
DynamicDFEP: A Distributed Edge Partitioning Approach
for Large Dynamic Graphs

Chayma Sakouhi
Jendouba University, Tunisia

sakouhichayma@gmail.com

Sabeur Aridhi
Aalto University, Finland

sabeur.aridhi@aalto.fi

Alessio Guerrieri
University of Trento, Italy
a.guerrieri@unitn.it

Salma Sassi
Jendouba University, Tunisia
sassisalma@yahoo.fr

Alberto Montresor
University of Trento, Italy

alberto.montresor@unitn.it

ABSTRACT
Distributed graph processing has become a very popular re-
search topic recently, particularly in domains such as the
analysis of social networks, web graphs and spatial net-
works. In this context, graph partitioning is an important
task. Several partitioning algorithms have been proposed,
such as dfep, jabeja and powergraph, but they are lim-
ited to static graphs only. In fact, they do not consider dy-
namic graphs in which vertices and edges are added and/or
removed. In this paper, we propose a graph partitioning
method for large dynamic graphs. We present an imple-
mentation of the proposed approach on top of the akka
framework, and we experimentally show that our approach
is efficient in the case of large dynamic graphs.

CCS Concepts
•Theory of computation → Dynamic graph algo-
rithms; Distributed algorithms;

1. INTRODUCTION
In recent years, we have observed an enormous growth in

the size of real-world graphs from multiple domains (e.g.,
social networks and web graphs). Consequently, large-
scale distributed/parallel frameworks such as pregel [8],
graphlab [7] and giraph [3] have emerged. Each frame-
work introduces a new programming abstraction that allows
users to describe their graph algorithms and a corresponding
runtime engine that efficiently executes these algorithms on
multicore and distributed systems. The common pattern in
the programming abstractions of all these frameworks is that
they need to to partition the graph over multiple machines
in order to allow scalability. The partitioning approaches
can be divided into two categories: (1) vertex-based and (2)
edge-based. In vertex partitioning, each partition is defined
by the subgraph induced by a subset of the vertex set of the
original graph. The edges that have its incident vertices in

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full cita-
tion on the first page. Copyrights for components of this work owned by others than
ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from Permissions@acm.org.

IDEAS ’16, July 11-13, 2016, Montreal, QC, Canada

c© 2016 ACM. ISBN 978-1-4503-4118-9/16/07. . . $15.00

DOI: http://dx.doi.org/10.1145/2938503.2938506

different partitions are called cut edges and may be consid-
ered as ”communication channels” that the nodes will use to
coordinate the different partitions [8]. In edge partitioning,
partitions are defined by graphs induced by subsets of the
edge set, where each edge is inside exactly one partition; this
time, communication happens through frontier vertices, i.e.
those that are present in more than one partition [11].

In our work, we are considering the issues of scale and
dynamism in the case of edge partitioning approaches. We
present DynamicDFEP, an edge partitioning method for
large dynamic graphs. DynamicDFEP can be used to par-
tition large graphs and also to update the partitioning when
new edges and vertices are added or removed.

More specifically, our contributions are: (i) we introduce
DynamicDFEP and its update strategies; (ii) we present an
implementation of DynamicDFEP on top of akka frame-
work, a toolkit and runtime for building highly concurrent,
distributed, and resilient message-driven applications; (iii)
we experimentally evaluate the performance of the proposed
approach.

The rest of the paper is organized as follows. In Section 3,
we present the problem formulation. We present some re-
lated works in the following section. Section 4 presents the
DynamicDFEP framework. Finally, we describe our exper-
imental evaluation in Section 5.

2. RELATED WORK
Many heuristic algorithms and greedy approaches have

been designed to meet the challenges of the graph partition-
ing problem. While most algorithms perform vertex parti-
tioning, a few solve edge partitioning, the topic of this paper.

metis [5] is a vertex partitioning algorithm based on the
Multilevel Graph Partitioning concept [4]. The input graph
of metis goes through three phases: i) the graph is coars-
ened into a sequence of smaller and smaller graphs, by col-
lapsing pairs of vertices that form a maximal matching; 2)
the coarsened graph is partitioned using the edge-cut bisec-
tion algorithm [9] 3) the partitions are propagated back in
the sequence of graphs and refined to adapt to the original
graph. This approach has been adapted for parallel and dis-
tributed computing, but will find partitions of worse quality.

jabeja [10] is a natively decentralized vertex partitioning
algorithm. This approach will start by assigning a random
partition to each vertex. They will then try to swap their
membership with other vertices, trying to optimize a cost
function based on the local edge-cut. This process is re-

peated in parallel until there are no changes, using simulated
annealing to avoid getting stuck in local optima. An inher-
ent advantage of this approach is that the partitions cannot
change their size across the computation and therefore their
balance can be guaranteed.

powergraph [1] presents a greedy approach that parti-
tions a stream of edges. For each arriving edge, the algo-
rithm will study two properties for each of the two connect-
ing vertices: the number of edges of that vertex that have
still to the processed and the set of partitions that already
contain an edge of that vertex. The algorithm will assign
the edge to the suitable partition using the following rules:

• if the two sets of partitions intersect, then the edge
should be assigned to the smallest partition in the in-
tersection.

• if the two sets of partitions are not empty and do
not intersect, then the edge should be assigned to the
smallest partition from the vertex with the most edges
to be processed.

• if only one of the two sets of partitions is not-empty,
then choose the smallest partition from that set.

• if both sets are empty, then assign the edge to the least
loaded partition.

This algorithm can produce balanced partitions, but is sus-
ceptible to the specific order of arrival of the edges and the
quality of its partitions decrease in a distributed setting.

3. PROBLEM FORMULATION
Let G = (V,E) be a undirected graph with n = |V | ver-

tices and m = |E| edges. dG(u) denotes the degree of the
vertex u in G, N(e) the set of two vertices that are connected
by the edge e.

The graph edge-partitioning problem can be defined as
follows. Let G = (V,E) be an input graph and let k be the
number of desired partitions. An edge partitioning of G a
set of subgraphs {G1 = (V1, E1), G2 = (V2, E2), . . . , Gk =
(Vk, Ek)}, such that

• E =
⋃k

i=1 Ei

• ∀i, j : i 6= j ⇒ Ei ∩ Ej = ∅

• ∀i : Vi = {u|e ∈ Ei ∧ u ∈ N(e)}

Note that the partitions are made of edges, not vertices,
and therefore each edge is part of exactly one partition. All
vertices that connect edges of different partitions are called
frontier vertices. Each frontier vertex will have two or more
replicas, one for each partition that contains at least an edge
of that vertex. A good partitioning provides balanced parti-
tions, therefore we would like the size |Ei| of each partition
to be as close as possible to |E|/k. As a secondary require-
ment, we want to keep the number of frontier vertices as
small as possible.

In this work, we consider the issues of scale and dynamism
for graph partitioning and we aim to update the partitioning
when new edges and vertices are added or removed.

3.1 Metrics
In order to evaluate all proposed approaches, we use the

following metrics:

• Runtime (T): the running time of the actual imple-
mentation of the proposed approach.

• Number of rounds (R): the number of iterations
needed to complete the execution of the algorithm.

• Standard deviation of the partitions’ size (SD):
this metric is used to measure the balance of the graph
partitioning. The actual value is defined by:

SD =

√√√√∑k
i=1

(
|Ei|
E/k
− 1
)2

k

where |E| is the size of the graph, |Ei| is the size of ith

partition, and k is the number of partitions.

• Frontier vertices (FN): The fraction of frontier ver-
tices in the graph

• Replicas (RN): the number of replicas in the par-
titions. The average number of replicas per vertex is
computed as follows:

RN =

k∑
i=1

|Cvj |
|V |

where |V | is the total number of vertices and |Cvj | is
the number of partitions of vertex vj

4. DYNAMIC DFEP
The main idea of our contribution is to find a suitable

approach to process changes in a dynamic graph easily and
efficiently. Assuming that the graph has already been par-
titioned, re-running a graph partitioning algorithm from
scratch, just because a few vertices or edges have been
added, is extremely inefficient. However, new vertices and
nodes should still be processed and assigned to the right
partitions.

In this section, we first discuss dfep, the distributed par-
tition algorithm that makes the initial partitioning. We then
propose three different heuristics to insert new edges into the
already partitioned graph, while keeping partitions balanced
as much as possible. Furthermore, we propose a method to
handle the deletion operations under the assumption of an
already load-balanced partitioning.

4.1 DFEP
dfep [2] is a previously published distributed partitioning

algorithm based on diffusion. While a more complete de-
scription of the algorithm is available in the original paper,
we can summarize it as follows:

1. We randomly choose a single node for each of the k de-
sired partitions, and give it an initial amount of ”fund-
ing” associated to that partition.

2. Each node will use its funding to the neighbors to try
to ”buy” additional edges. The partition will therefore
buy the edges that are closer to the randomly chosen
nodes and start getting bigger.

3. Since the initial amount of funding is insufficient for
the partitions to cover the entire graph, additional
funding is assigned to the partitions, in a manner in-
versely proportional to their size. A small partition
(which may have been started far from the center of
the graph) will receive more funding and therefore be
more likely to grow than a larger partition.

4. Steps 2-3 are repeated until all edges have been bought
by a partition.

Since partitions can only diffuse funding through edges
that they themselves own, they will buy connected sub-
graphs of the original graph. The balance of their sizes is
caused by the funding mechanism.

4.2 Update strategies
The main objective of this work is to find a suitable so-

lution to process easily and efficiently dynamic graphs. In
the next sections, we consider three alternative methods for
dealing with the insertion of new edges and one method to
deal with deletions.

4.2.1 Complete Partitioning method (Com-Ins)
The simplest method to react to changes to the graph

uses a complete re-partitioning for the dynamic graph. This
model destroys the old graph partitioning and all further
information associated to the assignment and restarts from
the scratch by running dfep.

4.2.2 Partial Partitioning method (Part-Ins)
We suggest that inserting the new edge and change the

graph structure without changing the partitioning of the
graph can be useful to decrease the computation time. The
partial partitioning is designed not to reformulate the parti-
tioning of the graph for every incoming vertex or edge, but
just adding vertices and edges to the previous partitions.
The program initializes the subgraph and then executes a
sequence of iterations to partition the sub-datasets.

This approach applies dfep starting from the current par-
titioned graph. Since it starts with funding already dis-
tributed in the graph, it will need a very small number of
iterations before all the new edges and vertices have been
partitioned.

4.2.3 Unit-Based Insertion (UB-Ins)
We note that after running the initial partitioning, our

algorithm keeps track of the amount of units that each par-
tition has committed to each vertex and each edge. The
amount of units of partition i in vertex v (respectively in
edge e) is denoted by Mi[v] (respectively Mi[e]). Each edge
e maintains owner(e), which denote its partition. The UB-
Ins method exploits the existing funding in the outgoing
vertices of each new edge in order to assign it to the best
partition. The set of outgoing vertices of edge e is denoted
by N(e). The algorithm used to partition the new edges is
described in Algorithm 1.

First, UB-Ins computes, for each new edge, the amount
of funding committed by each partition. Then, the
maxFunding() function is applied on each new edge in or-
der to choose the partition that committed the maximum
amount of funding to buy the edge. Using this approach,
there is no need to re-compute the dfep partitioning since
new edges can be assigned to a partition very quickly.

Algorithm 1: Unit-based Insertion

foreach v ∈ N(e) do
for i← 1 to k do

Mi[e]←Mi[e] + Mi[v]

best ← maxFunding(e)
owner(e)← best

4.2.4 Balanced-graph deletion (Bal-Del)
Deletion of edges or vertices with adversarial choice is a

very difficult task, therefore in this section we concentrate
our efforts on the case in which removal is random.

• When we remove one node from the graph, it is manda-
tory to remove all edges directly connected to that
node.

• When we delete an edge from the graph, it is manda-
tory to clean it from the list of affiliated edges for each
outgoing vertices. In consequence, the two vertices lose
their direct connection.

• After the deletion, the graph may become discon-
nected; its size decreases.

• Another disadvantage in this case is that the deletion
may produce an unbalance in graph partitions.

After deleting vertices and edges, we measure the balance
of partitions after the deletion. If the partitions are quite
close and still balanced, no action is required, otherwise,
we need to repeat the partitioning step using our complete
partitioning method.

4.3 System overview
Figure 1 presents the global architecture of our implemen-

tation. Many copies of the user program are being executed
on a cluster of machines. One of these copies acts as the
master. The master decides how many partitions the graph
will have and execute the update function in case of addi-
tion or deletion of vertices and edges. Furthermore, it is
responsible for coordinating the activity of the workers.

Once the system is set up, dfep will be executed and it
will perform a partitioning of the edge set [2]. Once dfep
has completed its execution DynamicDFEP will wait for
updates.

The incremental computation starts when the master per-
forms an update in the graph structure. In order to up-
date the graph, the master split the data into k partitions,
distributes the data to the workers according to the hash
method. Each worker receives its portion and starts to up-
date the graph. When the worker terminates send a message
to the master, in order to measure if the partitions are still
balanced or if the re-partition is required.

5. EXPERIMENTS
We have performed an extensive set of experiments to

evaluate the effectiveness and efficiency of our approach on
a number of different real and synthetic datasets.

5.1 Experimental environment
We have implemented DynamicDFEP and the proposed

update strategies on top of the akka framework, a toolkit

Figure 1: Basic architecture of DynamicDFEP

and runtime for building highly concurrent, distributed, re-
silient message-driven applications. In order to evaluate
the performance of DynamicDFEP, we used a cluster of
17 m3.medium instances on Amazon EC2. Each m3.medium

instance contained 1 virtual 64-bit CPU, 3.75 GB of main
memory, and 8 GB of local instance storage.

5.2 Experimental protocol
In order to evaluate the performance and the scalability

of DynamicDFEP, we used the same dataset for both the
partitioning and the update process. In order to simulate
dynamism in each dataset, we use only 90% of the graph
in the partitioning step and we insert the remaining 10% in
the update step. Each experiment is repeated five times and
the numeric results in the following sections consists of the
average over all runs.

5.2.1 Experimental data
We used five real-world datasets in our experimental study

(see Table 1). The used datasets are made available by the
Stanford Large Network Dataset collection [6].

Table 1: Datasets used on the Amazon EC2 cloud

Dataset] Nodes] Edges � Avg. CC
Facebook-ego 4,039 88,234 8 0.6055
Email-Enron 36,692 183,831 11 0.4970
Amazon 33,4863 925,872 44 0.3967
Youtube 1,134,890 2,987,624 20 0.0808

5.2.2 Experiments
In this section, we empirically study the results of our

update strategies.

Accuracy and speedup.
Figure 2 presents the experimental results of DynamicD-

FEP in terms of execution time.
As shown in Figure 2, the update time is inversely propor-

tional to the number of partitions. We note that the UB-Ins
update strategy provide better results than other methods
in terms of running time. We also note that the Com-Ins

Table 2: Experimental results on Facebook-ego dataset

Update strategy k
Partitioning Update
R FN FR R FN RN

Part-Ins

2 164.8 0.18 1.18 2 0.20 1.2
4 125.4 0.29 1.36 3.2 0.31 1.42
8 101 0.35 1.54 2 0.36 1.67
16 58.2 0.46 1.89 2 0.48 2.16

Com-Ins

2 152.2 0.19 1.19 84.2 0.29 1.29
4 136.5 0.27 1.35 75 0.59 1.71
8 81.8 0.32 1.48 78.4 0.66 2.01
16 78.6 0.45 1.93 56.4 0.73 2.75

UB-Ins

2 165 0.14 1.14 1 0.15 1.14
4 117.2 0.23 1.29 1 0.23 1.29
8 84.4 0.31 1.47 1 0.31 1.47
16 69.8 0.47 1.95 1 0.47 1.94

Table 3: Experimental results on Amazon dataset

Update strategy k
Partitioning Update
R FN FR R FN RN

Part-Ins

2 70.2 0.08 1.08 2 0.09 1.09
4 52 0.12 1.15 2 0.14 1.18
8 47.2 0.17 1.22 2 0.2 1.26
16 40.8 0.2 1.28 2 0.22 1.32

Com-Ins

2 70 0.05 1.05 26.6 0.16 1.16
4 54.2 0.13 1.15 25.2 0.3 1.38
8 40.6 0.17 1.21 25.4 0.43 1.55
16 39.8 0.2 1.28 27 0.53 1.76

UB-Ins

2 64.6 0.09 1.09 1 0.09 1.08
4 45 0.13 1.15 1 0.13 1.14
8 43.8 0.17 1.22 1 0.16 1.21
16 39.2 0.19 1.27 1 0.19 1.26

update strategy is faster than Part-Ins method (see Fig-
ure 2). This can be explained by the fact that Com-Ins
needs more rounds than the Part-Ins update strategy.

We mention that the high efficiency of UB-Ins can be
explained by that face that it only needs one round to com-
plete which is convenient for very big graphs. For exam-
ple, using 16 partitions, Youtube dataset took 3.32 seconds
while Part-Ins and Com-Ins need respectively 807.61 sec-
onds and 381.7 seconds to update the partitioning.

Balance .
In order to measure the quality of update, we need to

measure the balance of partitions after insertion of new data.
First of all, a good partitioning of the graph provides, as an
output, partitions with equal size. For our implementation,
we used the output of dfep, as an input, to insert a set of
data. We thus measure the impact of the update strategy
on the balance of partitions.

Figure 3 shows the impact of the update strategy on the
balance of the graph partitioning. We note that the UB-Ins
has a large deviation between the partitions compared to
Part-Ins and Com-Ins methods. This is due to the pro-
gramming model of UB-Ins where new data is bought by
the partition that provides more funding. We also note that
the Part-Ins method has a less magnitude than the Com-
Ins method. This explains that Part-Ins method generates
more balanced partitions. In addition, the Part-Ins method
has not a big influence on the results given by the previ-
ous step of partitioning. For example, on Amazon dataset
and using 2 partitions, the standard deviation is 184130.08
whereas after the insertion its value become 192107.28.

(a) Facebook-ego (b) Amazon

(c) Email-Enron (d) Youtube

Figure 2: Speedup of our update strategies

Table 4: Experimental results on Email-Enron dataset

Update strategy k
Partitioning Update
R FN FR R FN RN

Part-Ins

2 83.8 0.10 1.10 2 0.1 2 1.12
4 82 0.15 1.23 2 0.2 1.30
8 91.2 0.18 1.35 2 0.2 1.42
16 60 0.20 1.46 2 0.23 1.53

Com-Ins

2 83.8 0.12 1.12 36.6 0.18 1.18
4 69.4 0.16 1.23 38 0.22 1.31
8 67.4 0.18 1.34 30.4 0.28 1.52
16 65 0.20 1.46 40.2 0.33 1.75

UB-Ins

2 63.4 0.09 1.09 1 0.09 1.09
4 64.4 0.15 1.2 1 0.15 1.22
8 75.4 0.18 1.34 1 0.18 1.34
16 65.2 0.2 1.47 1 0.19 1.46

Replicas.
As show in Tables 2, 4, 3 and 5, the number of replicas af-

ter the update is greater than before the update, in almost
all the datasets. We note that the UB-Ins method gives
a tolerant distribution of vertices after the update, while
Part-Ins and Com-Ins methods give a severe repartition.
This can be explained by the diffusion of units on the ver-
tices coming from different partitions to buy eligible free
edges during the update process. However, a vertex can be
processed by more than one partition and its eligible edges
can be bought by different partitions. As a result, UB-Ins
method performs much better than Part-Ins and Com-Ins.

To sum up, we compared the performance and the scal-
ability of our proposal update strategies. In one hand, we
concluded that the UB-Ins update strategy is better than
other strategies in terms of runtime performance and num-
ber of rounds. In the other hand, Part-Ins and Com-Ins

Table 5: Experimental results on Youtube dataset

Update strategy k
Partitioning Update
R FN FR R FN RN

Part-Ins
4 31.4 0.09 1.12 2 0.12 1.15
8 42.6 0.11 1.19 2 0.14 1.23
16 33 0.12 1.27 2 0.16 1.32

Com-Ins
4 40.4 0.09 1.12 21 0.17 1.23
8 32.8 0.11 1.20 17 0.19 1.34
16 34.5 0.12 1.26 16.7 0.22 1.48

UB-Ins
4 39.6 0.09 1.12 1 0.08 1.06
8 40.8 0.10 1.19 1 0.10 1.13
16 32.33 0.12 1.26 1 0.11 1.19

strategies show a hight level performance according to the
balanced distribution of data over partitions after the up-
date process.

6. CONCLUSIONS
In our work, we are interested to the partitioning of large-

scale, dynamic graphs. In our work, dynamism corresponds
to the insertion and/or removal of one or more nodes and/or
edges. We propose DynamicDFEP, a partitioning method
for dynamic graphs. We also propose and a set of update
strategies that update the partitioning of a large graph when
new edges and nodes are added and/or removed. We imple-
mented the proposed approaches on top of akka, a toolkit
and runtime for building highly concurrent, distributed, and
resilient message-driven applications. By running experi-
ments on real-world datasets, we have shown that the pro-
posed update strategies are efficient in the case of very large
graphs.

(a) Facebook-ego (b) Amazon

(c) Email-Enron (d) Youtube

Figure 3: Impact of the update strategy on the balance of the partitioning

Acknowledgements
This research was partially supported by EIT Digital Project
”Sensemaking Service: Entity Linking for Big Linked Data”
- Activity Num. 16197 - 2016.

7. REFERENCES
[1] J. E. Gonzalez, Y. Low, H. Gu, D. Bickson, and

C. Guestrin. Powergraph: Distributed graph-parallel
computation on natural graphs. In Proceedings of the
10th USENIX Conference on Operating Systems
Design and Implementation, OSDI’12, pages 17–30,
Berkeley, CA, USA, 2012. USENIX Association.

[2] A. Guerrieri and A. Montresor. DFEP: distributed
funding-based edge partitioning. In Proceedings of the
21st International Conference on Parallel and
Distributed Computing, Europar’15, pages 346–358,
2015.

[3] M. Han and K. Daudjee. Giraph unchained:
Barrierless asynchronous parallel execution in
Pregel-like graph processing systems. Proceedings
VLDB Endowment, 8(9):950–961, May 2015.

[4] G. Karypis and V. Kumar. Analysis of multilevel
graph partitioning. In Proceedings of the 1995
ACM/IEEE Conference on Supercomputing,
Supercomputing ’95, New York, NY, USA, 1995.
ACM.

[5] G. Karypis and V. Kumar. A fast and high quality
multilevel scheme for partitioning irregular graphs.
SIAM J. Sci. Comput., 20(1):359–392, Dec. 1998.

[6] J. Leskovec and A. Krevl. SNAP Datasets: Stanford
large network dataset collection.
http://snap.stanford.edu/data, 2014.

[7] Y. Low, D. Bickson, J. Gonzalez, and et al.
Distributed GraphLab: A framework for machine
learning and data mining in the cloud. Proceedings of
VLDB Endowment, 5(8):716–727, Apr. 2012.

[8] G. Malewicz, M. H. Austern, A. J. Bik, J. C. Dehnert,
I. Horn, N. Leiser, and G. Czajkowski. Pregel: a
system for large-scale graph processing. In Proceedings
of the 2010 International Conference on Management
of Data, SIGMOD ’10, pages 135–146, New York, NY,
USA, 2010. ACM.

[9] G. L. Miller, S.-H. Teng, and S. A. Vavasis. A unified
geometric approach to graph separators. In
Proceedings of the 32nd Annual Symposium on
Foundations of Computer Science, SFCS ’91, pages
538–547. IEEE Computer Society, 1991.

[10] F. Rahimian, A. Payberah, S. Girdzijauskas,
M. Jelasity, and S. Haridi. Ja-Be-Ja: A distributed
algorithm for balanced graph partitioning. In
Proceedings of 7th IEEE International Conference on
Self-Adaptive and Self-Organizing Systems, SASO’13,
pages 51–60. IEEE, 2013.

[11] Y. Tian, A. Balmin, S. A. Corsten, S. Tatikonda, and
J. McPherson. From think like a vertex to think like a
graph. Proceedings of the VLDB Endowment,
7(3):193–204, 2013.

