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ABSTRACT

�e di�usion of a contagion (e.g. news, meme, virus) is a common
event in online and o�ine social networks. Unfortunately, such
networks, known as di�usion networks, are o�en unknown: that
is, one can observe when subjects are infected by a given conta-
gion (e.g., when a piece of information arrives, when a product is
adopted, when a virus is caught), but does not know through which
connection the infection has been transmi�ed. �e goal of this
study is to infer such networks based on nodes infection contexts
associated to di�usion events (cascades). Previous studies mostly
relied on delay pa�erns between infection events of nodes to infer
edges. It has been argued, however, that delay-agnostic approaches
are also e�cient for such inference. Motivated by this �nding, we
present a novel delay-agnostic algorithm that is largely inspired
by representation learning of words in documents and nodes in
networks. Moreover, unlike some delay-agnostic methods, we only
consider infection context of nodes in a restricted window. A�er
empirically observing a similarity between the distribution of words
in documents and nodes in cascades, we employ the Skip-Gram
model to learn a representation of nodes from cascades. �e learned
representation is then used to compute the probability that an edge
exists between a pair of nodes. �rough extensive experiments we
validate the e�ectiveness of our algorithm, showing that it is able
to recover up to 95% of the hidden network in realistic datasets. We
have also compared our algorithm to the state-of-the-art algorithm
InfoPath, and achieved a large improvement on the quality of
results.
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1 INTRODUCTION

In our daily life, being the observer of the di�usion of information is
a pre�y common event, both in the physical and in the cyber world.
As examples, consider the di�usion of a virus in a population of
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individuals, the spread of a meme, the adoption of a product, or the
di�usion of fake news in online social networks.

A common characteristic of all these di�usion processes, also
called cascades, is that we are able to observe when a single indi-
vidual has been infected by a virus, has adopted some product, or
has posted/tweeted some information, but we do not get to observe
who caused such individual to perform such actions.

In other words, the actual network over which the di�usion
takes place is either partially or fully hidden [2, 6, 9, 23]. In the
former case, we have observations that show di�erent chunks of
the di�usion network in the form of who copies from whom, as in
retweet networks. In the la�er case, our observations are limited at
just infection timestamps, for example when using hashtags. �is
poses a major problem in several network analysis tasks, such as
in�uence maximization and content prediction, that o�en rely on
the knowledge of the di�usion network [23].

In order to e�ectively infer the underlying network over which
di�usions have occurred, several studies [6–10, 14, 23] have been
proposed. Some of the existing e�orts, such as NetInf [9], Ne-
tRate [8], InfoPath [10] and KernelCascade [6] exploit infection
rates based on delay pa�erns between infection timestamps.

Although interesting results have been obtained in such studies,
several issues limiting their e�ectiveness can be identi�ed. It has
been argued that models based on delays are likely to miss most
of the di�usion pa�erns, even in the presence of recurring ones,
because of the size of the time intervals used in such models [14].
Delay-agnostic models, instead, have proven to be capable of cap-
turing such pa�erns [14], as long as the partial order of infections
is respected [2].

In this work, we tackle the problem of network inference using a
novel approach, based on representation learning. Recent advances
about word representation learning in the �eld of natural language
processing [16, 17] have inspired several studies for learning repre-
sentations in the context of social networks [2, 12, 18, 20, 22].

Our work is motivated by observations from previous studies [2,
9, 14], showing that users who frequently post together on related
topics have a very good chance of being connected. Inversely,
connected users are likely to be frequently infected by di�usions
related to similar topics [25].

In other words, if we are given a particular infected user and
we are able to observe her infection contexts, i.e. the sets of other
users that are infected before or a�er her infections in multiple
cascades, we could learn a representation for her that summarize
the users that most frequently appear in her infection contexts.
�is is equivalent to one of the fundamental assumptions for word
representation learning, that is, we can distinguish a word by look-
ing at its context [17]. Hence, equivalently to the famous quote
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“You shall know a word by the company it keeps” (J.R. Firth, 1957),
we may say “You shall know a user by the company it tends to
get infected with”. We validate such equivalence via an empirical
analysis of the distribution of nodes appearance in cascades and
words appearance in natural language documents.

�e main hypothesis of this study is that we should be able to
infer the hidden network by leveraging representation of nodes
learned from observed cascades. �at is, given the representation
of nodes, we infer the edges of the latent network by exploiting a
speci�ed similarity function over the representation space.

To prove our hypothesis, we developed a novel algorithm called
DeepInfer that learns a representation of nodes from cascades us-
ing the Skip-Gram model [17]. �e algorithm takes delay-agnostic
observations of cascades as input. In each observation, a user is
associated with an infection context, containing a bounded number
of users who have been infected before and a�er her. �en, the
algorithm learns a representation of the user in a low-dimensional
space that preserves her infection context. �e learned represen-
tation is then used to estimate the probability that an edge exists
between every pair of nodes. We estimate such probability using
the geometric distance between node representations, since rep-
resentations capture both nodes infection context in cascades and
their closeness in the hidden network.

�e contribution of our study can be summarized as follows:
• We empirically analyzed several properties of cascades:

– We provide a heuristic approach to sample cascades
with a similar distribution as the observed ones.

– We empirically demonstrate that the distribution of
nodes in cascades is similar to the distribution of
words in documents.

• We provide an algorithm for learning nodes representation
from cascades.

• We provide a novel network inference algorithm based on
representation learning that manages to recover up to 95%
of the edges and outperforms previous state-of-the-art by
more than an order of magnitude.

• We provide a detailed performance analysis of the algo-
rithm under di�erent hypotheses.

�e rest of the paper is organized as follows. Section 2 intro-
duces the basic concepts and notations and presents the problem
statement. Section 3 discusses the proposed algorithm. Section 4
reports the experiments and results. Finally, Section 5 discusses
related works; �nally, the paper is concluded in Section 6.

2 PRELIMINARIES

In this section we provide the basic de�nitions needed to describe
the problem we want to tackle. A cascade occurs when a certain
contagion, such as a meme, an innovation, or any on-line content
in general, has originated from a source and spreads through a dif-
fusion network. �e di�usion network, however, is usually hidden
and it is what we aspire to infer.

�e hidden network is represented as a graph H = (V ,E), where
V is a set containing n nodes and E is a set containingm edges.

We consider a collection C of linear cascades, where each linear
cascade C captures the sequence of events in which a �nite set of
nodes have been infected by a given contagion. More formally, we

de�ne a linear cascade as a sequence C = [u1,u2, . . . ,uc ], where ui
are distinct nodes belonging to V . We use C (i ) to denote the i-th
node of the cascadeC . We say that a node u is infected before node
v in a cascade C , and we write u ≺C v , if and only if u = C (i ) and
v = C (j ) and i < j.

�ough infection events are usually associated with an actual
timestamp, we are only interested in the relative ordering and
context in which nodes are infected. Compelling arguments have
been given [2, 14] as to why the relative order of node infection
events per se is su�cient to solve the network inference problem
in several domains.

We assume that a node usually tends to get infected together
with other nodes who are very similar to itself, which we refer
to as his infection context. Unlike rare and viral contagions, most
cascades exhibit homophilic behavior, in the sense that the infected
nodes are strongly related or very close to each other [4, 25] in the
network. For example they could have interconnections between
them or belong to the same community within the network.

Each node u has two types of infection contexts based on the
order they get infected in a given cascade:

• the in�uencer context C (u; s )� of node u in cascade C con-
tains the s nodes that immediately precede u in C

C (u; s )� = {v : v = C (i ) ∧ u = C (j ) ∧ j − s ≤ i ≤ j − 1}

• the in�uenced context C (u; s )� of node u in cascade C con-
tains the s nodes that immediately succeed u in C:

C (u; s )� = {v : v = C (i ) ∧ u = C (j ) ∧ j + 1 ≤ i ≤ j + s}

For example, given s = 2 and a cascade

C = {a,b, c,u,v,w,x ,y},

then C (u; 2)� = {b, c} and C (u; 2)� = {v,w }. �e two sets C (u; s )�
and C (u; s )� can be loosely interpreted as the candidate in�uencer
nodes of u and the candidate nodes to be in�uenced by u, respec-
tively.

An important insight of our study (see Section 4) is that, as we
increase the window size above a certain value, it becomes more and
more di�cult to observe recurring pa�erns and consequently the
performance of a model will be hampered. In previous studies [2,
14], no restriction were in place regarding this size while learning
in�uence propagation probabilities, introducing unnecessary noise
in the learned representation.

�e problem we want to solve is the following: given a set of
observed cascades C over a hidden network H = (V ,E), we want
to infer a networkG = (V ,E ′) such that E ′ ≈ E as much as possible.
We will evaluate the quality of our results based on precision, recall
and F1 score.

3 DEEPINFER

Our study is based on the hypothesis that there is a mapping from
node appearances in cascades to their structural information in the
di�usion network. �at is, nodes that frequently co-occur together
in cascades are similar or closely related in the di�usion network,
e.g. have edges interconnecting them. In other words, strongly
similar nodes (e.g. interested in related topics) tend to get infected
by mostly related contagions, and hence are likely to have a direct
link, or at least belong to a similar/same community.
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Figure 1: DeepInfer Architecture

Based on this insight, we propose the DeepInfer algorithm,
whose architecture is depicted in Fig. 1. In the �rst phase, we con-
sider two possible sources of input, namely in�uence cascades and
network cascades that are transformed into linear cascades through
a sampling process. Linear cascades are then fed to the represen-

tation learning module, whose goal is to learn a representation of
the nodes based on the infection contexts extrapolated from the
linear cascades. �en, the inference module is run over the learned
representation to reconstruct the di�usion network.

A raw cascade is normally represented as a graph [19], and there
are two type of representations of such a graph. �e �rst is called an
in�uence cascade (e.g. re-tweets and shares in Twi�er and Facebook
respectively), and the in�uence �ow/propagation is explicit, i.e. as
a result of the re-tweet/share action the source and the target of
the propagation are known. We denote these types of raw cascades
as IC = (V ′,V ′,T ), and the graph representation as IG = (V ′,E ′).
For any tuple (u,v, t ) ∈ IC : u, v , and t are the source, target and
timestamp of an in�uence/information propagation respectively;
and (u,v ) ∈ IG . �e second is called a network cascade (e.g. hash-
tags in Twi�er and Facebook), and in this case the propagation of
in�uence is not explicit. It is not clear who has in�uenced a user
to start using a hashtag; it could be any of her friends who have
adopted the hashtag prior to her. Raw network cascades are de-
noted as NC = (V ′,T ), and the associated graph as NG = (V ′,E ′).
For any tuple (u, t ) ∈ NC : u and t are a node and the associated
timestamp of infection of node u by a certain contagion. An edge
(u,v ) ∈ NG ⇔ (u, ti ) ∈ NC ∧ (v, tj ) ∈ NC ∧ ti < tj .

Consider the di�usion network in Fig. 2 (A), an in�uence cas-
cade IC = {(u,v, 1), (u,w, 2), (v,x , 4)}, a network cascades NC =
{(u, 1), (v, 1), (w, 2), (x , 2)}, and another network cascade N ′C =
{(u, 1), (w, 2), (v, 3), (x , 4)}. Fig. 2 shows the graphs associated to
each cascade as follows: IC ≡ (B),NC ≡ (C ), and N ′C ≡ (D).

For our purpose, cascades can be simply ordered according to
the �rst time of infection to obtain the associated linear cascade.
However, observed pa�erns of frequently co-occurring nodes in
cascades are very sparse. In addition, most cascades are incomplete
or it is di�cult to �nd them as a coherent atomic element. It has
been noted that a signi�cant fraction of the true cascade informa-
tion is missing [19]. Clearly such problems will propagate to the
subsequent network inference task. �erefore, instead of directly
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Figure 2: An example of (A) a di�usion network ≡ follower

network, (B) ≡ IC , an in�uence cascade, (C) ≡ NC , a network

cascade, (D) ≡ N ′C a network cascade, and (E) a weighted

graph constructed by combining (C) and (D)

generating a linear cascade associated to the graph structure, we
combine all cascade graphs of a particular cascade type into a single
graph and sample a number of linear cascades su�cient enough to
observe recurring node co-occurrence pa�erns. Fig. 2(E) shows an
example of the combination of the network cascades in Fig. 2 (C )
and (D), the weight of an edge indicate the frequency of the edge
in the corresponding cascades.

Combining Cascades. We combine the raw cascades of a partic-
ular type (i.e. in�uence or network) into a single uni�ed graph
for sampling linear cascades. We shall focus on how the in�u-
ence cascade graphs are combined brie�y, but the same principle
holds for the network cascade graphs. Suppose the set of all in-
�uence cascade graphs is denoted by {IG }. �en we de�ne a func-
tion W : V × V → Z+ that keeps track of the frequency of pairs
(u,v ) ∈ I ′G ∈ {IG } in all the in�uence cascade graphs. An example
is given in Fig. 2(E) for the network cascade graphs in Fig. 2 (C )
and (D). For instance, the edge (u,w ) is observed in (C ) and (D),
and hence we add the edge (u,w, 2) in the combined graph (E). �e
combined graphs for in�uence and network cascades are denoted
by IG and NG , respectively.

Cascade Sampling. Once cascade graphs are combined, we sam-
ple a number of linear cascades by simulating a number of di�usion
processes over IG or NG , again we focus on IG . Towards this,
we assume the original cascades are generated according to the
independent cascade (IC) [13] model; thus we employ IC to sample
linear cascades. According to IC a cascade is generated by trigger-
ing a di�usion process from a set S0 of seed nodes, |S0 | ≥ 1, at time
t = 0. At each subsequent time step t > 0, each node u ∈ St−1
makes an a�empt to spread in�uence to an outgoing neighbor
v ∈ Iout

G
(u) of u with a probability proportional toW (u,v ), if v

has not been infected. If the a�empt succeeds, we add v to St , and
each node u ∈ St−1 is given only one chance to in�uence each of
its uninfected outgoing neighbor. Each linear cascade sample is
then added to C that is utilized during the representation learning
module discussed in Section 3.1.
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Figure 3: Cascade size distributions for three of our datasets

As shown in Fig. 3 and 4, our sampling strategy leads to distribu-
tions similar to the original cascades in terms of cascade size and
nodes appearances, respectively. Besides, later in the experiments,
we demonstrate that this strategy indeed gives be�er results.

3.1 Representation Learning from Cascades

Essentially, our algorithm at its core leverages representation of
nodes learned from linear cascades. �e representation learning
aspect of our algorithm is heavily inspired by word representation
learning [16, 17] in natural languages. �e state-of-the-art word
representation learning techniques employ the so-called “learning
by prediction” strategy [1]. In a nutshell, the idea is to learn a repre-
sentation of words that enables us to predict their context, where
the context of a word is speci�ed by those words that regularly co-
occur with it. �is notion motivates us to hypothesize that cascades
can be considered as documents in natural languages, and nodes as
words. As a result, we can exploit algorithms for word representa-
tion learning to learn representations for nodes. We validate our
hypothesis that nodes in cascades have an equivalence mapping to
words in documents based on the distribution of words and nodes
appearance in documents and cascades, respectively. For instance,
it has been shown [18] that words occurrence in Wikipedia doc-
uments follows a power-law distribution, and as shown in Fig. 4
nodes occurrence in cascades also follows a power-law distribu-
tion. �erefore, we tackle the node representation learning task
by employing the Skip-Gram model [12, 16–18] used for word and
network representation learning. In the following we discuss this
model in relation to our context.

Skip-Gram Model. Given a center node u ∈ C , this model maxi-
mizes the log probability of observing context nodes v ∈ C (u; s )�
and w ∈ C (u; s )� within a window size s . Based on the assumption
that the likelihood of observing each context node given a center
node is independent, formally the Skip-Gram model optimizes the
objective in Eq. 1 with respect to the model parameter Φ.

max
Φ

∑
u ∈V

log Pr (C (u; s )� | Φ(u)) + log Pr (C (u; s )� | Φ(u)) (1)

log Pr (C (u; s )D | Φ(u)) =
∑

v ∈C (u ;s )D
log Pr (v |Φ(u)) (2)
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Figure 4: �e distribution of nodes occurrence in cascades.

where D is either � or �, and Φ(u) ∈ [0, 1]d is a d-dimensional
representation of u. �e right-hand side term in Eq. 2 is speci�ed
using the so�max function as follows:

Pr (v |Φ(u)) =
exp(Φ(v )T · Φ(u))∑

w ∈N exp(Φ(w )T · Φ(u))
(3)

Nonetheless, directly estimating the conditional probability in Eq. 3
is expensive, because of the normalization constant that needs to be
computed for every node. For this reason, di�erent approximation
strategies have been suggested in the literature; in this work, we
adopt the “Negative Sampling” strategy [17] that characterizes
a good model by its power to discriminate appropriate context
nodes from noise. �en, the computation of log Pr (v |Φ(u)) adjusted
according to the negative sampling strategy is shown in Eq. 4.

log Pr (v |Φ(u)) = logσ (Φ(v )TΦ(u)) + neд(u; l ) (4)

σ is the logistic function, and we need the model to e�ectively
di�erentiate v from the l negative examples drawn from some
noise distribution N (u) of u, where neд(u; l ) is the noise model
and is de�ned as

neд(u; l ) =
l∑

i=1
Ewi∼N (u )[− logσ (Φ(wi )

TΦ(u))] (5)

In a nutshell, a good model should minimize the noise model –
neд(u; l ), and maximize the data-model – the �rst term on the right-
hand-side of Eq. 4.

We employ the stochastic gradient descent algorithm to min-
imize, instead, the negative log-likelihood of Eq. 1 that utilizes
the negative sampling strategy just described. Finally, when the
objective is optimized, we obtain the parameters Φ ∈ V → [0, 1]d .

3.2 Network Inference

Once obtained a representation Φ(u) for every u ∈ V , the next
step is to seek to infer the hidden di�usion network H . Note that,
the driving premise behind our algorithm is that, similar nodes
or nodes that are close to each other in the di�usion network are
likely to get infected together in most cascades. Inversely, nodes
that tend to co-appear in most infection cascades are likely to be
similar/closely related to each other in the di�usion network, for
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example belong to the same community. Based on this assumption,
we utilize the representation learned from the cascades to infer
edges in the hidden network.

If node closeness in the hidden network is captured in the rep-
resentation, we can simply compute some geometric distance of
nodes representation to infer edges between a pair of nodes. In
particular, we estimate a probability p (u,v ) for every pair of nodes
〈u,v〉 in each cascade C based on the cosine similarity of Φ(u) and
Φ(v ). �en, an edge (u,v ) is inferred if the similarity is above a
certain threshold. More formally, let θ ∈ (0, 1] be a threshold, and
G = (V ,E ′) be the inferred network, then G is constructed such
that:

E ′ = {(u,v ) : p (u,v ) ≥ θ } (6)
where

p (u,v ) =
Φ(u) · Φ(v )

‖ Φ(u) ‖‖ Φ(v ) ‖

Now, one can infer edges between every pair of nodes by using
Eq. 6. However, this is very expensive for very large networks; for
this reason, we avoid such pair-wise computations by leveraging
an interesting property of cascades. �at is, nodes in large (viral)
cascades usually belong to a lot of communities (they do not have
correlations), where as nodes in small cascades usually belong to a
single or to very few communities (they are tightly connected) [25].
Hence, �rst we reduce the set of cascades by ignoring large cascades
and then we scan each of the remaining cascades to infer an edge
between each pair of nodes in the corresponding cascade. Yet again
we do not have to test for a possible edge between each pair of
nodes in a given cascade. We can ignore pairs that co-occur merely
a few times in cascades and probe pairs that are relatively frequent.

4 EXPERIMENTS AND RESULTS

In this section, we �rst introduce the datasets on which DeepInfer
is evaluated, and then we provide the main results.

4.1 Datasets

In order to evaluate our model, we use the following six real and
synthetic datasets, for which a summary of the basic characteristics
is provided in Table 1.

(1) Twi�er #1 [25]: A Twi�er dataset containing infections
related to hashtags; there are three variants of this dataset:
(a) Hashtag cascade (HT 1 1 - Observed cascades): A

record of hashtag users. Each entry corresponds to a
hashtag and its adopters.

(b) Retweet cascade #1 (RT 1 1 - Simulated cascades):
Records containing users retweeting other’s tweets.

(c) Retweet cascade #2 (RT 1 2 - Simulated cascades):
Records containing users mentioning other users.

(2) Twi�er #2 [5]: A Twi�er dataset collected before, during,
and a�er the announcement of the Higgs boson particle.
We use the the following two kinds of datasets 1

(a) Retweet cascade #1 (RT 2 1 - Simulated cascades):
Retweet information related to the Higgs boson.

(b) Retweet cascade #2 (RT 2 2 - Simulated cascades):
Mentions related to the Higgs boson.

1h�p://snap.stanford.edu/data/higgs-twi�er.html

Dataset #Cascades #Nodes in H #Edges in H

HT 1 1 397,681 595,460 14,273,311
RT 1 1 1,860,000 595,460 14,273,311
RT 1 2 540,385 595,460 14,273,311
RT 2 1 144,704 456,626 14,855,842
RT 2 2 54,785 456,626 14,855,842

Memetracker 71,568 3,836,314 15,540,787
Table 1: Dataset statistics

(3) Memetracker [15](Observed Cascades): A dataset contain-
ing news and blog posts mentioning memes. We con-
struct hashtag-like infections by utilizing the meme cluster
dataset 2. Each cluster id is considered as a contagion, and
a news or blog post is said to be infected by the contagion
if it mentions a meme that belongs to the cluster.

For all the datasets we have a ground truth, that is, the di�usion
network against which we are going to compare the inferred net-
work. In the Memetracker dataset, the ground truth is constructed
by considering hyperlinks between pages.

4.2 Results and Discussion

In the �rst set of experimental results we seek to empirically verify
our assumptions. Towards this end, we generate a new extended
graph H ′ that has an additional false edge (u,v ′) < E per every
true edge (u,v ) ∈ E in the ground truth network H . Next we
analyze the performance of DeepInfer in correctly classifying
the edges in H ′ according to di�erent hypotheses. Based on the
classi�cation results of each experiment, the performance of the
model according to a speci�c hypothesis is measured using one or
more of the following four evaluation metrics: precision, recall, F1,
and error-rate. For all the metrics but error-rate we seek to achieve
higher scores. Note that we have a balanced number of valid (true)
and invalid (false) edges in the extended ground truth - H ′, hence
the worst performance in terms of the error-rate is 50%. �at is,
if our algorithm is unable to detect true edges correctly, it will be
correct in 50% of the times for classifying every edge as false.

In our �rst experiment we shall demonstrate the claim that us-
ing the simulated (given large number of simulations) rather than
the observed cascades leads to a be�er performance. For the two
datasets, RT 1 1 and RT 1 2, we have the corresponding observed
cascades, and hence we report the performance comparison of ob-
served vs simulated cascades across di�erent measures as shown in
Fig. 5. In the �gure, we consider the expected value for each thresh-
old θ summarized over the range of window size 5, 10, 15, 20, 25.
In fact we do achieve be�er performance by using the simulated
ones. It is important, however, to note that the larger the number
of simulations (cascades), the be�er the performance. Observe that
the number of cascades for RT 1 2 is much smaller than RT 1 1 as
shown in Table 1, and hence the performance improvements are
more vivid in the later case.

Next, we shall proceed to illustrate the e�ects of increasing
the window size. Fig 7 shows that increasing the window size
up to a certain turning point (depending on the dataset) might
result in a quality improvement. Increasing it beyond that turning
point, however, may signi�cantly reduce the quality obtained by the
2h�p://www.memetracker.org/data.html
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Figure 5: Observed vs SimulatedCascades Performance Eval-

uation for RT 1 1 (right column) and RT 1 2 (le� column).

�e number of cascades in the observed case of RT 1 1 is

226,488 and RT 1 2 is 217,653.

algorithm; even when the quality is scarcely a�ected, the training
time increases signi�cantly [17]. Moreover performance is also
related to the size of the training data, Note that for the small
datasets (RT 2 1, RT 2 2) the error-rate is almost as good as the
baseline (50%).

�e next experiment analyzes the e�ect of combining di�erent
kinds of cascades for the same dataset to understand if we can
achieve a be�er performance. As shown in Fig. 6, there is some
performance gain in terms of precision that comes at the expense
of recall by combining the HT 1 1 and RT 1 1 cascades for Twi�er
#1 dataset. However as illustrated by the F1 measure, the overall
quality decreases. �e experiment is repeated for other cascades in
other datasets, and we have observed the same property as in Fig 6.

In our last experiment, we evaluate the performance of Deep-
Infer with the state-of-the-art method called InfoPath and show
that DeepInfer performs be�er. �ere is a fundamental assump-
tion for both algorithms that requires a pair of nodes to su�ciently

Algorithm Precision Recall F1 K

0.51 0.29 0.36 1,000
0.38 0.35 0.36 5,000

DeepInfer 0.29 0.37 0.33 10,000
0.18 0.34 0.24 50,000
0.14 0.32 0.19 100,000
0.18 0.43 0.25 1,000
0.12 0.24 0.16 5,000

InfoPath 0.08 0.16 0.12 10,000
0.07 0.07 0.07 50,000
0.05 0.05 0.05 100,000

Table 2: Performance evaluation of DeepInfer and In-

foPath (approximated to two decimal places) on theHT 1 1

dataset. Parameter setting, DeepInfer: θ = 0.5, s = 5 and In-

foPath: exponential in�uence model. Best performances

are represented in bold. K is the value for the top-K fre-

quently co-occurring node-node pairs

Algorithm Precision Recall F1 K

0.41 0.74 0.53 1,000
0.28 0.52 0.36 5,000

DeepInfer 0.24 0.43 0.30 10,000
0.20 0.26 0.23 50,000
0.19 0.22 0.20 100,000
0.21 0.92 0.41 1,000
0.24 0.58 0.34 5,000

InfoPath 0.23 0.42 0.29 10,000
0.15 0.18 0.16 50,000
0.13 0.12 0.13 100,000

Table 3: Performance evaluation of DeepInfer and In-

foPath (approximated to two decimal places) on the Meme-

tracker dataset. Parameter setting, DeepInfer: θ = 0.5, s = 5
and InfoPath: exponential in�uence model. Best perfor-

mances are represented in bold. K is the value for the top-K
frequently co-occurring node-node pairs

co-occur in cascades so as to infer a possible edge. �is is a valid
assumption, as it can be observed from the distribution of node-
node co-occurrence frequencies in Fig. 8. Most node-node pairs
co-occur just a very few times, more precisely ≈ 96% and ≈ 80% of
the pairs in HT 1 1 and Memetracker datasets respectively co-occur
only once. Clearly no di�usion pa�ern can be learned from these
pairs, and hence there is no bene�t in probing them for possible
edges. �erefore, in order to compare the two methods, we �rst
compute a ranking of node-node pair co-occurrences in cascades.
Next we perform several experiments for both methods by utilizing
those cascades containing at least one of the top-K node-node pairs
and a ground-truth network induced by the top-K pairs. �e two
observed datasets, HT 1 1 and Memetracker, are used for the eval-
uation; and the results are reported in Table 2 and 3. For InfoPath
we use all the default con�gurations of the implementation3.

5 RELATEDWORK

Representation Learning. Recent advances in neural network
models have a�racted researches from several communities such as
3h�p://snap.stanford.edu/infopath/so�ware.html
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computer vision, NLP, and social network analysis. For our purpose,
we only consider the literatures from the last two communities.
�e seminal work of Mikolov et al. [17] in representation learning
(embedding) of words in documents using a shallow neural network
model has inspired studies [12, 18] in network representation learn-
ing. Among the approaches introduced for word embedding, the
Skip-Gram model [17] is the one that has been most largely used
for network representation learning. �e Skip-Gram model learns
a representation of words by way of predicting context words.

�e context of a node in a network, however, does not have
a straightforward de�nition. Studies have introduced di�erent
strategies of capturing nodes context, for example using random
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walks [12, 18], pair-wise proximities [3, 20, 22], and community
structures [21, 24]. Once a context is formalized di�erent neural
network, either shallow or deep models are employed for the rep-
resentation learning task. �en the learned representations are
utilized for downstream network analysis tasks.

Network Inference. �ere have been several works [6–11, 14] to
infer di�usion networks. A large percentage of the studies in this
area are motivated by the fact that di�usion networks are very o�en
hidden. �erefore, the standard approach towards inferring such a
network is by leveraging di�usion pa�erns in cascades. Most stud-
ies [6, 8–11] have focused on the delay between the infection times
of a pair of nodes infected by a certain contagion. �e main premise
is that if a pair of nodes are frequently infected within a certain
time window, then there is a di�usion pa�ern that is a likely indi-
cator of connections. Some of these studies [8, 10] assume a �xed
parametric form (e.g. exponential or power-law) of in�uence model
on the edges of the network. Nonetheless, one particular study [6]
has argued and empirically illustrated that such an assumption
is too strong for capturing the complex di�usion pa�erns in real
networks. For this reason, Du et al. [6] have presented a method
using survival analysis based on a kernelized hazard function.

�e common assumption of most studies in this task, including
us, is that the network is considered to be static. One particular
study [10], however, has proposed an elegant solution for dynamic
networks as well.

Besides delay-aware approaches, a delay-agnostic technique [14]
has been proposed recently. Mainly they argue that di�usion pat-
terns within a restricted window of time are di�cult to extract.
�erefore they propose a method that is based on the relative order
of infection. However, their in�uence model considers all infected
nodes before and a�er a certain node while learning infection prob-
abilities. But as illustrated in our experimental results, it is di�cult
to extract meaningful di�usion pa�erns unless we consider nodes
in a restricted window of infection context.

6 CONCLUSION AND FUTUREWORK

In this study we address the problem of di�usion network inference.
Usually di�usion networks are hidden to us, and one has to �rst
deal with the inference task before carrying out any downstream
analysis on the network. �erefore to tackle this problem we pro-
pose a novel algorithm called DeepInfer based on representation
learning. �e algorithm �rst learns a representation of nodes from
cascades and then leverages such a representation to infer edges
of the hidden network. By exploiting the empirical mapping be-
tween words in documents and nodes in cascades, DeepInfer uses
the Skip-Gram model to learn the representation of nodes from
cascades.

We have performed a number of experiments to prove most
of our assumptions and also to compare the e�ectiveness of our
algorithm with the state-of-the-art. We have managed to recover
up to ≈ 95% of the edges of the hidden network and achieve more
than an order of magnitude improvement over the state-of-the-art.

In a future work we would like to adopt our framework to deep-
models and also consider inference for dynamic networks.
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