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ABSTRACT
Over the last decade, there has been an increasing interest in

temporal graphs, pushed by a growing availability of temporally-

annotated network data coming from social, biological and financial

networks.

Despite the importance of analyzing complex temporal networks,

there is a huge gap between the set of definitions, algorithms and

tools available to study large static graphs and the ones available

for temporal graphs.

An important task in temporal graph analysis is mining dense

structures, i.e., identifying high-density subgraphs together with

the span in which this high density is observed.

In this paper, we introduce the concept of (𝑘,Δ)-truss (span-
truss) in temporal graphs, a temporal generalization of the 𝑘-truss,

in which 𝑘 captures the information about the density and Δ cap-

tures the time span in which this density holds. We then propose

novel and efficient algorithms to identify maximal span-trusses,

namely the ones not dominated by any other span-truss neither in

the order 𝑘 nor in the interval Δ, and evaluate them on a number

of public available datasets.
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1 INTRODUCTION
Despite the fact that graph theory has been studied for centuries,

in the last years there has been an explosion in the interest of the
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Figure 1: A temporal graphwith time-evolving communities.
It is represented as a sequence of static graphs; each static
graph is a snapshot of the temporal graph at a certain time.

research community in network-related fields. This is mainly mo-

tivated by the increasing interest in social networks – which can

be defined as a set of social entities (such as people, groups, and

organizations) together with the relationships or interactions be-

tween them – and by a proliferating availability of network datasets

coming from online social networks (e.g., Facebook, Twitter, Insta-

gram, YouTube), biological networks (e.g., molecular interactions)

or financial interactions.

So far, most of the work in social network analysis has focused

on static graphs. The growing availability of temporally-annotated

network data coming from social, biological and financial networks

creates the opportunity to fill the gap between the set of definitions,

algorithms and tools available for large static graphs, and the ones

available to analyze temporal graphs. The latter are defined as

graphs that change over time (i.e., whose edges are not continuously

active). However, it is not yet clear how introducing the notion of

time will affect the computational complexity of combinatorial

graph problems [9].

Just to mention a few examples, temporal graph modelling and

analysis of temporal properties can have applications in sociology

and social network analysis (e.g., find voting patterns based on

social media posts); security and distributed computing (e.g., design

strategy to contain the spread of malware in computing devices);

biology (e.g., study the set of chemical reactions that occur in a

healthy organisms) [9].

A property of real-world graphs is that they tend to be globally

sparse but locally dense, meaning that while the entire graph is

sparse (i.e., vertices have a small average degree), it contains dense
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subgraphs (i.e., groups of vertices with a large number of links

among each other). In general, density is an indication of relevance.

Dense regions in a networkmay indicate high degrees of interaction

and mutual similarity. In real-world applications, these regions

may indicate characteristics like attractive forces or favourable

environments [11].

The enumeration of the dense components of a graph can either

be the main goal of an analysis task, or act as a preprocessing step

aiming to reduce the graph by removing sparse parts, in order to

conduct more complex and time-consuming analysis [5].

A number of definitions of dense structures have been proposed

in literature, ranging from cliques (i.e., subgraphs in which every

vertex is adjacent to every other vertex), to some relaxations of the

clique, such as 𝑘-cores, the 𝑘-trusses, or the 𝑘-plexes.

The previously mentioned concepts of dense structures can be

generalized to the temporal case, in which one can be interested

in mining high-density subgraphs together with the span in which

this high density is observed. Having a set of tools to extract these

structures enables a detailed comprehension of the network dynam-

ics and can act as a building block towards more complex tasks and

applications [7].

To name some examples of applications, we can rely on temporal

dense structures computation to mine stories from social networks

(i.e., events capturing popular attention in social media), which

can be identified by finding a group of entities (i.e., people, loca-

tions, companies or products) strongly associated for a reasonable

amount of time [2]; we can mine well-acquainted individuals from

a collaboration network and form successful teams; we can ana-

lyze protein-interaction networks and locate protein complexes

that are densely interacting at different states, indicating possible

underlying regulatory mechanisms [19].

In this paper, we follow the approach of Galimberti et al. [7],

who introduced the concept of the span-cores of a temporal graph

(a temporal generalization of the 𝑘-core dense structure), and define

the concept of (𝑘,Δ)-trusses (span-trusses), a temporal generaliza-

tion of the 𝑘-truss, in which 𝑘 captures the information about the

density and Δ captures the time span in which this density holds.

We propose novel and efficient algorithms to discover the maximal

span-trusses of a temporal graph, i.e., the ones not dominated by

any other span-truss neither in the order 𝑘 nor in the interval Δ.
We conclude the paper by evaluating our contributions on a

number of public available real-world network datasets, showing

that our proposals consistently outperform the baseline proposed

for this task.

2 BACKGROUND
𝑘-truss is a dense structure which considers the involvement be-

tween the structures of edges and triangles. It has been introduced

based on the observation of social cohesion, where triangles play

an essential role [6]. The 𝑘-truss community model has three sig-

nificant advantages: strong guarantee on cohesive structure, few

parameters and low computational cost [10].

Definition 2.1 (Triangle). Given a graph 𝐺 = (𝑉 , 𝐸), a triangle in 𝐺
is a cycle of length 3.

Truss decomposition

3-truss

3-truss edge
4-truss edge
5-truss edge

5-truss

4-truss

Figure 2: Example of the truss decomposition of a graph [5].

Definition 2.2 (Support of an edge). Given a graph𝐺 = (𝑉 , 𝐸) and
an edge 𝑒 ∈ 𝐸, the support sup(𝑒) is the number of triangles that 𝑒

participates in.

Definition 2.3 (𝑘-truss). Given a graph 𝐺 = (𝑉 , 𝐸), the 𝑘-truss of
𝐺 , where 𝑘 ≥ 2, is defined as the largest subgraph 𝑔 of 𝐺 in which

every edge is contained in at least (𝑘 − 2) triangles within the

subgraph, i.e., sup𝑔 (𝑒) ≥ 𝑘 − 2, ∀𝑒 ∈ 𝑔.
It is easy to see that a 𝑘-truss is an edge-induced subgraph.

Definition 2.4 (Maximal 𝑘-truss). A 𝑘-truss 𝑇𝑘 of a graph 𝐺 is said

to be maximal if there does not exist any other 𝑘-truss 𝑇𝑘′ such

that 𝑘 ′ > 𝑘 .

Problem 2.1 (Truss decomposition). The problem of truss decom-

position in a graph 𝐺 is to find the (non-empty) 𝑘-trusses of 𝐺 for

all 𝑘 [22].

Observation 2.1 (Containment). Each 𝑘-truss of a graph 𝐺 is a

subgraph of the (𝑘 − 1)-truss of𝐺 ; for example, in 2, the 5-truss is a

subgraph of the 4-truss which in turn is a subgraph of the 3-truss.

An algorithm to efficiently compute the truss decomposition of a

static, unweighted, undirected graph𝐺 = (𝑉 , 𝐸) has been proposed

byWang et al. [22]. This algorithm resorts to an in-memory triangle

counting algorithm [16] and bin sort to achieve a complexity of

𝑂 ( |𝐸 |1.5).

3 PROBLEM STATEMENT
We are given a temporal graph 𝐺 = (𝑉 ,𝑇 , 𝜏), where 𝑉 is a set of

vertices, 𝑇 = [0, 1, ..., 𝑡𝑚𝑎𝑥 ] ⊆ N is a discrete-time domain, and

𝜏 : 𝑉 × 𝑉 × 𝑇 → {0, 1} is a function defining for each pair of

vertices 𝑢, 𝑣 ∈ 𝑉 and each timestamp 𝑡 ∈ 𝑇 whether edge (𝑢, 𝑣)
exists in 𝑡 .

We denote 𝐸 = {(𝑢, 𝑣, 𝑡) | 𝜏 (𝑢, 𝑣, 𝑡) = 1} the set of all temporal

edges. Given a timestamp 𝑡 ∈ 𝑇 , the set of edges existing at time 𝑡

is 𝐸𝑡 = {(𝑢, 𝑣) | 𝜏 (𝑢, 𝑣, 𝑡) = 1}.
A temporal interval Δ = [𝑡𝑠 , 𝑡𝑒 ] is contained into another tem-

poral interval Δ′ = [𝑡 ′𝑠 , 𝑡 ′𝑒 ], denoted Δ ⊑ Δ′, if 𝑡 ′𝑠 ≤ 𝑡𝑠 and 𝑡 ′𝑒 ≥ 𝑡𝑒 .
Given an interval Δ ⊑ 𝑇 , we denote 𝐸Δ = ∩𝑡 ∈Δ𝐸𝑡 the edges

existing in all timestamps of Δ. Given an interval Δ ⊑ 𝑇 , we denote
𝐺Δ = (𝑉 , 𝐸Δ) as the static graph with vertices V and edges 𝐸Δ.
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We define the temporal support of an edge 𝑒 over the temporal

interval Δ to be equal to the support on the graph 𝐺Δ, denoted as

supΔ (𝑒).

Definition 3.1 ((𝑘,Δ)-truss). The (𝑘,Δ)-truss or span-truss of a tem-

poral graph 𝐺 = (𝑉 ,𝑇 , 𝜏) is the largest subgraph of 𝐺Δ in which

every edge is contained in at least (𝑘 − 2) triangles within the sub-

graph, i.e, supΔ (𝑒) ≥ 𝑘 − 2, where Δ ⊑ 𝑇 is a temporal interval and

𝑘 ≥ 2. We will often denote the (𝑘,Δ)-truss as 𝑇𝑘,Δ.

A (𝑘,Δ)-truss is a dense subgraph (where 𝑘 is the cohesiveness

constraint), together with its temporal span, i.e., the span Δ for

which the subgraph satisfies the cohesiveness constraint.

Problem 3.1 (Span-truss decomposition). Given a temporal graph

𝐺 , find the set of all (𝑘,Δ)-trusses of 𝐺 .

Observation 3.1. For a fixed temporal interval Δ ⊑ 𝑇 , finding all

span-trusses that have Δ as their span is equivalent to computing

the classic truss decomposition of the static graph 𝐺Δ = (𝑉 , 𝐸Δ).

Similarly to what has been proved for the span-cores [7], the total

number of span-trusses may be too large for human inspection. In

fact, the total number of temporal intervals contained in the whole

time domain 𝑇 is
|𝑇 | ( |𝑇 |+1)

2
, so the total number of span-trusses is

𝑂 ( |𝑇 |2 × 𝑘max), where 𝑘max is the largest value of 𝑘 for which a

(𝑘,Δ)-truss exists. For this reason, it is worthwhile to focus only on

the most important trusses, the maximal ones, as defined next.

Definition 3.2 (Maximal span-truss). A span-truss𝑇𝑘,Δ of a temporal

graph𝐺 is said to bemaximal if there does not exist any other span-
truss 𝑇𝑘′,Δ′ of 𝐺 such that 𝑘 ≤ 𝑘 ′ and Δ ⊑ Δ′.

A span-truss is recognized as maximal if it is not dominated by

another span-truss both on order 𝑘 and the span Δ. In our temporal

setting, the number of maximal span-trusses is 𝑂 ( |𝑇 |2), as, in the

worst case, there may be one maximal span-truss for every temporal

interval. However, similarly to the maximal span-cores, we expect

the number of maximal span-trusses to be much smaller.

Problem 3.2 (Maximal span-truss mining). Given a temporal graph

𝐺 , find the set of all maximal (𝑘,Δ)-trusses of G.

We now outline and prove some properties which will be useful

later.

Proposition 3.1 (Span-truss containment). For any two span-trusses

𝑇𝑘,Δ,𝑇𝑘′,Δ′ of a temporal graph𝐺 , it holds that 𝑘 ′ ≤ 𝑘∧Δ′ ⊑ Δ =⇒
𝑇𝑘,Δ ⊆ 𝑇𝑘′,Δ′ .

Proof. The result can be proved by separately showing that (i)

𝑘 ′ ≤ 𝑘 =⇒ 𝑇𝑘,Δ ⊆ 𝑇𝑘′,Δ, and (ii) Δ′ ⊑ Δ =⇒ 𝑇𝑘,Δ ⊆ 𝑇𝑘,Δ′ .
(i) holds because every 𝑒 ∈ 𝐸Δ is in at least 𝑘 triangles in the

subgraph 𝑇𝑘,Δ, thus every 𝑒 is also in at least 𝑘 ′ triangles since
𝑘 ′ ≤ 𝑘 ; this means that 𝑇𝑘,Δ ⊆ 𝑇𝑘′,Δ.
(ii) holds because Δ′ ⊑ Δ =⇒ 𝐸Δ ⊆ 𝐸Δ′ =⇒ ∀𝑒 ∈ 𝐸Δ, 𝑒 ∈ 𝐸Δ′ .
If 𝑒 is in at least 𝑘 triangles in 𝑇𝑘,Δ then it is in at least 𝑘 triangles

also in 𝑇𝑘,Δ′ , so 𝑇𝑘,Δ ⊆ 𝑇𝑘,Δ′ . □

Definition 3.3 (Innermost truss). Let 𝑇𝑘∗ [𝐺] denote the innermost

truss of 𝐺 , i.e., the non-empty 𝑘-truss of 𝐺 with the largest 𝑘 .
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Figure 3: Graphical representation of the containment prop-
erty. Span-trusses follow the same structure of span-cores.
For a temporal span Δ = [𝑡𝑠 , 𝑡𝑒 ], the (𝑘,Δ)-truss is depicted
as a node labeled "𝑘, [𝑡𝑠 , 𝑡𝑒 ]", an arrow 𝑇1 → 𝑇2 denotes 𝑇1 ⊇
𝑇2 [7].

Lemma 3.1. Given a temporal graph𝐺 = (𝑉 ,𝑇 , 𝜏), let𝑇𝑀 be the set

of all maximal span-trusses of𝐺 , and 𝑇𝑖𝑛𝑛𝑒𝑟 = {𝑇𝑘∗ [𝐺Δ] |Δ ⊑ 𝑇 } be
the set of innermost trusses of all graphs 𝐺Δ. It holds that 𝑇𝑀 ⊆
𝑇𝑖𝑛𝑛𝑒𝑟 .

Proof. Every 𝑇𝑘,Δ ∈ 𝑇𝑀 is the innermost truss of the non-

temporal graph 𝐺Δ: else, there would exist another truss 𝑇𝑘′,Δ ≠ ∅
with 𝑘 ′ > 𝑘 , implying that 𝑇𝑘,Δ ∉ 𝑇𝑀 . □

Lemma 3.2. Given a temporal graph 𝐺 = (𝑉 ,𝑇 , 𝜏), and three

temporal intervals Δ = [𝑡𝑠 , 𝑡𝑒 ] ⊑ 𝑇 , Δ′ = [𝑡𝑠 − 1, 𝑡𝑒 ] ⊑ 𝑇 , and
Δ′′ = [𝑡𝑠 , 𝑡𝑒 + 1] ⊑ 𝑇 . The innermost truss 𝑇𝑘∗ [𝐺Δ] is a maximal

span-truss of 𝐺 if and only if 𝑘∗ > max{𝑘 ′, 𝑘 ′′} where 𝑘 ′ and 𝑘 ′′
are the orders of the innermost trusses of𝐺Δ′ and𝐺Δ′′ , respectively.

Proof. The "⇒" part comes directly from the definition of maxi-

mal span-truss (Definition 3.2): if𝑘∗ were not larger thanmax{𝑘 ′, 𝑘 ′′},
then 𝑇𝑘∗ [𝐺Δ] would be dominated by another span-truss both on

the order and on the span (as both Δ′ and Δ′′ are super intervals of
Δ). For the "⇐" part, from Lemma 3.1 and Proposition 3.1 it follows

that max{𝑘 ′, 𝑘 ′′} is an upper bound on the maximum order of a

span-truss of a super interval of Δ. Therefore, 𝑘∗ > max{𝑘 ′, 𝑘 ′′}
implies that there cannot exist any other span-truss that dominates

𝑇𝑘∗ [𝐺Δ] both on the order and on the span. □

4 EFFICIENT COMPUTATION OF MAXIMAL
SPAN-TRUSSES

We present our solution by first giving a naïve approach, and then

by introducing three versions (Baseline, Streaming, Heuristic) that

improve over the previous version.
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4.1 A naïve approach
A first approach to solve the problem could be based on Observa-

tion 3.1; namely, we can repeat the truss decomposition for every

possible interval and then filter out non-maximal span-trusses.

Algorithm 1 Naïve maximal span-trusses

Input: A temporal graph 𝐺 = (𝑉 ,𝑇 , 𝜏).
Output: The set 𝑇𝑀 of all maximal span-trusses of 𝐺 .

1: candidates← ∅
2: 𝑇𝑀 ← ∅
3: forall 𝑡𝑠 in [0, 1, ... , 𝑡𝑚𝑎𝑥 ] do
4: forall 𝑡𝑒 in [𝑡𝑠 , 𝑡𝑠 + 1, ... , 𝑡𝑚𝑎𝑥∗] | 𝐸 [𝑡𝑠 , 𝑡𝑒 ] ≠ ∅ do
5: Δ← [𝑡𝑠 , 𝑡𝑒 ]
6: candidates[Δ] ← computeMaxTruss(𝐺Δ)
7: 𝑇𝑀 ← maximal span-trusses from candidates

Algorithm 1 is trivially sound and complete since it iterates over

every possible interval Δ, extracts the maximal 𝑘-truss from 𝐺Δ

and saves it as a candidate element of 𝑇𝑀 .

𝑇𝑀 is constructed by filtering out non-maximal elements from

candidates and applying Definition 3.2.

4.2 Baseline Algorithm
As a baseline, we use a slightly better algorithm. This approach is

similar to the baseline of the algorithm to mine span-cores [7]. It

exploits the containment properties we have proved before, which

are shared between span-cores and span-trusses.

Algorithm 2Maximal span-trusses

Input: A temporal graph 𝐺 = (𝑉 ,𝑇 , 𝜏).
Output: The set 𝑇𝑀 of all maximal span-trusses of 𝐺 .

1: 𝑇𝑀 ← ∅
2: 𝐾 ′[𝑡] ← 0,∀𝑡 ∈ 𝑇
3: forall 𝑡𝑠 in [0, 1, . . . , 𝑡𝑚𝑎𝑥 ] do
4: 𝑡∗ ← max{𝑡𝑒 ∈ [𝑡𝑠 , 𝑡𝑚𝑎𝑥 ] | 𝐸 [𝑡𝑠 , 𝑡𝑒 ] ≠ ∅}
5: 𝑘 ′′ ← 0

6: forall 𝑡𝑒 in [𝑡∗, 𝑡∗ − 1, ... , 𝑡𝑠 ] do
7: Δ← [𝑡𝑠 , 𝑡𝑒 ]
8: lb← max{𝐾 ′[𝑡𝑒 ], 𝑘 ′′}
9: innermostTruss← computeMaxTruss(𝐺Δ)
10: 𝑘∗ ← order of innermostTruss
11: if 𝑘∗ > lb then
12: 𝑇𝑀 ← 𝑇𝑀 ∪ {𝑇 }
13: 𝑘 ′′ ← 𝑘∗

14: 𝐾 ′[𝑡𝑒 ] ← max{𝐾 ′[𝑡𝑒 ], 𝑘 ′′}

Algorithm 2 works as follows. It iterates over all the starting

timestamps 𝑡𝑠 ∈ 𝑇 in increasing order and, for each 𝑡𝑠 , all the

maximal span-trusses that have span starting in 𝑡𝑠 are identified.

Proceeding in this way guarantees that a span-truss recognized as

maximal will not be later dominated by another span-truss, since

an interval [𝑡𝑠 , 𝑡𝑒 ] can not be contained in another interval [𝑡 ′𝑠 , 𝑡 ′𝑒 ]
with 𝑡𝑠 < 𝑡 ′𝑠 .

To find all the maximal span-trusses having span starting in 𝑡𝑠 ,

for any 𝑡𝑠 the algorithm identifies 𝑡∗ ≥ 𝑡𝑠 , the maximum timestamp

such that the edge set 𝐸 [𝑡𝑠 ,𝑡𝑒 ] is not empty. Then, proceeding in

decreasing order of 𝑡𝑒 and starting from 𝑡𝑒 = 𝑡∗, all intervals Δ =

[𝑡𝑠 , 𝑡𝑒 ] are considered (from the largest interval to the smallest

interval).

The internal cycle computes the lower bound lb (maximum be-

tween 𝐾 ′[𝑡𝑒 ] and 𝑘 ′′) on the order of the innermost truss of 𝐺Δ to

be recognized as maximal. 𝐾 ′ is a map that maintains, for every

timestamp 𝑡 ∈ [𝑡𝑠 , 𝑡∗], the order of the innermost truss of graph

𝐺 ′Δ where Δ = [𝑡𝑠 − 1, 𝑡] (i.e., 𝐾 ′[𝑡] stores what in Lemma 3.2 is

denoted as 𝑘 ′). 𝑘 ′′ stores the order of the innermost truss of 𝐺 ′′Δ
and Δ′′ = [𝑡𝑠 , 𝑡𝑒 + 1].

The selected truss is added to the set of the maximal span-trusses

only if its order is larger than lb, then the values of 𝑘 ′′ and 𝐾 ′[𝑡𝑒 ]
are updated.

Observation 4.1. The worst-case time complexity of Algorithm 2

is 𝑂 ( |𝑇 |2 × |𝐸 |1.5) since the 𝑘-truss decomposition (complexity

𝑂 ( |𝐸 |1.5)) is repeated for every Δ. It is trivial to show that the

number of possible intervals Δ is 𝑂 ( |𝑇 |2). Note that, since the

output itself is potentially quadratic in |𝑇 |, it is not possible to

improve over the |𝑇 |2 factor in the computational complexity.

We outline now and discuss the operation of building the graph

(𝑉 , 𝐸Δ) efficiently on both space and time; we follow the approach

of [7].

Having a fixed timestamp 𝑡𝑠 ∈ [0, ..., 𝑡max], they propose the

following reasoning which holds for every 𝑡𝑠 . Let 𝐸
− (𝑡𝑒 ) = 𝐸 [𝑡𝑠 ,𝑡𝑒 ] \

𝐸 [𝑡𝑠 ,𝑡𝑒+1] be the set of edges that are in 𝐸 [𝑡𝑠 ,𝑡𝑒 ] but not in 𝐸 [𝑡𝑠 ,𝑡𝑒+1] ,
for 𝑡𝑒 ∈ [𝑡𝑠 , ..., 𝑡∗−1]. For each 𝑡𝑠 , one can compute and store all edge

sets {𝐸− (𝑡𝑒 )}𝑡𝑒 ∈[𝑡𝑠 ,𝑡∗−1] . These operations can be done in 𝑂 ( |𝑇 | ×
|𝐸 |) time, because every 𝐸− (𝑡𝑒 ) can be computed incrementally

from 𝐸 [𝑡𝑒 ,𝑡𝑒 ] as 𝐸
− (𝑡𝑒 ) = {(𝑢, 𝑣) ∈ 𝐸 [𝑡𝑠 ,𝑡𝑒 ] |𝜏 (𝑢, 𝑣, 𝑡𝑒 + 1) = 0}.

For any 𝑡𝑒 , 𝐸 [𝑡𝑠 ,𝑡𝑒 ] can be reconstructed as 𝐸 [𝑡𝑠 ,𝑡𝑒+1] ∪ 𝐸− (𝑡𝑒 ),
having previously computed 𝐸 [𝑡𝑠 ,𝑡𝑒+1] . Note that storing all 𝐸

− (𝑡𝑒 )
takes𝑂 ( |𝐸 |) space. That is why all 𝐸− (𝑡𝑒 ) are stored and 𝐸 [𝑡𝑠 ,𝑡𝑒 ] are
reconstructed afterward instead of storing the latter, which would

take 𝑂 ( |𝑇 | × |𝐸 |) space.
We use this approach in Algorithm 2.

Observation 4.2. Since for any 𝑡𝑒 , we reconstruct𝐸 [𝑡𝑠 ,𝑡𝑒 ] as𝐸 [𝑡𝑠 ,𝑡𝑒+1]∪
𝐸− (𝑡𝑒 ), we are always adding new edges to the graph𝐺 [𝑡𝑠 ,𝑡𝑒+1] start-
ing from an empty graph. This means we can exploit a streaming

approach to solve the problem.

4.3 A Streaming Algorithm
It is trivial to see that the Algorithm 2 repeats the truss decom-

position in every possible interval. This means it also repeats the

support computation, which for a single interval Δ has complexity

𝑂 ( |𝐸Δ |1.5) and it is the most expensive operation. Here we outline

an algorithm to achieve better performance with regards to the

support computation.

We can reframe the problem and think of it as a streaming prob-

lem, as stated in Observation 4.2. Suppose we have computed the

support for every edge active in the interval Δ∗ = [𝑡𝑠 , 𝑡𝑒 + 1]. In
the next step, we consider the interval Δ = [𝑡𝑠 , 𝑡𝑒 ] and so we are

considering the graph 𝐺Δ which is simply the graph 𝐺Δ∗ with a

number of edges added, namely 𝐸− (𝑡𝑒 ). We can study how the

addition of these new edges changes the support of the edges of
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Figure 4: In this example we show how the insertion of
a new edge (𝐵,𝐶) affects the supports of the other edges
in the graph. The red vertex 𝐴 is the only vertex in
(neighbours(𝐵) ∩neighbours(𝐶)), so we update the supports
of (𝐴,𝐶), (𝐴, 𝐵) and of the new edge (𝐵,𝐶). In fact we observe
that (𝐵,𝐶) forms a trianglewith these edges, colored in green.
On the right, we have the graph with the supports updated.

the old graph 𝐺Δ∗ and develop an algorithm that computes only

the support of the edges in 𝐸− (𝑡𝑒 ) and just updates the support of
the edges in𝐺Δ∗ . The updating part, without always recomputing,

leads to a high speedup in the performance, as we will see in the

next section.

After the update of the support of the edges, we can run the

truss decomposition algorithm.

Algorithm3Computing the support of every edge in𝐺Δ efficiently

Input: A graph 𝐺 [𝑡𝑠 ,𝑡𝑒+1] = (𝑉 , 𝐸 [𝑡𝑠 ,𝑡𝑒+1] ) with the support

computed for every edge and a set 𝐸− (𝑡𝑒 ) of edges to add to

𝐺 [𝑡𝑠 ,𝑡𝑒+1]
Output: A graph 𝐺 [𝑡𝑠 ,𝑡𝑒 ] = (𝑉 , 𝐸 [𝑡𝑠 ,𝑡𝑒+1] ∪ 𝐸− (𝑡𝑒 )) with the

supports updated

1: forall 𝑒 ∈ 𝐸− (𝑡𝑒 ) do
2: add 𝑒 to 𝐺 [𝑡𝑠 ,𝑡𝑒+1]
3: let (𝑢, 𝑣) = 𝑒
4: forall𝑤 ∈ (neighbours(𝑢) ∩ neighbours(𝑣)) do
5: sup(𝑢, 𝑣) = sup(𝑢, 𝑣) + 1
6: sup(𝑣,𝑤) = sup(𝑣,𝑤) + 1
7: sup(𝑢,𝑤) = sup(𝑢,𝑤) + 1

Observation 4.3. If we use a map𝑀 , which maps a pair of vertices

(𝑢, 𝑣) to 1 if the edge exists in 𝐺Δ at observation time or to 0 if

it does not exists, we can implement the intersection at step 4 by

simply iterating over the neighbours of one of the two vertices

and check in 𝑂 (1) if the remaining edge to form the triangle exists

in the graph at observation time. Hence, the running time of this

approach is bounded by

∑
(𝑢,𝑣) ∈𝐸− (𝑡𝑒 ) min{deg(𝑢), deg(𝑣)}.

4.4 Applying heuristics
It is worthmentioning that we still compute the truss decomposition

in every graph 𝐺Δ. From Algorithm 2, lines 11 to 14, we observe

that a 𝑘-truss recognized as a maximal 𝑘-truss in a snapshot of a

temporal graph will not always be recognized as a maximal span-

truss.

Observation 4.4. If the order of the innermost-truss 𝐼 ′ of the graph
𝐺 [𝑡𝑠 ,𝑡𝑒 ] is 𝑘

′
and the order of the innermost-truss 𝐼 ′′ of the graph

𝐺 [𝑡𝑠 ,𝑡𝑒−1 ] is 𝑘
′
then 𝐼 ′′ is not a maximal span-truss.

Observation 4.5. If the order of the innermost-truss 𝐼 ′ of the graph
𝐺 [𝑡𝑠 ,𝑡𝑒 ] is 𝑘

′
and the graph 𝐺 [𝑡𝑠 ,𝑡𝑒−1 ] and the graph 𝐺 [𝑡𝑠 ,𝑡𝑒 ] have

the same number of edges with support greater than 𝑘 ′ − 2 then
the order of 𝐼 ′′ is 𝑘 ′.

These two simple yet effective observations provide a minimal

condition to avoid the computation of the truss decomposition in

a snapshot of a temporal graph and lead to an improvement in

the performance in particular datasets, as we will see in the next

chapter.

5 EVALUATION
Datasets. Weuse eight real-world datasets recording timestamped

interactions between entities
1
, as in [7]. For each dataset, a window

size is selected to build the corresponding temporal graph. Multi-

ple interactions occurrinng between two entities during the same

discrete timestamp are counted as one. The characteristics of the

resulting graphs are reported in Table 1.

prosperloans represents the network of loans between the

users of Prosper, a marketplace of loans between privates. lastfm

records the co-listening activity of the streaming platform Last.fm:

two users are connected if they listened to songs of the same band

during the same discrete timestamp. wikitalk is the communica-

tion network of the English Wikipedia. dblp is the co-authorship

network of the authors of scientific papers from the DBLP com-

puter science bibliography. stackoverflow includes the answer-

to-question interactions on StackOverflow. wikipedia connects

users of the Italian Wikipedia that co-edited a page within the same

discrete timestamp. In the amazon dataset, vertices are users, and

edges represent the rating of at least one common item within the

same discrete timestamp.

Implementation. The code2 for the experiments has been imple-

mented in C++11, compiled with g++ 5.4 and -O3 optimization, and

run on a machine equipped with a 2,2 GHz CPU, 94GB RAM and

Ubuntu 16.04.6 LTS (GNU/Linux 4.4.0-145-generic x86_64).

1
All datasets are made available by the KONECT Project (http://konect.cc), except for

StackOverflow which is part of the SNAP Repository (http://snap.stanford.edu).

2
https://github.com/FraLotito/span_trusses

Dataset |𝑉 | |𝐸 | |𝑇 | window

size

(days)

domain

prosperloans 89k 3M 307 7 economic

lastfm 992 4M 77 21 co-listening

wikitalk 2M 10M 192 28 communication

dblp 1M 11M 80 366 co-authorship

stackoverflow 2M 16M 51 56 question

answering

wikipedia 343k 18M 101 56 co-editing

amazon 2M 22M 115 28 co-rating

Table 1: Description of the temporal graphs used for the ex-
periments

http://konect.cc
http://snap.stanford.edu
https://github.com/FraLotito/span_trusses
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Dataset # maximal span-trusses

prosperloans 293

lastfm 1539

wikitalk 466

dblp 268

stackoverflow 112

wikipedia 1905

amazon 303

Table 2: Number of maximal span-trusses in each dataset

Dataset Baseline

(s)

Streaming

(s)

Heuristics

(s)

prosperloans 5 5 5

lastfm 1318 1057 1109

wikitalk 7497 818 336
dblp 513 112 85
stackoverflow 381 91 63
wikipedia 2447 1731 1837

amazon 3025 2598 2607

Table 3: Experimental results

Results. Table 2 reports the number of maximal span-trusses that

are present in the datasets.

Table 3, instead, shows the computing time for each of the

datasets for the Baseline, Streaming and Heuristic algorithms. The

table shows how computing the support of the edges in a streaming

fashion improves the overall performance of the algorithm. We

report a constant decrease in the time execution, with a peak with

the wikitalk dataset, which takes almost ten times less than the

baseline.

The table also shows how our proposed heuristic to avoid un-

necessary decompositions helps in reducing the time execution in

some of the datasets, with a peak with the wikitalk dataset which

takes half the time with respect to our efficient algorithm. In some

datasets, however, the heuristic comes with minimal overhead; we

believe that it is worthwhile to use such version anyway, to exploit

the more significant performance gain in the other cases.

6 RELATEDWORK
The first and most obvious dense subgraph introduced to social

network analysis is the clique, a subgraph in which every vertex is

adjacent to every other vertex [13]. Computing cliques has several

disadvantages. First, they are both too rare and too common: cliques

of only a few members are frequently too numerous to be helpful,

while larger cliques are too difficult to be found in real-world graphs.

Second, no polynomial-time algorithm is known for this problem:

this makes the enumeration of cliques impractical for moderate

data sizes [3].

A number of generalizations and relaxations have been proposed

to avoid the issues of rarity and tractability of cliques [1, 15, 18].

A well-known relaxation of the clique is the 𝑘-core decomposi-

tion [17]. A 𝑘-core is a maximal subgraph in which each member

is adjacent to at least 𝑘 other members. Unlike other clique gener-

alizations, 𝑘-cores can be computed and listed in polynomial time.

3 3
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Figure 5: Example of the differences between 𝑘-core (first
picture) and 𝑘-truss decomposition (second picture) [12].We
highlight the coreness of every vertex in the first picture and
the trussness of every edge in the second.

The disadvantage of 𝑘-cores is that they are too promiscuous and

they can be of questionable utility.

The concept 𝑘-truss has been introduced as a compromise be-

tween the expensive-to-find and overly-numerous groupings pro-

vided by cliques, 𝑘-cliques, 𝑘-clubs, 𝑘-plexes on the one hand, and

the easy-to-compute, few-in-number, but overly-generous 𝑘-cores

on the other [6]. In most real-world graphs, the maximum trussness

is much lower than the maximum coreness, and the highest order

truss is much denser than the highest-order core [20]. Figure 5

highlights the differences between 𝑘-core and 𝑘-truss.

Recently, there has been an increasing interest from the research

community in generalizing cohesive structure concepts in a tempo-

ral setting. Our work is directly inspired by the work of Galimberti

et al. [7] who generalized the concept of 𝑘-core and introduced

the concept of span-core. They also provided the corresponding

algorithms to compute all the span-cores and to efficiently compute

only the maximal ones (span-cores that are not dominated by any

other span-core by both the coreness property and the span) in a

temporal graph.

Other works related to ours include Semertzidis et al. [19], who

introduced the problem of identifying a set of vertices that are

densely connected in at least 𝑘 timestamps of a temporal network;

Himmel at al. [8] and Viard et al. [21], who generalized the concept

of clique in a temporal graph and proposed the respective listing

algorithms; and Ma et al. [14], who a proposed a statistics-driven

approach to find dense temporal subgraphs in large temporal net-

works.
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7 CONCLUSIONS
In this paper, we have generalized the concept of 𝑘-truss to a tempo-

ral setting defining a structure called span-truss, where each truss

is associated with its span. We have developed both a naïve and

an efficient algorithm to extract all the maximal span-trusses of a

temporal graph, along with a heuristic to improve the running time

in particular conditions. Finally, we have evaluated our proposals

on a number of public datasets.

In our future work, we plan to explore new heuristics to avoid the

computation of the whole truss decomposition when not needed;

for example, Burkhardt et al. [4] summarized a number of properties

and bounds that a 𝑘-truss must satisfy and which can be useful to

avoid the computation of the decomposition when not needed.
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