
Input: An edge e = (w1, w2); the number of samples n.

s← 0; % Sum of all samples1

r ← 0; % Total number of samples2

L← ∅; % Sample buffer3

on ← {false, false}; % Online status of w1, w24

while r ≤ n do5

e← nextSimulationEvent()6

on[e.node]← (e.type = LOGIN)7

if e.type = LOGIN and e.node = w1 then8

L← L ∪ {e.time}9

if on[w1] and on[w2] then10

s← s+
∑
l∈L(e.time − l)11

r ← r + |L|12

L← ∅13

return s/r14

the weights of its edges. In other words, for a path P =
{e1, · · · , en}, we have:

E(DP )
(7)∼

∑
e∈P

E(Xe) ∼
∑
e∈P

he

2) Compute shortest paths. Using a shortest path algorithm
(e.g. Dijkstra’s) and the weight assignment of the previ-
ous step, we compute the minimum cost path between u
and v. The resulting path, as per the previous discussion,
is the fastest path Pmin between u and v.

The pseudocode for the simulations estimating E(Xe) is
given in Algorithm 3. We generate samples of Xe by buffering
all login instants {l1, · · · , ln} of node w1 in set L (line 8),
until the time t at which node w2 logs in (line 10). At that
point, we are able to generate |L| samples s1, · · · , sn by taking
si = t− li. These samples are accumulated in variable s (line
11) and, once a sufficient amount of samples are generated,
we compute the average as the estimator for E(Xe).

These simulations are much simpler than the ones in Sec-
tion IV-A, for three reasons. First, when estimating the weight
for an edge, we need to simulate only two nodes at a time
instead of the entire network. Second, the quantity we estimate
can be sampled by simply looking at the state of the processes,
without an expensive breadth-first search over the entire graph.
Third, due to the simplicity of these simulations, running the
simulation longer is sufficient to trust the resulting average is
not biased, without a costly per-repetition burn-in period.

C. Improving on the Bound

We expect the upper bound we just derived to be tight in
some cases, and not so tight in others (e.g., when there are
many similar-weight paths connecting source and destination).
Intuitively, one can improve it by considering the top-k “fastest
paths” between source and destination instead of taking just
one. The main problem, however, is that reasoning about the



expected delay of at least one among a set of (possibly over-
lapping) paths is significantly more complex than computing
this expected delay for a single path, since we can no longer
simply compose edge delay expectations as before.

We can, however, verify the extent to which the top-k fastest
paths between u and v are actually enough to approximate
E(Cu,v) by means of the following procedure:

1) Compute the top-k fastest paths. Using the same edge
weights he = E(Xe) as we did in Sec. V-B, we run a
top-k least-cost paths algorithm between u and v.

2) Simulate over the resulting sub-graph. The k least-cost
paths between u and v induce a subgraph Gk,u,v over G.
By modeling churn with the same availability assignment
of G for the corresponding vertices in Gk,u,v , we perform
full simulations on Gk,u,v . We then compare the results
for the source/destination pair u, v with those obtained
by running the full simulations on G.

For this paper, we consider two top-k least-cost paths
algorithms. The first one is due to Yen [19], and it finds
a set of top-k least-cost paths which are allowed to share
both edges and vertices. We refer to it as Yen’s top-k. The
second algorithm, instead, finds a set of paths which are edge-
disjoint, and we refer to it as edge-disjoint top-k. It consists
of a simple iterated application of Dijkstra’s shortest-path
algorithm, similar to the heuristic in [9], and works as follows.
Starting with a graph G′, we repeat for k iterations:

1) compute the shortest path P between u and v by using
Dijkstra’s algorithm;

2) remove the edges used in P from G′.
Again, estimating E(Cu,v) over Gk,u,v is in general signifi-
cantly cheaper than doing so over G since, as we discuss in
Section V-D2, Gk,u,v tends to be much smaller than G.

D. Evaluation

Our evaluation is divided in two parts. Section V-D1 pro-
vides numeric evidence to support the claim made in Eq. (7)
that the expected delay for a path P is approximately the same
as the sum of the expected delays of its edges. Section V-D2,
instead, focuses on the end-to-end delay in ego networks,
providing evidence that i) the upper bound from Section V-B
holds, and ii) the subgraph Gk,u,v induced by top-k least-
cost paths connecting a pair of vertices u and v accounts for
a significant part of the end-to-end delay between them. We
also show the differences in tightness for the bounds produced
by the two top-k approaches we adopt.

Again, we use ego networks, for the same reasons outlined
in Section IV and to allow comparison of the results obtained
here with those of the full simulations discussed there.

All the experiments we run in this section provide us with
a value – either an upper bound or an estimate – on the end-
to-end delay for a pair of source/destination nodes u and v. A
single pair of nodes is, therefore, associated to different delay
values, which are generated by different methods. To avoid
confusion about the type of delay we are referring to, and
how it has been obtained, we establish that:

1) end-to-end delay estimates produced by full simulations
are referred to as aed (average end-to-end delay);

2) upper bounds produced by summing the estimates for
expected edge delays along the least-cost path connecting
u and v (Sec. V-B) are referred to as aed1;

3) upper bounds produced by full simulations over the
subgraph induced by the top-k shortest paths connecting
u and v (Sec. V-C) are referred to as aedk.

1) Numeric Evidence for Expectation: To support the claim
of Eq. (7), we emulate the behavior of a path of size n by
using a list graph of size n – a graph in which nodes are
linked together in a doubly-linked list. An example for n =
4 is given in Fig. 4a. The experiment consists in measuring
the end-to-end delay from node u (the leftmost vertex) to all
nodes to the right. Note that the end-to-end delay is the same
as the path delay in this case, since there is only one path
connecting the source to each destination. For each node along
the path, we compare the values of aed obtained by running
full simulations with u as a source versus those obtained by
summing the estimates for the expected edge delays along P .
For our experiments, we consider n = 15, which is already
more than twice the widely-accepted diameter of 6 for social
networks [7]. We test 130 random availability assignments for
this long path, which are generated according to the model
described in Sec. II. Furthermore, for each assignment:

1) full simulations are ran 700 000 times;
2) edge delay estimates are obtained by averaging 500 000

samples per edge – in other words, we run Algorithm 1
with n = 500 000.

Fig. 5a shows the delay values produced by the two methods
for all pairs u,w, where u is the leftmost vertex in the list
graph. Pairs are sorted in ascending order of their sum of
expected edge delay values, shown as a curve. Points fall close
to the curve, showing that Eq. (7) indeed holds in practice. A
quantitative measure of error can be seen in Fig. 5b, which
shows the ratio between the value produced by summing the
edge delay estimates and aed, with pairs sorted by their aed
values this time. We put a dashed line at y = 1 where the

(a) (b)

Fig. 5. Delay estimates of full simulations (aed) vs. sums of edge delays.
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Fig. 6. Upper bound aed1 vs. full simulations aed.

values coincide. The error stays on average below 4%, with
95% of the points staying under 10%. Most of the outliers with
large relative errors (above 20%) lie in a zone where aed is
small, meaning that the high percentage error translates into
a small absolute error. Further, values in that area are more
susceptible to random noise.

2) Delay on Ego Networks: We analyse, in this section, the
same set of 700 ego networks we described in Sec. IV-B. To
validate our model, we compare the aed values from the full
simulations which we obtained previously against the values
produced by our model. The expected edge delay estimates
required by the model (Algorithm 1) are again obtained by
averaging 500 000 samples per edge.
Upper Bound Holds. We validate our claim that the expected
delay E(DPmin

) for the least-cost path connecting two nodes
u and v serves as an upper bound to the expected end-to-
end delay E(Cu,v). Fig. 6a shows, for each pair u, v in our
sample, a log-log plot of the values of aed (dots), together
with the corresponding aed1 values for the least-cost paths
(thick black line). Pairs are ordered in the x axis in ascending
order w.r.t. aed1.

As expected, dots fall consistently below the black line,
providing solid evidence for our claim. The fact that some
dots fall slightly above the black line is not really an issue,
rather a result of the fact that we are using sample averages as
estimators both for E(DPmin

) and ard, and those are subject
to noise, even with the many repetitions we run.

As for how “tight” the upper bound is, we again provide a
plot which shows, for each pair, the ratio between aed1 and
aed (Fig. 6b). To avoid the effects in the low aed region we
observed in Fig. 5b, we constrain the pairs in Fig. 6b to those
in which the aed ≥ 0.5 hour (72% of the pairs).

The upper bound provides a good estimate of aed, falling
within 16% of the full simulation values, 21% if we consider
the worst 25% points, and 75% if we consider the worst 5%
points. The bound becomes more accurate in relative terms for
larger values of aed, meaning it is better at helping identify
cases for which we can expect poor performance.
Top-k Paths Provide a Better Bound. By using the procedure
described in Sec. V-C, we investigate how much we can

Average 95th percentile
Least-cost path (r1) 21% 258%
Yen’s Top-k (rk) 7% 151%
Edge-Disjoint Top-k (rk) 2% 35%

TABLE III
ERROR (r1 AND rk ) STATISTICS FOR BOUNDS.

(a) (b)

Fig. 7. Least cost vs. top-k least cost paths, and size of top-k subgraphs.

improve on our bound by considering not only the single
least-cost path connecting a pair u, v, but the k least-cost
paths. We carry out this evaluation on a subset of the 137 260
pairs we considered in Section IV-B, by drawing 14 000
source/destination pairs at random and without replacement
from the original sample. For the experiments carried out in
this section, we use a value of k = 10.

We examine the metrics rk(u, v) = aedk

aed −1, and r1(u, v) =
aed1

aed − 1. These give an error measure, in percentage terms,
of how much aedk and aed1 deviate, respectively, from the
aed estimate produced by the full simulations.

We plot in Fig. 7 the cumulative distributions for both rk
and r1, with the 95% percentiles marked by lines. Further
statistics are summarized in Table III. The top-k estimate stays
significantly closer to the actual aed estimate than the upper
bound (2% vs. 21% on average for the upper bound), with the
top-k, edge disjoint paths performing better than Yen’s for the
value of k we consider. This can be attributed to the fact that
the paths selected by Yen’s algorithm tend to overlap heavily
when, intuitively, the discussion in Sec. V-C points to the fact
that selecting disjoint paths increases the probability that at
least one of them materializes by some time instant t.

Finally, we show that although the delay estimate measured
over the subgraphs Gk,u,v (the subgraphs induced by the top-k
edge-disjoint paths connecting u and v) is close to the delay
observed over the full graph G, these subgraphs are in fact
significantly smaller. This is shown in Fig. 7b, where we plot
the percentage of the vertices carried over from each ego
network G to Gk,u,v as a function of how many vertices G has.
We see that, the larger the graph, the smaller the percentage of
vertices carried over, providing evidence that Gk,u,v is indeed
a smaller substructure that is capable of explaining the end-
to-end delay over the larger graph, and hence where future
analysis efforts should be directed.



VI. RELATED WORK

Social overlays. There has been a growing interest in the
use of social networks as communication networks, with
social overlays having made their way into a number of
system proposals over the past few years [2], [3], [8], [13].
Commonly cited reasons for using social overlays include
desirable security properties, anonymity, censorship-resistance,
among others. Yet, none of these properties are really useful
if the network cannot enable basic message exchange among
participants: yet, to the best of our knowledge, the impact of
churn on social overlays has not been analyzed systematically.
The work we develop here, therefore, is key to understanding
under which circumstances such systems are viable or not.
Scheduled and temporal networks. Our work can be related
on the surface to previous literature on scheduled [6] and
temporal networks [12]. Although some of the formalisms
found in these papers are similar to ours (e.g., Berman’s [6]
characterization of temporal paths) these works concern them-
selves mostly with combinatorial problems over temporal
graphs for which the entire edge schedule is known in advance
(e.g. generalizing Menger’s theorem to temporal paths). Our
work, instead, concerns itself with the asymptotic behavior of
simpler properties of graphs for which we have a generating
model, but for which the observation window is not finite.
Delay-tolerant networks (DTNs). Unlike the systems we
target, where the network dynamics are determined by node
churn, DTNs are characterized by links appearing and disap-
pearing (e.g., due to mobility). The temporal networks that
arise in both contexts are, however, similar.

Tang et al. [11] establishes a bridge between the realms of
social network analysis and DTNs by considering mobile so-
cial networks. Their focus, however, is on the characterization
of temporal graphs by appropriate “temporal metrics”, which
notably include a notion of temporal distance similar to our
definition of end-to-end delay. In contrast, we consider only
two metrics, but with the goal of developing techniques for
analyzing their asymptotic behavior.

Chaintreau et al. [4] tackle problems similar to ours while
studying the diameter of temporal networks. They analyze the
conditions under which paths with logarithmic delay and hop
count emerge as the network size approaches infinity, thus
establishing bounds on the expected end-to-end delays. Their
theoretical results are, however, based on a simple temporal
generalization of Erdös-Rényi graphs, with the purpose of pro-
viding insight into the behavior of real opportunistic networks,
along the lines of what Watts and Strogatz [18] did for social
networks. In contrast, our goals are driven by the immediate
need to provide system designers with latency bounds over
real, arbitrary social graphs, given an availability model. These
two differences—network model and overall goals—prevent a
straightforward reuse of the results in [4] in our context.

VII. CONCLUSION AND FUTURE WORK

This paper makes two main contributions. First, we have
shown through simulations over real datasets that churn might

induce non-negligible delays on information dissemination
over social overlays. Second, we have introduced a hybrid
analytical model for the communication delay between two
vertices in general graphs and, based on this model, we have
shown how to obtain reasonably accurate upper bounds by
using lighter-weight simulations.

Finally, this work opens up a large research space. While
it is clear that, in practical terms, a real P2P system based
on a social overlays might provide adequate performance to
the majority of its users, a small percentage of that user base
might experience delays on the order of hours or more . Given
the targeted scale of these systems, that small percentage can
translate into millions of users. Understanding exactly what are
the conditions under which this problem happens and how it
can be mitigated is an open research question, and one that we
plan to answer using our analytical model. As for mitigation
strategies, a promising future direction is the use of hybrid
architectures, where P2P dissemination over social overlays is
assisted by helper servers, for example located in a cloud, to
help improving only those scenarios where the availability of
friend nodes is not sufficient to enable adequate performance.
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