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Abstract Word sense disambiguation is a fundamental problem in natural language
processing (NLP). In this problem, a large corpus of documents contains mentions to
well-known (non-ambiguous) words, together with mentions to ambiguous ones. The
goal is to compute a clustering of the corpus, such that documents that refer to the
same meaning appear in the same cluster; subsequentially, each cluster is assigned to
a different semantic meaning. In this paper, we propose a mechanism for word sense
disambiguation based on distributed graph clustering that is incremental in nature
and can scale to big data. A novel, heuristic vertex-centric algorithm based on the
metaphor of the water cycle is used to cluster the graph. Our approach is evaluated
on real datasets in both centralized and decentralized environments.

1 Introduction

Language has been ambiguous from its inception. Not only words have several mean-
ings, but even given names (assigned to individuals, companies, or even cities) can
be ambiguous. While Ulysses was able to use this feature to his advantage, ambi-
guity has created more harm than good. This problem has important consequences
for web intelligence companies that want to extract public opinions and reaction to
news and products from massive data sets acquired by mining social web. Are users
complaining about Apple’s new phone or about apples that they ate for lunch?

Companies have similar issues when they need to reconciliate their own data
with user-input data or different data sources. Understanding the correct meaning for
ambiguous words can help in cleaning their datasets, in correcting typos and small
mistakes and assigning them to the right category.

This process has become even more cumbersome with the continuous growth
in the amount of available data, particularly user-generated content, that makes it
extremely important to have automated systems that can both scale to huge sizes and
cope with continuous streams of data.
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Fig. 1: The pipeline of our approach: from a set of sentences we extract a few words,
we built a graph, we cluster it and eventually we map the obtained clusters of sen-
tences to the target meanings.

Many different techniques have been studied in the state of the art [18]. We pro-
pose here the following novel approach: (i) We take as input a set of documents to
be disambiguated, where the important words (nouns, verbs, adjectives) have been
identified; one target word is ambiguous and needs to be disambiguated (Section 2).
(ii) We build a co-occurrence graph, where words are nodes and two nodes share an
edge if they occur in the same document (Section 3). (iii) Using our novel distributed
graph clustering algorithm, TOVEL, we cluster together the documents that refer to
the same ambiguous word (Section 4). (iv) All these steps are incrementally executed
on incoming data by continuously adding nodes and edges on the ever-evolving graph
without having to restart TOVEL from scratch(Section 6).

As shown in Section 7, TOVEL obtains very good results in terms of precision and
recall, and outperforms existing approaches in terms of F1-score. Since in TOVEL all
nodes act independently, our approach can be scaled to huge quantities of data by
implementing it in one of the many distributed large scale graph processing frame-
works, such as Giraph, GraphX or Graphlab. We thus demonstrate the scalability of
TOVEL using GraphX in Section 7.

2 Problem statement

The problem of finding the correct meaning of a word can be defined in different
ways, according to the specific requirements of the problem. The most common defi-
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nition for word sense disambiguation asks for identification of the correct meaning of
a word from a given set of possible meaning. In this chapter we solve another, related
problem: word sense induction, in which words usages must be grouped according to
their shared meaning. Our approach can be extended to word sense disambiguation by
using a semi-supervised approach where a few data points are already disambiguated.

We can define the word sense disambiguation more formally: given a single am-
biguous word W , a collection of possible senses or meanings m1, m2, . . . , mM as-
sociated with W and a set of documents D = {d1, d2, . . . , dN} containing mentions
to W , this task asks to understand which of the documents in D refer to the different
sense of W . The number of documents N is usually larger than the number of senses
M . Our approach is based on the following sub-problems:

– Clustering: compute a clustering of D such that documents that refer to the same
meaning appear in the same cluster.

– Disambiguation: assign each document in D to one of the meaning of W , accord-
ing to clustering obtained in the previous step.

If the algorithm stops after the Clustering phase, the problem solved is word sense
induction, but the addition of the mapping step solves the word sense disambiguation.
Table 1 contains an illustrative toy instance of our problem. The word “apple” can re-
fer to at least two different meaning: the fruit apple and the company. To solve the
clustering subproblem would mean to recognize that documents 1 and 4 refer to one
meaning, while 2 and 3 refer to a different one. To complete the disambiguation sub-
problem we also need to map each of the document to a specific meaning (Apple Inc.
for documents 2 and 3, apple the fruit for documents 1 and 4). Note that other pos-
sible meanings of Apple (such as the Beatles’ multimedia corporation) are irrelevant
to this instance of the problem, since there are no documents that refer to it.

3 Graph construction

The first step of our approach is the construction of the word graph from the input
documents. The graph construction follows the same principles of [26] and is illus-
trated in Algorithm 1. For each document d, we add a distinct ambiguous node rep-
resenting the ambiguous mention of the target word W , identified by the document

# Sentence
1 Many doctors would recommend eating

apples for breakfast
2 Technology like apple’s watches

could help doctors monitor their patients
3 Apple produces many distinct technologies,

from smartphones to watches
4 Before eating an apple, I always check

which is its variety.

Table 1: Simple example: 4 documents, Apple is the target ambiguous word with two
different senses (the fruit and Apple Inc.)
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Fig. 2: Sample graph created from Table 1. Blue nodes are ambiguous.

id; we create a new node for each context word w extracted from d, unless it already
exists in the graph. The nodes representing the words contained in the document (ei-
ther created or found through getNode()) are added to the set S; then, undirected
edges are created between all pair of distinct nodes contained in S, with the effect of
creating a clique among them.

For the sake of simplifying the notation and save space, in this paper G is a
multigraph where parallel edges between pair of nodes correspond to stronger links
between them. In the real implementation, edges are weighted and the interactions
among nodes connected by edges are proportional to such weights.

The strategy for extracting context words from the document depends on the spe-
cific application area. In our current approach on text documents, we just select every
noun and adjective from surrounding sentences, converting everything to lowercase.
Note that this step is needed only when we need to disambiguate plain text. In some

Algorithm 1: Graph construction
G = new GRAPH()
foreach DOCUMENT d do

NODE ambNode = new NODE(d.id)
G.addNode(ambNode)
SET S = {ambNode}
foreach WORD w ∈ d do

if not G.contains(w) then
G.addNode(new NODE(w))

S = S ∪G.getNode(w)

foreach u, v ∈ S, u 6= v do
G.addEdge(u, v)
G.addEdge(v, u)
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Fig. 3: Illustration of the water cycle in TOVEL

applications, such as the Spotify scenario presented in Section 7, the documents are
already provided as a bag of context words.

In Table 1, all context words are underlined, while mentions of our target word are
in bold. Figure 2 shows the graph constructed from this example. Aside from the blue
nodes, one for each document, all other nodes are shared across the documents. Note
that context words “watches” and “technology” co-occur in two different documents,
thus increasing the strength of their connection. In a real implementation, we would
have created an edge of weight 2 to connect them.

4 Tovel: a Distributed Graph Clustering Algorithm

Our novel clustering algorithm, TOVEL, is inspired by the cycle of water. Water of
different colors is generated at initialization and competes for control of the graph
through a cycle of diffusion, evaporation and rain. Some colors will disappear from
the graph, while others will survive by following the shapes of the underlying clusters.
The resulting clusters represent the different meanings of the ambiguous word.

Using the input graph constructed as in Section 3, we create one color for each
node representing the ambiguous word. This means that initially, the number of colors
will be equal to the number of documents. This number is appropriate because we are
not expecting more meanings than documents.

Note that, since the algorithm uses information about ambiguous nodes only at
initialization, TOVEL could also be used on a general graph by starting with a reason-
able number of colors from random starting position.

The algorithm can be summarized as following: during each iteration, each node
diffuses its water to its neighbors. Each node will then decide independently its dom-
inant color according to information in the neighborhood. All water of non-dominant
colors is evaporated and sent to the appropriate cloud, one for each color in the graph.
Each cloud will then try to send back POUR of its water to all nodes with its dominant
color, if enough water is present in it. The remaining water will be kept in the clouds
for the following iterations. Once the algorithm has converged to a solution, all nodes
with the same dominant color will form a cluster.
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Algorithm 2: Initialization phase
{ Executed by node u ∈ V }

if isAmbiguous() then
u.color = u.id
u.water = 1.0

else
u.color = Nil
u.water = 0.0

H = new MAP()

4.1 Data structures

Every node u contains a variable u.color that represents the dominant color of that
node and a variable u.water containing the amount of water of color u.color con-
tained in u. Furthermore, a map H will be used to collect colors diffused from other
nodes.

Apart from the set of nodes, we create a set of clouds C1, C2, . . . , Cn, one for
each color and thus one for each document. Each cloud Ci contains an amount of
water Ci.water of color i. As shown in Algorithm 2, each ambiguous node starts with
a fixed amount of an unique color, identified by the unique id of the node. The non-
ambiguous nodes and the clouds start empty. This is the only point in the algorithm
where water is created.

4.2 Main cycle

TOVEL is organized in consecutive rounds, each of them subdivided in three indepen-
dent phases. In the first phase (diffusion), each node diffuses the water of its dominant
color by sending it through each of its edges, divided equally among all of them. In
the second phase (evaporation), each node computes a new dominant color and evap-
orates all the water of non-dominant colors by sending it to the clouds. In the third
phase (raining), all cloud sends their water back to the nodes with their dominant
color. An upper bound POUR is used to limit the rate of rain in each round.

Algorithm 3: Diffusion phase
{ Executed by node u ∈ V }

foreach NODE v ∈ u.neighbors do
real amount = u.water/u.degree
send 〈u.color , amount〉 to v

H.clean()
foreach NODE v ∈ u.neighbors do

receive 〈v.color , amount〉 from v
H[v.color ] = H[v.color ] + amount
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Algorithm 4: Evaporation phase
{ Executed by node u ∈ V }

foreach NODE v ∈ u.neighbors do
send〈H〉 to v

MAP H′ = H.copy()
foreach NODE v ∈ u.neighbors do

receive 〈Hv〉 from v
foreach COLOR c ∈ Hv do

H′[c] = H′[c] +Hv [c]

u.color = argmax(H′(c))
u.water = H[color ]

H[u.color ] = 0
foreach COLOR c do

send 〈H[c]〉 to Cc

Diffuse Each node in the graph sends all its water to its neighbors, divided equally
among the (multi)edges connecting them. For example, if a node has 0.8 of red water
and 4 outgoing edges, it will send 0.2 of red water along each of them. If two edges
among those are pointing to the same node, that node will receive 0.4 of red water.
The strengths of connections will influence the behavior of the diffusion process.
Nodes will then wait until they receive messages from each of their neighbors, and
aggregate the amount of water received in a fresh map indexed by colors.

Evaporation Each node recomputes its dominant color by summing all the maps
of its neighbors and choosing the color with the highest amount. In case of ties,
nodes will choose the color with the lowest id. We chose this simple and deterministic
heuristic since other approaches, such as breaking ties randomly, did not improve the
quality of the clustering in our experiments. Computing the dominant color is the
most computationally expensive step, but it allows us to better understand the shape
of the cluster by looking at our neighbor’s neighbors [15]. By collecting the colors
of our neighbor we can glimpse at what we will receive in the following iteration
and choose how to interact with the clouds accordingly. Each node then sends all
water of non-dominant color to the appropriate clouds. If a node has chosen red as its
dominant color, it will send all of its blue color to the blue cloud.

Rain Each cloud receives water sent by the nodes in the graph and sums it with all
water it kept since the previous iteration. It will then send some water back to the
nodes following this procedure: the cloud of color c will compute the set of nodes
that have c as dominant color; it will then try to send at most POUR amount of water
to them. If the cloud does not contain the necessary amount of water, it will just divide
it equally between the nodes with that color. If there are no nodes of color c in the
graph, the corresponding cloud will not be able to send water to any node and the
color will thus disappear from the graph.
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Algorithm 5: Rain phase
{Executed by cloud Cc}

foreach NODE u ∈ V do
receive 〈amount〉 from u
Cc.water = Cc.water + amount

SET S = {u : u ∈ V ∧ u.color = c}
if |S| > 0 then

rain = min(POUR, Cc.water/|S|)
foreach NODE u ∈ S do

send 〈rain〉 to u

Cc.water = Cc.water − rain ∗ |S|

{Executed by node u}

receive 〈amount〉 from Cu.color

u.water = u.water + amount

4.3 Convergence criterion

Each node will vote to halt the algorithm if its dominant color has not changed for
a sufficient number of iterations. The algorithm is stopped when all nodes vote to
terminate. In our experiments, we call this parameter IDLE and set its value to 5. A
larger value does not increase significantly the quality of our clustering and come at
the cost of a much larger iteration count.

While this simple approach has been sufficient to converge with real-world graphs,
there are corner cases in which convergence is never reached because of a flickering
effect in which a few nodes continuously switch between colors.

4.4 Rationale

TOVEL is an heuristic approach to an NP-complete problem. In this section we pro-
vide an overview of the rationale behind the different phases for our approach, while
Section 5 presents a more analytical study of the quality of the algorithm and its
relation to the conductance of the graph.

Figure 3 illustrates the cycle of red water in the algorithm. The red cluster will
diffuse the red water along both red and blue edges. All water that is sent towards
blue nodes will go out of the red cluster and, if it does not convince those blue nodes
to change their color, will be evaporated and sent back to the red cloud. The cloud
will then rain some of the red water back to the cluster.

We call the leakage of a cluster the amount of water lost by that cluster via the
process of diffusion and evaporation, and the precipitation of that cluster the amount
of water that it has received from the cloud.

It is easy to see that if the leakage is larger than the precipitation, the total amount
of water in the cluster will decrease. This process will also decrease the average
amount of water in the cluster, thus decreasing the leakage in the following iterations.
If we assume that there is an infinite amount of water in the cloud, the precipitation
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Vc set of nodes with dominant color c
degn degree of node n
cutn edges between node n and nodes of a different color
Wc total amount of water c in the graph

Wc = Wc/|Vc| average amount of water c in the nodes of its cluster

Table 2: Notations used in the analysis of TOVEL

will stay constant if the cluster does not change and the leakage will eventually be
equal to the precipitation. If the leakage is smaller than the precipitation, the inverse
process will appear and the leakage will grow until it reaches the precipitation.

The core property of the algorithm is the following: the smaller is the fraction of
outgoing edges of a cluster (close to its conductance), more water will each node of
the cluster have at the converged state. This property is crucial in making sure that
well-connected clusters survive the competition, while badly connected clusters will
be weaker, get invaded more easily and eventually disappear.

The total quantity of water in TOVEL is fixed, thus it is possible that a cloud will
not be able to send the full POUR to the nodes of the clusters. This event becomes
more likely once a cluster gets bigger, since it will spread its fixed amount of water
on a larger set of nodes. By choosing the correct POUR, we can thus control the
desired sizes of the clusters. In our experiments, we used an heuristic based on the
ratio of distinct context words over total context words, as illustrated in Section 5

5 Analysis

In this section we analytically study the behavior of TOVEL and show that it will tend
to favor well-structured subgraphs of the desired size. The notation used is defined in
Table 2.

5.1 Quality at convergence

To help our analysis, we will analyze the behavior of TOVEL once it has reached the
steady state and the clusters are fixed. Each cluster will diffuse some of its water
to neighbors of a different color, who will then send it back to the cloud. The total
amount of water c that evaporate to the cloud in each round can be computed as
in Equation 1. Each node of the cluster has a certain amount of water of that color
and a fraction of it will be sent to neighbors of a different color. Assuming that the
distribution of water inside each cluster is uniform we can continue the analysis and
obtain Equation 2. During each iteration the cluster also receives some water from
the clouds. If there is sufficient water there, each node will receive exactly POUR of
water of its dominant color. We reach the steady state when the precipitation and the
leakage are the same. How much water will there be in each node of the cluster at
that point? By solving Equation 4 we obtain a value for the average amount of water
as in Equation 5
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(a) POUR = 0.01
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(b) POUR = 0.02

Fig. 4: Average color per node in a cluster at steady state, for different quality and
values of POUR, in a graph with 1000 nodes

Leakagec =
∑
n∈Vc

Wn(c)
cutn
degn

(1)

Leakagec =
∑
n∈Vc

COLc
cutn
degn

= COLc

∑
n∈Vc

cutn
degn

(2)

Precipitationc = |Vc| ∗ POUR (3)

|Vc| ∗ POUR = COLc

∑
n∈Vc

cutn
degn

(4)

COLc =
POUR · |Vc|∑
n∈Vc

cutn
degn

(5)

This formula shows that the average amount of water contained in a node in the
steady state depends on the average fraction of water that evaporates during each
iteration. This measure is very close to the conductance of the cluster, since the fewer
cut edges there are, the bigger will be the average amount of color in the nodes of
that cluster. This is not only true at the steady state, but also during the execution of
the algorithm. Badly formed clusters will see its color evaporate much faster and will
be made easier to invade by the other clusters.

5.2 Sizes at convergence

The feature that allows us to control the sizes of the partitions is the fixed amount of
water in the system. The clusters are discouraged from becoming too large because

the average amount of color cannot be more than
1

|VC |
.

Figure 4 illustrates the effect of different values of POUR. It shows the average
amount of water in each node of the cluster, a measure of the strength of the cluster
in our algorithm, against the fraction of water that is kept during each iteration by
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the cluster. If a cluster contains 0.8 of water and loses 0.2 because of evaporation, it
means that it keeps 0.75 of its water.

Figure 4b shows that clusters of size smaller than 5 and quality higher than 0.9
will keep more color than clusters of size 5 with the same quality. The higher the
size, the more of its clusters will be penalized. Choosing a different POUR, as shown
in Figure 4a, changes the strength of that effect. Fewer clusters of size 5 will be
penalized, but the behavior of clusters of size 10 is now close to the behavior of
clusters of size 5 with the previous value of the cap. By choosing and tuning the
value of this parameter we can control the desired sizes of the clusters and encourage
smaller but less connected clusters or larger and better connected clusters.

5.3 Computing POUR for word sense induction

While in a general graph we do not have much information about the underlying
clusters, in the word sense induction scenario we start from a better position. The
graph is created as a collection of cliques, one for each document, and is thus possible
to estimate how much dense is the graph and thus how conservative the algorithm
should be in creating clusters. If the graph is not dense, then POUR can be set to a
lower value, while if the graph is very dense, an higher POUR might allow us to find
clusters with lower quality, but still meaningful, thus avoiding finding only one huge
cluster.

In this subsection we present an heuristic to set POUR in a meaningful way, while
still allowing users the freedom to control the degree of resolution of the cluster. In
Section 7 we show that this approach allow us to obtain very good results with graphs
of wildly different characteristics.

Be A the set of ambiguous nodes in the graph and A = N \ A the set of non-
ambiguous nodes in the graph. The following measure is an indication of the density
of the graph:

d =
total context words extracted from documents

distinct context words extracted from documents
=

∑
n∈A

degn

|A|

Note that each ambiguous node represents a document, and its degree is equal
to the number of context words associated to that document. The numerator of the
fraction is thus equal to the total number of context words in the dataset. The denom-
inator is instead equal to the number of distinct context words, since for each of them
we create only one word (see Section 3).

POUR =
d

|N |
This metric is strongly related to the eventual size of the clusters that will be

found by our approach. If the graph is very sparse, then POUR will be equal to 1
|N | ,

thus indicating that a full cloud is able to serve clusters size at most |N |, the largest
cluster possible. If, instead, the graph is very dense, each ambiguous node will be
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Algorithm 6: Classifier
Input : Sentence S
Input : Colored graph G
M = new MAP();
foreach WORD w ∈ S do

if w ∈ G then
color = G.getNode(w).color ;
amount = G.getNode(w).water ;
M(col) = M(col) + amount ;

return argmaxc(M(c));

connected to the same context words and POUR will be equal to |A|
|N | . A full cloud

is thus able to serve a clusters of size |N |
|A| , which is the average size of a cluster if

we create one different cluster for each ambiguous node. Since we do not care about
clusters that do not contain ambiguous nodes for this specific application, this is the
smallest cluster size we are interested in.

6 Extensions for word sense induction and disambiguation

Incremental addition of batches of documents Since our approach should be run
on huge quantities of documents, it is infeasible to run it from scratch every time
there is an update in the dataset. For this reason, both the graph construction and the
graph clustering algorithms can be adapted to work in an incremental scenario.

If we assume that the new batch of sentences to be added does not introduce new
meanings (does not change the number of clusters in the ground truth), then it is
possible to extract the context words from the new sentences according to Section 3
and add any newly created node to the graph without any water, while keeping the
old distribution of colors in the rest of the graph. TOVEL will converge extremely fast
since it will start from a state already close to the desired result.
Colored graph as a classifier The incremental algorithm can be used when we need
to continuously update our inner model, but in some cases we might want to run our
approach only once on a large dataset and then use that model to answer queries on
single input sentences independently. By following this approach, we get huge gains
in efficiency and scalability, since the colored graph can be accessed independently
for each query in "read-only mode", but we lose the capability of use the input sen-
tences as part of our dataset.

Given the colored graph, we assign each color to a meaning of the target word
by manually disambiguating a few sample sentences in the dataset. Once we have
a mapping between the colors and the meanings, we store for each non-ambiguous
word both its color and the amount of water of that color. For each input sentence
we extract its context words and, if they exists in our colored graph, collect all water
that they contain. The input sentence will be classified according to the most popular
color, computed following Algorithm 6.
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Dataset statistics TOVEL results
Name Source Docs Nodes Edges Senses Prec Rec F1 F05 Rounds
Apple Wikipedia 369 5046 258798 2 91.61 85.52 88.46 90.33 42

Mercury Wikipedia 2921 15111 816744 4 86.52 80.40 83.35 85.22 40
Orange Wikipedia 1447 9546 489736 5 74.23 61.21 67.09 71.20 46

CA Recorded Future 1182 2045 16700 8 97.92 68.83 80.84 90.29 43
Kent Spotify 124 160 1654 6 95,76 97,64 96,69 96,13 10

Table 3: Datasets used in evaluation

This approach could also be applied on a training set of sentences of which the
correct meaning is already known. The resulting colored graph could then be used to
disambiguate all other sentences.

7 Experimental results

In this study we used datasets collected from different sources. Apple, Mercury and
Orange are taken from Wikipedia. For each meaning of that word, we extracted sen-
tences with outlinks toward that page. The context words are automatically extracted
by selecting all adjectives and nouns using the Stanford NLP parser tool. CA contains
a set of documents pertaining different "Chris Andersen" as collected by Recorded
Future, a web intelligence company. The words are extracted from each document
using their proprietary techniques. Kent was constructed by Spotify from a collection
of albums with the field "Artist Name" equal to "Kent". The context words extracted
from the albums are other fields such as the recording company, the country and the
language. This graph is much smaller but shows the feasibility of our approach in
scenarios different from text disambiguation, such as artist disambiguation. Both CA
and Kent have been confidentially given to us by the respective companies. In the case
of Kent, our algorithm is already used as a pre-processing phase in Spotify’s system.

To evaluate the quality of our clustering we use the B-cubed approach to compute
the precision, recall and F1-score of the ambiguous nodes, as presented in [3]. High
precision means clusters that are clean and contain nodes that have the same meaning,
while high recall means having clusters that contain most nodes of that meaning. The
F05-score gives twice the importance to precision than recall. In Table 3 we show the
performance of our approach.
Evaluation on benchmarks We executed our approach on the Semeval-2010 Word
Sense Induction Task and compared our clusters with the published results from the
competition in Table 5
Clustering comparison with disambiguation services To give a comparison of the
quality of the clustering of our approach, we used the NERD API to run different dis-
ambiguation services on our own datasets. Table 4 shows that our approach reaches
results comparable with the leading disambiguation services, without using any ex-
ternal source.
Disambiguation with colored graph To simulate our approach in a realistic sce-
nario, we follow the model from Section 6. From a random subset of our dataset we
build the graph, run the clustering algorithm and assign each cluster to a meaning. We
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Service Prec Rec F1 F05
textrazor 100.00 79.17 88.38 95.00

A
pp

ledbpedia 98.94 76.07 86.01 93.33
wikimeta 96.29 69.41 80.67 89.37
combined 98.45 54.15 69.87 84.61

TOVEL 91.61 85.52 88.46 90.33
textrazor 74.23 27.10 39.71 55.08

M
er

cu
rydbpedia 75.26 28.35 41.19 56.55

wikimeta 73.56 27.23 39.74 54.88
combined 97.29 53.51 69.04 83.61

TOVEL 86.52 80.40 83.35 85.22

Table 4: Comparison of our approach against online disambiguation services

System F-Score Clusters
NumberAll Verbs Nouns

MFS 63.4 72.7 57.0 1
Duluth-WSI-SVD-Gap 63.3 72.4 57.0 1.02
Tovel 63.0 72.0 56.9 1.81
KCDC-PT 61.8 69.7 56.4 1.5
KCDC-GD 59.2 70.0 51.6 2.78
Duluth-Mix-Gap 59.1 65.8 54.5 1.61

Table 5: Comparison of our approach against top competitors in Semeval-2010
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Fig. 5: Percentage of queried sentence correctly classified, against the number of
sampled sentences used in the model construction.

then use this classifier to process the remaining sentences. As Figure 5 illustrates, our
approach can disambiguate with high precision once the size of the learning dataset
is large enough.
Incremental results Figure 6 shows the behavior of our algorithm in presence of
incremental updates in the graph. We test two different scenarios: in the first scenario
our approach is run to convergence on 80% of the document and the remaining 20%
are added in a single batch after 50 iterations. In the second scenario our approach
is run on 50% of the graph and 5 batches of 10% each are added at specific interval.
In both cases the algorithms takes only a few iterations to recover and reach conver-
gence.
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Fig. 6: F-score against iteration
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Scalability TOVEL is extremely scalable, since each vertex and each cloud can work
in parallel in each of the different stages of Tovel. Figure 7 shows the running time of
our prototype implementation in Spark on the EC2 cloud, using different number of
nodes.

8 Related work

Our approach is based on using graph clustering algorithms for word sense induc-
tion and disambiguation. Therefore, the related work introduces both traditional word
sense disambiguation algorithms and an overview of graph clustering algorithms.

8.1 Word sense induction and disambiguation

There is a large body of work on word sense disambiguation in the NLP commu-
nity [19]. The problem is typically seen as a classification task, where different senses
of a word are classified into different generic classes. One of the most well-known
approach is by Lesk et al. [14], which computed the size of overlap between the
glosses of the target and the context words, as an indication for classification. Since
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then various efforts has been made to extend the original Lesk algorithm [13,4,5]. An
inherent limitation in the Lesk algorithm, however, is that the results are highly sensi-
tive to the exact wordings of the definition of senses [19]. To overcome this problem,
some solutions computed the overlap differently. For example, Chen et.al [9] used
tree-matching, and recently various solutions used vector space models [23,1,27].
They, however, struggle with the problem at large scale. TOVEL computes the overlap
between various context words using a graph model, without having to concern about
grammatical or syntactical properties, while it addresses the scalability problem with
a highly parallel algorithm.

After deciding what information to use, the main task of classification starts. The
solutions are either supervised [31,24,28], unsupervised [2,8,29], or semi-supervised.
Supervised methods generally produce reasonably accurate results, but the train-
ing data is usually not available in the real-world applications. Therefore, semi-
supervised and unsupervised methods have gained lots of attention. While unsuper-
vised solutions exploit the dictionary entries or taxonomical hierarchies like Word-
Net [17], the semi-supervised solutions start with some labeled data as seeds [22].

8.2 Graph clustering

The research in graph community detection itself has produced numerous works [11].
The problem, which is known to be NP-Hard, has been addressed through various
heuristic solutions. A few approaches use the spectral properties of the graph for
clustering [21], by transforming the initial set of nodes/edges into a set of points in the
space, whose coordinates are the element of the eigenvectors of the graph adjacency
matrix. The intuition is that nodes that belong to the same community structure have
similar components in their eigenvectors. The problem with spectral clustering is
that computing eigenvectors for large graphs is non-trivial, thus this solution is not
applicable in large scale.

Some other solutions aim for maximizing the modularity metric. This approach,
which was first introduced by Girwan and Newman [20], involves iteratively remov-
ing links with the highest betweenness centrality, until the maximum modularity is
achieved. The problem with this technique is that computing the betweenness cen-
trality is a complex task and requires global knowledge of the graph, thus, it cannot
scale in large graphs. Many others extended the modularity optimization idea and
made an effort to make it faster and more efficient [10,7]. However, [12] has shown
that the modularity has a resolution limit, and therefore, these solutions sometimes
show a poor performance, particularly if there is a large graph with lots of small
communities.

There are also solutions based on random walks in graphs [25]. The intuition is
that random walks are more likely to get trapped in the densely connected regions of a
graph, which correspond to the community structures. Other ideas, which are similar
to random walk in nature, include the diffusion [16] and label propagation [30] [6]
techniques. These solution have shown reasonable performance in general, and for
word sense disambiguation in particular [26,22], while having a relatively low com-
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plexity. They can be applied to large graphs, thanks to their parallel nature. TOVEL
has the closest resemblance to this family of solutions.

9 Conclusions

In this paper, we have proposed a mechanism for word sense disambiguation based on
distributed graph clustering that is incremental in nature and can scale to large amount
of data. Our approach has shown to be efficient and precise in both centralized and
decentralized environments.

As a future work, we intend to study TOVEL in a more general graph clustering
scenario. In such a setting we do not have information about ambiguous nodes, there-
fore we need different approaches to initialize the distribution of water in the graph.
Starting with a random sample of nodes might be enough, provided that the number
of nodes is reasonably larger than the expected number of communities to be found
in the graph.

Our TOVEL implementation of TOVEL is still a proof of concept that needs to be
polished to scale efficiently to truly large datasets. Since there are few distributed al-
gorithm to compare with, there is also the option of creating a faster, parallel program
to compare its efficiency with other parallel clustering algorithm.
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