
REFINE: Representation Learning from
Diffusion Events

Zekarias T. Kefato, Nasrullah Sheikh, and Alberto Montresor

University of Trento, Trento, Italy
{zekarias.kefato,nasrullah.sheikh,alberto.montresor}@unitn.it

Abstract. Network representation learning has recently attracted con-
siderable interest, because of its effectiveness in performing important
network analysis tasks such as link prediction and node classification.
However, most of the existing studies rely on the knowledge of the com-
plete network structure. Very often this is not the case, unfortunately:
the network is either partially or completely hidden. For example, due to
privacy and competitive market advantage, the friendship and follower
networks of Facebook and Twitter are hardly accessible. User activity
logs (also known as cascades), instead, are usually available. In this study
we propose Refine, a representation learning algorithm that does not re-
quire information about the network and simply utilizes cascades. Nodes
embeddings learned through Refine are optimized for network recon-
struction. Towards this end, it utilizes the global interaction patterns
exposed by reaction times and co-occurrences. We present an extensive
experimentation using two OSN datasets and show that our approach
outperforms existing baselines. In addition, we empirically show that
Refine can be used to predict cascades as well.

Keywords: Network Inference, Representation Learning, Cascade Prediction

1 Introduction

Network representation learning (NRL) has recently attracted considerable re-
search attention. In particular, the ubiquitous success of deep learning has in-
spired social network scientists to exploit neural networks to automatically learn
representation of nodes, that could later be used for several social analysis tasks.
A number of existing studies have assumed that the network structure is com-
pletely known. Very often, however, this is not the case; instead, information
about the network is either partial or completely absent. For instance, compa-
nies seeking a marketing campaign through Facebook or Twitter desire access
to the structural properties of the social graph; such information, however, is
usually not accessible due to privacy and competitive market advantage [1].

Some information is available, though. For example, extensive logs of events
occurring on the social graph can be easily obtained, e.g. through public APIs.
These logs represent the propagation of information over the latent network, for

2

example by recording the instant in which a user shares a meme or a piece of fake
news. The process of propagation is known as a cascade; it is usually triggered
by a few sources (seeds) and spreads over the graph through its edges [2–4].

In other words, we can observe who shares a meme and when this happens,
but not the edge through which the meme has been transported. The goal of
this study is to learn a representation of nodes optimized for reconstructing the
latent network by simply using the cascades.

Related Work. Several studies [2–7] have been proposed towards the network
reconstruction task. In general, we can divide them into two broad categories,
which are (i) delay-aware and (ii) delay-agnostic. Some of the existing delay-
aware models, such as NetInf [2], NetRate [6], InfoPath [5], and Kernel-
Cascade [3], exploit infection rates based on delay patterns between infection
timestamps. The main assumption is that if a pair of nodes tend to get infected
right after each other, then there is a diffusion pattern that is a likely indi-
cator of connections. Some of them [5, 6] assume a fixed parametric form (e.g
exponential) of influence model or transmission rate on the edges of the network.
Nonetheless, a particular study [3] has argued and empirically demonstrated that
such an assumption is too strong for capturing the complex diffusion patterns
and user infection dynamics in real networks.

On the other hand, some studies [4, 7] follow a delay-agnostic approach sim-
ply based on the order and/or context of infection events. Furthermore, they
have argued that delay-aware models are likely to miss out several diffusion pat-
terns, even in the presence of recurring ones, because of the delay intervals of
such models that could potentially be too large or too small. This problem is
normally caused by explicitly pre-defined infection rates (delay patterns) and
fixed parametric forms of influence models, as argued by [3].

In the area of network representation learning, there are also quite a number
of studies [8–14]. The algorithms vary from classical techniques that rely on
matrix factorization to recent techniques using deep neural networks. Their goal
is usually to embed nodes of the network in a low-dimensional latent space in
such a way that the embedding preserves different properties of the network, for
example local neighborhoods. Our work is essentially different from the above
techniques, because we lack the knowledge of the network structure.

Current Work. In this study, we propose Refine, an delay-aware algorithm for
network reconstruction based on representation learning. Contrary to [4, 7], we
argue that delay-aware models can also perform as well as delay-agnostic models
if they are properly designed. Therefore, Refine utilizes the delays between
infection events; unlike some of the existing methods [2, 5, 6], however, it avoids
any assumption regarding the influence model and infections rates. Instead, it
directly embeds users according to the inherent interaction patterns exposed by
them.

Refine is established on the premise that closely connected users, for exam-
ple members of a community, expose interaction patterns that are expressed by
reaction time and frequency. In terms of reaction time, given a post by a certain

3

member of a community, it is very likely for another member to share the post
faster than non-members. In terms of frequency, it is more likely for a member
of a community to co-occur with another member in cascades more frequently
than with other non-members. Refine learns a low-dimensional embedding of
nodes that capture such interaction patterns and use the learned embedding to
estimate pairwise edge probabilities towards reconstructing the network.

We have performed extended evaluations of our approach and compared it
against strong baselines. Besides utilizing the embedding to reconstruct the la-
tent network, we have also evaluated the capability of our representation learning
approach to predict the cascades themselves.

The rest of the paper is organized as follows. Section 2 introduces the notation
which is used in the rest of the paper. Section 3 describes the Refine algorithm.
Sections 4 presents the results of our experiments and we conclude the paper in
Section 5.

2 Model and problem definition

We assume that cascades occur over a hidden graph H = (U,E), where U is a
set containing n vertexes, each vertex corresponding to a user, and E is a set
containing m edges (connections) between users. We will use the term vertex
and user as synonyms, preferring the former when referring to human being,
and the latter when referring to graph-theoretic concepts. Interactions between
users occur over the network; while the set of users is normally well-defined, the
set of connections among them can be partially or completely unknown.

The spread of multiple contagions across the network H generates a collection
C of cascades. A contagion can be considered as any piece of online content, such
as, a tweet, meme, video, that spread through online networks as a result of re-
sharing activities. A cascade C ∈ C is a sequence that captures both the order
and the time instant in which users have been infected by a given contagion.
More formally, it is defined as: C = [(u1, t1), (u2, t2), . . . , (uc, tc)] where ti is the
timestamp associated to user ui. We assume that i < j ⇒ ti ≤ tj .

We use C(i) to denote the i-th user of C; and Ct(i) to denote the correspond-
ing timestamp. We also use Cu ⊆ C to denote the subset of all cascades that user
u is involved in Cu = {C : ∃i ∧ 1 ≤ i ≤ |C| ∧ C(i) = u} with Cu 6= ∅, meaning
that all users in U have been involved in at least one cascade.

Given a cascade C, we define a function rC : U × U → R+ measuring the
reaction time between the infection events of u and v, if both have been infected
in C, or ∞ otherwise:

rC(u, v) =

{
|Ct(i)− Ct(j)| ∃i, j : u = C(i) ∧ v = C(j)

+∞ otherwise

In addition, we define the co-infection frequency function f(u, v) = |Cu ∩ Cv|
that computes the number of cascades that involve both u and v.

4

The problem we want to solve is the following: given a set of observed cascades
C over a hidden network H = (U,E), we want to infer a network G = (U,E′)
such that E′ approximates E as much as possible.

To evaluate the performance of our algorithms, similar to [8] we use the
precision-at-K (P@K) metric. Our approach will produce an edge probability
for every pair of vertexes; we can thus rank pairs of vertexes according to such
probability. We cut this rank at different thresholds K and we compute the
precision on the top-K pairs, i.e. the fraction of those pairs that are true edges
on the ground-truth network.

3 The REFINE Algorithm

Refine considers global interaction patterns expressed through users reaction
time and co-occurrences in cascades. For a given user u ∈ U , Refine computes
(i) a reaction time summary between the infection time of u and all other users
and (ii) the relative co-occurrence frequency between u and all other users, both
measured over the entire collection C. Our assumption is that if two users u and
v exhibit a strong interaction pattern, then they are likely to be connected.

A straightforward approach towards reconstruction is to compute similarity
between users according to their global interaction representation. However, this
leads to poor performances as this representation is very sparse. Rather, we first
learn an embedding of users in such a way that their interaction patterns in the
input representation space is preserved. Finally, we estimate the pairwise edge
probabilities between every pair of nodes to reconstruct the latent network.

3.1 Interaction Pattern Summarization

Refine is a delay-aware model based on the global interaction delays (reaction-
time) and frequency (co-occurrence) in cascades. We start by computing a re-
action time distribution for each user. Given a cascade C ∈ C and a user u
appearing in C (e.g., ∃i : u = C(i)), we compute, for the sake of numerical
convenience, an inverted reaction time function r−1C (u, v) defined as follows:

r−1C (u, v) =

0 rC(u, v) =∞
1 rC(u, v) = 0

e−rC(u,v) otherwise

(1)

r−1C (u, v) is a well-defined function from pairs of nodes to [0, 1], given that
r−1C (u, v) approaches 0 when rC(u, v) grows to infinity, and r−1C (u, v) approaches
1 when rC(u, v) tends to 0.

Refine utilizes the function r−1C to compute an (inverted) reaction time
summary vector R′(u) for each user u ∈ U , aggregated over all cascades C,
where each entry R′(u)[v], v ∈ U , is defined as follows:

R′(u)[v] =

∑
C∈Cu∩Cv r

−1
C (u, v)∑

C∈Cu
∑|C|
i=1 r

−1
C (u,C(i))

(2)

5

Equation 2 computes the (inverted) average reaction time between u and v,
normalized over all the cascades pertinent to u, Cu.

One can easily notice that the reaction time summary vector R′(u) captures a
reaction time distribution for each user u. Nonetheless, it fails to account for the
co-infection frequency between u and every other node v, which we consider to be
another strong signal for the existence of an edge between u and v. For example,
let v and w be two nodes with equal values in their respective entries in the
reaction time summary vector of u, i.e. R′(u)[v] = R′(u)[w]. If f(u, v)� f(u,w),
it is obvious that u and v have a stronger interaction tendency than u and w,
which is not modeled by R′.

To compensate for that, we first compute the relative co-infection frequency
vector F (u), where each F (u)[v], v ∈ U , is defined as follows:

F (u)[v] =
f(u, v)∑

w∈U f(u,w)
(3)

Finally, we combine R′ and F to obtain the interaction pattern summary I(u) =
F (u)×R′(u) for each user u. The vectors I(u) can be summarized in a matrix
I = [I(u1), . . . , I(un)] ∈ [0, 1]n×n that contains a row for each user.

Now, even though two users v and w have a tie for u in terms of R′(u), i.e,
R′(u)[v] = R′(u)[w], F (u) breaks such tie by putting more weight on the user
with a stronger co-infection frequency with u.

A näıve approach towards reconstructing the hidden network could be to
compute the similarity between each pair of users u, v based on I(u) and I(v),
for example by computing their distance over [0, 1]n. This approach, however,
leads to a poor performance as I is very sparse. We apply instead a learning
phase to embed I in a low and dense latent embedding space, in such a way
that the the patterns encoded in I are preserved. In other words, we intend to
identify a mapping function Φ : [0, 1]n×n → Rn×d, with d� n.

Finally, we utilize Φ to effectively learn the probability for an edge between
a pair of nodes to exist, in order to reconstruct the hidden network.

3.2 User Embedding

Interaction Pattern Summarization

User Embedding

Reconstruction (Edge Prediction)

𝑊" 𝑊# 𝑊"$ 𝑊#$

Fig. 1. The Refine
framework

The hidden network structure that we seek to recon-
struct lives in a highly non-linear space [8]. Therefore,
one has to identify a mapping Φ ∈ Rn×d that enables
her to recover the non-linear network structure. To-
wards this goal, Refine uses a deep autoencoder, an
unsupervised neural network model.

An autoencoder enables us to embed I in a low-
dimensional latent space by composing several non-
linear functions (layers), as shown in Fig. 1. The input
is given by the matrix I. The user embedding module
of Fig. 1 has two components, the encoder (blue lay-
ers) and the decoder (black layers). The former trans-

6

forms the input into an embedding (white layer), while
the latter tries to regenerate and output the original input from the embedding.

Formally, the encoder E : [0, 1]n×n → Rn×d and the decoder D : Rn×d →
[0, 1]n×n are a composition of non-linear functions defined as follows:

E(I) = el(. . . e`(. . . (e1(I ·W1) ·W2) . . .) . . .) = Φ (4)

D(Φ) = dl(. . . d`(. . . (d1(Φ · Ŵ1) · Ŵ2) . . .) . . .) = Ĩ (5)

where e` and d` are the non-linear functions (e.g., relu, tanh) of the `−th encoder
and decoder layers, respectively. Each layer of an autoencoder is fully connected,
meaning that it is a linear transformation of the output of the previous layer
`− 1, i.e. f`−1(·) ·W`, and f` is either e` or d`.

Optimization: The weights are the main parameters of the model that needs to
be trained. Normally this is achieved by minimizing the cost function of Eq. 6.

L = arg min
W

‖ I − Ĩ ‖2F (6)

where I is the input matrix and Ĩ is the regenerated output matrix. The mere
optimization of Eq. 6 leads to a poor performance due to I’s sparsity. To deal
with this, we adopt Wang’s strategy [8] and reformulate Eq. 6 as

L = arg min
W,Ŵ

‖ (I − Ĩ)⊕ S ‖2F +λξ (7)

where ⊕ is the Hadamard product and S ∈ Rn×n+ a term to avoid the sparsity
problem, is associated with I, i.e if I(u, v) = 0, then S(u, v) = 1 otherwise
S(u, v) = µ > 1 and µ is an alias for S(u, v). The second term in Eq. 7, ξ =∑l
`=1 ‖ W` ‖2F + ‖ Ŵ` ‖2F , is a regularization term to avoid over-fitting and

λ ∈ (0, 1) is the regularization constant.
Finally, Eq. 7 can be optimized using classical algorithms such as gradient

descent. Then, once the optimization is solved, we obtain an embedding Φ(u) of
each user u ∈ U .

Speeding-up the user embedding For a very large value of n, training an autoen-
coder using I could be very expensive. Thus, we propose an intermediate step of
dimensionality reduction using truncated (partial) singular value decomposition
(T-SVD) for very large matrices [15]. T-SVD utilizes a few of the highest or
smallest eigenvalues of a large matrix. As a result, we can efficiently reduce I’s
dimension and feed the reduced Ir to the autoencoder. Moreover, this can be
considered as an alternative solution to tackle the sparsity problem with I. Note
that when employing this component there is no need for the sparsity term in
the loss function of Eq. 7. We have observed that including this optimization
provides similar or better results, with a significant reduction in memory and
computational time.

7

3.3 Reconstruction

Once Φ is computed as in Section 3.2, we exploit it to predict the probability
that an edge exists between a pair of users. We assume that if a pair of users
never co-occur in any cascade, they have a very small chance of being connected.
Therefore, we discard such pairs and analyze the remaining ones.

Let p(u, v) = 1/(1+e−(Φ(u)
T ·Φ(v))) be a function that predicts the probability

that an edge exists between u and v. We build a network G = (U,E′), E′ ≈ E
by adding an edge (u, v) to E′ with probability p(u, v). E′ can be refined by
pruning edges (u, v) where p(u, v) < τ for some threshold τ .

4 Experiments and Results

Dataset Description. Our experiments are performed on the following datasets,
whose characteristics are summarized in Table 1.

Twitter [16] contains a set of Twitter users with a reciprocal follower rela-
tionships, collected from March 24th to April 25th, 2012. The follower network
is considered as a ground truth. Two kinds of cascades are present: (1) Hashtag
(HT): Cascades collected from user activity when using/adopting hashtags; (2)
Retweet (RT): Cascades collected from user retweeting tweets.

MemeTracker (MT) [5], contains users represented by a collection of news
media and blog sites. Cascades are formed based on the spread of memes. A
contagion occurs when a particular meme is used by a site for the first time. The
sequence of all the infected sites form a cascade. The ground truth network is
built based on hyper-links found in each site.

Settings. In order to tune the hyper-parameters of Refine, we use the random
grid search strategy; its weights are initialized according to [17] for uniform
distribution. To implement our models, we adopted the TensorFlow1 and
SciPy2 Python-based libraries. In all the experiments, both the encoder and
decoder of Refine use the tanh activation function.

Results. In the first set of experiments, we have compared Refine with two
strong baselines InfoPath [5] (delay-aware) and DeepInfer [7] (delay-oblivious).
To perform a fair comparison, we have selected four topics of the Memetracker
dataset that have been evaluated in the InfoPath original paper. The cascades
derived from these topics are associated with 5000 users.

1 https://www.tensorflow.org/
2 https://www.scipy.org/

Dataset |U | |E| |C| |U ′|
HT 595,460 14,273,311 1,345,913 34,371

RT 595,460 14,273,311 226,488 11,700

MT 3,836,314 15,540,787 71,568 52,088

Table 1. Dataset Summary.
Number of users, number of
edges, number of cascades,
number of users after remov-
ing large cascades.

8

NBA Occupy Strauss−Kahn Syria

100 500 1000 1500 2000 100 500 1000 1500 2000 100 500 1000 1500 2000 100 500 1000 1500 2000
0

10

20

30

K

P
@

K

Algorithm DEEPINFER INFOPATH REFINE

Fig. 2. Comparison of Refine with the baselines over four topics from the Meme-
tracker dataset for different value of K for the P@K metric. For all datasets, Refine
applies T-SVD and Ir ∈ Rn×1024. Cascade length: for Syria and Occupy, between 3
and 100; for NBA and Strauss Kahn, between 3 and 1000. (1) Syria n = 1, 207, and
|C| = 615, 176; Refine: layer sizes = [1024, 700, 300, 200], learning rate α = 0.005,
regularization constant λ = 0.0005. (2) Occupy : n = 1, 875, |C| = 655, 183; Refine:
layer sizes = [1024, 900, 400, 200], α = 0.001, λ = 0.009. (3) NBA: n = 2, 087, and
|C| = 1, 543, 630; Refine: layer sizes = [1024, 700, 300, 200], α = 0.003, λ = 0.0005; (4)
Strauss-Kahn: n = 1, 263, and |C| = 204, 238; Refine: layer sizes = [1024, 800, 500, 200],
α = 0.005, λ = 0.01. For DeepInfer: s = 15, and d = 200. For InfoPath, we have
adopted the exponential influence model, as it performs slightly better than the others.

The results are reported in Fig. 2. Refine performs better than the base-
lines in almost all of the cases, by up to an order of magnitude. Apart from
this, it is worthwhile to note that a single-threaded version of InfoPath would
require several days to complete. In fact, the original paper reports 4 hours of
computation to infer 38 different time-varying networks for 38 different topics,
in a cluster equipped with 1000 CPU cores and 6TB total RAM [5]. Refine has
been executed on a 48-core, 128GB machine and takes at most 10 minutes to
reconstruct the topic-associated networks for each of the four topics.

In the same figure, it is possible to observe the poor performance of DeepIn-
fer; this is due to the fact that we only consider 5000 users. To detect patterns,
DeepInfer relies on frequent co-occurrence of users in close contexts; however,
we do not have any guarantee that the 5000 users will occur in such man-
ner, hence the poor performance. This would not be an issue for Refine and
InfoPath, as they rely on reaction time and/or mere co-occurrence patterns
rather than context proximity.

In all of the above experiments, the T-SVD step of Refine has been executed.
As shown in Fig. 5, handling the sparsity issue through T-SVD gives better result
than the formulation in Eq. 7. Refine with T-SVD is more robust than Refine
when K increases. However, one could ask if simply using the T-SVD method as
an embedding technique could be sufficient. In the following experiment we show
that a variant of Refine, referred to as Refine-Basic which simply considers
the T-SVD output as node embedding, is not sufficient. For this experiment,
we have chosen cascades of minimum length 5 and maximum length 200. In
fact, it has been argued that users belonging to large cascades are usually not

9

HT MT RT

10 50 100 500 1000 5000 10000 50000 10 50 100 500 1000 5000 10000 50000 10 50 100 500 1000 5000 10000 50000
0

25

50

75

100

K

P
@

K

Algorithm DEEPINFER REFINE REFINE−BASIC

Fig. 3. Refine vs DeepInfer. Refine applies T-SVD, Ir ∈ Rn×1024. Refine: HT –
layer sizes [1024, 700, 500, 300, 100], learning rate α = 0.0001, regularization constant
λ = 0.0002; RT & MT – layer sizes [1024, 900, 700, 500, 200], α = 0.001. RT – λ = 0.004,
and MT – λ = 0.001. DeepInfer configuration: window size s = 10 and d = 200

0.04

0.08

0.12

100 200 300 400 500
d

P
@

K

K 100 500 1000 1500 2000

A

0.0 0.2 0.4 0.6 0.8
λ

K 100 500 1000 10000

B

0 10 20 30
µ

K 100 500 1000 10000

C

Fig. 4. Parameter sensitivity analysis with respect to (A) embedding size (#dimensions
- d), (B) regularization constant (λ), and (C) sparsity penalizer (µ) using Strauss-Kahn.

similar, as such cascades tend to be viral and include almost all users [16]. By
discarding cascades which are too large in order to reduce noise, the number of
users decreases, as shown in column |U ′| of Table 1.

Fig 3 shows how poorly Refine-Basic performs when it is compared against
Refine and DeepInfer. Recall that the network structure is highly non-linear
and our main goal for designing the complete Refine solution is to capture such
non-linearity. Refine-Basic is a linear model, and hence it fails to effectively
predict the edges of the latent network. One particular observation is that Re-
fine tends to perform well when there is a large number of training examples
(i.e. the first two plots). Note that a training example in Refine corresponds to
a user. In Fig 3 we have not included the performance of InfoPath as it fails
to complete the inference on large datasets after several days.

Parameter Analysis. To complete the analysis, we investigate now how the differ-
ent parameters of our models affect the performance. We start by analyzing the
effect of embedding dimensionality in the network reconstruction task. As we are
interested in understanding the effect of the parameters, in the following experi-
ments we only set the minimum size of cascades to be 3, i.e. {C : |C| ≥ 3, C ∈ C}.

The first plot of Fig. 4 shows the effect of increasing the embedding dimen-
sionality in the network reconstruction task. As one might expect, increasing
this parameter up to a given threshold improves the results, because we can en-

10

●
●

●
●

●

●

●
● ● ●

NBA Strauss−Kahan

500 1000 1500 2000 500 1000 1500 2000

0.050

0.075

0.100

0.125

0.150

0.175

K

P
@

K

Algorithm ●REFINE REFINE+TSVD

Fig. 5. The effect of using the T-SVD step in
Refine using two topics, NBA and Strauss-
Kahn, from the Memetracker dataset

● ● ● ● ● ● ● ● ● ●0

5

10

15

20

2.5 5.0 7.5 10.0
Epochs

L

Algorithm ●REFINE REFINE+TSVD

Fig. 6. The progress of the loss
function at the end of 10 iterations
for Refine and Refine with the
T-SVD step

0.0

0.2

0.4

0.6

70 80 90
ϑ

F
−

M
ea

su
re

Algorithms
CBF
DEEPINFER

REFINE

Fig. 7. Virality prediction
results Refine, DeepInfer
and (CBF)

t=1 hrs t=3 hrs t=6 hrs t=12 hrs

1 6 12 24 1 6 12 24 1 6 12 24 1 6 12 24
0.0

0.2

0.4

0.6

0.8

∆ t(hrs)

F
−

M
ea

su
re

Algorithms DEEPINFER REFINE

Fig. 8. Virality prediction results: Refine vs DeepInfer.

code more information. However, beyond a certain point the performance either
reaches a plateau or decreases. Our experiments show that in most of the cases,
the best results occur when the embeddings size is in the range 150-200. In the
second plot of Fig. 4, the effect of the regularization constant λ (introduced in
Eq. 7) is analyzed. In line with previous findings [8], our experiments show that
in most of the cases, the best results are obtained when λ is between 0.0 and 0.4;
after that point, the performance usually decreases. Finally, in the third plot of
Fig. 4 we analyze the effect of the sparsity factor µ, introduced in Eq. 7. Our
experiments show that in most of the cases, the best results are obtained when
µ is between 0 and 10.

Earlier we have shown the advantage of using T-SVD in terms of the quality
of the result; here, we analyze the effect from the convergence of the loss function
L, Eq. 7. Fig. 6 shows that the loss function converges much faster (after a couple
of iterations) for Refine with T-SVD rather than Refine without T-SVD.

Cascade Prediction Besides its effectiveness in network reconstruction, our ap-
proach can be extended to perform other tasks, such as cascade prediction: given
the state of a cascade C up to a certain time t, we want to predict whether the
cascade will go viral by time t+∆t. This is a practically relevant problem and
a crucial challenge in social networks analysis [16, 18, 19].

In this study, we formulate the virality prediction problem similarly to Weng
et al. [16]. Let St(C) = {u : u = Ct(i) ∧ i ≤ t} be the number of users who
participated in a cascade up to a discrete time t. Let ϑ be a virality threshold ;

11

we seek to predict whether the cascade will affect a number of users which is
larger than ϑ% of the recorded cascades.

We utilize the embeddings proposed in Section 3.2. We compute a feature
vector f ∈ Rd that encodes the current state of the cascade based on St(C) as
follows. Let p = |St(C)|, and let E ∈ Rp×d be an embedding matrix constructed
from the set of p starting users at time t, u ∈ St(C). We then compute f by
aggregating E , i.e. the j − th component fj for j = 1, . . . , d is computed as
fj = 1

p

∑p
i=1 Eij .

Once we automatically build the feature vectors, we assign binary labels for
each cascade according to their state at t + ∆t and ϑ. That is, a cascade C is
labeled as viral if its size at t+∆t is greater than the size of ϑ% of the cascades;
otherwise, it is labeled non-viral. Finally, we follow a standard machine learning
approach by splitting the data into training (60%) and test (40%). To make a
fair comparison with community-based features (CBF) [16], we follow the same
techniques and settings. As we have a rare-class classification task, we use F-
Measure with β = 3 [18].

We use the same dataset as [16] (Twitter-HT). We compare Refine with
CBF and DeepInfer; for CBF only, features are manually extracted from the
underlying network.

Fig. 7 shows that Refine is no better than the baselines for ϑ = {70, 80}.
However it is much better for ϑ = 90 (Refine = 69.7%, DeepInfer = 65.5%,
CBF = 43%), and in virality prediction it is crucial to have an effective prediction
at higher values of ϑ [18].

A vital task in this problem is to predict virality as early as possible. There-
fore, in the following experiments we seek to predict virality of a cascade C at
different t+∆t based on the observation of C at different values of t with a fixed
ϑ. In this experiment, we compare the two strong algorithms Refine and Deep-
Infer, and for both algorithms d is equal to 200. As shown in Fig. 8, Refine
is a clear winner for this task. In particular, note that the prediction quality
for Refine improves as we increase t, and this provides a strong case for the
delay-aware approach. As it is difficult to predict far in the future, performance
decreases as we increase ∆t.

5 Conclusions

This study addresses the problem of network reconstruction from diffusion events
through node embedding, and proposes a novel algorithm called Refine.

One of our objectives is to argue against some existing studies [4] and show
that, if carefully designed, delay-aware models are as good as or even better than
delay-oblivious models in reconstructing the hidden network.

Refine is based on user embeddings learned from cascade logs, that are
leveraged to predict edge probabilities between pairs of users. Unlike some ex-
isting techniques that assume a parametric form of influence model, we make no
assumption regarding the transmission rates over edges. Instead, we simply em-
bed the interaction patterns between users in a low-dimensional space and utilize

12

that for reconstructing the edges. We show the effectiveness of this technique by
comparing it against existing delay-aware and delay-agnostic methods.

Moreover, we have also demonstrated the technique presented in this study
can be used for cascade prediction. Compared to existing manual or automatic
feature extraction techniques, our algorithm shows a significant performance
gain. Our study is limited to inferring the existence of edges between a pair of
users, and in a future work we seek to infer the direction of edges as well.

References

1. N. Barbieri, F. Bonchi, and G. Manco, “Cascade-based community detection,” in
Proc. of WSDM’13, pp. 33–42, ACM, 2013.

2. M. Gomez Rodriguez, J. Leskovec, and A. Krause, “Inferring networks of diffusion
and influence,” in Proc. of KDD’10, ACM, 2010.

3. N. Du, L. Song, A. Smola, and M. Yuan, “Learning networks of heterogeneous
influence,” in Proc. of NIPS’12, Curran Associates Inc., 2012.

4. S. Lamprier, S. Bourigault, and P. Gallinari, “Extracting diffusion channels from
real-world social data: A delay-agnostic learning of transmission probabilities,” in
Proc. of ASONAM’15, ACM, 2015.

5. M. Gomez-Rodriguez, J. Leskovec, and B. Schölkopf, “Structure and dynamics of
information pathways in online media,” CoRR, vol. abs/1212.1464, 2012.

6. M. Gomez-Rodriguez, D. Balduzzi, and B. Schölkopf, “Uncovering the temporal
dynamics of diffusion networks,” in Proc. of ICML’11, Omnipress, 2011.

7. Z. T. Kefato, N. Sheikh, and A. Montresor, “Deepinfer: Diffusion network inference
through representation learning,” in Proc. of MLG’17, ACM, Aug. 2017.

8. D. Wang, P. Cui, and W. Zhu, “Structural deep network embedding,” in Proc. of
KDD’16, ACM, 2016.

9. B. Perozzi, R. Al-Rfou, and S. Skiena, “Deepwalk: Online learning of social repre-
sentations,” in Proc. of KDD’14, ACM, 2014.

10. A. Grover and J. Leskovec, “Node2vec: Scalable feature learning for networks,” in
Proc. of KDD’16, ACM, 2016.

11. W. L. Hamilton, R. Ying, and J. Leskovec, “Inductive representation learning on
large graphs,” CoRR, vol. abs/1706.02216, 2017.

12. T. N. Kipf and M. Welling, “Semi-supervised classification with graph convolu-
tional networks,” CoRR, vol. abs/1609.02907, 2016.

13. S. Pan, J. Wu, X. Zhu, C. Zhang, and Y. Wang, “Tri-party deep network repre-
sentation,” in Proc. of the IJCAI’16, pp. 1895–1901, AAAI Press, 2016.

14. Z. T. Kefato, N. Sheikh, and A. Montresor, “Mineral: Multi-modal network repre-
sentation learning,” in Proc. of MOD’17, ACM, Sept. 2017.

15. J. Baglama and L. Reichel, “Augmented implicitly restarted lanczos bidiagonal-
ization methods,” SIAM J. Sci. Comput., vol. 27, no. 1, pp. 19–42, 2005.

16. L. Weng, F. Menczer, and Y.-Y. Ahn, “Virality prediction and community struc-
ture in social networks,” Sci. Rep., vol. 3, no. 2522, 2013.

17. X. Glorot and Y. Bengio, “Understanding the difficulty of training deep feedforward
neural networks,” May 2010.

18. K. Subbian, B. A. Prakash, and L. Adamic, “Detecting large reshare cascades in
social networks,” in Proc. of WWW’17, 2017.

19. J. Cheng, L. Adamic, P. A. Dow, J. M. Kleinberg, and J. Leskovec, “Can cascades
be predicted?,” in Proc of WWW’14, ACM, 2014.

