

THE PRIMM METHOD FOR TEACHING PROGRAMMING:
EXPERIMENTATION AND VALIDATION

G. Peserico1, M. Serafini1, F. Voltolini1, F. Picasso2, D. Agostini2, F. Fiore2,
A. Serbati2, A. Montresor2

1Liceo Scientifico "Leonardo Da Vinci" of Trento (ITALY)
2University of Trento (ITALY)

Abstract
The project "Algorithmically: from problem-solving to computer science" is a research-action project
funded and carried out in the academic year 2022-23 by the Scientific High School “Leonardo da Vinci”
(Trento, Italy), in collaboration with the University of Trento. The goal of the project was to validate the
PRIMM (Predict, Run, Investigate, Modify, Make) methodology for teaching programming, which
subverts the traditional approach based on early program writing. Instead, students are encouraged to
read and understand segments of code before writing their own, emphasising a "reading before writing"
approach. The teaching experimentation was applied in 5 second classes of the high school, with 4
control group classrooms (190 students and 9 classes). To understand the effectiveness of this new
methodology, the design was a Pre-Test and Post-Test, with a test aiming at understanding skills and
knowledge and another based on the Intrinsic Motivation Inventory (IMI). The first iteration of this
experimental teaching approach provides promising results but also indicates the need for refining the
sample and some methods and procedures. However, there are significant findings:

1 PRIMM methodology proved to be slightly more effective than traditional teaching methods in
terms of learning.

2 PRIMM methodology promotes Competence Perception, and its relationship with Competence
Perception is confirmed, positive, and significant.

3 Competence Perception correlates with better computer science grades, so PRIMM might bring
higher marks in Computer Sciences.

The PRIMM approach’s integration into computer science teaching thus appears promising, but
additional research and iterations are needed to optimise its effectiveness.

Keywords: Stem education, teaching, learning, coding, computer science, programming education,
secondary education.

1 INTRODUCTION
The project "Algorithmically: from problem-solving to computer science" carried out an action research
activity in the academic year 2022-23 with the aim of experimenting with the PRIMM methodology [1,2]
for teaching programming in the IT discipline of the "Applied Sciences" option of the Scientific High
School. The project was proposed by the “Leonardo da Vinci” High School of Trento, in collaboration
with the University of Trento and the Glow Cultural Association, and was financed by the Caritro
Foundation.

The basic idea of the PRIMM methodology (Predict, Run, Investigate, Modify, Make) starts from the
observation that "traditional" programming teaching requires the student to write code right from the
start. This differs from the methodologies used in language learning (including mother tongue), where
the production activity is preceded by reading and understanding the text.

Starting from the observation that the cognitive load necessary to write code is very high, the PRIMM
methodology reverses the traditional sequence, starting first from understanding the text and only
subsequently arriving at writing real code.

In particular, the proposed approach is divided into five activities:

• Predict: Students read a segment of code written in Python and make predictions about what the
code will do when it is executed;

Proceedings of ICERI2023 Conference
13th–15th November 2023, Seville, Spain

ISBN: 978-84-09-55942-8
7278

• Run: students execute the code proposed in the previous activity, comparing the actual behaviour
with the prediction;

• Investigate: students are asked to analyse the code or its variants in more depth, using various
types of exercises, such as bug fixes, code annotation, the use of Parson Puzzles, exploratory
questions, etc;

• Modify: students are asked to modify the code, starting from very simple variations and then with
increasingly complex modifications;

• Make: Finally, students create a completely new program inspired by the code seen previously
but create new functionality or solve a different problem.

PRIMM can be viewed as sitting at the crossroads between a structured approach, which relies on guided
discovery and direct instruction, and a constructionist approach [3], which emphasises pure discovery and
open-ended challenges. Grover et al. recommend a five-phase process that progresses from highly guided
activities to completely autonomous ones, with the level of scaffolding being gradually decreased [4].

As far as possible, many of the activities are carried out encouraging group work (in pairs) and exchange
between peers, following the idea that the linguistic expression of solutions generally promotes learning,
particularly in the field of programming where the linguistic component is fundamental.

In the rest of the article, we will describe the context in which we operated, the activities carried out and
the results of the experimentation. We will conclude with a reflection on the validity of the approach and
possible improvements to be applied in subsequent years.

2 METHODOLOGY
This study was conceived to understand the feasibility and effectiveness of the PRIMM methodology for
teaching programming at the high school level. In an action-research approach, the idea is to refine the
method and reiterate the experimentation based on the feedback gathered from all the participants.

2.1 Context
At "Leonardo Da Vinci" Scientific High School, there are 75 classes comprising a total of 1,530 students.
Among these, 42 classes are dedicated to applied sciences, while 33 classes cover the regular
curriculum, with an average of 20 students per class. In the Applied Science stream, computer science
is taught for two hours per week from first to fifth grade. Starting from the second grade, students delve
into actual programming using the Python language.

The teaching experiment was applied in five second-year high school classes (102 students, see Table
1), out of a total of nine, under the guidance of teachers Giulia Peserico, Maria Serafini and Francesca
Voltolini. In the other four second-year classes (86 students), which act as control classes, traditional
teaching methodologies were adopted. Table 1 contains the list of involved and control classes, the
responsible teacher, and the number of students with gender breakdown.

For four of the classes involved, each activity lasted 100 minutes, while, for the fifth class, the activities
took place in two sessions of 50 minutes each.

Table 1. List of classes involved, with teachers and size.

Class Name Teacher Hours No. of Students Male students Female students
Primm1 Teacher1 100’ 23 13 10
Primm2 Teacher1 100’ 20 8 12
Primm3 Teacher1 100’ 25 14 11
Primm4 Teacher2 100’ 19 15 4
Primm5 Teacher3 50’+50’ 18 13 5
Controllo1 Teacher4 50’+50’ 21 16 5
Controllo2 Teacher4 50’+50’ 20 11 9
Controllo3 Docente5 50’+50’ 21 13 8
Controllo4 Teacher6 50’+50’ 22 13 9

7279

2.2 PRIMM Application
For the five classes involved in the experimentation, teaching cards were created to introduce the basic
concepts of programming in the Python language (variables, types, Boolean operators, selection,
iteration, lists, strings, and use of the Turtle library).

Most of the proposed activities were structured in pair work and included:

• Three or four Predict proposals, which proposed a new concept whose functioning was asked to
be predicted, each followed by a phase Run, in which students copied and ran the code to verify
their prediction;

• some exploratory questions, in which they were asked to explain in words what they understood
about the new concept, also comparing it with previously learned concepts;

• a code within which to find some errors (syntax, run, semantics);

• a Parson's Puzzle;
• some code editing exercises (Modify);

• some code writing exercises (Make).

All classes were conducted in the computer lab, where each student was provided with a PC equipped
with the Thonny interpreter [5]. At the end of each session, homework was assigned to reinforce the
learned concepts, and Modify and Make activities were completed. As the course progressed, the
Predict-Run part was reduced, Parson's Puzzles were eliminated, and Modify and Make activities were
emphasised during partner exercises. Additionally, a brief introduction to new concepts was included at
the start of each lesson, followed by a group review session. This was implemented as it was observed
that students were not always paying sufficient attention when studying at home. Throughout the year,
two types of evaluations were conducted: structured assessments featuring multiple-choice and open-
ended questions similar to the Predict activities and error detection, and practical assessments requiring
students to write 3-4 programs to solve various problems.

2.3 Instruments and Data Analysis
To verify the effectiveness of the PRIMM method, three types of data were collected on the five
experimental classes and the four control classes:

• The first type of data concerns the student's motivation to carry out this type of activity. The tool
used to collect this data was the Intrinsic Motivation Inventory (IMI) [6], translated and adapted,
using only the modules that were deemed useful for this experimentation, namely: Interest/
satisfaction, Effort/importance, Perception of competence, Value/Utility, Pressure/Tension.

• The second type of data concerns the learning of knowledge and skills regarding programming
and was detected through a carefully prepared test.

• The third type of data includes the class to which one belongs, gender and final grades in the
various school subjects.

The first two types of data were collected according to a Pre-Post quasi-experimental design, that is,
they were collected before the start of the experiment and after the end to detect any effects and
differences between the experimental and control groups.

The Intrinsic Motivation Inventory (IMI) is a multidimensional measurement tool widely employed to
assess participants’ subjective experiences related to intrinsic motivation and self-regulation within
experimental settings. It is broadly utilised across various domains, including education, to assess
inherent motivational factors within individuals in relation to specific activities or tasks.

The IMI consists of several dimensions, each providing insight into different aspects of intrinsic
motivation, contributing to a comprehensive understanding of participants’ motivational states, but in
this study, only the relevant ones were selected:

1 Interest/Enjoyment: this is considered the self-reported level of interest and enjoyment, often
regarded as the most direct measure of intrinsic motivation. It focuses on the inherent satisfaction
and pleasure derived from performing the activity, independent of external reinforcements or
rewards.

7280

2 Perceived Competence: this dimension reflects the individual’s feelings of efficacy and
competence related to the activity. It corresponds to the extent to which a participant feels capable
and effective in performing the task.

3 Pressure/Tension: this dimension is indicative of the degree to which individuals experience
stress, pressure, or tension in relation to the task. Lower levels of pressure and tension are usually
associated with higher levels of intrinsic motivation.

4 Value/Usefulness: some versions of the IMI include this dimension to gauge the extent to which
participants perceive the activity as valuable or useful, influencing the level of intrinsic motivation
towards the task.

5 Effort/Importance: this dimension evaluates the amount of effort that participants are willing to invest
and how important they perceive the activity, providing additional context to their motivational state.

Each of these dimensions is assessed through a series of statements related to the activity, to which
respondents indicate their level of agreement on a Likert scale. The composite results of the IMI provide
researchers and practitioners with insights into the multifaceted nature of intrinsic motivation, facilitating
nuanced understanding and informed intervention development aimed at enhancing motivation and
engagement.

The data analysis was initiated by normalising and cleaning the dataset. Also, variables were created to
facilitate data processing, such as assigning a class group variable to each student and creating "_Diff"
variables representing the difference between pre and post-test scores, as well as IMI questionnaire results.

From the descriptive statistics, it was apparent that one control group had inconsistent data, with the
lowest pre-test scores and the highest post-test scores, which did not correspond to the final computer
science evaluations by the teacher. Hence, it was removed from the data, unfortunately reducing the
control elements for analysis and causing the sample to be slightly imbalanced. In the "Experimental"
group, there were 100 students, while the control group contained 56 students (due to the group we had
to eliminate). Additionally, there were 97 students of 'M' gender and 59 of 'F' gender. This imbalance
could influence statistical analyses.

The IMI test's internal consistency coefficient, Cronbach's alpha, was calculated for IMI1 (Pre) and IMI2
(Post). For IMI1, Cronbach's alpha was 1.03, while for IMI2 it was 1.08. This indicates excellent
consistency.

A linear regression analysis with robust standard errors was used to take into account the heterogeneity
of the groups

3 RESULTS
The results of the analysis, for which a linear regression with robust standard errors was used to take
into account the heterogeneity of the groups, highlight the following results:

• There is no statistically significant association between “belonging to the experimental group” and
an “increase in test scores” (p=0.455). Despite this, the increases in test scores of the
experimental group are slightly higher than those of the control group.

• There is a statistically significant association between “belonging to the experimental group” and
an “increase in the IMI Effort/Importance” of the activity score (p=0.047), with the experimental
group membership being a significant predictor. This suggests that the PRIMM methodology
could enhance student engagement in activities and their perceptions of the activities' importance.

• There is a highly significant association between “belonging to the experimental group” and an
increase in the IMI score regarding the perception of competence (p<0.001), with the
experimental group membership being a significant predictor. The PRIMM methodology could
therefore favor students' perception of their own competence and confidence in programming
tasks. Students may also be able to self-assess more accurately.

• Students with the greatest improvement in their final test scores, compared to their initial test
scores, also achieved higher grades in computer science.

• Belonging to the experimental group and, therefore, the PRIMM methodology, is associated with a
positive impact on computer science grades. The result of the analysis comes very close to
significance (p=0.051), with the experimental group membership being a quasi-significant predictor.

7281

• The gender difference in outcomes was also explored. Although there are no conclusive results,
the analysis detects, in the control group, an imbalance in interest in activities on the part of male
students compared to female students (p=0.08). This indicates that the PRIMM methodology
could be more inclusive than the traditional one.

4 CONCLUSIONS
The initial phase of this action research yielded encouraging outcomes, albeit highlighting the
requirement to fine-tune the sample and certain methodologies and procedures. To elaborate, certain
examination items necessitate further testing as they do not produce consistent results alongside other
indicators. Moreover, multiple exercises were conducted with groups by students' proficiency levels,
which could have impacted the fact that pupils who exhibited greater progress in test scores also
attained superior grades in computer science.

Moving forward, the groups will be strategically divided to facilitate peer tutoring [7]. Overall, the
implementation of the PRIMM method shows great promise and has already demonstrated a significant
and positive effect on students' programming approach. Specifically, it has boosted their sense of
competence, commitment, and perceived importance of the activities. However, in order to optimise its
effectiveness, more research and replication is necessary.

At the end of the year, we asked the students for comments on the way they worked with the PRIMM
methodology. A large group of students complained about the lack of usual face-to-face lessons with an
explanation from the teacher before tackling laboratory activities; we can hypothesise that this depends on
an (Italian) school path that is very focused on frontal lessons, so that students are not familiar with innovative
approaches. Furthermore, some students stated that working in same-level pairs was not productive, and
they would have rather been in pairs with companions who would help them more in their work.

A significant number of students have expressed their satisfaction with the PRIMM methodology, which
has enabled them to work at their own pace. They complete the assigned tasks independently, without the
pressure of a workgroup, and later, have the flexibility to elaborate on them at home. Overall, the positive
feedback from students indicates that the PRIMM approach will be recommended again in the future.

ACKNOWLEDGEMENTS
Gratitude is extended to the students and teachers of Liceo “Da Vinci” in Trento for their invaluable
participation in this research endeavour. Appreciation is also directed to the school's director for their
support and to the CARITRO Foundation for their generous funding of this project.

REFERENCES
[1] S. Sentance, J. Waite, and M. Kallia, “Teachers’ experiences of using PRIMM to teach programming

in school,” in The 50th ACM Technical Symposium on Computing Science Education: SIGCSE
2019, Minnesota, 2019.

[2] S. Sentance, J. Waite, and M. Kallia, "Teaching computer programming with PRIMM: a sociocultural
perspective," Computer Science Education, vol. 29, no. 2-3, pp. 136-176, 2019.

[3] S. Papert, Mindstorms: Children, computers, and powerful ideas. New York, NY: Basic Books, Inc, 1980.

[4] S. Grover, R. Pea, and S. Cooper, “Designing for deeper learning in a blended computer science
course for middle school students,” Computer Science Education, vol. 25, no. 2, pp. 199–237, 2015.

[5] A. Annamaa, “Thonny: A Python IDE for learning programming,” in Proceedings of the 2015 ACM
Conference on Innovation and Technology in Computer Science Education, ITiCSE ’15, pp. 343-,
2015.

[6] E. McAuley, T. Duncan, and V. V. Tammen, “Psychometric properties of the Intrinsic Motivation
Inventory in a competitive sport setting: A confirmatory factor analysis,” Research Quarterly for
Exercise and Sport, vol. 60, no. 1, pp. 48-58, 1989.

[7] F. J. Alegre Ansuategui and L. Moliner Miravet, “Emotional and cognitive effects of peer tutoring
among secondary school mathematics students,” International Journal of Mathematical Education
in Science and Technology, vol. 48, no. 8, pp. 1185–1205, 2017.

7282

