
DeepInfer: Di�usion Network Inference through
Representation Learning

Zekarias T. Kefato
University of Trento

Trento, Italy
zekarias.kefato@unitn.it

Nasrullah Sheikh
University of Trento

Trento, Italy
nasrullah.sheikh@unitn.it

Alberto Montresor
University of Trento

Trento, Italy
alberto.montresor@unitn.it

ABSTRACT

�e di�usion of a contagion is a common phenomena in both the
cyber and natural spaces. Irrespective of the contagion–a meme, a
hashtag, a biological virus–the process is always the same: a di�u-

sion or a cascade occurs as a result of interaction between agents
over a di�usion network. Unfortunately, the di�usion network is of-
ten unknown: that is, one can observe when the agents are infected
by a given contagion (e.g., when a piece of information arrives,
when a product is adopted, when a virus is caught), but does not
know how the infection has been transmi�ed. �e goal of this
study is to infer such a network starting from the contagion events
and their relative ordering. Most of the previous approaches to
this problem have relied on the delay between two infection events
occurring at a pair of nodes, to infer the presence of an edge. It has
been argued, however, that delay-agnostic approaches are su�cient
to capture the di�usion pa�erns that lead to recovering of edges in
several applications. �e algorithm presented in this paper di�ers
from existing delay-agnostic approaches in two aspects: �rst of
all, our study is largely inspired by recent studies on representation

learning of words in documents and nodes in networks. Second, we
consider the relative ordering of di�usion pa�erns in a restricted
window, rather than considering the entire history of events. Start-
ing from the empirical observation that the occurrence of nodes in
cascades could be compared to the occurrence of words in docu-
ments, we employ the Skip-Gram model to learn a representation
of nodes from recorded cascades. �e learned representation is
then used to compute a probability for an edge to exist between
a pair of nodes. �rough extensive experiments we validate the
e�ectiveness of our algorithm, showing that it is able to recover up
to ≈ 95% of the hidden network in realistic datasets. We have also
compared our algorithm to the state-of-the-art algorithm InfoPath,
and achieved a large improvement on the quality of results.

KEYWORDS

Network Inference, Social Network, Representation Learning

ACM Reference format:

Zekarias T. Kefato, Nasrullah Sheikh, and Alberto Montresor. 2017. Deep-
Infer: Di�usion Network Inference through Representation Learning. In
Proceedings of KDD2017, Halifax, Nova Scotia, Canada, August 2017, 9 pages.
DOI: 10.475/123 4

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for pro�t or commercial advantage and that copies bear this notice and the full citation
on the �rst page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).
KDD2017, Halifax, Nova Scotia, Canada

© 2017 Copyright held by the owner/author(s). 123-4567-24-567/08/06. . .$15.00
DOI: 10.475/123 4

1 INTRODUCTION

In our daily life, being the observer of the di�usion of information is
a pre�y common event, both in the physical and in the cyber world.
As examples, consider the di�usion of a virus in a population of
individuals, the spread of a meme, the adoption of a product, or the
di�usion of fake news in online social networks.

A common characteristic of all these di�usion processes, also
called cascades, is that we are able to observe when a single indi-
vidual has been infected by a virus, has adopted some product, or
has posted/tweeted some information, but we do not get to observe
who caused such individual to perform such actions.

In other words, the actual network over which the di�usion
takes place is either partially or fully hidden [2, 6, 9, 22]. In the
former case, we have observations that show di�erent chunks of
the di�usion network in the form of who copies from whom, as in
retweet networks. In the la�er case, our observations are limited at
just infection timestamps, for example when using hashtags. �is
poses a major problem in several network analysis tasks, such as
in�uence maximization and content prediction, that o�en rely on
the knowledge of the di�usion network [22].

In order to e�ectively infer the underlying network over which
di�usions have occurred, several studies [6–10, 14, 22] have been
proposed. Some of the existing e�orts, such as NetInf [9], Ne-
tRate [8], InfoPath [10] andKernelCascade [6], exploit infection
rates based on delay pa�erns between infection timestamps.

Although interesting results have been obtained in such studies,
several issues limiting their e�ectiveness have been identi�ed. It
has been argued that even in the presence of recurring di�usion
pa�erns, models based on delays are likely to miss most of them,
because of the size of the time intervals used in such models [14].
Delay-agnostic models, instead, have proven to be capable of cap-
turing such pa�erns [14], as long as the partial order of infections
is respected [2].

In this work, we tackle the problem of network inference using a
novel approach, based on representation learning. Recent advances
about word representation learning in the �eld of natural language
processing [16, 17] have inspired several studies for learning repre-
sentations in the context of social networks [2, 12, 18, 19, 21].

Our work is motivated by observations from previous studies [2,
9, 14], showing that users who frequently post together on related
topics have a very good chance of being connected. Inversely,
connected users are likely to be frequently infected by di�usions
related to similar topics [24].

In other words, if we are given a particular infected user and
we are able to observe her infection contexts, i.e. the sets of other
users that are infected before or a�er her infections in multiple
cascades, we could learn a representation for her that summarize



KDD2017, August 2017, Halifax, Nova Scotia, Canada Zekarias T. Kefato, Nasrullah Sheikh, and Alberto Montresor

the users that most frequently appear in her infection contexts.
�is is equivalent to one of the fundamental assumptions for word
representation learning, that is, we can distinguish a word by look-
ing at its context [17]. Hence, equivalently to the famous quote
“You shall know a word by the company it keeps” (J.R. Firth, 1957),
we may say “You shall know a user by the company it tends to
get infected with”. We validate such equivalence via an empirical
analysis of the distribution of nodes appearance in cascades and
words appearance in natural language documents.

�e main hypothesis of this study is that we should be able to
infer the hidden network by leveraging representation of nodes
learned from observed cascades. �at is, given the representation
of nodes, we infer the edges of the latent network by exploiting a
speci�ed similarity function over the representation space.

To prove our hypothesis, we developed a novel algorithm called
DeepInfer that learns a representation of nodes from cascades us-
ing the Skip-Gram model [17]. �e algorithm takes delay-agnostic
observations of cascades as input. In each observation, a user is
associated with an infection context, containing a bounded number
of users who have been infected before and a�er her. �en, the
algorithm learns a representation of the user in a low-dimensional
space that preserves her infection context. �e learned represen-
tation is then used to estimate the probability that an edge exists
between every pair of nodes. We estimate such probability using
the geometric distance between node representations, since rep-
resentations capture both nodes infection context in cascades and
their closeness in the hidden network.

�e contribution of our study can be summarized as follows:
• We empirically analyzed several properties of cascades:

– We provide a heuristic approach to generate synthetic
cascades and show that the cascade size distribution
follows a similar distribution as the observed ones.

– We empirically demonstrate that the distribution of
nodes in cascades is similar to the distribution of
words in documents.

• We provide an algorithm for learning nodes representation
from cascades.

• We provide a novel network inference algorithm based
on representation learning that manages to recover up to
≈ 95% of the edges and outperforms previous state-of-the-
art by more than an order of magnitude.

• We provide a detailed performance analysis of the algo-
rithm under di�erent hypotheses.

�e rest of the paper is organized as follows. Section 2 intro-
duces the basic concepts and notations and presents the problem
statement. Section 3 discusses the proposed algorithm. Section 4
reports the experiments and results. Finally, Section 5 discusses
related works; the paper is concluded in Section 6.

2 PRELIMINARIES

In this section we provide the basic de�nitions needed to describe
the problem we want to tackle. A cascade occurs when a certain
contagion, such as a meme, an innovation, or any on-line content
in general, has originated from a source and spreads through a dif-
fusion network. �e di�usion network, however, is usually hidden
and it is what we aspire to infer.

�e hidden network is represented as a graph H = (V ,E), where
V is a set containing n nodes and E is a set containingm edges.

We consider a collection C of linear cascades, where each linear
cascade C captures the sequence of events in which a �nite set of
nodes have been infected by a given contagion. More formally, we
de�ne a linear cascade as a sequence C = [u1,u2, . . . ,uc ], where ui
are distinct nodes belonging to V . We use C (i ) to denote the i-th
node of the cascadeC . We say that a node u is infected before node
v in a cascade C , and we write u ≺C v , if and only if u = C (i ) and
v = C (j ) and i < j.

�ough infection events are usually associated with an actual
timestamp, we are only interested in the relative ordering in which
nodes are infected. Compelling arguments have been given [2, 14]
as to why the relative order of nodes infection time per se is su�-
cient to solve the network inference problem in several domains.

We assume that a node usually tends to get infected together
with other nodes who are very similar to itself, which we refer
to as his infection context. Unlike rare and viral contagions, most
cascades exhibit homophilic behavior, in the sense that the infected
nodes are strongly related or very close to each other [4, 24] in the
network. For example they could have interconnections between
them or belong to the same community within the network.

Each node u has two types of infection contexts based on the
order they get infected in a given cascade:

• the in�uencer context C (u; s )� of node u in cascade C con-
tains the s nodes that immediately precede u in C

C (u; s )� = {v : v = C (i ) ∧ u = C (j ) ∧ j − s ≤ i ≤ j − 1}

• the in�uenced context C (u; s )� of node u in cascade C con-
tains the s nodes that immediately succeed u in C:

C (u; s )� = {v : v = C (i ) ∧ u = C (j ) ∧ j + 1 ≤ i ≤ j + s}

For example, given s = 2 and a cascade

C = {a,b, c,u,v,w,x ,y},

then C (u; 2)� = {b, c} and C (u; 2)� = {v,w }. �e two sets C (u; s )�
andC (u; s )� , can be loosely interpreted as the candidate in�uencer
nodes of u and the candidate nodes to be in�uenced by u, respec-
tively.

An important insight of our study (see Section 4) is that, as we
increase the window size above a certain value, it becomes more and
more di�cult to observe recurring pa�erns and consequently the
performance of a model will be hampered. In previous studies [2, 14]
no restriction where in place regarding this size while learning
in�uence propagation probabilities, introducing unnecessary noise
in the learned representation.

�e problem we want to solve is the following: given a set of
observed cascades C over a hidden network H = (V ,E), we want
to infer a networkG = (V ,E ′) such that E ′ ≈ E as much as possible.
We will evaluate the quality of our results based on precision, recall
and F1 score.

3 DEEPINFER

Our study is based on the hypothesis that there is a mapping from
nodes appearances in cascades to their structural information in the
di�usion network. �at is, nodes that frequently co-occur together



DeepInfer: Di�usion Network Inference through Representation Learning KDD2017, August 2017, Halifax, Nova Scotia, Canada

Linearizing

Representation 
Learning

Linear 
Cascades

Retweet-like 
Cascades

Inference

d

n

Inferred Network

Hashtag-like 
Cascades

Strip 
Time

Figure 1: DeepInfer Architecture

in cascades are closely related in the di�usion network, e.g. have
edges interconnecting them.

Based on this insight, we propose the DeepInfer algorithm,
whose architecture is depicted in Fig. 1. In the �rst phase, we con-
sider two possible sources of input, namely hashtag-like cascades

and retweet-like cascades (referred as hashtag cascades and retweet

cascades for the sake of brevity). �ese sources are transformed
into linear cascades. Linear cascades are then fed to the represen-

tation learning module, whose goal is to learn a representation of
the nodes based on the infection contexts extrapolated from the
linear cascades. �en, the inference module is run over the learned
representation to reconstruct the di�usion network.

Hashtag cascades. Usually infections are described as a log of
timestamped events, representing the �rst time a user u has been
infected by a speci�c piece of information. As a possible use case,
consider Twi�er: each hashtag T is associated with a distinct cas-
cade CT , and a node-timestamp pair (u, t ) ∈ CT represent the �rst
time at which user u has started to use T in her tweets.

As an example, consider Fig. 2(III), representing three cascades
(identi�ed by ids 1,2,4) and a collection of users with their respective
timestamps. Note that nodes w and x were infected close to each
other in all cascades; in fact, they form an edge (w,x ) ∈ H (Fig. 2(I)).

As noted in the previous sections, information about timestamps
are stripped away and cascades are just represented by an ordered
sequence of nodes.

Retweet cascades. In some cases, infections could be described by
a log of directed connections between users, representing partial
knowledge about who in�uenced whom during the infections. As a
possible use case, consider retweets and mentions in Twi�er: a pair
(v → u) could mean that userv has retweeted a message originally
tweeted by u (the direction of the arrow means that v is following
u).

In Fig. 2, for example, (I) shows the full di�usion network, while
(II) depicts the associated retweet infections. In Fig. 2(II), each edge
is associated with weights that correspond to the number of times
the retweet-like action has been performed over the directed edge.

An important problem in this case is that we could have edges
that do not exist in the di�usion network. Consider again Twi�er as
an example: let u be a user that originally tweets a messageT , let v
be a user that re-tweetedT a�er having seen it from u, and letw be
a user that re-tweeted T a�er having seen it from v . Unfortunately,

v

w

x

c

u

a
b

v

w

x

c

u

a
b

User Contagion Infection Time
u 1 0
b 1 1
a 1 3
x 1 4
w 1 6
x 2 0
w 2 2
x 4 1
v 4 3
w 4 4

(I) (II) (III)

1

7

74

2
13

Figure 2: An example of a (I) di�usion network, (II) retweet

cascade (the weights correspond to the number of retweets),

and (III) hashtag cascade

Twi�er does not provide the retweet network as (v → u), (w → v );
instead, it logs (v → u), (w → u), to mark the fact that the message
originated from u in both cases. Without loss of generality, we can
account for edges like this, e.g the do�ed edge (c,u) in Fig. 2(II)
corresponds to an instance as such.

Such directed network representation does not provide linear
infection sequences that enables us to capture the infection contexts
formalized in Section 2. For this reason, we need a strategy to derive
linear cascades from retweet cascades. Such strategy is described
in Section 3.1.

Representation learning and inference. �e next step is given by
the representation learning module, that takes a collection C of
linear cascades as input and learn a representation Φ : V → Rd
mapping nodes to a d-dimensional euclidean space. �is module is
described in Section 3.2. Finally, the learned representation is used
to infer the hidden di�usion network, as described in Section 3.3

3.1 Linearizing Retweet cascades

Retweet cascades are o�en provided as directed graphs obtained
by merging individual cascades. Once cascades are merged, there
is no straightforward way of obtaining the linear infection orders.
Sometimes the original retweet cascades may not be accessible, and
one needs to reconstruct the retweet cascades from the retweet
network. In fact, even if the retweet cascades are readily available,
the linear infection order is not as immediate as in the hashtag
cascades. �erefore, for datasets where we face this kind of situ-
ation, we reconstruct the infection order of the retweet cascades
by assuming that some kind of di�usion model have generated
them; more speci�cally, we consider the well- known discrete time
independent cascade (IC) model [13]. We thus convert the retweet
cascades to linear cascades.

Every cascade has a root where the infection has originated,
and the set of cascade roots is denote by R. Nodes of the retweet
network where there is at least one retweet originating from them,
in other words with at least one incoming edge, are deemed to be
the possible roots. For example, for the retweet network in Fig. 2
(II), we have R = {b,u,x }. �en for each cascade root node r ∈ R,
we generate at most c ∝ ∑(z,r )∈E (GR ) in(z, r ) cascades, where GR



KDD2017, August 2017, Halifax, Nova Scotia, Canada Zekarias T. Kefato, Nasrullah Sheikh, and Alberto Montresor

Algorithm 1 Linear Cascade Generator
Require: GR : retweet network
Require: R: Cascade roots
Ensure: C : list of linear cascades

1: procedure generateLinearCascades
2: GR = reverse(GR ) . In�uence �ow network
3: C ← ∅
4: for r ∈ R do . for each root r
5: cascadeCounter = 0
6: while cascadeCounter ≤ insum (r ) do
7: lb,ub = Eq. 1
8: ipp = sampleUniform(lb,ub)

9: C = icSim(GR , r , ipp)
10: C = stripTimestamps (C )
11: append C to C
12: cascadeCounter + +

13: return C

is the retweet network and in(z, r ) is the weight of r ’s incoming
edge (z, r ) .

�e complete procedure to generate the linear cascades is given
in Algorithm 1. �e �rst step in the algorithm (line 2) is to reverse
the edge of GR so as to obtain GR , i.e. the in�uence/information

�ow network. �e core of the algorithm is line 9, i.e. the sub-routine
icSim(GR , r , ipp). �is method generates a cascadeC by simulating
the in�uence propagation over the edges ofGR starting from a root
r according to the IC model [13]. For each simulation (cascade)
from the root r , an in�uence propagation probability ipp is sampled
uniformly at random between the interval [lb (r ),ub (r )] speci�ed
in Eq. 1 (line 8).

lb (r ) =
inavg (r )

maxz∈V (GR ) insum (z)

ub (r ) =
insum (r )

maxz∈V (GR ) insum (z)

(1)

where the overloaded inf (z) of any z ∈ V (GR ) is the incoming
weight of z summarized according to the function f , e.g when f
is sum then the summary is the sum of the incoming weights of z,
i .e . insum (z) =

∑
(y,z )∈E (GR ) in(y, z). �e variable ipp corresponds

to the probability of a cascade spreading from any node u ∈ V (GR )
that was infected at time t to any of the non-infected out-neighbors
{z : (u, z) ∈ E (GR )} ofu in the next time step t+1 over the in�uence
�ow network.

�e lb and ub bounds in Equation 1 are chosen heuristically;
nonetheless, Fig 3 shows that the simulated cascades have a similar
property as the observed cascades distribution. More concretely,
there are a very few number of large cascades, and a large number of
small cascades; they follow a power-law distribution. �e intuition
behind the heuristic is that, as in real world social networks each
node u has to face a competition to generate popular contents or
cascades that go viral. Our formulas model a situation where nodes
with small (large) in-degree weights have low (high) likelihoods to
generate large cascades, respectively. �is is what Eq. 1 is intended
to achieve, e.g in Fig 2 (II) x is less likely where as u and b are more
likely to generate large cascades.

●

●

●

●
●

●
●
●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●
●●●●●●
●
●●
●●●●●●●●●
●
●●
●
●●●●
●●●●●●
●●●●●
●●
●●●●●●●●●
●●●●●●●
●
●●●
●●●●●●●●●●
●●
●●●●●●
●●●●●●
●
●●●
●
●●●●●●●●
●●●
●●
●
●●
●

●●
●●●●●●
●
●●
●●
●
●

●

●
●●●
●
●●●
●
●●●●
●●
●
●
●
●
●
●●

●
●●
●

●

●
●●●●

●

●
●
●
●
●

●

●
●
●●●●
●

●
●
●
●●

●

●●●●
●●
●
●

●●
●

●●
●●
●
●

●
●●
●●●
●
●●
●
●●

●

●●

●●

●

●●

●

●●●●

●
●
●●●
●●●

●

●
●●
●●
●
●

●

●

●●
●●●●
●●

●
●●
●
●
●
●

●

●
●●
●
●●●

●

●
●●
●●

●

●
●

●

●●●
●●

●

●

●

●
●●●
●
●●●
●
●●
●

●●

●
●
●●

●
●●●

●

●

●

●

●

●

●

●

●

●

●

●●
●
●
●

●●●

●
●●●
●
●

●●●●●
●
●●●●
●●

●

●
●
●
●

●

●●●
●
●●●

●

●

●
●

●

●●●

●
●●

●●
●
●

●

●

●
●
●

●

●
●

●
●

●

●●
●
●

●
●
●●

●

●●

●●●
●●
●●
●

●

●
●●

●

●

●
●●
●

●●

●●
●●

●

●

●
●●

●

●

●
●

●●

●
●
●●

●
●

●

●
●
●●
●

●
●

●

●

●

●

●
●●
●
●

●

●
●

●

●
●
●●
●

●

●

●

●●
●
●
●

●
●
●
●

●

●

●

●
●
●
●

●

●

●

●

●●
●●●
●

●
●
●●
●

●

●

●●

●

●

●

●

●●

●

●

●●
●

●

●●●

●

●

●
●

●

●
●●
●

●

●

●

●
●

●

●

●●

●

●●

●

●

●
●
●
●
●●
●
●●

●●

●●

●●

●

●●

●
●
●
●
●
●
●

●

●

●●

●
●
●

●

●

●●

●●
●

●

●
●
●
●
●●●

●

●

●●
●

●

●

●●

●
●●●

●
●

●

●

●

●●

●
●

●

●●

●
●

●

●●
●
●

●

●
●
●

●

●

●●●

●
●

●

●

●

●

●●
●
●

●●

●●

●

●

●

●

●

●
●
●●

●

●
●●

●

●●

●●●●

●

●●

●

●

●

●

● ●

●

●

●

●

●

●

●

●●

●
●

●

●●

●

●

●●

●●●●

●

●
●
●

●

●

●●●

●

●

●

●

●
●

●
●
●●

●

●

●●

●
●

●

●●●

●

●

●

●

●

●

●
●

●

●
●●
●

●

●

●

●

●●●

●●

●●●●●●

●

●

●

●●

●●

●

●

●

●

●

●

●

●

●●

●●

●●

●

●
●●

●●

●

●●

●
●

●

●●

●●

●

●

●

●

●

●

●

●

●●●●●●●

●●●●

●

●

●

●
●●

●●●

●

●

●

●

●

●

●

●

●

●●●

●
●

●

●

●●●

●●

●

●

●
●

●

●

●●

●

●●●●

●

●

●

●

●

●●●

●

●●●

●

●
●●

●●●●●●

●

●

●●

●●

●●

●●●

●●

●

●

●●●●●

●

●●●●●●

●

● ●

●

●

●

●

●●

●

●
●

●

●

●

●●
●

●

●

●●

●●

●

●

●●●

●

●●●

●

●

●

●●

●

● ●●●●●●●

●

●●●●

●

●

●●●●●●●●●

●

●

●

●●

●●

●

●

●●●●

●

●●

●
●●

●●●

●

●●●●●●●

●

●●

●

●

●●

●

●●

●●●●●●●●●

●

●●

●●

●●●●●●●●●●

●

●●

●●

●●

●

●●● ●●●●● ●

●●

●●●●●●●

●

●●●●●

●

●●

●
●
●

●●●●●●●●●

●●

●

●

●●●●

●

●●

●

●●●●●●●

●
●

●●●●●

●

●●●●●●●●●

●

●●●

●●

●

●

●●●●●● ●

●
●
●

●●

●

●

●

●●●●

●

●●●●●

●●●

●●●

●

●●

●●

●

●

●●●

●●

●●●●●

●

●●

●

●

●

●●●●● ●●●●●●

●

●●

●

●●●

●

●●●●

●

●●●●

●

●●●●● ●● ●●●●

●

●● ●●●●●●●

●

●

●

●● ●

●

●●●

●●●

●●●●●●●●

●●

●●●●●

●

●●●●●

●●

●●●●●●●● ●●●

●

●●●

●

●●●●●●●

●●

●●●●●●

●

●●●●

●

●

●

●●●●●●●

●●

●●

●

●

● ●●●●●●●● ●●●●● ●●●●●

●

●●

●

●●

●

●●●

●

●●

●

● ●●●●●●●

●

●

●

●●●●●●●●●●●●●●●●

●

●●●●●●●●● ●●●●●●●●● ●●●● ●●●●●● ●●● ●●●●

●

●●●

●

●●●●●

●

●●●●●●●●●●●● ●

●

●● ●●● ●●●●●

●

●

●

●

●

●●●● ●●●●●●

●

●●●●●●●●●●● ●●

●

●● ●

●

●●●●●●●●●●●● ●● ●●●●●● ●●● ●

●

●

●

●●●●●●●●●●

●

● ●●●●●●●●●●●●●●●●

●

●●●●●● ●●

●

●

●

● ●●●● ●●●

●

●●●●

●

●●●● ●●●●●●

●

●● ●●● ●●●●●●●●●● ●●●●●●●●●●●●●●●●●●●● ●●●●● ●

●

●●●● ●●●●●●● ●●●●●●●● ●●● ●●●●●● ●●● ●●●●●

●

● ●●●● ●●●●●●●●●

●

● ● ●●●● ●●●●●●●●●● ●●●● ●●●●●●● ●●●●●● ●●

●

●●●●●●● ● ●● ●●●●●●●●

●

● ●●● ●●● ●●●●●●●● ●●●● ● ●●● ●●●●● ●● ●● ● ●●●●●●● ●●●●● ●●● ●● ● ●●●●●●●● ●●● ●●●●●●●●●● ●●●●● ● ●●●●●●●●●●●● ●● ●●●● ●●● ●●●● ● ●●●●

1e+01

1e+03

1e+05

1e+01 1e+03 1e+05

Cascade Length

C
as

ca
de

 L
en

gt
h 

F
re

qu
en

cy

Cascade types

●●●

Observed cascade 1

Observed cascade 2

Simulated cascade

Figure 3: Cascade size distributions for three of our datasets

To be�er understand how the icSim(GR , root, ipp) sub-routine
in Algorithm 1 works, consider the following illustration. Suppose
we are generating cascades by �xing a cascade root at b; then,
since insum (b) = 8 we generate at most 8 cascades starting from b,
controlled by the loop at line 6. �e other quantities relevant for our
purpose are inavд (b) = 4 and maxz∈V (GR ) insum (z) = insum (u) =
16, consequently lb (b) ≈ 0.25 and ub (b) ≈ 0.5. Suppose we have
sampled ipp = 0.4 ∈ [0.25, 0.5] (line 8), then the icSim subroutine
proceeds as follows:

(1) At time t = 0 it initiates a cascade by infecting the current
root, C = {(b, 0)}, and maintain a queue q = [b].

(2) At time t = t + 1 the node y at the head of q tries to infect
each out neighbor (y, z) ∈ E (GR ) with probability ipp. In
the �rst round b does this with ipp = 0.4, and suppose it
succeeds to do so, thus C = {(b, 0), (u, 1), (c, 1)}

(3) Remove the head of q and add newly infected nodes (for
our example, during the �rst round q = [u, c]).

(4) �en for the current node at the head of q (for example u)
start from step 2 until no infection is possible (q , ∅).

(5) Suppose only v is infected by u in the following rounds;
hence the �nal state of C = {(b, 0), (u, 1), (c, 1), (v, 2)} is
returned to the caller.

(6) Finally the timestamps are stripped (line 10), and hence a
linear cascade

As we shall show later in the experiments, this strategy is useful
not only when the cascades information is merged, but also when
it is available. We get be�er results using the simulated (for large
number simulations) cascades than the observed cascades. One
possible explanation for this could be that such cascades might
capture di�usion pa�erns that already happened and are likely to
happen in the future.

3.2 Representation Learning from Cascades

Essentially, our algorithm at its core leverages representation of
nodes learned from cascades. �e representation learning aspect
of our algorithm is heavily inspired by word representation learn-
ing [16, 17] in natural languages. �e state-of-the-art word repre-
sentation learning techniques employ the so-called “learning by



DeepInfer: Di�usion Network Inference through Representation Learning KDD2017, August 2017, Halifax, Nova Scotia, Canada

● ●

●
●

●
●

●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●
●●●●
●
●
●●●●●●●●●●●●●●●●●●●●

●●
●●●●
●●
●●●●
●
●●●●●●●●●●●

●●●●●●●●●●
●●●
●●
●●●●●●●●●
●
●●●●●●
●●●●●●●●●●●●●●●●●●●

●
●●●●●●●
●
●●●
●●
●●●●●
●●●●●
●●
●●●
●
●
●
●●●●●●●●●●
●●●●
●●
●●●●
●
●●
●
●

●
●●●●●
●
●

●

●
●
●●●
●●●●●●●●
●●
●●●●●
●●
●●●
●
●●●●●●
●●●●●
●
●
●●
●
●●●●●●●●●●●●
●●

●
●
●●●●
●
●●●

●
●
●●●
●●●●●●●
●●
●●●●●●●●
●
●
●●●
●
●
●
●●●
●

●
●●●
●●
●●●
●●●
●
●●●
●
●
●●

●●●●●●●●
●
●
●●●

●

●●●
●

●●

●

●●●●●
●●
●
●

●

●●
●
●
●●
●
●

●

●
●●
●

●
●●
●

●
●●●
●
●●

●●
●
●
●●●●
●●●●
●
●●
●

●

●
●
●●

●●
●●●●●●●●
●
●●
●●

●

●

●

●●
●●●

●●
●
●
●●

●
●

●
●●

●

●●●
●
●
●●

●●
●
●●●●●
●
●
●●
●●
●●
●

●

●

●
●
●●●
●

●
●●●
●

●

●

●
●●●●●●

●

●
●●●
●
●
●●
●●●
●●

●

●
●●

●

●
●●●●
●●
●

●

●●
●
●
●

●
●
●

●

●
●
●●

●

●●
●
●

●●

●
●

●●
●
●

●

●●
●●

●
●

●
●
●

●●
●●
●

●
●

●

●
●●●●
●●
●
●
●●●
●●
●●
●●

●
●
●
●
●
●●●
●
●
●●
●
●●

●
●

●

●

●

●
●

●

●●

●
●
●●●
●

●
●
●

●
●
●●
●
●

●

●

●●●

●●

●

●
●
●●●●
●●
●●●

●●

●

●

●

●

●●
●●
●
●

●●●
●
●

●
●
●

●
●●
●●●

●

●

●
●

●●

●

●

●

●
●●●

●

●●●●●
●

●●●●
●●●●
●●

●●

●●●●●

●

●

●
●

●●

●●

●

●
●
●

●
●

●●

●●
●
●

●

●

●

●

●
●
●
●
●

●

●●

●
●●●

●

●
●

●

●●

●

●

●●
●●●●
●

●

●
●●●
●●

●●

●
●

●

●

●●●●

●
●

●

●

●●

●

●●
●●

●

●

●

●●
●●

●

●
●

●
●
●
●
●

●

●
●
●●●

●
●

●
●●

●

●●
●

●

●

●

●

●●

●
●
●

●●
●
●

●●

●

●
●●
●

●

●

●
●

●
●

●

●

●

●
●

●●●
●

●
●

●

●
●●
●●
●
●
●●●
●
●
●
●●
●
●

●

●

●

●●
●●

●

●●
●
●●
●●
●●●

●●●●●
●
●
●
●
●

●
●
●

●●
●
●
●

●
●
●●●
●●
●●●●

●

●
●

●

●

●
●●●●

●●

●
●
●

●●
●

●●
●

●●●

●

●

●●●●

●

●

●

●

●

●●●●●

●
●
●
●

●

●

●

●
●●
●

●

●

●

●

●
●

●
●
●
●
●

●

●●

●
●●

●●

●

●

●

●

●
●

●

●●
●
●
●
●●

●

●

●

●

●

●
●
●
●

●
●

●
●
●●

●

●

●

●

●
●
●
●
●●
●●●
●
●
●●

●

●

●

●
●

●

●
●
●
●

●

●●
●

●●

●●●

●

●
●
●

●

●

●

●

●

●●●●

●
●
●
●●●
●●
●

●

●

●
●

●
●
●
●

●●

●

●●
●
●
●
●●
●●

●
●

●

●

●

●
●

●

●
●
●●

●

●
●

●

●

●●●●●

●
●●
●
●

●

●●●●●

●

●

●
●●

●

●
●●
●

●●●
●
●

●
●

●
●●

●

●

●

●
●
●

●
●
●

●

●●

●●●●●
●
●

●

●●●●
●●●

●

●●

●●●

●

●
●

●
●

●

●

●

●
●
●

●
●

●

●

●

●

●

●●

●

●
●

●

●
●

●

●

●

●
●
●
●
●
●
●●●●●
●●●

●
●
●

●●

●

●

●
●

●
●
●

●
●●

●

●

●

●

●

●

●
●●●

●

●

●

●●

●

●●●
●

●
●

●

●
●
●●

●

●
●●

●
●●
●

●

●●
●
●●

●

●

●

●
●●●

●
●●
●

●

●
●

●●

●

●
●

●

●

●

●

●

●

●
●
●
●

●
●
●
●

●

●●

●●
●●●●●
●
●

●

●

●

●

●

●

●
●
●

●
●

●●
●

●

●●

●
●

●

●

●

●

●●●
●
●
●

●

●
●

●
●

●

●
●

●

●

●
●
●●

●

●
●

●

●●

●

●

●
●

●

●
●
●

●

●●

●

●
●

●

●

●

●
●
●

●●●

●

●

●

●

●

●

●

●
●
●
●
●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●●

●
●
●

●

●●
●

●

●

●

●

●

●

●●

●
●

●●

●
●

●
●

●●
●●

●

●
●

●

●
●

●

●

●

●
●
●

●

●

●
●

●

●●
●●

●
●

●●
●

●

●●●
●●

●

●

●

●
●
●●

●
●

●●

●●

●

●
●

●●

●●
●

●

●
●●
●

●

●

●

●

●

●
●
●
●

●

●

●

●

●

●
●
●●●
●

●

●
●

●

●

●

●●
●

●

●

●

●

●
●

●

●
●
●

●●

●
●

●

●
●●

●●

●

●

●

●
●

●

●

●

●

●

●

●

●
●
●

●

●●

●●

●●

●

●

●

●

●

●

●
●
●

●

●
●●

●●

●

●

●
●●
●●
●
●

●

●

●

●

●
●

●
●

●●

●
●●
●

●

●
●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●●●

●

●

●●

●

●

●
●

●

●
●

●●

●

●●

●

●

●

●

●

●

●
●

●
●
●
●

●

●
●
●●

●

●

●

●

●

●

●●

●

●

●●●
●

●

●
●●●
●●
●

●

●
●

●

●
●

●

●

●
●

●

●●
●
●

●

●●●

●

●

●

●

●

●
●
●
●
●
●
●

●
●
●

●

●●

●

●

●

●●

●

●
●

●
●

●

●●

●

●●

●

●
●

●

●

●

●

●●

●

●

●
●

●

●

●

●

●

●

●
●

●

●
●

●
●
●
●

●

●

●
●●

●

●

●
●

●

●
●
●

●

●

●

●

●
●

●

●
●●

●
●

●

●

●

●●●

●
●

●
●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●●

●
●

●

●

●
●●

●

●

●

●

●

●

●

●●

●
●

●

●●

●

●

●
●
●

●

●

●

●
●
●

●

●
●

●
●

●

●

●

●●
●

●

●
●

●

●●●●

●●
●

●

●

●

●

●
●

●

●

●

●

●

●

●●●
●

●

●

●●

●

●

●●

●

●●

●

●
●
●

●

●

●

●

●

●
●
●
●●●

●

●

●

●

●
●

●
●
●
●
●
●●

●

●

●

●

●

●
●
●

●
●●
●

●

●

●

●
●●

●●●

●
●

●

●

●

●

●
●
●

●

●

●

●

●

●
●
●

●

●
●

●●
●

●●

●
●

●
●
●

●

●

●

●

●
●

●

●

●

●

●●●●

●

●

●

●

●

●

●

●

●

●●
●

●
●

●

●●
●
●
●

●

●

●
●

●

●

●●

●

●

●●

●

●●

●

●

●

●

●●
●

●●

●●

●

●

●

●
●

●
●
●

●●

●

●

●

●
●

●

●●

●

●

●
●

●

●

●
●

●●

●

●
●

●

●

●

●

●

●

●
●

●
●●

●●

●

●●

●●
●
●

●

●

●

●
●
●

●

●

●

●
●

●●●

●

●●
●

●

●

●

●

●
●
●

●●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●
●
●

●

●●

●

●

●

●

●

●
●

●

●

●

●

●

●
●
●
●

●

●

●

●

●

●

●

●

●
●●
●

●

●
●

●
●

●

●

●

●

●

●

●

●
●

●●

●
●

●●
●
●

●●
●

●

●●

●

●

●

●

●

●

●●

●

●●

●
●

●

●

●

●

●

●●
●
●

●●
●

●
●

●
●

●●●

●

●
●

●

●
●

●

●●
●

●

●

●

●

●

●

●

●

●

●●
●

●

●
●

●

●

●
●●
●
●
●

●
●

●●
●
●

●

●

●

●

●

●

●
●

●

●

●
●
●●

●

●

●

●●●
●●●

●

●

●●
●

●

●

●
●

●

●
●●●

●

●

●

●
●

●

●

●

●

●

●●

●
●●
●
●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●●

●

●
●

●

●

●

●●
●

●

●

●

●●●
●

●

●

●

●

●

●

●

●●●

●

●

●
●

●

●

●●

●

●

●

●

●

●

●

●●

●

●

●

●
●
●

●

●

●

●●

●

●●●

●●

●

●

●

●

●

●

●●
●●

●●

●
●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●●

●

●

●

●
●
●

●●

●

●●

●

●

●

●
●

●

●

●

●●
●

●

●

●
●

●

●

●

●

●
●

●
●

●

●

●

●

●●
●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●●●●

●

●

●

●

●
●

●

●

●

●

●

●●
●●

●

●

●
●
●

●
●●

●

●

●

●

●

●

●

●

●

●●
●●

●●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●
●

●

●

●

●●

●

●

●
●●

●

●

●
●
●

●

●

●
●●
●

●

●

●

●

●

●

●●

●

●
●
●

●

●
●●
●
●

●

●

●

●●

●

●

●

●

●●

●

●

●

●
●●
●

●

●
●
●

●

●

●

●

●●
●

●
●

●

●

●

●

●

●
●

●

●

●

●

●●

●

●

●●

●

●

●●

●
●
●

●

●

●

●

●

●

●

●●
●
●

●

●

●

●

●

●

●
●
●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●
●

●

●

●●

●

●

●

●

●●

●

●
●
●

●

●●

●●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●●

●

●●

●

●

●

●

●

●●●

●

●

●

●●

●

●

●

●
●

●

●
●●

●●

●

●
●

●

●●

●●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●●

●●●

●

●

●

●●●●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●●

●

●

●

●●●

●●●

●

●

●

●

●
●
●

●●

●

●

●●

●

●

●●

●

●

●
●
●

●

●

●

●●

●

●

●●

●

●

●

●

●

●●●

●

●
●

●

●

●

●

●●

●

●

●

●

●●
●

●
●

●

●●

●

●●

●

●

●

●●

●●

●

●

●

●
●●

●

●●

●

●
●
●

●●●

●
●

●

●
●
●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●●●●

●

●

●

●

●

●

●

●●

●●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●●

●

●

●

●

●

●●●

●

●

●

●

●

●

●

●●

●
●

●

●

●
●
●●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●●

●

●

●

●

●

●
●

●●●●

●
●

●

●

●

●

●

●

●

●●●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●●

●●

●
●

●

●

●

●●●

●

●●

●

●

●

●●

●

●●

●

●●

●●

●

●

●●

●

●

●

●

●

●

●

●

●

●●●

●
●

●

●
●

●

●●

●

●●

●

●

●

●

●●
●

●●●

●

●

●●●

●

●●

●

●

●
●
●●

●

●

●●

●●●

●

●

●

●

●

●

●

●●●

●

●

●●●●

●

●

●●

●

●●

●●

●
●
●

●●

●

●●

●

●●

●

●

●

●

●

●

●

●●

●

●

●

● ●

●

●

●

●

●

●●

●●

●

●

●●

●
●

●

●●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●●
●

●

●

●●

●

●

●

●●

●

●

●

●●

●

●●

●

●●

●

●

●

●●

●●

●●

●●

●●

●

●

●●

●●
●●
●
●

●

●

●

●

●

●●

●●
●

●

●

●

●

●●

●

●

●

●
●

●

●

●

●

●●

●

●●●

●

●

●●

●

●
●

●●

●

●●●

●

●●

●

●

●

●

●●

●

●

●

●

●

●

●

●●

●

●
●
●

●

●

●

●

●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●●

●●

●●

●

●
●

●●

●

●

●

●

●●

●●●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●●●

●

●

●

●
●

●

●●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●●

●●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●●

●

●●

●

●

●

●●

●●

●

●

●

●

●

●

●

●

●

●●

●●

●●

●

●

●●

●

●

●

●

●

●

●

●●

●

●

●

●●

●●●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●●

●

●

●

●

●

●

●●

●

●

●

●

●●

●

●
●

●

●

●

●●

●●●

●●

●

●

●●

●

●
●

●

●

●

●

●

●

●

●

●

●●

●

●●●

●

●●

●
●

●●

●

●

●●

●

●

●

●

●●

●●

●

●●

●●●

●

●

●●

●●

●

●

●

●

●

●●

●

●

●●

●

● ●

●●●●

●

●

●

●

●

●

●

●

●●

●●

●

●

●

●●

●

●●

●●

●
●●

●

●

●

●●●

●

●●

●
●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●●

●●

●

●●

●●

●

●

●●

●

●●

●● ●

●

●

●

●

●

●●

●

●

●

●

●●●

●●

●●

●

●●

●

●

●

●●

●●

●

●

●

●

●● ●●

●●

●

●

●●●● ●

●

●

●●

●

●

●

●

●

●

●

●●

●●

●

●

● ●

●●●

●●

●

●

●

●

●

●

●●

●

●●

●

●

● ●●●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●●●

●

●

●

●●

●

●

●

●

●

●

●

●

●●

●

●

●●

●

●

●

●

●●●

●●●●

●

●

●●●●

●● ●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●●

●

●

●

●

●●

●

●

●

●

●

●

●

● ●

●

●

●

●●●

●

●●

●

●

●●

●

●

●●

●

●

●

●

●

●●

●

●●

●

●

●

●●

●●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●●

●

●● ●

●

●

●

●●●

●

●

●

●

●

●

●

●

● ●

●

●●

●

●

●●●

●●

●

●●●

●

●●

●

●●

●

●

●

●●

●
●

●

●

●

●●

●● ●

●

●

●

●
●

●●

●

●

●

●

●
●
●

●●

●●

●
●

●●

●

●●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

● ●

●●

●●

●

●

●

●

●

●

●

●

●

●

●

●
●

●●

●

●

●

●● ●

●

●

●

●

●

●

●

●

●●

●●
●

●

●

●

●

●

●

●●

●●●●

●

●

●●

●

●●●

●●●

●

●

●

●●

●

●

●

●

●

●●●●●

●

●

●●●●

●

●

●●●

●

●

●

●

●

●

●

●●

●

●●

●●

●

●

●

● ●●

●

●●

●●●●●

●●

●

●

●●●●●●●

●

●

●

●●●●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●●

●

●

●

●

●

●●

●

●

●

●

●●

●

●●

●

●

●

●

●

●

●

●

●

●●

●●

●●●

●

●

●

●

●

●

●

●

●●●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●●

●

●●

●

●

●

●

●

●●

●●

● ●

●

●

●

●

●

●

●

●●

●

●●●

●

●●●

●

●

●

●

●

●●

●

●

●

●●

●

●

●●

●

●

●

●

●

●●

●

●●●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●●

●

●●

●

●●

●●●

●

●

●●●●

●

●

●

●

●●

●

●●

●

●

●●

●

●

●

●

●●

●●

●

●

●

●

● ●

●

●

●

●
●●

●

●●

●●●

●

●

●

●

●●●

●●●●

●●

●

●●●●●

●

●

●

●

●

●

●

●

●

●

●

● ●

●●

●

●●

●

●

●

●

●●●●●●

●

●●

●

●

●●

●

● ●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●●

●●

●

●

●

●

● ●●●

●

●

●

●

●

●

●

●●● ●●●

●

●●

●

●●

●

● ●

●

●

●

●●●

●●

●

●●

●
●
●
●

●●● ●●

●●

●

●●●●

●

●●●

●

●

●

●

●

●

●●

●

●●

●

●●●●

●

●

●

●●

●

●

●

●●

●●

●●

●

●●●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●●●

●●●●●

●

●

●

●

●●

● ●

●

●●

●

●

●●

●

●

●●●●

●

●

●

●

●●

●●

●

●

● ●

●●●●

●

●●

●

●

●

●●

●●

●

●●●

●●

●

●

●●●

●●

●●●●

●

●

●

●●●●

●

●

●●●●●● ●●

●

●

●

●

●

●●●

●

●

●

●

●

●●

●●

●

●

●

●

●

●

●

●

●

●●●

●●

●

●●

●

●

●

●

●

●

●

●● ●

●

●

●

●

●

●●●●

●

●●

●

●

●

●

●

●

●

●

●●●

●●

●

●

●

●

●

●

●

●

●

●

●●●

●●

●

●

●

●

● ●

●

●

●

●

●

●

●

●●

●

●●●

●

●

●

●

●

●

●●●

●

●●

●

●

●

● ●●

●●●●

●

●

●

●●

●

●

●●

●●

●●

●●●●●

●●

●

●

●

●

●

●

●●

●●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●●

● ●●

●

●

●●●

●

●

●

●

●●

●● ●

●

●●●●

●

●●

●●

●

●

●

●

●●

●

●

●●

●

●●●

●

●●●

●

●

●

●●●●

●●●●

●●●

●●

●●

●● ●

●

●

●

●

●

●●●●

●●●

● ●● ●

●●

●●

●

●

●

●

●●●

●

●

●

●

●

●●●●●●●

●

●●●

●

●

● ●

●

●

●

●

●

●

●

●●●

●

●●●● ●

●

●

●●

●

●●●

●●

●

●

●●●●

●●

●

●●●●●

●

●●

●

●●

●●

●

●●

●●●

●

●

●

●

●

●●

●

●

●

●

●●

●

●

●

●

●

●

●

●●●

●

●

●●

●

●●

●●

●

●

●

●

●●

●

●●

●

●

●

●

●

●

●●

●●●●●●

●●●

●● ●

●

●

●

●

●●

●●

●

●●

●

●

●

●

●

●●●●●

●

●

●

●●

●

●●

●

●

●

●●

●●

●

●

●●●

●

●●

●●●●

●

●●●●

●●●

●

●

●●●

●

●

●

● ●●

●

●●●

●

●

●●●●

●●

●

●

●

●

●

●

●

●

●

●

●●

●

●●●●●●

●●

●●

●●

●

●

●●

●●

● ●

●

●

●

●

●●

●

●

●●●

●

●

●

●●●

●●●●

●

●●●

●●●●●●●●

●

●

●

●

●

●●●

●

●

●

●

●

●●

●●●

●●

●●

●

●

●

●●●●

●●

●●●● ●●●●

●●●

●

●

●●

●

●

●

●

●●

● ●●●

●

●

●

●

●

●

●

●●●

●

●

●

●

●

●●

●

●

●●●

●

●●

●

●

●

●

●

●

●

●●

●●

●

●●●●●

●

●

●

●●

●

●

●

●

● ●

●●●

●

●

●● ●

●

●●

●

●●

●

●

●

●

●●

●

●●

●

●●

●

●●●●●●● ●

●
●

●

●●●

●

●●●

●●●

●●

●

●●

●

●

●●

●

●

●

●

●●

●

●●●●●●

●

●●

●●●

●

●●●

●●●

●

● ●●

●

●●●

●

●●●●●

●●●

●●●●

●

●

●

●

●●●●●●

●

●

●●

●

●

●●

●●●

●

●

●

●

●●

●

● ●●● ●

●

●

●

●●

●●

●

●●●

●

●

●

●●

●

●

●

●

●●

●●●

●

● ●●

●

●

●

●

●●

●

●

●

● ●●● ●●

●

●●

●●●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●●

●

●

●●

●

●

●●

●

●

●

●●●

●

●

●●

●

●●

●

●

●●● ●

●

●

●●●

●●●

●

●

●●●●●●

●

●●●

●●●●●

●

●●●●

●

●●●●

●●

●●●

●

●

●●●●●●●●

●●●

●●

●

●

●●

●●●

●●

●

●●

●

●●

●●●● ●

●

●

●

●

●

●●●

●

●

●●●

●

●●

●●●●●

●

●●

●

●

●●

●

●

●

●

●

● ●

●

●

●●

●●●

●

●

●

●●●●● ●●

●

● ●●

●

●●

●

●

●●

●

●

●●●●

●●

●

●

●

●●

●

●●

●

●

●

●●

●

●●●

●

●●

●

●●

●

●

●

●

●

●

●●

●●

●

●●●

●

●

●

●●●●●

●

●

●

●

● ●

●

●

●

●● ●●

●

●●

●

●●●● ●●

●

●

●

●

●

●

●●●● ●●●

●

●●

●

●●

●●●

●

●●●

●●●

●●●●

●

●● ●● ●

●●

●

●

●

●

●

●●

●

●

●

●

●

●●●●●

●

●

●

●

●●

●

●

●●●

●

●

●●

● ●●●

● ●

●

●●

● ●●

●

●●

●

●

●●

●

●●● ●●

●

●

●●●●●●●●

●●

●●

●

●●●●●●●●

●

●●●● ●●

●

●●

●

●

●●●●●

●

●

●

●●●

●

●

●●●

●

●●

●●

●

●●

●●

●●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●●●●●●●●●●●●●

●

●●

●

●

●

● ●

●

●● ●●●●●●

●

●● ●●●

●

●●

●●●

●

●●

●

●

●●

●●

●●●

●

●●

●

●

● ●

●

●●●●●

●

●

●

●●●●

●●

●

●

●●●●●●●

●

●●

●

●●

●●●

●

●

●

●●

● ●

●

●

●

●

●

●●●●●●●●

●

●

●

●

●●●●●● ●●●

●

●●

●●

●

●

●

●●●●

●●

●●

●

●

●

●

●

●

●

●●

●●●

●

●●● ●

●

●●●●●●●

●

●

●

●●●

●

●

● ●●

●●●

●●● ●●

●

● ●● ●

●

●

●

●●●

●

●●●●●●●●

●

●●

●

●

●●

●

●●●

●●●●

●

●●●

●●●

●●

●●

●

●

●

●

●

●

●

●

●●

● ●

●

●●

●●

●

●

●●●●

●

●

●

●

●

●

●

●

●

●● ●

●

●●●

●

●

●

●●

●●

●

●

●●

●

●●

●● ●●

●

●●

●

●●●●●●

●

●●●●

●

●●●● ● ●●

●●

●●●● ●●

●

●

●●

● ●

●

●●●

●

●

●

●●●

●

●●

●

●●●●

●

●

●●

●

●

●

●

●

●●

●

●●●●●●●

●

●

●

●

●

●● ●●●●●●

●

●

●●●●●● ●●●●●

●

●●

●

●● ●

●

●

● ●

●

●

●

●●● ●

●

●●

●

●

●●●● ●●●

●●

● ● ●

●●

●

●

●●

●

●

●

●●●●●●●

●

●

●

●

●●●

●

●

●

●

●

●

●

●

●

●

●●

●

●●

●

●

●●

●

●

●

●●

●●

● ●●●●●●●● ●

●●

●

● ●● ●● ●●

●

●●

●

●

●●●

●

●●●●●

●

●● ●●

●

●

●

●

●●● ●

●●

●●●●●● ●●●●●●

●

●

●●

●●●

●

●

●

●

●

●

●●

●

●

●●●

●●●

●

●

●●●●

●

●

●●●

●●

●

● ●●●●● ●

●

● ●●●

●●

●●●

●

● ●

●

●●

●

●●● ●●● ●●●●● ●● ●●●

●●

●●●

●

●

●

●

●●●●●

●

●

●●

● ●

●

●●

●

●●●●●● ●●●●● ●

● ●

●

●● ●●●

●

●●

●

●

●

● ●●●

●

●

●●●●●●●

●●

●●

●

●●

●

●●●●

●

●

●

●

●●●●●●●●●●●●

●●

●●●●

●

●

●

●● ●●●

●

●

●

●

●●

●

●●

●

●●●

●

●

● ●

●

●

●

●

●

●

●

●

●

●●●●●●

●●●●●

●●●

●

●

●●

●●

●

●

●●●●

●

●

●

●

●

●

●●●●●●●

●

●

●

●●●●

●

●● ●

●

●

●●●●● ●●●●

●

●●

●

●

●

●

●

●●●●●●●●

●●

●● ●

●

●● ●

●

●

●

●●

●

●

●●

●

●●

●

●●

●●

●●

●

●

●

●

●●

●

●● ●●●●●●●●●●●●●

●

●

●●

●

●

●●●● ●●

●

●

●●●

●

●●●●● ●●●

●●●

●●●●

●

● ●●●●●●

●●●

●●

●

●●●●●●●

●●●

● ●●●

●

●● ●●● ●●●●●●●

●

● ●

●

●

●

●● ●●

●

●●●●

●

●●●●●●● ●●●

●

●●●●●●

●●

●● ●● ●●

●

●

●

● ●●●

●

●

●

●●● ● ●

●

●

●

●●

●●

●

●

●

●

●●●

●

●●● ●●●● ●

●

●●●●●●

●

●● ●●●●●● ●● ●●

●

●

●

●●●●

●

●●●

●

●

●●●●●● ●

●

●

●

●●

●●

● ●● ●

●

●●●

●

●●

●

●●● ●●

●

●●●●●●● ●● ●●●

●●

●●

●

●

●

●

●●

●

●

●● ●●

●

●

● ●

●

● ●

●

●

●●●

●

●

●●●●

●● ●●●●●

●●

●●

●

●●

● ●

●

●

●●●●●

●

●

●

●●●●●

●

●●●

●

●●

●

●

●

●

●

●●

● ●● ●●

●

●●●●●●●

●

●●●●●● ● ●●●

●

●●●●

●

●

●

●

●

●

●

●

●●

●● ●●●● ●●●

●●●

●●●● ●●●●●●●

●

●●●●●●●

●

●

●●●

●

●●● ●●●●

●

●● ●●●

●

●● ●

●

●●●

●

●●

●

●●●●●●

●

●

●

●

●●●●●●

●

●●

●

●●● ●●●

●●

●●● ●●●

●

●●● ●●●●

●●

●● ●●

●

●●●●●●

●●

●

●

●

●●

●

●●●

●

● ●●● ●

●

●

●

●●

●

●●

●●

● ●●● ●

●

●

●

●●●●●

●

●

●

●● ●●●●●●●

●

●●●●●

●

●●● ●●

●●

●

●●

●●●● ●●

●

●● ●

●

●

●●●

●

●●●●● ●●

●

●●●●●●●

●

●●

●

●

●● ●●●

●

●●

●

●●

●●

●

●

●

● ●●

●

●

●

● ●●●●

●

●●

●

●●●●●●●●●●

●●

●●●●

●

●

●●

●

●●●●●

●

● ●

●

●

●●●●

●

●●

●

●●●●●●●●●● ●

●

●

●

●

●

●

●

●

●●●●● ●●●

●

●

●

●●●

●●●●

●●●

●

●●●●● ●● ●●● ●●

●

●●●●●●●●●

●

●●●●●●

●

●●●●●●

●

●

●

●●

●

●

●

●

●

●

●●

●

●●●● ●●

●

●●●

●

●●●●

●

●●●●●

●

●●

●

●

●

●●

●

●●● ●●

●●

●

●

● ●

●

●●

●

●●

●

●

●●

●●●

●

●●●

●

●●●

●

●●●

●

●●

●

●

●

●

●●

●●●

●●●●

●●

●

●

●●

●

●

● ●● ●●

●

●

●●

●

●

●

●●

●

●

●

●●●●●●●●●●

●●

● ●● ●●●●●● ●●●●●●● ●●● ●

●

●●●●●●●

●

●

●●

●●●●● ●

●

●

●●●

●

●●● ●●● ●●●

●

●

●

●

●

●●●●

●

●

●

●●●●

●

● ●● ●●●● ●● ●●

●

● ●●

●

● ●

●●●● ●●

●

●●

●

●●●●● ●●●●

●

● ●

●●

●●●

●●

●●

●●

●

●

●● ●

●●

●●●●●●●●● ●●

●

●●●●●

●●

●

●

●

●

●● ●●●●

●

●●●● ●●●●●

●

●●●

●

●

●●

●

●

●

●

●

●●

●

●●

●●

●

●

●●

●

●● ●●●●●●●

●

●

●

●●●●

●

●●

●

●●

●●

●

●

●

●

●● ●●●

●

●●●

●

●●●●

●

●

●

● ●●●

●

●●●●

●

●●●●●●●

●

●●●●●● ●

●

●●●●●●●

●

●●●●●● ●

●

●

●●●●

●

●●

●●●

● ●● ●

●

●

●

●

●● ●●

●

●

●

●●●

●

●

●

●

●●●●●●● ● ●●●●●●●●

●

● ●●● ●

●

●

●

●

●●

● ●●●●●●● ●●●●

●

●

●

● ●●● ●●●

●

●● ●

●

●

●●

●

●● ●●●●●● ●

●●

●● ●●

●

●

●

●●●

●

●

●

●●●

●

●

●

● ●

●

● ● ●●●

●

● ●

●●

●●●● ●●●

●

●●

●●

● ●●

●

●●

●

●

●

●●●●

●

●●

●

●●

●●

●●

●

● ●●●

●

●●

●

● ●

●

●

●

●● ●

●

●

●

●

●●● ●

●

●

●●

●

●●●

●●

● ●●

●

●

●

●●●

●

●●●● ●●●●●

●

●

●●

●

●

●

●●●●

●●

●

●

●

●●

●

●

●

●●●

●

●● ●●● ●●●

●

● ●

●

●●●●●● ●

●

●● ●●●●●●●●●● ●● ●

●

●●●●

●

●●●●

●

● ●●●●

●

●

●●●

●●●●●

●

●●●

●●

●

●

●

●

●

●

●

●●●●

●●

●

●

●

●●

●

● ●●●

●

●●●

●

●

●●

●

● ●●●●● ● ●●

● ●

●●●● ●●●●●●●●

●

● ●●●● ●

●●

●

●

●● ●●●

●

●●●

●

●

●

●

● ●

●●●

●

●● ●

●

●●●●●●

●

●

●

●●●●●

●

●

●●● ●● ● ●●●●●

●

●●● ●●

●

●●●●●

●

●●●●●●● ●

●

●●●

●●

● ●●

●

●● ●●

●

●

●●●●●

●

●●● ●●●

●

●●●

●

●● ●● ●●●●●

●

●

●

●●●●

●

●●● ●●●

●

●● ●

●

●●

●

●●

●●

●

● ●

●

●●

●●●

●

●●●●

●●●●

●

●

●●● ●●●

●

●

●●

●●

● ●●●●●●● ●●●

●

●

●

● ●

●

●

●

●●●

●

●●●●●● ● ●

●

●●

●

●

● ●●●● ●●●●●●●●

●

●●

●

●

● ●

●

●●●●●

●

●●●●

●

●●

●

●

●

● ●

●

●●●●●●●

●

● ●●●●●● ●●●

●

●

●

●● ●●●●●●● ●●●●

●

●

●● ●●

●

●●

●

●● ●● ●●●●●●●●

●

●●●●●●●●

●●

●

●

●●●●

●

●●●● ●●●●●●●

●

●

●

● ●●●

●●

●●● ●●●

●●

●

●

●●

●

●●●●●●

●

●● ●

●●

●

●

●●

●

●

●

●

●

●●

●

●

●

●

●

●●

●

●●●

●

●●●●

●

●●

●

●●●

●

●●●●●●

●

●●●●

●

●

●●

●●●●●

●

●

●

● ●●●●

●●

●●●●●

●

●●●●●● ●●●

●

●●●

●

●●●●●●● ●●●●●●●●●

●

●●

●●

●● ●●●

●

●

●

●●

●

●●

●

●●● ●●●●●● ●●●●●

●

●

●

●

●

●●●●

●

●● ●●

●

●● ●●● ●

●

● ●● ● ●●●●●●●●

●

●● ●●●●

●

●

●●●●

●

●●

●

●● ●

●

●●●●●●

●

●●●

●

●●●●

●

●

●

●●●●

●

●

●

●

●

●●●●●●● ●●●●●

●

●

●●

●●

●●

●●●●●

●●

●●●●

●

●●●●●● ●

●

●

●

●● ●●

●

●● ●● ●●

●

●●

●

●●●

●●●●

●

●●

●

●

●

●

●●●

●

●

●

●

●

●●●●●●● ●●

●

●●●●●●●●●●

●

●●

●

●

●

●

●

●●●●●●●●●●

●●

● ●● ●●

●

● ●

●

●●●●●●●●●

●

●●●●●●● ●

●●

●●

●

●● ●●●●●

●

● ●

●

●●●

●

●●●● ● ●

●

●

●

●

●

●●●

●●●

●

●●

●

●●

●

●

●

●

●●●

●

● ●●●●●●●●

●

●●

●

●●●●

●

●●●

●

●

●

●

●●●●

●●

●

●

●● ●●●

●●

●

●●●

●

●●●●●●

●

●●●●●● ●

●●

●●

●

●●●●●●

●

●

●

● ●● ●●●

●

●●●●● ●

●

●●●●●● ●●●●

●

●● ●●

●

●●●

●

●

●

●●● ●●●●●

●

●●●

●●

●●●

●

●●●●●●●●

●

●●●●

●

●

●

●●● ●

●

●●●

●

●●●●●●●●●●●●●●

●

●●●

●

●

●●●●● ●●●● ●●● ●●

●

●●

●

●

●●●●●●

●

●

●

●

●

●

●

●●

●●

●

●

●

●

●●

●●●● ●● ●●●

●

●

●

●

●

●

●

●

●●

●

●● ●

●

●

●

●

●

●

●

●●●●●●

●

●●●● ●●●●●● ●

●

●

●

●

●●●

● ●●●●

●

●

●● ●●●

●

● ●●●●●●● ●●●

●

●●

●●

●●●● ●●●●●●●●●

●

● ●

●

●

●●

●

●

●●● ●●

●●

●●●●●●●●●●●

●

●● ●●●●

●

●●● ● ●●●● ●●●●●●●● ●●●●●●

●

●●●●●●●●

●

●●

●●

●●●

●

●●● ●●●●

●

●

●

●

● ●

●

●●

●

●●

●

●● ●

●

●

●

●●●

●

●●●●

●

● ●●

●

●●●● ●●●●●●●●●●●●●●

●●

● ●●●●

●

●

●

●

●

●● ●●●●

●

●●●●

●

●●●●●●● ●● ●●

●

●● ●●

●

●●●●●●●●●●●●●

●

●

●

●●

●

●

●

●●● ●● ●●●●●●●●● ●●●●●●

●

●●●●● ●●●●●●●● ●●

●●

●●●

●

●●

●

●●● ●●

●

●●●●●●●● ●●●●● ●●● ●● ●●●●●

●●

●●●●

●

●●●

●

●

●

●

● ●●

●

●●● ●● ●

●

●

●●

●●●

●

●

●

●●● ● ●

●

●

●

●●●●●●● ●

●

●

●

●

●

●●●●●●● ●●●●● ●●● ●●●

●

●

●

●●

●

●●●●●●● ●● ●●●●●

●

●●●●

●

●

●

●●●●●●●●● ●

●

●●●● ●●●●●

●

●● ●● ●●●

●

●● ●●

●

●●● ●

●

●●●

●

●● ●●●●

●●●

● ●

●

●

●●

●

●

●●●●●●● ●● ●

●

●

●

●

●

●●

●

● ● ●●

●

●●●●

●

● ●

●

●●●

●

●

●

●●● ●●●●●●●● ●●●●●●●●● ●● ●●●●●● ●●●●

●

●●●●●●●●●

●

●● ●●

●

●

●●●●●●●

●

●

●

●●● ●●●

●

● ●●●

●

●

●●●

● ●

●

●●●●●●●●●●● ●●●●●●●●● ●●● ●

●●

● ●●●●

●

●●●●●●●●●●

●

●● ●●●●●●● ●●● ●● ●●

●

●●●● ●

●

● ●● ●● ●●●●●● ●●

●

●●

●

●●● ●

●●

●●● ●●● ●

●

●●● ●

●

●●●●●●●● ●●● ●●● ●●

●

●●●

●

●●●●● ●●●

●

●● ●●●●● ●

●●

● ● ● ●●●●●

●●●

●●

●

●●●●●● ●●●●●● ●●● ●●●

●

●

●

●

●

●●●●● ●●

●

●●●●●●●● ●●●●●●●●

●

● ●●●●● ●●●●●●●

●

● ●●●●●

●

●● ●

●

●● ●●●●●●●●●●

●

●●

●

●●●● ●●

●

●●●●●●●

●

● ●●●●

●

●● ●●● ● ●● ● ●●●

●

● ●●●●●●●●

●

●

●

●

●

●● ●●●

●

●●●●●●●●●●

●●

●●●●●●●●●●● ●

●

● ●● ●●

●

● ●●

●

● ●

●

●● ●●●●●

●

●●●●●●● ●●

●

●●●●●● ●●

●●

●● ●●●● ●● ●●●●●● ●●●●●●

●●

●●

●

● ●● ●●●

●

● ●●●

●

●●●

●

●●

●

●●●● ●●●●●●●●●●

●

●● ●●●● ●●●● ●● ●● ●●●●

●

●● ●●

●

●

●

●● ●●

●

● ●●●●●●●●● ● ●●●●●● ●

●

●● ●● ●● ●●●●●● ●●●●●●●●●● ●●●●●●●●●●● ●● ●●●● ●●● ●

●

●●●●●● ●● ●● ●●●●● ●●●● ● ●

●

●●●

●

●● ●●●●●● ●●●●●●● ●

●

●● ●● ●●

●

● ● ●●●

●

● ●●●●

●

● ●●●

●

● ●●●● ●●● ●●●● ●●● ●●

●

●●●●●●●●

●

●●●● ●●●●●●●●●●●● ●●●● ●●●●●●

●●

●●

●

●●●●

●

● ●●●●●●●

●

●●●● ●●●●●●●

●

●●

●

● ●●●● ●●●●● ●● ●● ●● ●●●●●● ●● ●

●

●●● ● ●●●●●●

●

● ● ●●● ●● ●●● ●● ●●●●●

●

●●●

●

●●●●

●

●

●

●●● ●●●●●

●

● ●

●

●●●●●●● ●●● ●●● ●●●

●

●● ●● ●●●● ●●●●● ●● ●●

●

●● ●●● ●● ●●●●●● ●●●●●● ●

●

●●●●●

●

●● ●●

●

●●●● ●●●

●

●● ● ●●●● ● ●● ●● ●●● ●●●●● ●●●●●●●●●● ●● ●●●● ●●● ●●● ●●

●

●●●●●●●●●

●

●

●

●●

●

●

●

●

●

●●●●●●● ●●●●●●●●●● ●● ●

●

●●●●●●● ●●● ●●●● ●●●●●●

●

●●

●

●

●

●●●●●

●

●●● ●● ●● ● ●●

●

● ●●● ●●●●●●● ●● ● ●●● ●●●●

●

●●●●● ●●● ●● ●●

●

●●●●●● ●●●●●●

●

●● ●

●

●●● ●●●●● ●●● ●●●●●●●

●

●●

●

●●● ●●●●●● ● ●● ●●●

●

●●●● ● ●● ●●●●●●

●

●●●●●●●● ●●●●●●●

●

●●●●

●

● ●●● ●

●

●●●● ●●● ●● ●●● ●●●

●

●●●●● ●●

●

●●● ●●●● ●●●

●

● ●●●●● ●●●● ●●● ●●●●● ●●● ●●●●●

●

●●●●

●

●●●●● ●●

●●

●● ●●●● ●●●●●●●

●

● ●●●●

●

●●●● ●●●● ●●●●●●●● ●● ●●●

●

● ●●●●●●●●●

●

●●

●

●●●●●●●

●

●●● ●●● ●● ● ●●●●●●●● ●●●●●● ●●● ●●●

●

●●●

●●

●●●● ●● ●●●●●

●

●●

●

●●●●●●●●● ●●●●● ●●● ● ●● ●●●● ●●● ●●●●●● ●●●● ●●●● ●●●●● ●

●

●●●●●● ●●● ●● ●●●● ●●●●●●●●● ●●

●

● ● ●● ●● ●●●●●

●

●●

●

●●●● ●●● ●

●

●● ●● ●●●●

●

● ●

●

●● ●

●

●● ●●●●●●●● ●●●

●

●●●●●●●●●●●●●● ●●●●●● ●●●

●

●●

● ●●●● ●●●●●●●●●● ●●●●●●●

●

●●●● ●●●● ●●●●●● ●●● ●●●●● ●●●●

●

●

●

●●●●

●

●●● ●●●●

●

●● ● ●●●●●●

●

●●● ●●

●

●● ●●●●●●●●● ● ●●● ●●● ●●● ●● ●●

●●

●●●●●● ●●●

●

●●● ●●●● ●●●

●

● ●●●● ●●●●● ●●● ●●●

●

●●●● ●●●●●● ●

●

● ●●●

●

●●● ●●● ●●● ●●

●

●●●

●●

●● ● ●● ●● ●●● ●● ● ●●●●●● ●●

●

● ●●●● ●●●●● ●

●

●●●● ● ●●●●● ●●●●● ● ●

● ●

●● ● ●●●●● ●● ●● ●● ●●

●

●●● ●

●

●● ●●●●●●●●

●

●●● ●●●

●

●●●●●●●●● ●●

● ●

●●

●●

● ●●●●●●● ●●●●● ●●●●● ● ●●●●

●

●● ●● ●●●● ● ●●●●●●● ●● ●●●

●

● ●●●●●●●●●

●

●

●

●● ● ●● ●● ●●● ●●● ●●●● ●● ●●●●●●●●●●●●●●●●●●●●

●

●● ●●●●●● ● ●● ●

●

● ●● ●●

●

●●● ●●●● ●●●●●

●

● ●●●●●●●● ●●●● ●●●●● ●● ●● ● ●●

●

●● ●●● ●●●●●●● ●●● ●●●

●

● ●●● ●●● ●●●●●●●●● ●●●

●

●●●● ●● ●● ●●●●●●● ●●●●●●● ●●●●● ●●●●●

●

●●

●

● ●● ●●●●● ● ●●●●●●●●●●●

●

●

●

●●●●●

●

●●●●●●●

●

●●●●● ●●●●● ●●●●●●●

●

●●●●● ●●●●●● ●●●

●

●●

●

●●

●

●●●

●

●●● ●●●● ●● ●●● ●●● ●●

●

●●●●

●●

●●●●●●●●●

●

●●●● ●

●

●●●●●

●●

● ●

●

● ●●●●●● ●

●

●●●

●

● ●●● ●● ●●● ●●●● ●●● ●●● ●● ●●●● ●●●●●● ●●● ● ●●●●●●

●

●●●●●●● ●●●●●● ●●●

●

●●●●●●

●

●●●●●●●●●● ●●● ●●●●●● ●●●● ●●●●● ●●●● ●

●

●

●

●● ●●

●

●●●●●● ●●● ●●● ●●●●

●

●●

●

● ●● ●● ●●●●●

●

●●●●●● ●●●● ●●● ●● ● ●● ● ●●●●●●● ●●●● ●

●

●

● ●

●

●

●

● ●●● ●

●

●●● ● ●●● ●●● ● ● ●● ●● ●●

●

● ●●

●

●●●● ●●

●

●●

●●

● ●● ●● ●● ●● ●●● ●●● ●● ●●●● ● ●●●●● ● ●●

●

● ●●●

●

●●●●● ●●●● ●●●● ●●

●

●●●● ●

●

● ●●

●

●● ●●●

●

●●●● ●● ●●●● ●●●

●

●●●● ●●●●●

●

●● ●●

●

● ● ●● ●●●●●●● ●● ●

●

● ● ●● ●●● ● ●●●●●

●

●● ●●●

●

● ●● ● ●●●●●

●

●●

●

●● ●●●●●● ●● ●●●● ●●

●

●●● ●●● ● ●●● ●●●● ●●●●●●● ●●● ●● ●●●● ●●● ●●

●

●● ●●●● ●●●

●

●● ●●●● ●● ●●●●●●●●● ●●●● ●●●●● ●●

●

●●●● ●●●

●

●● ●● ●● ●●● ● ● ●● ●●

●

● ●● ●

●

●●●

●

●● ●● ●●●●●●●●●

●

●●●● ●●●● ●●

●

●● ●● ●●● ● ●●●●●● ● ●●●●

●

●●● ●●●●● ●●●● ●● ●●●●●●● ●●● ●●●

●

●● ●●

●

● ●●●●●●● ●●●●●●●● ●●●

●

●●●

●

●●● ● ●●● ●●●●● ●● ●●●● ●●● ●●● ●●●●●●●●●

●

●● ● ●● ●●

●

●●● ●●

●

●●●●● ●●● ●

●

●●● ●● ●●●

●

● ●●●●

●

●● ●● ●●●●●●●● ● ●● ●●● ●●● ●●●●●●● ●●●●● ●

●

●●●

● ●

● ●● ●● ●●●●●●●

●

●●● ●●●●●●●●●●●● ●● ●●●● ● ●

●

● ●●●● ●●● ●●●●●

●

● ●●●●●●●

●

● ● ●●●● ●●● ●●●●● ● ●●●●●● ●●●●●●●●

●

●●● ●●● ● ●● ●● ●●● ●● ●●●●●●● ● ●● ●●

●

●●● ●

●

●●● ●

●

●●● ●●●●● ● ●●● ●● ●●●

●

●● ● ●● ●● ●● ●● ●● ●●●●●●●● ●●●● ●●●●●●●●

●

● ●●●● ●●●●● ●●

●

● ●

●

●●● ●●●●● ● ●●● ●●● ●● ●●●

●

●●

●

●● ●●●●●

●

●● ●●● ●●●●● ●●● ●●●●

●

● ●● ●

●

●● ●●● ●●

●

● ● ●

●

●●●●● ● ●● ●●● ●● ●● ●● ● ●● ●●● ●

●

●●● ●●●●●●

●

● ●●●●●●● ● ●●●●●●● ●●

●

●● ●●● ●●●●● ●●●● ●●●●●● ●● ●●●●● ●●●●● ●●●●●●●

●

●●●●●●●●● ●● ● ●

●

●● ●●● ●●● ●●

●

●●●●

●

●●●●●●●●●

●

●●● ●● ●● ●● ●● ●●● ●● ●●●●● ●●● ●● ●●●● ●●●●● ●● ● ●●●● ●● ●● ●● ●●

●

●● ● ●●●●●●●●●●●●●●●

●

●

●

●●● ●●●● ●● ●● ● ●●●●●●● ●●●● ●● ● ●●● ● ●●

●

●●●● ●●●● ●

●

●● ● ●●● ● ●

●

●●●●●

●

●●●●●●●●

●

●● ●● ●● ● ●● ●● ●● ●●

●

●● ●●● ●● ●●●●● ●●●●● ●

1e+01

1e+03

1e+05

1e+01 1e+03 1e+05

Node Appearance Count

N
um

be
r 

of
 N

od
es

Cascade types

●●

Observed cascade

Simulated Cascade

Figure 4: �e distribution of nodes occurrence in cascades.

prediction” strategy [1]. In a nutshell, the idea is to learn a repre-
sentation of words that enables us to predict their context, where
the context of a word is speci�ed by those words that regularly co-
occur with it. �is notion motivates us to hypothesize that cascades
can be considered as documents in natural languages, and nodes as
words. As a result, we can exploit algorithms for word representa-
tion learning to learn representations for nodes. We validate our
hypothesis that nodes in cascades have an equivalence mapping to
words in documents based on the distribution of words and nodes
appearance in documents and cascades, respectively. For instance,
it has been shown [18] that words occurrence in Wikipedia doc-
uments follows a power-law distribution, and as shown in Fig. 4
nodes occurrence in cascades also follows a power-law distribu-
tion. �erefore, we tackle the node representation learning task
by employing the Skip-Gram model [12, 16–18] used for word and
network representation learning. In the following we discuss this
model in relation to our context.

Skip-Gram Model. Given a center node u ∈ C , this model maxi-
mizes the log probability of observing context nodes v ∈ C (u; s )�
and w ∈ C (u; s )� within a window size s . Based on the assumption
that the likelihood of observing each context node given a center
node is independent, more formally the Skip-Gram model opti-
mizes the objective in Eq. 2 with respect to the model parameter
Φ.

max
Φ

∑
u ∈V

log Pr (C (u; s )� | Φ(u)) + log Pr (C (u; s )� | Φ(u)) (2)

log Pr (C (u; s )D | Φ(u)) =
∑

v ∈C (u ;s )D
log Pr (v |Φ(u)) (3)

where D is either � or �, and Φ(u) ∈ [0, 1]d is a d−dimensional
representation of u. �e right-hand side term in Eq. 3 is speci�ed
using the so�max function as follows:

Pr (v |Φ(u)) =
exp(Φ(v )T · Φ(u))∑

w ∈N exp(Φ(w )T · Φ(u))
(4)

Nonetheless, directly estimating the conditional probability in Eq. 4
is expensive, because of the normalization constant that needs to be
computed for every node. For this reason, di�erent approximation
strategies have been suggested in the literature; in this work, we

adopt the “Negative Sampling” strategy [17] that characterizes a
good model by its power to discriminate appropriate context nodes
from noise. �en, the computation of log Pr (v |Φ(u)) using the
negative sampling strategy is shown in Eq. 5.

log Pr (v |Φ(u)) = logσ (Φ(v )TΦ(u)) + neд(u; l ) (5)
σ is the logistic function, and we need the model to e�ectively
di�erentiate v from the l negative examples drawn from some
noise distribution N (u) of u, where neд(u; l ) is the noise model
and is de�ned as

neд(u; l ) =
l∑

i=1
Ewi∼N (u )[− logσ (Φ(wi )

TΦ(u))] (6)

Numerically, a good model should produce a small expected proba-
bility for the noise model and larger probability for the data model
(the �rst term on the right-hand-side of Eq. 5).

Finally, we employ the stochastic gradient descent algorithm
to optimize the objective in Eq. 2 based on the negative sampling
strategy in Eq. 5 and 6 and obtain the complete model parameters
Φ ∈ V → [0, 1]d .

3.3 Network Inference

Once obtained a representation Φ(u) for every u ∈ V , the next step
is to seek to infer the hidden di�usion network H . Note that, the
driving premise behind our algorithm is that nodes that are close
to each other in the di�usion network are likely to get infected
together in most cascades. Inversely, nodes that tend to co-appear
in most infection cascades are likely to be closely related to each
other in the di�usion network, for example belong to the same
community. Based on this assumption, we utilize the representation
learned from the cascades to infer edges in the hidden network.

If node closeness in the hidden network is captured in the rep-
resentation, we can simply compute some geometric distance of
nodes representation to infer edges between a pair of nodes. In
particular, we estimate a probability p (u,v ) for every pair of nodes
〈u,v〉 in each cascade C based on the cosine similarity of Φ(u) and
Φ(v ). �en, an edge (u,v ) is inferred if the similarity is above a
certain threshold. More formally, let θ ∈ (0, 1] be a threshold, and
G = (V ,E ′) be the inferred network, then G is constructed such
that:

E ′ = {(u,v ) : p (u,v ) ≥ θ } (7)
where

p (u,v ) =
Φ(u) · Φ(v )

‖ Φ(u) ‖‖ Φ(v ) ‖
Now, one can infer edges between every pair of nodes by using

Eq. 7. However this is very expensive for very large networks, for
this reason we avoid such pair-wise computations by leveraging
an interesting property of cascades. �at is, nodes in large (viral)
cascades usually belong to a lot of communities (they do not have
correlations), where as nodes in small cascades usually belong to a
single or to very few communities (they are tightly connected) [24].
Hence, �rst we reduce the set of cascades by ignoring large cascades
and then we scan each of the remaining cascades to infer an edge
between each pair of nodes in the corresponding cascade. Yet again
we do not have to test for a possible edge between each pair of
nodes in a given cascade. We can ignore pairs that co-occur merely
a few times in cascades and probe pairs that are relatively frequent.



KDD2017, August 2017, Halifax, Nova Scotia, Canada Zekarias T. Kefato, Nasrullah Sheikh, and Alberto Montresor

Dataset #Cascades #Nodes in H #Edges in H

HT 1 1 397,681 595,460 14,273,311
RT 1 1 1,860,000 595,460 14,273,311
RT 1 2 540,385 595,460 14,273,311
RT 2 1 144,704 456,626 14,855,842
RT 2 2 54,785 456,626 14,855,842

Memetracker 71,568 3,836,314 15,540,787
Table 1: Dataset statistics

4 EXPERIMENTS AND RESULTS

In this section, we �rst introduce the real and synthetic datasets
on which DeepInfer is evaluated, and then we provide the main
results.

4.1 Datasets

In order to evaluate our model, we use the following six real and
synthetic datasets, and the basic summary of each dataset is pro-
vided in Table 1.

(1) Twi�er #1 [24]: A Twi�er dataset containing infections
related to hashtags; there are three variants of this dataset:
(a) Hashtag cascade (HT 1 1 - Observed cascades): A

record of hashtag users. Each entry corresponds to a
hashtag and its adopters.

(b) Retweet cascade #1 (RT 1 1 - Simulated cascades):
Records containing users retweeting other’s tweets.

(c) Retweet cascade #2 (RT 1 2 - Simulated cascades):
Records containing users mentioning other users.

(2) Twi�er #2 [5]: A Twi�er dataset collected before, during,
and a�er the announcement of the Higgs boson particle.
We use the the following two kinds of datasets 1

(a) Retweet cascade #1 (RT 2 1 - Simulated cascades):
Contains users retweet information related to the
Higgs boson.

(b) Retweet cascade #2 (RT 2 2 - Simulated cascades):
Contains users mentioning other users related to the
Higgs boson.

(3) Memetracker [15](Observed Cascades): A dataset contain-
ing news and blog posts mentioning memes. We con-
struct hashtag-like infections by utilizing the meme cluster
dataset 2. Each cluster id is considered as a contagion, and
a news or blog post is said to be infected by the contagion
if it mentions a meme that belongs to the cluster.

For all the datasets we have a ground truth, that is, the di�usion
network against which we are going to compare the inferred net-
work. For the Memetracker dataset the ground truth is constructed
by considering hyperlinks between pages.

4.2 Results and Discussion

In the �rst set of experimental results we seek to empirically verify
our assumptions. Towards this end, we generate a new extended
graph H ′ that has an additional false edge (u,v ′) < E per every true
edge (u,v ) ∈ E in the ground truth networkH . Next we analyze the
1h�p://snap.stanford.edu/data/higgs-twi�er.html
2h�p://www.memetracker.org/data.html

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

Recall

Precision

F1

0.6 0.8 1.0

0.00

0.25

0.50

0.75

1.00

0.00

0.25

0.50

0.75

1.00

0.00

0.25

0.50

0.75

1.00

θ

E
[S

co
re

]

CascadeType
● Observed Cascade

Simulated Cascade

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

Recall

Precision

F1

0.6 0.8 1.0

0.00

0.25

0.50

0.75

1.00

0.00

0.25

0.50

0.75

1.00

0.00

0.25

0.50

0.75

1.00

θ

E
[S

co
re

]

CascadeType
● Observed Cascade

Simulated Cascade

Figure 5: Observed vs SimulatedCascades Performance Eval-

uation for RT 1 1 (right column) and RT 1 2 (le� column).

�e number of cascades in the observed case of RT 1 1 is

226,488 and RT 1 2 is 217,653.

performance of DeepInfer in correctly classifying the edges in H ′

according to di�erent hypotheses. Based on the classi�cation results
of each experiment, the performance of the model according to a
speci�c hypothesis is measured using one or more of the following
four evaluation metrics, which are precision, recall, F1, and error-
rate. For all the metrics but error-rate we seek to achieve higher
scores. Note that we have a balanced number of valid (true) and
invalid (false) edges in the extended ground truth - H ′, hence the
worst performance in terms of the error-rate is 50%. �at is, if our
algorithm is unable to detect true edges correctly, it will be correct
in 50% of the times for classifying every edge as false.

In our �rst experiment we shall demonstrate the claim that us-
ing the simulated (given large number of simulations) rather than
the observed cascades leads to a be�er performance. For the two
datasets, RT 1 1 and RT 1 2, we have the corresponding observed
cascades, and hence we report the performance comparison of ob-
served vs simulated cascades across di�erent measures as shown in



DeepInfer: Di�usion Network Inference through Representation Learning KDD2017, August 2017, Halifax, Nova Scotia, Canada

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

F1 Precision Recall

0.5 0.6 0.7 0.8 0.9 1.0 0.5 0.6 0.7 0.8 0.9 1.0 0.5 0.6 0.7 0.8 0.9 1.0

0.00

0.25

0.50

0.75

1.00

θ

E
[S

co
re

]
Datasets ● Combined HT_1_1 RT_1_1

Figure 6: Combined vs separate cascades performance evaluation on window size, s = 5

●

●
●

●
●

● ● ● ● ●

● ●

●

●

●

●

●
●

● ●

F1

ErrorRate

10 20 30 40 50

0.2

0.4

0.6

0.2

0.4

0.6

Window

S
co

re

Datasets
● HT_1_1

Memetracker

RT_1_1

RT_1_2

RT_2_1

RT_2_2

Figure 7: Evaluation on the e�ect of increasing window size

Fig. 5. In the �gure, we consider the expected value for each thresh-
old θ summarized over the range of window size 5, 10, 15, 20, 25.
In fact we do achieve be�er performance by using the simulated
ones. It is important, however, to note that the larger the number
of simulations (cascades) the be�er the performance. Observe that
the number of cascades for RT 1 2 is much smaller than RT 1 1 as
shown in Table 1, and hence the performance improvements are
more vivid in the later case.

Next, we shall proceed to illustrate the e�ects of increasing
the window size. Fig 7 shows that increasing the window size
up to a certain turning point (depending on the dataset) might
result in a quality improvement. Increasing it beyond that turning
point, however, may signi�cantly reduce the quality obtained by the
algorithm; even when the quality is scarcely a�ected, the training
time increases signi�cantly [17] .

In another experiment we analyze the e�ect of combining dif-
ferent kinds of cascades for the same dataset to understand if we
can achieve a be�er performance. As shown in Fig. 6, there is some
performance gain in terms of precision that comes at the expense
of recall by combining the HT 1 1 and RT 1 1 cascades for Twi�er
#1 dataset. However as illustrated by the F1 measure, the overall
quality decreases. �e experiment is repeated for other cascades in
other datasets, and we have observed the same property as in Fig 6.

In our last experiment we evaluate the performance of Deep-
Infer with the state-of-the-art method called InfoPath and show
that DeepInfer performs be�er. �ere is a fundamental assump-
tion for both algorithms that requires a pair of nodes to su�ciently
co-occur in cascades so as to infer a possible edge. �is is a valid
assumption, as it can be observed from the distribution of node-
node co-occurrence frequencies in Fig. 8. Most node-node pairs
co-occur just a very few times, more precisely ≈ 96% and ≈ 80% of
the pairs in HT 1 1 and Memetracker datasets respectively co-occur
only once. Clearly no di�usion pa�ern can be learned from these



KDD2017, August 2017, Halifax, Nova Scotia, Canada Zekarias T. Kefato, Nasrullah Sheikh, and Alberto Montresor

Algorithm Precision Recall F1 K

0.51 0.29 0.36 1,000
0.38 0.35 0.36 5,000

DeepInfer 0.29 0.37 0.33 10,000
0.18 0.34 0.24 50,000
0.14 0.32 0.19 100,000
0.18 0.43 0.25 1,000
0.12 0.24 0.16 5,000

InfoPath 0.08 0.16 0.12 10,000
0.07 0.07 0.07 50,000
0.05 0.05 0.05 100,000

Table 2: Performance evaluation of DeepInfer and In-

foPath (approximated to two decimal places) on theHT 1 1

dataset. Parameter setting, DeepInfer: θ = 0.5, s = 5 and In-

foPath: exponential in�uence model. Best performances

are represented in bold. K is the value for the top-K fre-

quently co-occurring node-node pairs

●

●

●

●

●

●
●
●
●
●
●
●
●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●
●

●
●
●
●●
●
●
●●

●
●●●
●
●

●●

●

●

●

●
●

●

●

●
●
●

●
●●
●●

●

●
●●
●●
●

●

●

●

●

●

●●●●●●

●

●● ●●●●

1e+02

1e+05

1e+08

10 1000

Node−Node co−occurrence count

F
re

qu
en

cy
 o

f c
o−

oc
cu

rr
en

ce
 c

ou
nt

s

Dataset
● HT_1_1

Memetracker

Figure 8: Distribution of node-node pair co-occurrences

pairs, and hence there is no bene�t in probing them for possible
edges. �erefore, in order to compare the two methods, we �rst
compute a ranking of node-node pair co-occurrences in cascades.
Next we perform several experiments for both methods by utilizing
those cascades containing at least one of the top-K node-node pairs
and a ground-truth network induced by the top-K pairs. �e two
observed datasets, HT 1 1 and Memetracker, are used for the eval-
uation; and the results are reported in Table 2 and 3. For InfoPath
we use all the default con�gurations of the implementation3.

5 RELATEDWORK

In this section we discuss selected related works in both represen-
tation learning and network inference.

3h�p://snap.stanford.edu/infopath/so�ware.html

Algorithm Precision Recall F1 K

0.41 0.74 0.53 1,000
0.28 0.52 0.36 5,000

DeepInfer 0.24 0.43 0.30 10,000
0.20 0.26 0.23 50,000
0.19 0.22 0.20 100,000
0.21 0.92 0.41 1,000
0.24 0.58 0.34 5,000

InfoPath 0.23 0.42 0.29 10,000
0.15 0.18 0.16 50,000
0.13 0.12 0.13 100,000

Table 3: Performance evaluation of DeepInfer and In-

foPath (approximated to two decimal places) on the Meme-

tracker dataset. Parameter setting, DeepInfer: θ = 0.5, s = 5
and InfoPath: exponential in�uence model. Best perfor-

mances are represented in bold. K is the value for the top-K
frequently co-occurring node-node pairs

5.1 Representation Learning

Recent advances in neural network models have a�racted researches
from several communities such as computer vision, NLP, and so-
cial network analysis. For our purpose, we only consider the lit-
eratures from the last two communities. �e seminal work of
Mikolov et al. [17] in representation learning (embedding) of words
in documents using a shallow neural network model has inspired
studies [12, 18] in network representation learning. Among the ap-
proaches introduced for word embedding, the Skip-Grammodel [17]
is the one that has been most largely used for network represen-
tation learning. �e Skip-Gram model learns a representation of
words by way of predicting context words.

�e context of a node in a network, however, does not have
a straightforward de�nition. Studies have introduced di�erent
strategies of capturing nodes context, for example using random
walks [12, 18], pair-wise proximities [3, 19, 21], and community
structures [20, 23]. Once a context is formalized di�erent neural
network, either shallow or deep models are employed for the rep-
resentation learning task. �en the learned representations are
utilized for downstream network analysis tasks.

5.2 Network Inference

�ere have been several works [6–11, 14] to infer di�usion net-
works. A large percentage of the studies in this area are motivated
by the fact that di�usion networks are very o�en hidden. �ere-
fore, the standard approach towards inferring such a network is
by leveraging di�usion pa�erns in cascades. Most studies [6, 8–11]
have focused on the delay between the infection times of a pair of
nodes infected by a certain contagion. �e main premise is that if a
pair of nodes are frequently infected within a certain time window,
then there is a di�usion pa�ern that is a likely indicator of connec-
tions. Some of these studies [8, 10] assume a �xed parametric form
(e.g. exponential or power-law) of in�uence model on the edges
of the network. Nonetheless, one particular study [6] has argued
and empirically illustrated that such an assumption is too strong
for capturing the complex di�usion pa�erns in real networks. For



DeepInfer: Di�usion Network Inference through Representation Learning KDD2017, August 2017, Halifax, Nova Scotia, Canada

this reason, Du et al. [6] have presented a method using survival
analysis based on a kernelized hazard function.

�e common assumption of most studies in this task, including
us, is that the network is considered to be static. One particular
study [10], however, has proposed an elegant solution for dynamic
networks as well.

Besides delay-aware approaches, a delay-agnostic technique [14]
has been proposed recently. Mainly they argue that di�usion pat-
terns within a restricted window of time are di�cult to extract.
�erefore they propose a method that is based on the relative order
of infection. However, their in�uence model considers all infected
nodes before and a�er a certain node while learning infection prob-
abilities. But as illustrated in our experimental results, it is di�cult
to extract meaningful di�usion pa�erns unless we consider nodes
in a restricted window of infection context.

6 CONCLUSION AND FUTUREWORK

In this study we address the problem of di�usion network infer-
ence. Usually di�usion networks are hidden to us, and one has to
�rst deal with the inference task before carrying out any down-
stream analysis on the network. �erefore to tackle this problem
we propose a novel algorithm called DeepInfer using representa-
tion learning. �e algorithm �rst learns a representation of nodes
from cascades and then leverages such a representation to infer
edges of the hidden network. By exploiting the empirical mapping
between words in documents and nodes in cascades, DeepInfer
uses the Skip-Gram model to learn the representation of nodes
from cascades.

We have performed extensive experiments to prove most of our
assumptions and also to compare the e�ectiveness of our algorithm
with the state-of-the-art. We have managed to recover up to ≈ 95%
of the edges of the hidden network and achieve more than an order
of magnitude improvement over the state-of-the-art. In a future
work we would like to consider inference for dynamic networks.

REFERENCES

[1] Marco Baroni, Georgiana Dinu, and Germán Kruszewski. 2014. Don’t count,
predict! A systematic comparison of context-counting vs. context-predicting
semantic vectors. In Proceedings of the 52nd Annual Meeting of the Association for

Computational Linguistics (Volume 1: Long Papers). Association for Computational
Linguistics, Baltimore, Maryland, 238–247. h�p://www.aclweb.org/anthology/
P14-1023

[2] Simon Bourigault, Sylvain Lamprier, and Patrick Gallinari. 2016. Representation
Learning for Information Di�usion �rough Social Networks: An Embedded
Cascade Model. In Proceedings of the Ninth ACM International Conference on Web

Search and Data Mining (WSDM ’16). ACM, New York, NY, USA, 573–582. DOI:
h�p://dx.doi.org/10.1145/2835776.2835817

[3] Shaosheng Cao, Wei Lu, and Qiongkai Xu. 2015. GraRep: Learning Graph
Representations with Global Structural Information. In Proceedings of the 24th

ACM International on Conference on Information and Knowledge Management

(CIKM ’15). ACM, New York, NY, USA, 891–900. DOI:h�p://dx.doi.org/10.1145/
2806416.2806512

[4] Justin Cheng, Lada Adamic, P. Alex Dow, Jon Michael Kleinberg, and Jure
Leskovec. 2014. Can Cascades Be Predicted?. In Proceedings of the 23rd In-

ternational Conference on World Wide Web (WWW ’14). ACM, New York, NY,
USA, 925–936. DOI:h�p://dx.doi.org/10.1145/2566486.2567997

[5] Manlio De Domenico, Antonio Lima, Paul Mougel, and Mirco Musolesi. 2013.
�e Anatomy of a Scienti�c Rumor. Scienti�c Reports 3, 02980 (October 2013).

[6] Nan Du, Le Song, Alex Smola, and Ming Yuan. 2012. Learning Networks of
Heterogeneous In�uence. In Proceedings of the 25th International Conference on

Neural Information Processing Systems (NIPS’12). Curran Associates Inc., USA,
2780–2788. h�p://dl.acm.org/citation.cfm?id=2999325.2999445

[7] Nathan Eagle, Alex (Sandy) Pentland, and David Lazer. 2009. Inferring friendship
network structure by using mobile phone data. Proceedings of the National

Academy of Sciences 106, 36 (2009), 15274–15278. DOI:h�p://dx.doi.org/10.1073/
pnas.0900282106 arXiv:h�p://www.pnas.org/content/106/36/15274.full.pdf

[8] Manuel Gomez-Rodriguez, David Balduzzi, and Bernhard Schölkopf. 2011. Uncov-
ering the Temporal Dynamics of Di�usion Networks. In Proceedings of the 28th

International Conference on Machine Learning, ICML 2011, Bellevue, Washington,

USA, June 28 - July 2, 2011. Omnipress, 561–568.
[9] Manuel Gomez Rodriguez, Jure Leskovec, and Andreas Krause. 2010. Inferring

Networks of Di�usion and In�uence. In Proceedings of the 16th ACM SIGKDD

International Conference on Knowledge Discovery and Data Mining (KDD ’10).
ACM, New York, NY, USA, 1019–1028. DOI:h�p://dx.doi.org/10.1145/1835804.
1835933

[10] Manuel Gomez-Rodriguez, Jure Leskovec, and Bernhard Schölkopf. 2012.
Structure and Dynamics of Information Pathways in Online Media. CoRR

abs/1212.1464 (2012). h�p://arxiv.org/abs/1212.1464
[11] Manuel Gomez-Rodriguez and Bernhard Schölkopf. 2012. Submodular Inference

of Di�usion Networks from Multiple Trees. CoRR abs/1205.1671 (2012).
[12] Aditya Grover and Jure Leskovec. 2016. Node2Vec: Scalable Feature Learning

for Networks. In Proceedings of the 22Nd ACM SIGKDD International Conference

on Knowledge Discovery and Data Mining (KDD ’16). ACM, New York, NY, USA,
855–864. DOI:h�p://dx.doi.org/10.1145/2939672.2939754

[13] David Kempe, Jon Kleinberg, and Éva Tardos. 2003. Maximizing the Spread of
In�uence �rough a Social Network. In Proceedings of the Ninth ACM SIGKDD In-

ternational Conference on Knowledge Discovery and Data Mining (KDD ’03). ACM,
New York, NY, USA, 137–146. DOI:h�p://dx.doi.org/10.1145/956750.956769

[14] Sylvain Lamprier, Simon Bourigault, and Patrick Gallinari. 2015. Extracting
Di�usion Channels from Real-World Social Data: A Delay-Agnostic Learning of
Transmission Probabilities. In Proceedings of the 2015 IEEE/ACM International

Conference on Advances in Social Networks Analysis and Mining 2015 (ASONAM

’15). ACM, New York, NY, USA, 178–185. DOI:h�p://dx.doi.org/10.1145/2808797.
2808865

[15] Jure Leskovec, Lars Backstrom, and Jon Kleinberg. 2009. Meme-tracking and
the Dynamics of the News Cycle. In Proceedings of the 15th ACM SIGKDD Inter-

national Conference on Knowledge Discovery and Data Mining (KDD ’09). ACM,
New York, NY, USA, 497–506. DOI:h�p://dx.doi.org/10.1145/1557019.1557077

[16] Tomas Mikolov, Kai Chen, Greg Corrado, and Je�rey Dean. 2013. E�cient
Estimation of Word Representations in Vector Space. CoRR abs/1301.3781 (2013).
h�p://arxiv.org/abs/1301.3781

[17] Tomas Mikolov, Ilya Sutskever, Kai Chen, Greg Corrado, and Je�rey Dean. 2013.
Distributed Representations of Words and Phrases and �eir Compositionality. In
Proceedings of the 26th International Conference on Neural Information Processing

Systems (NIPS’13). Curran Associates Inc., USA, 3111–3119. h�p://dl.acm.org/
citation.cfm?id=2999792.2999959

[18] Bryan Perozzi, Rami Al-Rfou, and Steven Skiena. 2014. DeepWalk: Online
Learning of Social Representations. In Proceedings of the 20th ACM SIGKDD

International Conference on Knowledge Discovery and Data Mining (KDD ’14).
ACM, New York, NY, USA, 701–710. DOI:h�p://dx.doi.org/10.1145/2623330.
2623732

[19] Jian Tang, Meng �, Mingzhe Wang, Ming Zhang, Jun Yan, and Qiaozhu Mei.
2015. LINE: Large-scale Information Network Embedding. CoRR abs/1503.03578
(2015). h�p://arxiv.org/abs/1503.03578

[20] Cunchao Tu, Hao Wang, Xiangkai Zeng, Zhiyuan Liu, and Maosong Sun. 2016.
Community-enhanced Network Representation Learning for Network Analysis.
CoRR abs/1611.06645 (2016). h�p://arxiv.org/abs/1611.06645

[21] Daixin Wang, Peng Cui, and Wenwu Zhu. 2016. Structural Deep Network
Embedding. In Proceedings of the 22Nd ACM SIGKDD International Conference

on Knowledge Discovery and Data Mining (KDD ’16). ACM, New York, NY, USA,
1225–1234. DOI:h�p://dx.doi.org/10.1145/2939672.2939753

[22] Liaoruo Wang, Stefano Ermon, and John E. Hopcro�. 2012. Feature-Enhanced
Probabilistic Models for Di�usion Network Inference. In Proceedings of the 2012

European Conference on Machine Learning and Knowledge Discovery in Databases

- Volume Part II (ECML PKDD’12). Springer-Verlag, Berlin, Heidelberg, 499–514.
DOI:h�p://dx.doi.org/10.1007/978-3-642-33486-3 32

[23] Xiao Wang, Peng Cui, Jing Wang, Jian Pei, Wenwu Zhu, and Shiqiang Yang. 2017.
Community Preserving Network Embedding. AAAI (2017).

[24] L. Weng, F. Menczer, and Y.-Y. Ahn. 2013. Virality Prediction and Community
Structure in Social Networks. Sci. Rep. 3, 2522 (2013). h�p://dx.doi.org/10.1038/
srep02522

http://www.aclweb.org/anthology/P14-1023
http://www.aclweb.org/anthology/P14-1023
http://dx.doi.org/10.1145/2835776.2835817
http://dx.doi.org/10.1145/2806416.2806512
http://dx.doi.org/10.1145/2806416.2806512
http://dx.doi.org/10.1145/2566486.2567997
http://dl.acm.org/citation.cfm?id=2999325.2999445
http://dx.doi.org/10.1073/pnas.0900282106
http://dx.doi.org/10.1073/pnas.0900282106
http://arxiv.org/abs/http://www.pnas.org/content/106/36/15274.full.pdf
http://dx.doi.org/10.1145/1835804.1835933
http://dx.doi.org/10.1145/1835804.1835933
http://arxiv.org/abs/1212.1464
http://dx.doi.org/10.1145/2939672.2939754
http://dx.doi.org/10.1145/956750.956769
http://dx.doi.org/10.1145/2808797.2808865
http://dx.doi.org/10.1145/2808797.2808865
http://dx.doi.org/10.1145/1557019.1557077
http://arxiv.org/abs/1301.3781
http://dl.acm.org/citation.cfm?id=2999792.2999959
http://dl.acm.org/citation.cfm?id=2999792.2999959
http://dx.doi.org/10.1145/2623330.2623732
http://dx.doi.org/10.1145/2623330.2623732
http://arxiv.org/abs/1503.03578
http://arxiv.org/abs/1611.06645
http://dx.doi.org/10.1145/2939672.2939753
http://dx.doi.org/10.1007/978-3-642-33486-3_32
http://dx.doi.org/10.1038/srep02522
http://dx.doi.org/10.1038/srep02522

	Abstract
	1 Introduction
	2 Preliminaries
	3 DeepInfer
	3.1 Linearizing Retweet cascades
	3.2 Representation Learning from Cascades
	3.3 Network Inference

	4 Experiments and Results
	4.1 Datasets
	4.2 Results and Discussion

	5 Related Work
	5.1 Representation Learning
	5.2 Network Inference

	6 Conclusion and Future work
	References

