
Noname manuscript No.
(will be inserted by the editor)

gat2vec: Representation Learning for Attributed
Graphs

Nasrullah Sheikh · Zekarias Kefato ·
Alberto Montresor

Received: date / Accepted: date

Abstract Network Representation Learning (NRL) enables the application of
machine learning tasks such as classification, prediction and recommendation
to networks. Apart from their graph structure, networks are often associated
with diverse information in the form of attributes. Most NRL methods have
focused just on structural information, and separately apply a traditional rep-
resentation learning on attributes. When multiple sources of information are
available, using a combination of them may be beneficial as they complement
each other in generating accurate contexts; moreover, their combined use may
be fundamental when the information sources are sparse. The learning methods
should thus preserve both the structural and attribute aspects. In this paper,
we investigate how attributes can be modeled, and subsequently used along
with structural information in learning the representation. We introduce the
gat2vec framework that uses structural information to generate structural
contexts, attributes to generate attribute contexts, and employs a shallow neu-
ral network model to learn a joint representation from them. We evaluate our
proposed method against state-of-the-art baselines, using real-world datasets
on vertex classification (multi-class and multi-label), link-prediction, and visu-
alization tasks. The experiments show that gat2vec is effective in exploiting
multiple sources of information, thus learning accurate representations and
outperforming the state-of-the-art in the aforementioned tasks. Finally, we
perform query tasks on learned representation and show how the qualitative
analysis of results has better performance as well.

Keywords Attributed Graphs · Network Embedding · Unsupervised
Learning · Deep Learning

Nasrullah Sheikh, Zekarias Kefato, Alberto Montresor
University of Trento
E-mail: {name}.{surname}@unitn.it

2 Nasrullah Sheikh et al.

1 Introduction

The structural relationships between entities in domains as diverse as the
World Wide Web, online social networks and computer networks can be mod-
eled as graphs. The entities are represented as nodes and the interactions
between them are represented as edges. The sparsity of these large real-world
graphs poses serious challenges to machine learning tasks such as vertex classi-
fication [20], recommendation [31,8], anomaly detection [3], visualization [22],
and link prediction [15]. Network Representation Learning (NRL) [19,9,24]
has been recently proposed to address the sparsity problem by learning con-
tinuous, low-dimensional latent features of vertices. These features capture
the global structure of a network and can be later fetched to machine learning
tasks.

An emerging approach to NRL is based on applying models developed for
natural language processing to networks. A famous quote by J.R. Firth says,
“You shall know a word by the company it keeps”. Following this motto, the
SkipGram [16] algorithm learns embeddings for textual data (e.g., sentences)
and words that have similar contexts in preserved in the learned embeddings.

Recently, the DeepWalk algorithm has been the first to apply the lan-
guage model to networks. Sequences of nodes are obtained by short random
walks [19], which are then fed to SkipGram. Intuitively, close nodes will tend
to have similar contexts (sequences) and thus have embeddings that are close
to each other. This basic idea has been later expanded in several ways [9,24].

NRL methods have largely focused only on the structure of the graphs
and have paid less attention to other potential sources of information. Modern
networks may have rich content associated with nodes or edges, usually in the
form of attributes. For example, in a social network where nodes are people
and edges are (follower / friendship) relationships between them, attributes
may include the group memberships, the school attended, the workplace, etc.

Attributes are invaluable in cases where structural information is missing,
or when structurally unrelated vertices have high attribute similarity. For ex-
ample, in Figure 1, vertex 9 is disconnected, but with the aid of attributes, it
can have a representation similar to vertex 6. In the same way, vertices 1 and
8 are structurally far away from each other, but they have similar attributes,
thus they should be close to each other in a low-dimensional space.

Similarly to structural contexts, we can define the context of vertices in
terms of attributes, but it is a challenging task to generate attribute contexts
from attributed graphs, in particular when the coverage of attributes is only
partial, as in Figure 1. The labels of vertices are used in the classification task.

In this paper, we introduce the gat2vec framework that jointly learns
from both the structure and the attributes of the network using a single neural
layer. Structural contexts are obtained from the graph, preserving structural
proximities; attribute contexts are obtained from a bipartite graph linking
vertices and their attributes, preserving content proximities.

The proposed framework learns a representation in an unsupervised man-
ner, scaling to large graphs, for both directed and undirected homogeneous

gat2vec: Representation Learning for Attributed Graphs 3

Fig. 1 An example of a partially attributed graph.

graphs. Our approach is novel as it leverages multiple sources of information
through early fusion and needs to optimize a single objective function. Further-
more, we will present a semi-supervised variant of gat2vec called gat2vec-
wl, where labels are incorporated as attributes to enhance the learning of
embeddings.

We empirically evaluated and validated our approach on vertex classifica-
tion (multi-class & multi-label) and link prediction, on real-world attributed
networks. The qualitative analysis from visualization and query task also val-
idates our approach.

The rest of the paper is organized as as follows. Section 2 discusses the
related work. In Section 3 we introduce some definitions and formally describe
the problem. In Section 4 we present our proposed framework gat2vec. We
describe the experimental setup and experimental results in Section 5, before
concluding in Section 6.

2 Related Work

The embedding of a graph can be learned using the structure, the attributes
of nodes, or a combination of them. Based on the network structure, various
approaches [25,26,19,21] have been proposed to learn network representations
that preserve the structural proximities of all nodes. Tang et al. [25] generates
the representation from the top-d eigenvectors of the modularity matrix of
the graph; later they proposed SocioDim [26], which generates an embedding
from the d-smallest eigenvectors of the normalized Laplacian matrix. Most re-
cently, deep learning methods have been used to learn embeddings. In their
seminal paper, Perozzi et al. [19] proposed DeepWalk, a generalized Skip-
Gram model [16] to learn a representation of a graph. SkipGram is a neural
network model for learning representation of words in text. DeepWalk gen-
erates a set of random walks for each vertex, that are provided as input to
SkipGram as if they were sentences. Since random walks capture only the
local structure by producing walks over first-order proximity and neglect the

4 Nasrullah Sheikh et al.

global structure, Tiag et al. proposed line [24], which preserves both the lo-
cal and global network structure by capturing first-order proximity as well as
second-order proximity. The second-order proximity is defined in terms of the
number of shared neighbors between two vertices. Grover et al. [9] pointed
out that a vertex has two relations with other nodes in a network, namely
homophily and structural equivalence. Vertices that have similar roles in a
network (e.g., hubs) have structural equivalence. Based on this observation,
Node2Vec has been proposed [9]. In Node2Vec, Depth First Search (DFS)-
or Breadth First Search (BFS)-biased random walks are performed to capture
either the homophily or the structural equivalence, respectively.

Another possible approach to learn an embedding of a graph is to use the
content/attributes of nodes and omit the structure of graph. On the content
information, various state-of-art text-based approached can be used, such as
topic models like LDA [1], deep neural networks like SkipGram [16] or the
Paragraph Vector Model introduced by Le and Mikolov [14].

When leveraging the heterogeneous information from both the structure
and the attributes, the learned representation tend to be more accurate. The
attributes enable to exploit the contextual information in order to learn embed-
dings for sparsely connected or even disconnected nodes. While the structure
enables to maintain the structural proximity of nodes in learned embeddings,
the two sources of information complement each other in learning the precise
low-dimensional embedding of nodes. Yang et al [29] showed that DeepWalk
is equivalent to factorizing an adjacency matrix M and proposed a model
called TADW which incorporates text features of nodes by factorizing a text-
associated matrix. Although its promising results, TADW has several limi-
tations: (1) it factorizes an approximate matrix, hence, the representation is
poor; (2) it highly depends on computationally expensive Singular Value De-
composition (SVD); (3) it does not scale-up to large graphs. Kefato et.al [12]
proposed to use diffusion event information of a network besides structure and
content information to learn a representation which preserves the diffusion
context besides structural and content contexts of vertices.

Various semi-supervised approaches [18,11,30,23] have been proposed, us-
ing label information to learn an embedding. The labels are the classes as-
sociated with the vertices and are used in training the classifier on learned
embeddings for tagging the non-labeled nodes. The results show that by incor-
porating the labels in the learning process, the embeddings tend to be precise.
The intuition behind using label information is that nodes with similar labels
tend to have strong interconnections and high similarity of attributes, thus,
should be embedded closely. Pan et al. [18] proposed Tri-Party Deep Network
Representation (TriDNR) to use three sources of information: structure, text,
and partial labels for embeddings. TriDNR uses two layers of neural network:
one based on DeepWalk to learn a representation based on structure, while
the second layer employs Doc2Vec [14] to learn a representation on content
and partial labels. The final representation is a linear combination of the two.
Other approaches, such as Planetoid [30] use only labels along with structure
in learning an embedding. Planetoid proposed the use of both transductive

gat2vec: Representation Learning for Attributed Graphs 5

and inductive models for jointly predicting the class label and neighborhood
contexts.

The above mentioned approaches work with homogeneous networks. Re-
cent works [6,23] learn the representation of nodes in heterogeneous net-
works. Dong et al. proposed metapath2vec [6], which uses the metapath-
based random walks to generate the semantic relationship between different
kind of nodes in the network. However, the work ignores the relationships
between similar nodes, such as citations between papers. Predictive Text Em-
bedding(PTE) [23], a semi-supervised approach embeds a heterogeneous text
network which include words, documents and labels. Recent advances in NRL
methods include convolutional networks [13] and inductive learning-based ap-
proaches [10].

3 Problem Definition

We consider an attributed graph G = (V,E,A), composed of a set of vertices
V , a set of edges E, and an attribute function A : V → 2A, where A is the set
of all possible attributes.

Consider for example a citation network: nodes could be papers, directed
edges could be citations among them, while attributes could be the title, the
keywords, topics, etc.

The objective of network representation learning is to embed vertices in a
low-dimensional space where the graph properties such as pairwise relation-
ships between vertices, the structure of vertex local neighborhood, and the
attribute similarities of vertices in the input space are preserved. The proper-
ties between vertices can be captured through local information (e.g. followers,
citations, friendship relations) or global information (e.g. h-hop neighborhood,
community affiliation). The similarity of a vertex with respect to other vertices
represents its contextual information. The contexts obtained using structural
information of the network are called structural contexts.

Likewise, we can obtain attribute contexts based on the attributes of the
nodes. The contextual information based on attributes defines the semantic
relationship between vertices. For example, in a citation network, two papers
having similar keywords share contextual information irrespective of their dis-
tance in structure.

We investigate the problem of integrating structural and attribute con-
textual information obtained from a partially attributed graph and employ
a neural network model to jointly learn a representation of the vertices in a
low-dimensional space. Informally, the problem can be described as follows:

Problem Given an attributed graph G as shown in Figure 1, we aim at learning
a low-dimensional network representation Φ : V → Rd, where d � |V | is the
dimension of the learned representation, such that the structural and attribute
contextual informations are preserved.

6 Nasrullah Sheikh et al.

Fig. 2 A graph depicting the structural relationships between vertices.

The learned representation Φ is generic and can provide feature inputs for
various machine learning tasks, such as classification and link prediction. Its
validity is evaluated through such machine learning tasks; the precise figure
of merits to be used are described in the respective Sections 5.4 and 5.5. For
example, if the learned representation is able to classify vertices with high
precision and recall (combined as F1 score), that means that the contextual
information of vertices is well-preserved.

In this paper, we evaluate our approach on classification of vertices (multi-
class and multi-label) and link prediction. We also perform a qualitative anal-
ysis (nearest-neighbor search and visualization).

In this paper, we consider G as a homogeneous, un-weighted and partially
attributed graph.

4 GAT2VEC Framework

In this section, we present a detailed description of our proposed frame-
work gat2vec1 (Figure 4) which learns a network embedding from structural
and attribute information. For each vertex, we obtain its structural and at-
tribute contexts with respect to other vertices through random walks. Then,
we integrate these two contexts to learn an embedding which preserves both
structural and attribute proximities. The gat2vec method is outlined in Al-
gorithm 1. Specifically, our framework consists of three stages:

– Network generation
– Random walks
– Representation learning

4.1 Network Generation

From the attributed graph, G, we obtain two graphs:

(1) A connected structural graph Gs = (Vs, E), consisting of a subset Vs ⊆ V
of vertices that have connections included in the set E of edges. We refer

1 https://github.com/snash4/GAT2VEC

gat2vec: Representation Learning for Attributed Graphs 7

Fig. 3 A bipartite graph between content nodes and attributes.

to vertices in Vs as structural vertices. An edge (ps, qs) ∈ E encodes a
structural relationship between nodes as shown in Figure 2.

(2) A bipartite graph Ga = (Va,A, Ea), consisting of (i) the subset of content
vertices Va ⊆ V that are associated with attributes, (ii) the set of possible
attribute vertices A as given in the definition of attributed graph in section 3,
and (iii) the set of edges Ea connecting content vertices to the attribute
vertices that are associated by function A:

Va = {v : A(v) 6= ∅}
Ea = {(v, a) : a ∈ A(v)}

Proposition 1 Two content vertices u, v ∈ Ga are reachable only via attribute
vertices.

Following Proposition 1, the path between content vertices contains both
content and attribute vertices. Therefore, the content vertices contained in
the path have a contextual relationship because they are reachable via some
attribute vertices. These content vertices form the attribute contexts. The
intuition behind our approach is “two entities are similar, if they are connected
with similar objects”. This phenomenon can be observed in many applications,
e.g. in the bipartite “user-product” graphs, where “users” buy “products” and
two users are similar if they buy similar products.

Such bipartite network structure has also been used in [23] which models
a network between documents and the words present in them.

4.2 Random Walks

Informally speaking, similarity between entities could be measured in several
ways. For example, it could be measured based on the distance of two nodes
in the graphs. In the attributed graph of Figure 3, e.g., nodes 2 and 8 are both
one attribute away from node 1, and thus we could say that they have equal

8 Nasrullah Sheikh et al.

similarity to 1; but there three paths connecting 1 and 8, while there are only
two paths connecting 1 and 2; thus, 1 and 8 are more similar than 1 and 2.

While several approaches have been used [19,9,18,24,27], we adopt short
random walks to obtain both the structural and the attribute contexts of
vertices at the same time. The short random walks enable to effectively capture
the contexts in which nodes have high similarity [19].

Random walks are performed on both Gs and Ga. The random walks over
Gs capture the structural context. For each vertex, γs random walks of length
λs are conducted to build a corpus R. This contextual information is used
in the embedding, with the aim of maintaining the local and global structure
information. We denote ri as the i-th vertex in the random walk sequence
r ∈ R.

For example, a random walk in the graph of Figure 2 could be the following:
r = (2, 3, 4, 3, 1), with length length 5, starting at vertex 2 and ending at vertex
1.

In the bipartite graph Ga, a random walk starts with a content vertex and
jumps to other content vertices via attribute nodes. The attribute vertices
act as bridges between content vertices and help in determining the contextual
relationships among them, i.e. which content vertices are closely related. As
we are interested in how often such vertices co-occur in random walks and not
in which attributes have been traversed to connect them, we have omitted the
attributes in our random walks. Thus, the walks contain only vertices from Va.
Group of vertices that have high similarity in attributes are likely to appear
frequently together in the random walks. Similar to Gs, we perform γa random
walks of length λa and build a corpus W , and wj specifies the j-th vertex in
random walk sequence w ∈W .

For example, a random walk with attributes in the graph of Figure 3 could
be the following: [2, b, 1, c, 8, b, 2, b, 8]. Since we are skipping attribute nodes
in walks, therefore the corresponding walk is w = [2, 1, 8, 2, 8], with length 5,
starting from vertex 2 and terminating in vertex 8.

4.3 Representation Learning

The architecture of gat2vec is shown in Figure 4. The input is given by
structural and attribute contexts obtained from the respective graphs (line
11, 12 of Alg. 1). We use the SkipGram model to jointly learn an embedding
based on these two contexts. From each context, structural or attribute, a
vertex Vx ∈ Vs|Va is selected and is input to SkipGram. The input vertex is
one-hot encoded vector {0, 1}|Vs∪Va|. The input vertex Vx is the target vertex
and the output layer produces the 2c multinomial distributions of associated
context vertices to the given input vertex. c is the context size i.e, the number
of predicted vertices before or after the target vertex. Likewise, the output
vertices can belong either to structural vertices or to attribute vertices, or to
both, depending on their co-occurrence in random walks.

gat2vec: Representation Learning for Attributed Graphs 9

Fig. 4 The Architecture of gat2vec.

Algorithm 1: The gat2vec Algorithm

Input : An Attributed Graph G = (V,E,A)
Output : Φ : V → Rd, d� |V |
Parameters : walks per node γs, γa;

length of walks λs, λa;
context window size c;
embedding size d

1 Obtain Gs and Ga from G
2 for v ∈ Vs ∪ Va do
3 initialize Φ(v) // initializing the vectors
4 end
5 for u ∈ Vs do
6 Rs(u) = RandomWalks(Gs, u, γs, λs)
7 end
8 for v ∈ Va do
9 Wa(j) = RandomWalks(Gs, v, γa, λa)

10 end
11 R = ⊕u∈VsRs(u)
12 W = ⊕v∈VaWa(v)
13 Φ = SkipGram(R,W, c) // as per equation. 1
14 return Φ

Given a target vertex, the objective of gat2vec model is to maximize
the probability of its structural and attribute contexts. Similar to previous
studies [19,9], we follow the assumption that given a target vertex, the proba-
bility of a context vertices are independent of each other. Therefore, learning
is described by the following objective function:

L =
∑
r∈R

|r|∑
i=1

log p(r−c : rc|ri) +
∑
w∈W

|w|∑
i=1

log p(w−c : wc|wi) (1)

The equation 1 can be written as:

L =
∑
r∈R

|r|∑
i=1

∑
−c≤ j≤ c

j 6=i

log p(rj |ri) +
∑
w∈W

|w|∑
i=1

∑
−c≤ t≤ c

t 6=i

log p(wt|wi) (2)

10 Nasrullah Sheikh et al.

where r−c : rc and w−c : wc correspond to a sequence of vertices inside a
contextual window of length 2c in random walks contained in corpus R and
W , respectively.

The first term uses the structural contexts, while the second is for learning
from attribute contexts. If |Va| = 0, then the model will become DeepWalk,
i.e learns only from structure. The term p(rj |ri) is the probability of the j-th
vertex when ri is the central vertex in the structural context r, while the term
p(wt|wi) is the probability of the tth vertex when wi is the central vertex in the
attribute context w. These probabilities can be computed using the softmax
function. The probability p(rj |ri) can be computed as:

p(rj |ri) =
exp

(
ϕ(rj)

TΦ(ri)
)∑

vs∈Vs
exp

(
ϕ(vs)TΦ(ri)

) (3)

where ϕ(·), Φ(·) are representations of a vertex when it is considered as
a context vertex or a target vertex respectively. Similarly, we can compute
p(wt|wi) following Equation 3.

The softmax calculation is computationally expensive due to normalization
over all vertices of a graph. Thus, we approximate it by using the hierarchical
softmax function [17]. Following [14], we used Huffman coding to build binary
trees for hierarchical softmax which has vertices as leaves. Therefore, in order
to compute the probability, we just need to follow the path from the root to
the leaf node of the tree. Thus, the probability of a leaf node rj to appear in
the structural context is:

p(rj |ri) =

d∏
h=1

p(sh|Φ(ri)), (4)

where d = log |Vs| is the depth of the tree and sh are the nodes in the path with
so = being the root and sd = rj . Furthermore, modeling p(rj |ri) as a binary
classifier reduces the computational complexity to the order of O(log(|Vs|).
The same can be applied to compute the probability for vertices in attribute
contexts. Given that we are computing the probabilities from two contexts,
this leads to the overall computational complexity of O

(
log |Vs|+ log |Va|

)
.

4.4 gat2vec-wl

In our work, we can also exploit the labels for precise learning of an embedding
in a semi-supervised manner. The idea behind this approach is that the vertices
sharing labels are similar and thus should be encoded close to each other
in the embedding. We propose gat2vec-wl to incorporate labels associated
with content vertices as attributes of vertices. The labels will be defined as an
attribute vertex in the bipartite graph defined in Section 4.1. The labels will
be helpful in generating the contexts in which the vertices sharing labels will
appear together.

gat2vec: Representation Learning for Attributed Graphs 11

Table 1 Dataset Statistics

Dataset |V | |E| # #Lbl Vs Va |A| |Ea|
Lbls Vertices

dblp 60,744 52,890 4 60,744 17,725 60,720 8618 356,230
CiteSeer 38,996 77,218 10 10,310 36,227 10,107 3986 59,477
BlogCatalog 70,004 1,409,112 60 70,004 55,771 57,709 5413 269,363

Since real-world networks are partially labeled, therefore, we randomly
pick a percentage LP of labeled content vertices and incorporate their labels
as attributes. After learning an embedding, these selected vertices are used in
subsequent machine learning tasks. For example, for classification, we train
our classifier on these selected vertices and predict labels for the rest.

5 Experiments

In this section, we provide an overview of widely used datasets and discuss
the details of the experimental setup to compare the performance of our pro-
posed approach, gat2vec, against a collection of state-of-the-art approaches.
We will validate the representation learned so far to perform two important
tasks, namely vertex classification and link prediction.

5.1 Datasets

We use three real-world datasets: the social network BlogCatalog [2] and
the citation networks dblp [5] and CiteSeer [4]. Table 1 summarizes their
statistics, including information about the associated structural and attribute
graphs.

dblp and CiteSeer are widely used for experimentation [18]. dblp con-
tains bibliographic data in computer science, extracted from a selected list of
34 conferences from 4 research areas. CiteSeer is a multi-disciplinary dataset
consisting of papers from 10 research fields.

In the dblp and CiteSeer datasets, the title of the paper constitutes the
vertex content. We pre-process these titles to remove stop words. From each
dataset, we selected the words occurring at least th times as vertex attributes.
At th = 3, dblp, CiteSeer and BlogCatalog have 8618, 3986, and 5413
attributes, respectively.

BlogCatalog [28] is a social network of bloggers. The labels represent
the interests of bloggers and each blogger may be associated to multiple labels.
The attributes are keywords generated from users blog.

12 Nasrullah Sheikh et al.

5.2 Baseline Methods

We compare gat2vec against state-of-the-art NRL algorithms for learning
graph embeddings: two structure-based methods (Node2Vec and DeepWalk),
one content-based (Doc2Vec), and two methods using both structure and
content (TriDNR and TADW). We also consider variants of TriDNR and
TADW. All the results in this paper are obtained using the code released by
the authors.

– Node2Vec [9] uses biased random walks to generate the vertex sequences
based on in-out parameters p, q. For each of our datasets, we learned these
hyper-parameters as described in the original paper.

– DeepWalk [19] is an approach based on random uniform walks to learn
a d-dimensional feature representations of vertices in a network using only
structure information.

– Doc2Vec [14] is an unsupervised neural network model to learn a repre-
sentation for variable length texts such as sentences, paragraphs or docu-
ments. The model learns both word vectors and document vectors. We fed
the text associated with each vertex to the model and obtained a repre-
sentation for each vertex.

– TriDNR [18] is a learning model which uses three sources of information:
network structure, vertex content, and label information to learn the rep-
resentation of vertices. TriDNR uses two models: DeepWalk to learn
the representation from structure, and Doc2Vec to capture the context
related to node content and label information. The final representation is
a linear combination of outputs of these two models.

– TriDNR noLbl is an unsupervised variant of TriDNR which learns a
representation without using vertex labels.

– TADW [29] learns a d-dimensional representation of vertices by factorizing
a text-associated matrix. Before factorizing the matrix, the features are
reduced using SVD.

– TADW noSVD is a modified version of TADW in which we fetched
raw feature vectors of vertices without performing SVD on them to learn a
representation of a network.

– gat2vec-wl is a semi-supervised variant of gat2vec to learn a represen-
tation using labels as attributes.

– gat2vec-bip is another version of gat2vec which learns a representation
on the bipartite graph only. Thus, no structural information is used for
learning.

5.3 Experimental Setup & Parameter Settings

We perform multi-class classification on dblp and CiteSeer, and multi-label
classification on BlogCatalog using the respective learned representation.

We set the parameters of gat2vec as follow: number of walks, γs = 10
and γa = 10; walk length, λs = 80 and λa = 80. The representation size is

gat2vec: Representation Learning for Attributed Graphs 13

d = 128; window size is c = 5, the threshold th is equal to 3. For fairness of
comparison, the parameters that are in common between gat2vec and the
other methods are set with the same value, while the rest of the parameters
are set to their optimal default values as reported in the respective papers.

5.4 Vertex Classification

For classification, we used one-vs-rest logistic regression classifier Liblin-
ear [7] with default parameters for training the data, and then predict the un-
labeled vertices. We randomly selected a sample of size TR ∈ {10%, 30%, 50%}
of vertices as training set to train the classifier and used the rest as a test set.

In case of gat2vec-wl, we randomly selected a percentage of labeled
vertices, LP ∈ {10%, 30%, 50%} and incorporated their values as attributes
for learning a representation. Then these labeled vertices are used in training
the classifier and predicting the labels of the remaining vertices.

The metrics used to compare our approach against the baselines are the
widely used Micro-F1 and Macro-F1 scores. For fairness in comparison, we
used the same training set of gat2vec across all baselines for training the
classifier. For each training ratio, we repeat the process 10 times and report
the average scores.

Results and Discussion Tables 2–4 show the Micro-F1 and Macro-F1
results on the dblp, CiteSeer and BlogCatalog datasets. The results are
consistent with the results reported in the baselines. gat2vec outperforms all
baseline methods in all three datasets, even when a small number (TR = 10%)
of vertices are used for training. This makes gat2vec suitable in real-world,
sparse-labeled datasets.

The results validate our approach of generating structural and attribute
contexts and then subsequently learn the representation from both of them. In
fact, gat2vec beats the state-of-the-art, attribute-based method TriDNR in
all three datasets. This implies that properly modeling attribute information
increases the preciseness of embeddings.

Furthermore, gat2vec outperforms TADW in all datasets. This is due
to the structural and attribute sparsity. The impact of attribute sparsity can
be ascertained from results of CiteSeer dataset which is much more sparse
than dblp, as only 10,310 out of 38,996 vertices have titles associated with
them. This is also the reason of deviation from reported results in TriDNR
which learns a representation using only 10,310 vertices. The other reason
for this poor performance is due to using an approximation of DeepWalk.
The dismal performance of TADW noSVD shows high dependence of the
TADW approach on the costly SVD method; without SVD, the sparsity issue
is aggravated as shown in Table 3 for the CiteSeer dataset.

gat2vec-bip outperforms the content-based method Doc2Vec in Blog-
Catalog dataset, but has almost similar performance in case of CiteSeer

14 Nasrullah Sheikh et al.
T
a
b
le

2
M

u
lt

i-
cl

a
ss

C
la

ss
ifi

ca
ti

o
n

o
n
d
b
l
p

M
e
tr
ic

T
R

D
e
e
p
W
a
l
k

N
o
d
e
2
V
e
c

D
o
c
2
V
e
c

g
a
t
2
v
e
c
-

b
ip

T
A
D
W

T
A
D
W

n
o
S
V
D

T
r
iD

N
R

n
o
L
b
l

g
a
t
2
V
e
c

M
ic
r
o
F
1

1
0
%

5
1
.8

4
8
.9

7
4
.2

7
6
.5

6
8
.4

6
0
.8

7
4
.3

7
9
.0

3
0
%

5
2
.5

4
9
.3

7
6
.1

7
7
.4

6
8
.8

6
1
.0

7
4
.8

7
9
.4

5
0
%

5
2
.7

5
0
.0

7
8
.0

7
7
.6

6
9
.0

6
1
.1

7
5
.1

7
9
.5

M
a
c
r
o
F
1

1
0
%

4
1
.0

4
4
.7

6
7
.2

7
0
.1

6
2
.9

5
6
.1

6
7
.0

7
2
.6

3
0
%

4
2
.1

4
5
.4

7
0
.0

7
0
.8

6
3
.1

5
6
.5

6
7
.7

7
3
.1

5
0
%

4
2
.3

4
5
.7

7
1
.2

7
1
.1

6
3
.5

5
6
.5

6
8
.2

7
3
.4

T
a
b
le

3
M

u
lt

i-
cl

a
ss

C
la

ss
ifi

ca
ti

o
n

o
n
C
it
e
S
e
e
r

M
e
tr
ic

T
R

D
e
e
p
W
a
l
k

N
o
d
e
2
V
e
c

D
o
c
2
V
e
c

g
a
t
2
v
e
c
-

b
ip

T
A
D
W

T
A
D
W

n
o
S
V
D

T
r
iD

N
R

n
o
L
b
l

g
a
t
2
v
e
c

M
ic
r
o
-F

1
1
0
%

4
4
.0

6
3
.7

6
0
.9

6
5
.5

4
9
.0

3
2
.5

6
3
.3

6
6
.3

3
0
%

4
7
.8

6
6
.5

7
0
.0

7
0
.2

5
1
.2

3
5
.2

6
7
.6

7
0
.7

5
0
%

4
9
.0

6
7
.3

7
2
.8

7
1
.4

5
1
.8

3
6
.0

6
9
.8

7
2
.0

M
a
c
r
o
-F

1
1
0
%

3
5
.1

5
4
.6

5
5
.5

6
1
.4

4
4
.0

2
8
.4

5
7
.8

6
2
.2

3
0
%

3
7
.9

5
6
.3

6
6
.4

6
6
.5

4
5
.8

3
0
.5

6
2
.0

6
7
.1

5
0
%

3
9
.0

5
7
.0

6
8
.8

6
7
.8

4
6
.4

3
1
.4

6
4
.5

6
8
.5

T
a
b
le

4
M

u
lt

i-
la

b
el

C
la

ss
ifi

ca
ti

o
n

o
n
B
l
o
g
C
a
t
a
l
o
g

M
e
tr
ic

T
R

D
e
e
p
W
a
l
k

N
o
d
e
2
V
e
c

D
o
c
2
V
e
c

g
a
t
2
v
e
c
-

b
ip

T
A
D
W

T
A
D
W

n
o
S
V
D

T
r
iD

N
R

n
o
L
b
l

g
a
t
2
v
e
c

M
ic
r
o
-F

1
1
0
%

2
9
.8

3
1
.0

4
0
.3

4
7
.3

3
8
.0

2
4
.8

3
4
.2

4
9
.5

3
0
%

3
1
.8

3
2
.5

4
1
.4

4
9
.2

3
8
.8

2
5
.4

3
6
.3

5
1
.2

5
0
%

3
2
.2

3
2
.8

4
1
.9

4
9
.6

3
9
.0

2
5
.9

3
6
.8

5
1
.6

M
a
c
r
o
-F

1
1
0
%

1
6
.2

1
7
.0

2
3
.4

3
4
.0

2
3
.4

8
.1

2
1
.0

3
6
.3

3
0
%

1
7
.8

1
8
.6

2
5
.8

3
6
.6

2
4
.3

8
.2

2
1
.5

3
8
.8

5
0
%

1
8
.6

1
8
.8

2
6
.6

3
7
.0

2
4
.6

8
.5

2
2
.2

3
9
.3

gat2vec: Representation Learning for Attributed Graphs 15

Table 5 Macro-F1 score of classification (using labels)

Dataset Tr TriDNR gat2vec-wl

dblp
10% 69.5 75.2
20% 72.0 81.4
30% 72.2 86.3

CiteSeer
10% 64.0 79.2
20% 71.1 77.0
30% 73.8 83.0

BlogCatalog
10% 21.0 39.7
20% 23.8 53.0
30% 24.9 63.8

and dblp datasets. This highlights the appropriate modeling of attribute in-
formation even in cases when attribute information is non-cohesive and se-
mantically unrelated such as in BlogCatalog dataset.

In the case of CiteSeer and dblp datasets, Doc2Vec uses only titles
of papers which has rich information as compared to the structure. Thus,
it performs better than DeepWalk but has comparable performance with
Node2Vec as it exploits the structural information much efficiently than
DeepWalk. Furthermore, in BlogCatalog dataset, Doc2Vec under-performs
as the contents do not contain rich information. In this case, our modeling
proves to be better as shown by results of gat2vec-bip.

Structure-based methods such as DeepWalk and Node2Vec perform
poorly, justifying the use of information from multiple sources to learn embed-
dings.

Table 5 shows the Macro-F1 of the three datasets when the labels are
incorporated in learning the embedding. We have included just TriDNR as it
is the only baseline which uses labels and attributes in learning. The results of
gat2vec prove our claim that including the labels increases the quality of em-
bedding in classification task. Furthermore, it also implies that our proposed
approach of incorporating attributes is sufficient to generate the proper con-
texts. gat2vec has superior performances with respect to TriDNR, which
in turn implies that performs better than the rest of the baselines.

5.5 Link Prediction

One important network analysis task is link prediction, and in the following
we present the setting and comparison of gat2vec and the baselines for this
task. We follow a similar strategy as [27,9] and sample 15% of the observed
or true edges (TE ⊂ E) and remove them from the graph while ensuring the
residual network is connected. We also sample 15% false edges (FE

⋂
E =

∅). Next, each network representation algorithm is trained using the residual
network. Once the training is complete, we get an embedding for each node.
Then we predict the probability of an edge (u, v) being a true edge, for all
edges (u, v) ∈ TE

⋃
FE that we have just sampled, according to the following

16 Nasrullah Sheikh et al.

Table 6 P (k) for Link Prediction on dblp

DeepWalk Node2Vec TADW TriDNR gat2vec

P(1000) 0.93 0.92 1.0 0.95 0.99
P(5000) 0.67 0.73 0.80 0.70 0.93
P(10000) 0.54 0.59 0.54 0.52 0.68
P(15000) 0.43 0.45 0.41 0.42 0.48
P(20000) 0.34 0.34 0.33 0.33 0.37
P(25000) 0.27 0.27 0.37 0.38 0.30

Table 7 P (k) for Link Prediction on BlogCatalog

DeepWalk Node2Vec TADW TriDNR gat2vec
P(1000) 0.85 0.92 0.20 0.81 0.74
P(5000) 0.70 0.71 0.17 0.89 0.64
P(10000) 0.66 0.65 0.18 0.51 0.63
P(15000) 0.63 0.63 0.19 0.49 0.63
P(20000) 0.62 0.61 0.20 0.48 0.63
P(25000) 0.61 0.60 0.21 0.47 0.62

equation.

p(u, v) =
1

1 + exp−Φ(u).Φ(v)
(5)

We finally rank edges according to the probability p and consider the top-
k ones in the ranking at different values of k and measure the prediction
performance using precision at k, P (k). Let R be set of edges ranked according
to p and Rk be the top-k elements of R. Then, P (k) computes the fraction of
correctly predicted edges from the top-k predictions, and it is specified by

P (k) =
|TE

⋂
Rk|

|Rk|
(6)

Results and Discussion The results for link prediction is given in Table 6–
7. One can notice that for the dblp dataset (Table 6), where the structural
network is very sparse, algorithms which are based only on the structural
knowledge produce poor result. Our algorithm, which alleviate the structural
sparsity by considering connections with attributes, significantly outperforms
the baselines including those that integrate attribute and label information.
Our finding also shows that when the structural network is sufficiently dense
(BlogCatalog), structure based algorithms could be sufficient in link pre-
diction as shown in Table 7.

5.6 Parameter Sensitivity

gat2vec requires various parameters to create Gs and Ga, and learn an em-
bedding. The sensitivity of the choice of parameters on structural networks

gat2vec: Representation Learning for Attributed Graphs 17

DBLP Blogcatalog CiteSeer

0.2 0.4 0.6 0.2 0.4 0.6 0.2 0.4 0.6
65

67

69

71

50

51

52

78.4

78.8

79.2

79.6

TR

M
icr

o-
F1

#Walks
5

10

15

20

(a)

DBLP Blogcatalog CiteSeer

0.2 0.4 0.6 0.2 0.4 0.6 0.2 0.4 0.6

67

69

71

73

49

50

51

52

78.4

78.8

79.2

79.6

TR

M
icr

o-
F1

Walk
Length

40

80

120

160

200

240

(b)

Fig. 5 Ga Parameter Sensitivity on: (a) Number of Walks(γa), (b) Walk Length(λa)

dblp

0.1 0.2 0.3 0.4 0.5
78.50

78.75

79.00

79.25

79.50

TR

M
icr

o−
F1

#Walks

5

10

15

20

25

(a)

dblp

0.1 0.2 0.3 0.4 0.5

78.4

78.8

79.2

79.6

TR

M
icr

o−
F1

Walk Length

40

80

120

160

200

240

(b)

Fig. 6 Ga Joint Parameter Sensitivity on: (a) Number of Walks(γa), (b) Walk Length(λa)
keeping only DBLP dataset and HAVE TO REMOVE OTHER DATASETS FROM FIG

have been investigated in previous works, such as [19,9]. We investigate the
parameter sensitivity of γa, λa, and th on attributed graph. Furthermore, we
analyze the joint parameter sensitivity of number of walks (γs, γa), and walk
length (λs, λa) on Gs and Ga. In these experiments, we evaluate on Micro-F1
under the same evaluation process given in Section 5.4. All other parameters
are set to default values unless mentioned.

18 Nasrullah Sheikh et al.

5.6.1 Impact of γa & λa

Figures 5(a,b) shows the effects of varying the number of walks per vertex and
the walk length on bipartite attribute graphs. We empirically observe that
these parameters have direct proportionality relationship with the sparsity. In
a very dense graph, a small number of short walks are adequate to explore the
neighborhood to capture the contexts. dblp is highly dense, while CiteSeer
is very sparse, as shown in Figure 7. Therefore, for dblp, our framework is able
to generate precise representations at lower values of γa and λa. Increasing the
number of walks and the walk length has detrimental effect on the learning
representation as it explores the large parts of the graph, which in turn gen-
erates contexts that are noisy i.e., include less significant vertices. In case of
CiteSeer, we see an opposite trend: precise representations are learned for
higher values of γa and λa. This is motivated by the sparsity of the dataset,
which is composed of 10 different disciplines, thus requiring a larger number
of longer walks to explore the graph adequately and generate the appropriate
contexts.

5.6.2 Impact of γs, γa, & λs, λa

Here we analyze the joint parameter sensitivity on the dblp dataset. In Fig-
ure 6(a) we increase the number of walks (γs, γa) jointly on both Gs and Ga,
while keeping walk length to 10. In second case 6(b), walk lengths are jointly
increased, while the number of walks is kept constant to 10. As discussed in
previous case, increasing the number of walks or walk length gathers more
contextual information, thus, learning more precise representations. But, an
excessive number of walks and large walk lengths are detrimental as it gen-
erates noisy contexts which lead to poor representation, as shown in case
γs = γa = 25 (Figure 6a), and λs = λa = 240 (Figure 6b).

Fig. 7 Sparsity of Attributed Graph Ga

5.6.3 Impact of th

We have shown the usefulness of attributes (Table 2–4) for learning high qual-
ity embeddings. We further stress upon the importance of attributes by varying
the parameter th. It is pertinent to mention that increasing the value of th

gat2vec: Representation Learning for Attributed Graphs 19

●

●

●

●

●

●

●

78.4

78.8

79.2

79.6

0 5 10 15 20 25
th

M
ic

ro
−F

1

DBLP

Fig. 8 Effect of parameter-th

implies a decrease in the number of attributes. From Figure 8, it is evident
that as we decrease the number of attributes, the accuracy of embeddings de-
creases. At th = 1, the performance is lower due to the noise introduced by
including all possible words as attributes.

5.7 Qualitative Analysis

To evaluate qualitatively the learned representations from our proposed ap-
proach, we performed Nearest Neighbor Search and visualization of the learned
embeddings.

5.7.1 Case Study

We carried out a case study on the dblp dataset, by selecting a query paper
and then obtaining the three nearest neighbors with respect to its representa-
tion, using the Cosine Distance metric. We generated an embedding through
gat2vec-wl, with 10% vertices labeled. The query paper is ”Group Forma-
tion in Large Social Networks: Membership, Growth, and Evolution”, which
has the highest number of citations in dblp (1666 on July 2017). The pa-
per studies the effect of network structure on the evolution of communities in
social networks. Therefore, the results of the nearest neighbors should have
attribute contexts related with social networks, communities, and evolution.
In addition, the resulting papers should also preserve its structural contexts.
Table 8 lists the query results on different embeddings, along with citation
relationship, and common citations between the query and the result.

The results returned by gat2vec are relevant in attribute contexts to the
query. The first and third results are cited by the query, which shows that
gat2vec preserves the direct proximity. Indirect proximities are preserved as

20 Nasrullah Sheikh et al.

Table 8 Nearest Neighbor Top 3 Results

Algorithm Query : Group Formation in Large Social Net-
works: Membership, Growth, and Evolution

Cites # Cit.

gat2vec 1. Microscopic Evolution of Social Networks Yes 4
2. Structure and Evolution of On-line Social Networks No 7
3. Maximizing the Spread of Influence through a Social
Network

Yes 14

TriDNR 1. Searching for Rising Stars in Bibliography Networks Yes 0
2. A Framework for Community Identification in Dy-
namic Social Networks

Yes 9

3. A Framework for Analysis of Dynamic Social Net-
works

Yes 2

TADW 1. Tutorial summary: Large social and information
networks: opportunities for ML

No 0

2. Exploring and Visualizing Academic Social Net-
works

No 0

3. Seeing Sounds: Exploring Musical Social Networks No 0
Node2Vec 1. Characterizing and Predicting Community Mem-

bers from Evolutionary and Heterogeneous Networks
Yes 0

2. Searching for Rising Stars in Bibliography Networks Yes 0
3. Constant-factor Approximation Algorithms for
Identifying Dynamic Communities

Yes 0

well, as it evidenced by the second query result which is not cited by the query
but have 7 common cited papers. Therefore, our proposed method gat2vec
generates accurate structural and attribute contexts which eventually help to
learn precise embeddings.

Apart from the first one, the results from TriDNR are quite related with
the query as they are either directly cited or have common citations with
query paper. The results from TADW have some relevance with the query.
But structurally, there is neither citation relationship nor any common cited
papers with the query paper. The possible reason for such poor results could
be due to matrix approximation for obtaining structural contexts. Node2Vec
results show what happens when ignoring the attribute information, nonethe-
less Node2Vec exploits the structural information as the results and query
have a direct relationship.

The above qualitative analysis support the claim that using multiple sources
of information aids in learning the precise embeddings.

5.7.2 Network Visualization

The learned embedding can be projected in a two dimensional plane to visual-
ize the co-relationship between the nodes. We use the learned embedding from
TriDNR, TADW, and Node2Vec on the CiteSeer dataset for comparison.
Papers which cite less than five papers are filtered out. Since these embeddings
are in a higher dimensional space, we use t-SNE [22] to reduce these to 2-D
space. The visualizations of different approaches are given in Figure 9.

The visualization using TADW is not very meaningful; in fact, the papers
belonging to Social Sciences, Biology are not clustered. A small dispersion of

gat2vec: Representation Learning for Attributed Graphs 21

80 60 40 20 0 20 40 60 80
80

60

40

20

0

20

40

60

80
gat2vec

80 60 40 20 0 20 40 60 80
80

60

40

20

0

20

40

60

80
TriDNR

80 60 40 20 0 20 40 60 80
80

60

40

20

0

20

40

60

80
TADW

80 60 40 20 0 20 40 60 80
80

60

40

20

0

20

40

60

80
Node2Vec

Agriculture

Architecture

Biology

Computer Science

Financial Economics

Industrial Engineering

Material Science

Petro-chemical

Physics

Social Sciences

Fig. 9 2-D t-SNE Projection of CiteSeer Dataset

Social Sciences papers is acceptable as they are cross-cited across different
fields such as Computer Science. Unfortunately, no proper cohesive group is
formed here. The problem is related to the use of the approximation approach
for random walks. The results from Node2Vec are much better, as it depicts
some communities properly (Financial Economics, Computer Science). This
is because Node2Vec performs biased walks which are effective in capturing
the structural equivalences.

The TriDNR performs quite well as some clearly defined clusters can
be seen compared to other two approaches. It still does not learn meaningful
embeddings as papers from Social Sciences and Industrial Engineering are not
clustered but are dispersed. Our proposed approach gat2vec performs better
than all given methods. The clusters are well formed and depict the overlapping
properly. The papers from Social Sciences can be seen forming a well-defined
cluster in contrast to other approaches. In addition to it, this cluster is close
to Computer Science and Financial Economics clusters, which is plausible as
there are cross citations between these fields. Thus, our proposed approach
learns an embedding which preserves the structural and attribute equivalence
in the underlying graph.

6 Conclusion

In this paper, we propose gat2vec, which uses both network structure and
vertex attributes to learn a representation of an attributed graph. gat2vec
uses a novel method to acquire attribute contexts. We extract the structural

22 Nasrullah Sheikh et al.

contexts from the network, while the attribute contexts are obtained from a
bipartite graph of vertices and attributes. We employ a shallow neural network
model to jointly learn a representation from the two contexts. The paper shows
that by properly modeling multiple sources of information associated with the
network and by employing an appropriate learning methodology, the learned
representation can preserve as much information as the original input graph.
The extensive experiments on real-world datasets show that our approach can
learn precise representation of structural and attributes contexts of vertices in
the graph. This is corroborated by the significant gains over the state-of-art
baselines in vertex classification, link prediction tasks, and qualitative analysis.

For future work, a possible direction is to extend gat2vec to learn repre-
sentations of vertices in a heterogeneous network leveraging diverse informa-
tions associated with different types of vertices.

References

1. Blei, D.M., Ng, A.Y., Jordan, M.I.: Latent dirichlet allocation. J. Mach. Learn. Res. 3,
993–1022 (2003). DOI 10.1162/jmlr.2003.3.4-5.993

2. BlogCatalog (2017). URL http://dmml.asu.edu/users/xufei/datasets.html. Ac-
cessed: 2017-07-01

3. Chandola, V., Banerjee, A., Kumar, V.: Anomaly detection: A survey. ACM Comput.
Surv. 41(3), 15:1–15:58 (2009). DOI 10.1145/1541880.1541882

4. CiteSeer (2017). URL http://citeseerx.ist.psu.edu/. Accessed: 2017-07-01
5. dblp (2017). URL http://arnetminer.org/citation. Accessed: 2017-07-01
6. Dong, Y., Chawla, N.V., Swami, A.: Metapath2vec: Scalable representation learning for

heterogeneous networks. In: Proc. of the 23rd ACM SIGKDD International Conference
on Knowledge Discovery and Data Mining, KDD ’17, pp. 135–144. ACM, New York,
NY, USA (2017). DOI 10.1145/3097983.3098036

7. Fan, R.E., Chang, K.W., Hsieh, C.J., Wang, X.R., Lin, C.J.: LIBLINEAR: A library
for large linear classification. J. Mach. Learn. Res. 9, 1871–1874 (2008). DOI 10.1145/
1390681.1442794

8. Fouss, F., Pirotte, A., Renders, J.M., Saerens, M.: Random-walk computation of similar-
ities between nodes of a graph with application to collaborative recommendation. IEEE
Trans. on Knowl. and Data Eng. 19(3), 355–369 (2007). DOI 10.1109/TKDE.2007.46

9. Grover, A., Leskovec, J.: Node2vec: Scalable feature learning for networks. In: Proc. of
the 22Nd ACM SIGKDD International Conference on Knowledge Discovery and Data
Mining, KDD ’16, pp. 855–864. ACM, New York, NY, USA (2016). DOI 10.1145/
2939672.2939754

10. Hamilton, W.L., Ying, R., Leskovec, J.: Inductive representation learning on large
graphs. CoRR abs/1706.02216 (2017). URL http://arxiv.org/abs/1706.02216

11. Huang, X., Li, J., Hu, X.: Label informed attributed network embedding. In: Proc. of
the Tenth ACM International Conference on Web Search and Data Mining, WSDM ’17,
pp. 731–739. ACM, New York, NY, USA (2017). DOI 10.1145/3018661.3018667

12. Kefato, Z.T., Sheikh, N., Montresor, A.: Mineral: Multi-modal network representation
learning. In: Machine Learning, Optimization, and Big Data - Third International
Conference, MOD 2017, Volterra, Italy, September 14-17, 2017, Revised Selected Papers,
pp. 286–298 (2017). DOI 10.1007/978-3-319-72926-8 24

13. Kipf, T.N., Welling, M.: Semi-supervised classification with graph convolutional net-
works. CoRR abs/1609.02907 (2016). URL http://arxiv.org/abs/1609.02907

14. Le, Q.V., Mikolov, T.: Distributed representations of sentences and documents. CoRR
abs/1405.4053 (2014). URL http://arxiv.org/abs/1405.4053

15. Liben-Nowell, D., Kleinberg, J.: The link-prediction problem for social networks. J. Am.
Soc. Inf. Sci. Technol. 58(7), 1019–1031 (2007). DOI 10.1002/asi.v58:7

gat2vec: Representation Learning for Attributed Graphs 23

16. Mikolov, T., Chen, K., Corrado, G., Dean, J.: Efficient estimation of word represen-
tations in vector space. CoRR abs/1301.3781 (2013). URL http://arxiv.org/abs/

1301.3781
17. Morin, F., Bengio, Y.: Hierarchical probabilistic neural network language model. In:

Proc. of the Tenth Int. Workshop on Artificial Intelligence and Statistics, AISTATS’05.
Society for Artificial Intelligence and Statistics, Bridgetown, Barbados (2005)

18. Pan, S., Wu, J., Zhu, X., Zhang, C., Wang, Y.: Tri-party deep network representation.
In: Proc. of the Twenty-Fifth International Joint Conference on Artificial Intelligence,
IJCAI’16, pp. 1895–1901. AAAI Press (2016). URL http://dl.acm.org/citation.cfm?

id=3060832.3060886
19. Perozzi, B., Al-Rfou, R., Skiena, S.: Deepwalk: Online learning of social representations.

In: Proc. of the 20th ACM SIGKDD International Conference on Knowledge Discovery
and Data Mining, KDD ’14, pp. 701–710. ACM, New York, NY, USA (2014). DOI
10.1145/2623330.2623732

20. Sen, P., Namata, G.M., Bilgic, M., Getoor, L., Gallagher, B., Eliassi-Rad, T.: Collective
classification in network data. AI Magazine 29(3), 93–106 (2008). URL http://www.

cs.iit.edu/~ml/pdfs/sen-aimag08.pdf
21. Shaw, B., Jebara, T.: Structure preserving embedding. In: Proc. of the 26th Annual

International Conference on Machine Learning, ICML ’09, pp. 937–944. ACM, New
York, NY, USA (2009). DOI 10.1145/1553374.1553494

22. Tang, J., Liu, J., Zhang, M., Mei, Q.: Visualizing large-scale and high-dimensional data.
In: Proc. of the 25th International Conference on World Wide Web, WWW ’16, pp.
287–297. International World Wide Web Conferences Steering Committee, Republic
and Canton of Geneva, Switzerland (2016). DOI 10.1145/2872427.2883041

23. Tang, J., Qu, M., Mei, Q.: Pte: Predictive text embedding through large-scale hetero-
geneous text networks. In: Proc. of the 21th ACM SIGKDD International Conference
on Knowledge Discovery and Data Mining, KDD ’15, pp. 1165–1174. ACM, New York,
NY, USA (2015). DOI 10.1145/2783258.2783307

24. Tang, J., Qu, M., Wang, M., Zhang, M., Yan, J., Mei, Q.: Line: Large-scale information
network embedding. In: Proc. of the 24th International Conference on World Wide
Web, WWW ’15, pp. 1067–1077. International World Wide Web Conferences Steering
Committee, Republic and Canton of Geneva, Switzerland (2015). DOI 10.1145/2736277.
2741093

25. Tang, L., Liu, H.: Relational learning via latent social dimensions. In: Proc. of the 15th
ACM SIGKDD International Conference on Knowledge Discovery and Data Mining,
KDD ’09, pp. 817–826. ACM, New York, NY, USA (2009). DOI 10.1145/1557019.
1557109

26. Tang, L., Liu, H.: Leveraging social media networks for classification. Data Mining and
Knowledge Discovery 23(3), 447–478 (2011). DOI 10.1007/s10618-010-0210-x

27. Wang, D., Cui, P., Zhu, W.: Structural deep network embedding. In: Proc. of the 22Nd
ACM SIGKDD International Conference on Knowledge Discovery and Data Mining,
KDD ’16, pp. 1225–1234. ACM, New York, NY, USA (2016). DOI 10.1145/2939672.
2939753

28. Wang, X., Tang, L., Gao, H., Liu, H.: Discovering overlapping groups in social media.
In: Proc. of the 10th IEEE Int. Conf. on Data Mining, ICDM 2010, pp. 569–578. IEEE,
Sydney, Australia (2010). DOI 10.1109/ICDM.2010.48

29. Yang, C., Liu, Z., Zhao, D., Sun, M., Chang, E.Y.: Network representation learning
with rich text information. In: Proc. of the 24th International Conference on Artificial
Intelligence, IJCAI’15, pp. 2111–2117. AAAI Press (2015). URL http://dl.acm.org/

citation.cfm?id=2832415.2832542
30. Yang, Z., Cohen, W.W., Salakhutdinov, R.: Revisiting semi-supervised learning with

graph embeddings. CoRR abs/1603.08861 (2016). URL http://arxiv.org/abs/

1603.08861
31. Yu, X., Ren, X., Sun, Y., Gu, Q., Sturt, B., Khandelwal, U., Norick, B., Han, J.:

Personalized entity recommendation: A heterogeneous information network approach.
In: Proc. of the 7th ACM International Conference on Web Search and Data Mining,
WSDM ’14, pp. 283–292. ACM, New York, NY, USA (2014). DOI 10.1145/2556195.
2556259

