
Mineral: Multi-modal
Network Representation Learning

Zekarias T. Kefato?, Nasrullah Sheikh?, and Alberto Montresor

University of Trento, Trento, Italy
{zekarias.kefato,nasrullah.sheikh,alberto.montresor}@unitn.it

Abstract. Network representation learning (NRL) is a task of learning
an embedding of nodes in a low-dimensional space. Recent advances in
this area have achieved interesting results; however, as there is no solution
that fits all kind of networks, NRL algorithms need to be specialized to
preserve specific aspects of the networks, such as topology, information
content, and community structure. One aspect that has been neglected so
far is how a network reacts to the diffusion of information. This aspect is
particularly relevant in the context of social networks. Studies have found
out that diffusion reveals complex patterns in the network structure that
are otherwise difficult to be discovered by other means. In this work, we
describe a novel algorithm that combines topology, information content
and diffusion process, and jointly learns a high quality embedding of
nodes. We performed several experiments using multiple datasets and
demonstrate that our algorithm performs significantly better in many
network analysis tasks over existing studies.

Keywords: NRL, Diffusion patterns, Cascades

1 Introduction

Network representation learning (NRL) is the task to embed nodes of a net-
work into a low-dimensional space, while preserving important aspects of the
original network. This strategy is an invaluable tool to tackle a variety of subse-
quent network analysis problems, such as node classification, link prediction, and
visualization. It is not only a hard and daunting task to manually engineer high-
quality features for the aforementioned problems, but also the resulting features
lack the capability of being applicable across different problems. For example,
features that are engineered for node classification might not be suitable for link
prediction or vice versa; therefore, one has to develop a new set of features for
almost every new task.

Automatic network embedding approaches [1,2,3,4,5,6,7,8,9], however, are
highly effective in capturing interesting patterns that are applicable to a range
of tasks. They are well-suited for learning features that are otherwise difficult
to find even for experts. Such techniques have been employed in multiple disci-
plines, such as speech recognition and signal processing [10] and object recog-
nition [11,12], improving previous state-of-the-art solutions by several orders of
magnitude [13].

? Both authors contributed equally to this work.

2

Recent studies in representation learning through neural networks have achi-
eved remarkable results [10,11,12]. An interesting aspect that makes these model
attractive is that different components of the model, called neurons, are activated
while detecting different kinds of patterns. In other words, the learned embedding
has a set of discriminative features that are shared among different tasks [13].
This is one of the main reasons that made the representations learned using this
technique applicable across multiple tasks [13].

There have been a plethora of studies [1,2,3,4,5,6,7,8] that apply neural net-
works to NRL. The goal of such studies is usually to learn a representation that
preserves one or more of the following properties of nodes: (i) neighborhood
structure, (ii) content/attribute information, (iii) community affiliation.

First of all, a high-quality embedding should enable to effectively recon-
struct the original network. Therefore, preserving the structural information is
of paramount importance. A second aspect to be considered is that approaches
that incorporate content/attribute information and enforce a constraint on an
embedding algorithm to preserve it, achieve higher-quality embeddings compared
to content-oblivious approaches [4,6], sometimes by over an order of magnitude.

While significant improvements over traditional techniques have been ob-
tained, there are still several aspects of information networks that reveal inter-
esting properties of the network. For example, it has been observed that the
dynamics of diffusion of influence and information (cascades) unveil complex
patterns of the network that are effective in identifying groups of users [14,15].

To complement existing studies of NRL, in this study we propose a novel
algorithm that learns an embedding of the network that preserves the topology,
the content information, as well as the dynamics of diffusion cascades.

Our approach integrates content and diffusion information into the network
structure, without requiring any additional data structure. Based on this, we pro-
pose a novel algorithm called Mineral (Multi-modal Network Representation
Learning).

Given that in some datasets, only a fraction of nodes are included in cascades,
while in other datasets cascade information is completely missing, we simulate
a diffusion process that enables to capture complex local and global network
structures. Then, we acquire context information of nodes related to their local
neighborhood (directly connected neighbors) and global neighborhood (commu-
nity membership).

Our contribution can be summarized as follows:

– we combine different aspects of a network that enable learning an effective
network embedding;

– we propose a novel scalable algorithm for NRL
– we perform several experiments using multiple datasets and across multiple

network analysis tasks.

The rest of the paper is organized as follows. Section 2 introduces the basic
concepts and notations and presents the problem statement. Section 3 discusses
the proposed algorithm. Section 4 reports the experiments and results. Finally,
Section 5 discusses related works; the paper is concluded in Section 6.

3

2 Preliminary

We start by providing definitions of the data models and describe our problem.

Definition 1. We consider a network G = (V,E), where V is a set containing
n nodes and E is a set containing m edges.

As in social networks, we assume that the nodes are involved in two types
of activities: (i) generating their own content (e.g. posts) and (ii) consum-
ing/spreading others’ content. Given a node u, A(u) contains all the pieces of
content generated or consumed by u. Content is assumed to be textual; in case
of multimedial information, metadata and tags could be used instead. One way
to incorporate content information is to add a separate node for each piece of
content. However, given that often the goal of incorporating content is to bet-
ter identify similarities between nodes in the representation learning process, we
simply introduce a similarity function π on the edges that is defined as follows.

Definition 2. We consider a similarity function π : E → [0, 1], such that for
any (u, v) ∈ E, π(u, v) is equal to the Jaccard similarity between u and v:

π(u, v) =
|A(u) ∩A(v)|
|A(u) ∪A(v)|

If the content is textual, one can easily compute π. For example, consider a
user u that actively tweets about politics and religion and a user v tweeting about
sport and politics. One can construct A(u) and A(v) from the set of keywords
extracted from their posts and estimate π. This modeling is simple and efficient,
as it requires no additional structure with respect to the existing network; it
only associates weights to edges. Unless there is a particular benefit one can
gain from adding independent nodes for content, which could be expensive, we
argue that such modeling is sufficient.

The final piece of our data model is a set of finite cascades C:
Definition 3. We consider a set of cascades C = {C1, . . . , Cc} of size c, where
a cascade C = [u1, u2, . . . , u|C|] is a sequence of finite events, each of them
representing the infection of a user by a given contagion.

We use C(i) = ui to denote the i-th node of the cascade C. We say that a node
u is infected before node v in a cascade C, and we write u ≺C v, if and only if
u = C(i), v = C(j) and i < j. Given a node u and a context size s, we define
the left-hand side infection context C(u; s)≺ and the right-hand side infection
context C(u; s)�:

C(u; s)≺ = {v : v = C(i) ∧ u = C(j) ∧ j − s ≤ i ≤ j − 1}
C(u; s)� = {v : v = C(i) ∧ u = C(j) ∧ j + 1 ≤ i ≤ j + s}

Definitions 1–3 represents the input of our problem:

Problem 1. Given a network G, a set of cascades C, a similarity function π, and a
dimensional number d, we seek to learn a representation of the network specified
by Φ : V → Rd, provided that Φ preserves as much as possible (i) the network
structure, (ii) the similarity between nodes and (iii) the node infection context.

4

3 Mineral

In this section, we present a detailed description of Mineral, which exploits
two sources of information: in SPC-Mode (Structure+Content-Mode), it uses
structural information (the network G) as well as content information associated
to nodes (the function π). In CSD-Mode (Cascade-Mode), it utilizes the observed
diffusion information (the set of cascades C).

Thanks to function π, the network G can be considered as a weighted graph.
Hence without requiring additional structures, we can design an effective algo-
rithm to learn the representation of the network that preserves both structural
and content similarity between nodes. One strategy that has proved to be ef-
fective for NRL is to use a similar approach to word representation learning in
natural language documents. In word representation, the basic idea is to learn a
representation of words by predicting their context. Nonetheless, unlike words in
a document where their context is obvious as a result of their linear structure, we
do not have a straightforward way to deduce the context of nodes in a network.
Several strategies have been developed in the literature to address this problem.

In this work, we extend existing approaches based on random walks [1,2] by
considering instead a diffusion process. It has been observed that the dynamics
of diffusion processes reveal complex local and global structural patterns of the
network. Therefore we simulate the diffusion of influence or information using the
independent cascade (IC) model [16] to obtain context information for nodes.
The cascades generated by simulating IC are merged with actual (observed)
cascades, when available.

Algorithm 1 shows the high-level steps required to generate cascades. For each
node u ∈ V , r cascades are generated starting from u, based on the IC model
and using the content similarity π as an unnormalized probability of infection.

When simulateDiffusion(G, π, u, h) is invoked, a cascade of size h is gen-
erated starting from u. Let It denote the set of nodes infected at time t; the
diffusion process works as follows:

1. At time t = 0, a cascade sequence is initiated by infecting the current root,
i.e. C = [u], i.e., I0 = {u}.

2. At time t > 0, each node v ∈ It−1 makes a single attempt to infect each of
its outgoing neighbor w ∈ out(v) that is not already infected (i.e., w 6∈ C).
The infection succeeds with a probability proportional to π(v, w); in such
case, w is appended to C and it is included in It

3. Repeat the process starting from step 2 while |C| ≤ h

We restrict the size of cascades (the number of infected nodes) to be at most
h nodes, because large, viral cascades (unlike non-viral ones) usually do not
capture any relevant local or global structural relation of nodes [14,15].

Generated cascades, together with existing ones if available, are thus used to
learn embeddings. Since cascades are sequences of nodes, we borrow the Skip-
Gram [17] model for word representation learning to perform network represen-
tation learning. For the purpose of being self-contained, we briefly describe the
SkipGram [17] model in our context.

5

CascadeGenerator(G, π, r, h)

1 C = ∅
2 for u ∈ V do
3 repeat r times
4 C = simulateDiffusion (G, π, u, h)
5 C.insert(C)

6 return C

SkipGram Given a center node u ∈ C, this model maximizes the log probability
of observing context nodes v ∈ C(u; s)� and w ∈ C(u; s)� within a window
size s. Based on the assumption that the likelihood of observing each context
node given a center node is independent, more formally the SkipGram model
optimizes the objective in Eq. 1 with respect to the model parameter Φ.

max
Φ

∑
u∈V

logPr(C(u; s)� | Φ(u)) + logPr(C(u; s)� | Φ(u)) (1)

logPr(C(u; s)D | Φ(u)) =
∑

v∈C(u;s)D

logPr(v|Φ(u)) (2)

where D is either � or �, and Φ(u) ∈ [0, 1]d is a d−dimensional representation
of u. The right-hand side term in Eq. 2 is specified using the softmax function:

Pr(v|Φ(u)) =
exp(Φ(v)T · Φ(u))∑

w∈N exp(Φ(w)T · Φ(u))
(3)

Nonetheless, directly estimating the conditional probability in Eq. 3 is expensive,
because of the normalization constant that needs to be computed for every node.
For this reason, different approximation strategies have been suggested in the
literature; in this work, we adopt the “Negative Sampling” strategy [17] that
characterizes a good model by its power to discriminate appropriate context
nodes from noise. Then, the computation of logPr(v|Φ(u)) using the negative
sampling strategy is shown in Eq. 4.

logPr(v|Φ(u)) = log σ(Φ(v)TΦ(u)) + neg(u; l) (4)

σ is the logistic function, and we need our model to effectively differentiate v
from the l negative examples drawn from some noise distribution N (u) of u,
where neg(u; l) is the noise model and is defined as:

neg(u; l) =

l∑
i=1

Ewi∼N (u)[− log σ(Φ(wi)
TΦ(u))] (5)

Numerically, a good model should produce a small expected probability for the
noise model and larger probability for the data model (the first term on the
right-hand-side of Eq. 4).

Finally, we employ the stochastic gradient descent algorithm to minimize the
negative log-likelihood of the objective in Eq. 1 based on the negative sampling
strategy in Eq. 4, 5 and obtain the complete model parameters Φ ∈ V → [0, 1]d.

6

Dataset |V| |E| |C| Number of labels Type of labels

Twitter 595,460 14,273,311 397,681 5 top-5 communities

Memetracker 3,836,314 15,540,787 71,568 5 top-5 communities

Flickr 80,513 5,899,882 - 195 Groups

Blogcatalog 10,312 333,983 - 39 Interests

Table 1. Summary of the datasets

4 Experiments and Results

In order to demonstrate the effectiveness of our algorithm, we have carried out
several experiments across multiple network analysis problems using multiple
datasets, listed below. A brief summary of the characteristics of the datasets is
given in Table 1.

– Twitter [14]: a dataset containing the follower network of Twitter users and
cascade information of hashtags. Each time a user adopts a hashtag (by
creating a new or using an existing one), it is added to the set of her keywords.
A cascade is constructed by sorting the users according to their first use of
a particular hashtag.

– Memetracker [18]: a dataset containing the interaction history between dif-
ferent news media and blog web pages during a year. Each page is associ-
ated with a set of memes, which are considered as its keywords. Memes are
grouped into clusters, and we consider each cluster id as a contagion that has
infected every page that has mentioned a meme that belongs to the cluster.
Similar to Twitter, cascades are built by sorting the users of a contagion
according to the time of first use.

– Blogcatalog [19]: a dataset containing a network of bloggers. There are 39
topic categories which are considered as content information for each author.

– Flickr [19]: a photo sharing site paired to a social network. Users place their
pictures under a set of predefined categories which can be considered content
information.

For Twitter and Memetracker, users are labeled based on their communities.
First we identify the (non-overlapping) community to which a user belongs us-
ing [20], and then we associate it as her label. We utilize both SPC and CSD
modes for these datasets, since information regarding structure, content, and
cascades is available. In addition, in all the experiments we have used h = 500
for Twitter and Memetracker, h = 200 for Flickr and h = 50 for Blogcatalog.

4.1 Baselines

Existing methods [6,4] that consider content information are usually based on
matrix factorization, which makes them unscalable for large networks. For this
reason, we only consider the following two content-oblivious approaches as base-
line methods:

7

Algorithm P@100 P@500 P@1000 P@5000 P@10000 p@50000 p@100000 p@500000

Mineral 99.9 99.8 99.8 99.8 99.8 99.8 99.8 99.0

DeepWalk 96.6 97.0 97.1 97.1 97.1 97.1 97.1 96.9

Line 99.3 99.8 99.9 99.8 99.7 98.5 94.5 71.0

Table 2. Result for the link prediction task on the Twitter dataset

Algorithm P@100 P@500 P@1000 P@5000 P@10000 p@50000 p@100000 p@500000

Mineral 100.0 99.9 99.9 99.6 99.5 99.5 99.4 98.6

DeepWalk 99.1 99.0 99.0 99.1 99.0 99.0 99.0 99.0

Line 91.2 92.2 89.9 85.2 83.3 72.8 68.9 65.4

Table 3. Result for the link prediction task on the Memetracker dataset

Algorithm P@50 P@100 P@500 P@1000 p@5000 p@10000 p@50000 p@100000

Mineral 99.2 99.6 99.6 99.6 99.4 99.2 97.4 94.9

DeepWalk 96.6 96.6 97.4 97.5 97.5 97.5 97.4 97.1

Line 54.4 61.0 61.6 58.8 51.6 48.9 44.2 42.5

Table 4. Result for the link prediction task on the Flickr dataset

1. DeepWalk [1]: is a method that utilizes truncated random walks for net-
work embedding, where each step of a walk is chosen uniformly at random.
Equivalent to the current work, they use the SkipGram model and it is
trained using the walks.

2. Line [3]: is a proximity based approach, trained by concatenating two in-
dependently trained models based on the notions of first-order and second-
order similarity of nodes. In other words, in the first phase they train a
model that preserves the undirected link structure between nodes; in the
second phase, they train a model that preserves the directed or undirected
2-hop link structure of the network.

4.2 Link Prediction

Link prediction is one of the most important network analysis problems. There
are three main techniques solving it, based on node similarity, topology, and
social theory [21]. Very often, such techniques rely on experts to craft informative
features that enable to effectively predict links, and this makes them expensive.
Instead of manually-crafted features, we use here the learned embeddings to
perform link prediction. Towards this end, we randomly sampled 15% of the
existing edges from the network; we also randomly sampled the same amount
of node pairs that are not in the edge set. We then used the learned embedding
to effectively predict the links. That is, given a pair of nodes {u, v} ⊆ V , we
compute the probability p(u, v) of an edge existing between the two nodes as:

p(u, v) =
1

1 + e−(Φ(u)T ·Φ(v))

8

Training Ratio
Algorithm 0.9 0.8 0.7 0.6 0.5 0.4 0.3 0.2 0.1

Mineral 98.19 98.05 97.97 97.98 97.95 97.91 97.74 97.51 96.93

DeepWalk 97.78 97.76 97.86 97.67 97.61 97.45 97.42 97.02 96.01

Line 84.19 85.74 85.02 85.11 85.18 84.69 84.06 82.20 76.19

Table 5. Node classification accuracy on different levels of labeled training set ratio
for the Twitter dataset

Training Ratio
Algorithm 0.9 0.8 0.7 0.6 0.5 0.4 0.3 0.2 0.1

Mineral 98.19 98.05 97.97 97.98 97.95 97.91 97.74 97.51 96.93

DeepWalk 97.78 97.76 97.86 97.67 97.61 97.45 97.42 97.02 96.01

Line 84.19 85.74 85.02 85.11 85.18 84.69 84.06 82.20 76.19

Table 6. Node classification accuracy on different levels of labeled training set ratio
for the Memetracker dataset

Then we sort the predicted edges according to p(u, v) in descending order and
evaluate the performance of an embedding in correctly predicting the edges
using the precision-at-K (P@K) score. P@K measures the fraction of correctly
predicted edges on the top-K results, i.e what percent of the top-K edges are
true edges from the randomly sampled edges. For each K value we perform the
experiments 10 times and report the average. Tables 2, 3 and 4 show the results
for the Twitter, Memetracker and Flickr datasets; Mineral performance is as
good as or better than the baselines.

4.3 Node Label Classification

The second problem we addressed is label classification. We consider two in-
stance of it, namely multi-class and multi-label classifications. For the Twitter
and Memetracker datasets, we tackled the multi-class classification problem,
because–as shown in Table 1–labels are communities and each node belongs to
just a single community. In the other datasets, given that multiple labels are
present, we performed multi-label classification. To evaluate the effectiveness of
a model in the classification task, we adopt the same evaluation metrics as in
previous studies, and hence we use Accuracy, F1-Micro and F1-Macro metrics.

The Multi-class classification results for the Twitter and Memetracker
datasets are reported in Table 5 and 6, respectively. Similar to previous studies,
we performed these experiments on different fractions of labeled training sets
(Training Ratio ∈ {10%, 20%, 30%, 40%, 50%, 60%, 70%, 80%, 90%}). Under this
setting, accuracy is the evaluation metric; and as shown in the tables, Mineral
performs slightly better than DeepWalk and significantly better than Line.
For the other datasets, however, Mineral significantly outperforms both base-
lines in multi-label classification. Figure 1 and 2 report the results on different
training ratios (x-axis) using F1-Micro and F1-Macro measures (y-axis).

9

●
●

● ● ● ● ● ● ●

0.3

0.4

0.5

0.6

0.7

0.25 0.50 0.75

Training Ratio

F
1−

M
ic

ro

●
●

● ● ● ● ● ● ●0.2

0.3

0.4

0.5

0.25 0.50 0.75

Training Ratio

F
1−

M
ac

ro

Algorithm ● DeepWalk Line Mineral

Fig. 1. Multi-label classification (using one-vs-rest logistic regression classifier) on the
Blogcatalog dataset

● ● ● ● ● ● ● ● ●

0.3

0.4

0.5

0.6

0.7

0.8

0.25 0.50 0.75

Training Ratio

F
1−

M
ic

ro

●
● ● ● ● ● ● ● ●0.2

0.4

0.6

0.25 0.50 0.75

Training Ratio

F
1−

M
ac

ro

Algorithm ● DeepWalk Line Mineral

Fig. 2. Multi-label classification (using one-vs-rest logistic regression classifier) on the
Flickr dataset

4.4 Network Visualization

The last but not the least application of NRL is network visualization. We use
the Twitter dataset for this task, and the visualization is performed using t-
Distributed Stochastic Neighbor Embedding (t-SNE) [22]. Given a set of q com-
munities, an informative visualization should maintain a knit cluster for mem-
bers of the same community and maintain clear boundaries between different
communities. As shown in Fig. 3, Mineral’s visualization gives the best result.
Members of each community are densely clustered and are far from members of
other communities.

4.5 Parameter Sensitivity

Now we turn into analyzing the sensitivity of the virality controlling parameter,
which is h. In Section 3 we have argued that “viral” or large cascades do not

10

(A) (B) (C)

Fig. 3. Visualization of top-5 communities with atmost 2000 users in the Twitter
Dataset using (A) Mineral (B) DeepWalk and (C) Line

●
●●

●

●

● ●

0.3

0.5

0.7

0 2500 5000 7500 10000
k

p@
k

h
● 50

100
250
500
1000

Fig. 4. Sensitivity of the parameter h using the link prediction task on Blogcatalog

capture any meaningful dependency between infected nodes of the cascades. To
empirically prove that such is the case, we have performed experiments over
different values of h ∈ {50, 100, 250, 500, 1000} on the Blogcatalog dataset. As
shown in Fig 4, the precision@k significantly drops as we increase the size of h.
For example, for a fixed k = 10, the precision@k is P@k = 0.86 for h = 50,
P@k = 0.6 for h = 100, P@k = 0.29 for h = 500, and P@k = 0.15 for h = 1000.

5 Related Work

Recent advances in neural network models have attracted researches from sev-
eral communities such as computer vision, NLP, and social network analysis. In
the last two communities in particular, a seminal work of Mikolov et al. [17]
in representation learning (embedding) of words in documents using a shal-
low neural network model has inspired studies [1,2] in network representation
learning. Among the approaches introduced for word embedding, the Skip-Gram
model [17] is the one that has been most largely used for network representation
learning. The Skip-Gram model is used to learn a representation of words by way

11

of predicting context words. The context of a node in a network, however, does
not have a straightforward definition. Studies have introduced different strate-
gies of capturing nodes context, for example using random walks [1,2], pair-wise
proximities [3,5], and community structures [8,7]. Once a context is formalized,
different neural network (based on either shallow or deep models) are employed
for the representation learning task. Then the learned representations are utilized
for downstream network analysis tasks.

Studies such as [6] propose a NRL algorithm based on matrix factorization.
Such techniques, however, are computationally expensive and not scalable for
large networks.

6 Conclusion

This study presents Mineral, a novel algorithm for network representation
learning (NRL) that leverages three network aspects: topology, node content,
and diffusion. The algorithm efficiently encodes content information associated
with nodes into a similarity function between pairs of connected nodes. Then
it combines the network and similarity information with natural (observed) or
simulated cascades, and acquires context information of nodes. Finally, we com-
bine everything as a set of cascades and employ the SkipGram model to learn
an embedding that preserves structural, content, and diffusion context of nodes.

We performed several experiments using multiple datasets across several net-
work analysis problems, and compared the performance of our approach with
existing NRL baseline methods. Our results show that Mineral significantly
outperforms the baselines specially in multi-label classification and network vi-
sualization. It also performs slightly better than the baselines in link prediction.
Even though our data modeling is effective in capturing many kinds of content
information, in this study we have focused on textual information.

Acknowledgements This research was partially supported by EIT Digital Project
Sensemaking Service: Entity Linking for Big Linked Data - Act. #17151 - 2017.

References

1. B. Perozzi, R. Al-Rfou, and S. Skiena, “Deepwalk: Online learning of social rep-
resentations,” in Proc. of the 20th ACM Int. Conf. on Knowledge Discovery and
Data Mining, KDD ’14, pp. 701–710, ACM, 2014.

2. A. Grover and J. Leskovec, “Node2vec: Scalable feature learning for networks,”
in Proc. of the 22Nd ACM Int. Conf. on Knowledge Discovery and Data Mining,
KDD ’16, pp. 855–864, ACM, 2016.

3. J. Tang, M. Qu, M. Wang, M. Zhang, J. Yan, and Q. Mei, “LINE: large-scale
information network embedding,” CoRR, vol. abs/1503.03578, 2015.

4. X. Huang, J. Li, and X. Hu, “Label informed attributed network embedding,” in
Proc. of the Tenth ACM Int. Conf. on Web Search and Data Mining, WSDM ’17,
pp. 731–739, ACM, 2017.

12

5. D. Wang, P. Cui, and W. Zhu, “Structural deep network embedding,” in Proc. of
the 22Nd ACM Int. Conf. on Knowledge Discovery and Data Mining, KDD ’16,
pp. 1225–1234, ACM, 2016.

6. C. Yang, Z. Liu, D. Zhao, M. Sun, and E. Y. Chang, “Network representation
learning with rich text information,” in Proc. of the 24th Int. Conf. on Artificial
Intelligence, IJCAI’15, pp. 2111–2117, AAAI Press, 2015.

7. C. Tu, H. Wang, X. Zeng, Z. Liu, and M. Sun, “Community-enhanced network
representation learning for network analysis,” CoRR, vol. abs/1611.06645, 2016.

8. X. Wang, P. Cui, J. Wang, J. Pei, W. Zhu, and S. Yang, “Community preserving
network embedding,” AAAI, 2017.

9. R. Xie, Z. Liu, J. Jia, H. Luan, and M. Sun, “Representation learning of knowledge
graphs with entity descriptions,” in Proc. of the Thirtieth AAAI Conf. on Artificial
Intelligence, AAAI’16, pp. 2659–2665, AAAI Press, 2016.

10. G. E. Dahl, M. Ranzato, A.-r. Mohamed, and G. Hinton, “Phone recognition with
the mean-covariance restricted boltzmann machine,” in Proc. of the 23rd Int. Conf.
on Neural Information Processing Systems, NIPS’10, pp. 469–477, Curran Asso-
ciates Inc., 2010.

11. D. Ciregan, U. Meier, and J. Schmidhuber, “Multi-column deep neural networks
for image classification,” in 2012 IEEE Conf. on Computer Vision and Pattern
Recognition, pp. 3642–3649, June 2012.

12. C. Szegedy, W. Liu, Y. Jia, P. Sermanet, S. Reed, D. Anguelov, D. Erhan, V. Van-
houcke, and A. Rabinovich, “Going deeper with convolutions,” in 2015 IEEE Conf.
on Computer Vision and Pattern Recognition (CVPR), pp. 1–9, June 2015.

13. Y. Bengio, A. Courville, and P. Vincent, “Representation learning: A review and
new perspectives,” IEEE Transactions on Pattern Analysis and Machine Intelli-
gence, vol. 35, pp. 1798–1828, Aug 2013.

14. L. Weng, F. Menczer, and Y.-Y. Ahn, “Virality prediction and community struc-
ture in social networks,” Sci. Rep., vol. 3, no. 2522, 2013.

15. L. Weng, F. Menczer, and Y.-Y. Ahn, “Predicting successful memes using network
and community structure.,” in ICWSM (E. Adar, P. Resnick, M. D. Choudhury,
B. Hogan, and A. H. Oh, eds.), The AAAI Press, 2014.

16. D. Kempe, J. Kleinberg, and E. Tardos, “Maximizing the spread of influence
through a social network,” in Proc. of the Ninth ACM Int. Conf. on Knowledge
Discovery and Data Mining, KDD ’03, pp. 137–146, ACM, 2003.

17. T. Mikolov, I. Sutskever, K. Chen, G. Corrado, and J. Dean, “Distributed repre-
sentations of words and phrases and their compositionality,” in Proc. of the 26th
Int. Conf. on Neural Information Processing Systems, NIPS’13, pp. 3111–3119,
Curran Associates Inc., 2013.

18. J. Leskovec, L. Backstrom, and J. Kleinberg, “Meme-tracking and the dynamics
of the news cycle,” in Proc. of the 15th ACM Int. Conf. on Knowledge Discovery
and Data Mining, KDD ’09, pp. 497–506, ACM, 2009.

19. L. Tang and H. Liu, “Relational learning via latent social dimensions,” in Proc.
of the 15th ACM Int. Conf. on Knowledge Discovery and Data Mining, KDD ’09,
pp. 817–826, ACM, 2009.

20. V. D. Blondel, J.-L. Guillaume, R. Lambiotte, and E. Lefebvre, “Fast unfolding
of communities in large networks,” Journal of Statistical Mechanics: Theory and
Experiment, vol. 2008, no. 10, p. P10008, 2008.

21. P. Wang, B. Xu, Y. Wu, and X. Zhou, “Link prediction in social networks: the
state-of-the-art,” Sci. China Inform. Sci., vol. 58, no. 1, pp. 1–38, 2015.

22. L. van der Maaten and G. Hinton, “Visualizing high-dimensional data using t-sne,”
Journal of Machine Learning Research, 2008.

	Mineral: Multi-modal Network Representation Learning

