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Abstract Many practical problems in computer science require the knowledge of the
most frequently occurring items in a data set. Current state-of-the-art algorithms for
frequent items discovery are either fully centralized or rely on node hierarchies which
are inflexible and prone to failures in massively distributed systems. In this paper
we describe a family of gossip-based algorithms that efficiently approximate the most
frequent items in large-scale distributed datasets. We show, both analytically and using
real-world datasets, that our algorithms are fast, highly scalable, and resilient to node
failures.

1 Introduction

Many problems in various areas of computer science can be reduced to the problem of
discovering the most frequent items in a data set [7,11,5,8]. For example, the knowledge
of the most frequently accessed data is necessary to optimize cache performance in a
storage system. Similarly, the knowledge of the most frequent packet flows can be
used to optimize routing and resource usage in a network. Other applications include
intrusion detection (e.g., worm, fraud, or distributed denial of service attack), usage
pattern detection (e.g., suggestions in a search engine), and market analysis.

Classic algorithms for finding frequent items assume that all data storage and
processing is centralized [7,11,5,8]. To apply these algorithms to a distributed data set,
one would have to fetch all data items from the system to a single node, potentially
incurring in a large communication cost. Moreover, these centralized algorithms are
not easily parallelized. Even if one calculates the local item occurrence on each node in
a distributed system, identifying the globally frequent items is still non-trivial because
the globally frequent items might have a low local occurrence at individual nodes.

More recently, new approaches have been proposed for frequent item discovery in
distributed data sets [6]. However, these approaches are either based on a master-
slave model [4,2], where a master node performs all coordination and is a potential
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performance and reliability bottleneck, or rely on node hierarchies [13,14] which are
expensive in maintenance and prone to errors in large-scale, dynamic systems.

In this paper, we tackle the problem of frequent items discovery in an entirely
decentralized way. We consider three variants of the problem where the goal is to
determine (i) the k most frequent items, (ii) items with absolute frequency above a
given threshold, and (iii) items with relative frequency above a given threshold. We
introduce a family of simple gossip-based algorithms that efficiently solve all three
problems in large-scale distributed datasets.

In our approach, nodes first compute local frequencies of data items and then run
an aggregation protocol to discover the globally frequent items. The main advantage of
our algorithm is its very high scalability and resilience to failures. We formally prove
that our algorithm is correct and analytically derive upper bounds on its completion
time. We then validate our approach using real-world data traces, showing that the
algorithm correctly and efficiently identifies all frequent items, even under heavy churn.

The rest of paper is organized as follows. The system model and problem statement
are described in Section 2. Our algorithms are introduced in Section 3 followed by a
correctness proof in Section 4. Theoretical analysis and experimental validation are
described in Section 5 and Section 6, respectively. Finally, Section 7 compares our
approach to the state-of-the-art algorithms and Section 8 concludes the paper.

2 System model and problem statement

We consider a networked system consisting of a large collection P of computing nodes
storing a distributed multiset of data items taken from the universe I. Let N = |P | be
the number of nodes in the system and m = |I| be the number of distinct items.

Each node p stores a local subset of items Ip ⊆ I. We define local frequency Fp(i)
as the number of copies of item i at node p. For items not included in Ip, we define
Fp(i) = 0. We assume that nodes are able to compute local item frequencies using one
of the centralized algorithms discussed in Section 7.

Further, we define the global absolute frequency F (i) and the global relative fre-
quency F̂ (i) of item i as:

F (i) =
∑
p∈P

Fp(i)

F̂ (i) = F (i)/M

where M =
∑
i∈I F (i) is the total number of items (including copies) stored in the

system.
The problem we are addressing is to discover the k most frequent items (MF ). Let

j be the k-th item in the sequence of all items ordered by decreasing global frequency.
We are trying to identify items whose global frequency is larger than or equal to F (j):

MF = {i : F (i) ≥ F (j)}

Note that the size of MF could be larger than k because several items may have the
same global frequency as j.

Additionally, we are addressing two related problems: to identify absolutely frequent
items (AF ) whose global absolute frequency is larger than the absolute threshold f

AF = {i : F (i) ≥ f}
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and to identify relatively frequent items (RF ) whose global relative frequency is larger
than the relative threshold φ

RF = {i : F̂ (i) ≥ φ}

We are focusing on optimizing the communication cost in the distributed system
rather than minimizing the number of local data accesses as do the centralized algo-
rithms. As in other gossip protocols, we assume that nodes organize themselves into
a P2P overlay using an inexpensive membership maintenance protocol such as a peer
sampling service [10].

3 Algorithm

For presentation purposes, we first introduce a simple yet inefficient algorithm that
solves theMF problem and then describe an extended FreqMF algorithm that meets
practical requirements. At the end of this section we further modify the algorithm to
deal with the AF and RF problems.

3.1 Naive algorithm

The naive approach to discover the most frequent items is based on explicit approxima-
tion of global item frequencies using a well-known gossip-based averaging protocol [9].
We use the averaging protocol to estimate the average item frequency, 1

N

∑
p Fp(i),

which by definition is equal to F (i)/N . Since N is constant, items with the highest
average frequency are the most frequent items in the system.

Nodes participates in m different instances of the averaging protocol, one for each
item in I. Each node p maintains a map variable estp that associates item i known by
p with an estimated average frequency estp[i]. Initially, estp[i] = Fp(i) for all items i
stored locally by p. For an item i that node p does not know about, we define estp[i] = 0.
Every node p periodically selects a random neighbor q and sends the entire content of
its estp map to q. Node q replies by sending its estq map to p. After the exchange both
nodes update their estimates in the same way: estp[i] = estq[i] = 1

2 (estp[i] + estq[i]).
This simple push-pull gossip protocol serves two purposes. First, it propagates at

an exponential rate the information about each data item to all nodes in the system.
Since nodes do not forget about items, the information about each item i spreads
epidemically. Second, the protocol causes the estimate values, estp[i], to converge to
the average global frequency F (i)/N for each item i and every node p in the system.

Note that in the absence of failures, a gossip exchange between any two nodes p
and q does not change the sum of their estp[i] and estq[i] values and thus the protocol
preserves the following invariant:

∑
p∈P estp[i] =

∑
p∈P Fp(i) = F (i) for each item i.

Since an exchange probabilistically reduces the variance between gossiping nodes, the
estp[i] variables converge to the mean F (i)/N . As shown by Jelasity et al. [9], this
convergence is exponentially fast. A node p can thus return the k most frequent items
in the system by simply selecting the k items with the highest estp[i] score.
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Algorithm 1: FreqMF algorithm executed by node p
upon initialization do

Map est ← new Map() foreach i ∈ Ip do
estp[i]← Fp(i);

repeat every ∆ time units
Node q ← random(P );
send 〈request, extract(est , s)〉 to q;

upon receive〈request, reqq〉 from q do
Map repp ← new Map() foreach i ∈ reqq do

real δi ← 1
2
(reqq [i]− estp[i]);

estp[i]← estp[i] + δi;
repp[i]← δi

send 〈reply, repp〉 to q ;

upon receive〈reply, repq〉 do
foreach i ∈ repq do

estp[i]← estp[i]− repq [i];

function getTop (int k)
return extract(est , k);

3.2 FreqMF protocol

The naive protocol allows a very quick convergence but has a very high communication
cost, as it requires each node p to send the entire content of its estp map in every gossip
message. It also unrealistically assumes that message exchanges are atomic and ignores
message latency.

In order to address these shortcomings, we modify the protocol so that nodes
exchange only subsets of their estp[i] estimates. To solve the MF problem, a node
sends in an exchange message the s most frequent items stored in estp, where s is a
protocol parameter such that s ≥ k. Since messages are generated periodically and
have a fixed maximum size, this protocol has a constant communication cost.

We also modify the protocol to allow asynchronous message passing. The pseu-
docode for our modified protocol, which we call FreqMF, is shown as Algorithm 1.
After initializing estp, each node p periodically sends a request message to a ran-
domly chosen neighbor q. The message contains the node’s s highest estp[i] values
selected using an extract() function. Neighbor q updates its estimates by subtracting
δi =

1
2 (estq[i]−estp[i]) from each corresponding estp[i] variable. Thus, estq[i] becomes

estq[i]−δi = 1
2 (estq[i]+estp[i]) as in the initial naive protocol. The sum

∑
p∈P estp[i]

of estimates over all nodes is temporarily reduced by δi because node p has not changed
its estp[i] yet. However, q sends a reply message to p containing δi so that p eventually
updates its estp[i] variable to estp[i]+δi =

1
2 (estq[i]+estp[i]) preserving the invariant

as in the naive protocol.
The gossip exchanges reduce the variance between the estp[i] estimates at the same

exponential rate as in the naive protocol. However, due to the asynchronous message
exchanges, FreqMF can handle message delay and message reordering.

Interestingly, even though nodes exchange only s values per gossip cycle, all nodes
in the system eventually identify all of the most frequent items in the data set. The key



Identifying frequent items in distributed data sets 5

observation is that nodes exchange information about all the items that are suspected
of having high global occurrence, i.e., nodes that have high estp[i] scores. If an item
is wrongly classified, the averaging protocol reduces its high estp[i] score towards a
low F (i)/N mean value. Conversely, if an item has a high global frequency, its estp[i]
value remains high during exchanges and the gossip protocol spreads it to all nodes.
Eventually, the system reaches a stable configuration in which the s most frequent
items in the data set have the highest estp[i] scores on all nodes in the system and are
thus included in every exchange message. At that point, all nodes correctly identify all
the k most frequent items given that s ≥ k. By running the protocol further, nodes
exponentially decrease the variance between the estp[i] estimates and hence improve
the approximation accuracy of F (i)/N .

3.3 FreqAF and FreqRF protocols

We have assumed so far that the MF problem requires identifying the k most frequent
items without returning their actual global frequencies F (i). However, F (i) can be
easily estimated using our algorithm by simply computing estp[i] ·N , where N is the
system size. If N is not known a priori, it can be easily estimated by the same averaging
protocol we have used so far [9].

With this information at hand, the AF problem can be solved straightforwardly:
instead of selecting the top s items from the est map, the extract(est , f) function
returns items whose estimated global frequency est [i] · N is larger than the absolute
threshold f . In this algorithm, items outside the AF set eventually fall below the f
threshold and nodes exchange only items that belong to AF .

The RF problem can be solved in a similar way. We add a special item ⊥ to the
est map initialized to

∑
i∈Ip Fp(i), i.e. the total number of items stored by node p.

Item ⊥ is treated as all other items and est [⊥] converges to M/N , i.e., the average
number of items per node, and Est[i]

est[⊥] converges to F (i)/N
M/N

= F (i)
M , which is equal to

the relative frequency F̂ (i). Further, the extract(est , φ) function returns only the items
whose estimated relative frequency est [i]/est [⊥] is larger than the relative threshold φ.

3.4 Termination condition

The protocols defined so far run indefinitely, continuously improving the F (i)/N esti-
mation accuracy. At some point the accuracy is high enough that the item order does
not change anymore and all nodes obtain exactly the same sets of most frequent items.
To detect this condition and terminate the algorithm we use the following criterion.
Every node records its target set (MF , AF or RF ) at the end of each round. If the
target set does not change for d consecutive rounds, where d is an algorithm parameter
called delay, the node stops initiating exchanges and only replies to incoming requests.
As we show later, using this termination condition all nodes eventually stop generating
messages.
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4 Convergence proof

In this section, we show that the FreqMF algorithm eventually converges and identifies
the k most frequent items correctly. We say that the protocol converges when the
frequency estimate associated with any item i ∈ MF is larger than the frequency
estimate associated with any item j /∈ MF :

∀p ∈ P,∀i ∈ MF , ∀j /∈ MF : estp[i] > estp[j]

Note that the termination condition described in Section 3.4 is a heuristic that allows
the algorithm to stop but does not strictly guarantee obtaining correct results. In
this section we assume the algorithm runs indefinitely as we show that it eventually
converges.

We also assume that the MF set is well-defined, meaning that it contains exactly
k items. In the case where MF is not well-defined, the problem of identifying the k
most frequent items is actually simpler because multiple subsets of MF may actually
be accepted as valid top-k items.

Further, note that in the absence of failures and after each protocol round the global
frequency of any item i is always equal to the sum of the corresponding est variables:

F (i) =
∑
p∈P

estp[i]

This invariant holds because (i) variable estp is initialized with the local frequencies of
all items stored at each node p and (ii) item exchanges do not change the sum of the
estp[i] variables (but do reduce the variance).

We prove the algorithm’s correctness by induction on k.
Base case: k = 1. Let us assume that the message size s is 1. If the message size

is larger it is easy to show that the algorithm converges at least as fast. Let i1 be the
most frequent item. We define min(i1) as the minimum frequency estimate of i1 over
all nodes:

min(i1) = min{estp[i1] : p ∈ P}

Further, we define max(i1) as the maximum frequency estimate over all nodes and all
items except i1:

max(i1) = max{estp[i] : i 6= i1 ∧ p ∈ P}

The protocol converges when min(i1) > max(i1). In this configuration every node
classifies i1 as the most frequent item. Moreover, this configuration is stable because
max(i1) is non-increasing and min(i1) is non-decreasing. Once min(i1) > max(i1) the
system cannot go back to a previous configuration where min(i1) < max(i1).

Suppose that min(i1) < max(i1) and so the protocol has not converged yet. A
node p exchanges an item ip that has currently the highest local frequency. There are
two possible cases:

– ip 6= i1: in this case max(x) is probabilistically reduced
– ip = i1: in this case min(x) is probabilistically increased

Due to the exchanges, min(i1) converges towards F (i1)/N and max(i1) converges
towards F (i2)/N , where i2 is the second most frequent item in the system, and thus
eventually min(i1) must be greater than max(i1) and the algorithm must converge.
In the corner case where F (i1) = F (i2) nodes might switch between selecting i1 and
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i2 but since both these items belong to MF the algorithm always generates correct
output.

Inductive step: k > 1. Suppose that the protocol has already identified the most
frequent k − 1 items. Let us assume that messages have size s = k. Again, if message
size is higher than k the algorithm converges at least as fast. Let ik be the item of rank
k and let min(ik) and max(ik) be equal to:

min(ik) = min{estp[ik] : p ∈ P}
max(ik) = max{estp[i] : i /∈ MF ∧ p ∈ P}

With a reasoning similar to the base case, item exchanges can only increase min(ik)
towards F (ik)/N or decrease max(ik) towards F (ik+1)/N where ik+1 is the most
frequent item outside the MF set. Eventually min(ik) > max(ik) and the algorithm
converges.

We omit here similar proofs for FreqAF and FreqRF; it sufficient to observe
that eventually all nodes will discover all items included in AF or RF , and the average
estimate for all those items will eventually grow larger than the average estimate of
the items not belonging to the target set.

5 Analysis

We have shown that the algorithm eventually converges and generates correct results.
In this section we provide bounds on the convergence time, i.e. the number of rounds
needed to reach convergence, in the naive algorithm. In the following section we evaluate
the full FreqMF algorithm.

To discuss convergence time, we consider two orthogonal distributions: the distribu-
tion of global frequencies among all items, and the distribution of local frequencies for
each item among all nodes. We first derive a generic convergence time formula valid for
all distributions and then further analyze a specific scenario where global frequencies
follow a Zipf distribution and items are assigned to nodes uniform at random.

5.1 General case

Let us consider, for a given item i, the distribution of local frequencies Fp(i) among
all nodes in the system. Let µi = F (i)/N and σ2i be the mean and the variance of
such a distribution, respectively. Let us define the offset δi of the distribution as the
maximum absolute distance between one value of such distribution and the mean, so
that all Fp(i) values are in the range [µi − δi, µi + δi].

Given a variance σ2i , the maximum potential offset ∆i is the maximum offset that
can be obtained by any distribution having such variance. It is easy to prove (by
contradiction) that the maximum potential offset occurs when the local frequency of
item i is equal to µi ± ∆i in one node, while all other nodes have local frequencies
equal to µi ∓ ∆i

N−1 . In such case, ∆i can be calculated as follows:

σ2i =
1

N

(
(µi − (µi −∆i))2 + (N − 1)

(
µi −

(
µi −

∆i
N − 1

))2
)

=
1

N

(
∆2
i +

∆2
i

N − 1

)
=

∆2
i

N − 1
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from which we obtain ∆i =
√
σ2i · (N − 1).

In the averaging protocol, the variance is expected to be reduced at each execution
round by a factor ρ = 1

2
√
e
[9]. Hence, the maximum potential offset is expected to be

reduced accordingly. Let σ2i (t) and ∆i(t) be the variance and the maximum potential
offset at round t, respectively. The offset is expected to decrease at the following rate:

∆i(t)

∆i(t− 1)
=

√
σ2i (t) · (N − 1)√

σ2i (t− 1) · (N − 1)
=

√
ρ · σ2i (t− 1) · (N − 1)√
σ2i (t− 1) · (N − 1)

=
√
ρ =

√
1

2
√
e

(1)

We are now in a position to provide a probabilistic upper bound on the convergence
time. Let x be the item in MF such that µx − ∆x(0) is minimum, and let y be the
item outside MF such that µy +∆y(0) is maximum:

x = argmin
i∈MF

{µi −∆i(0)}

y = argmax
i/∈MF

{µi +∆i(0)}

We expect the protocol to converge when the estimated frequency of item x is
greater than the estimated frequency of item y:

µx − (
√
ρ)t ·∆x(0) > µy + (

√
ρ)t ·∆y(0)

from which we can obtain the following bound on t:

t > 2 log1/ρ
∆x(0) +∆x(0)

µx − µy
(2)

5.2 Specific scenario

To show how Formula 2 can be practically applied, let us now consider an example
scenario in which item frequencies follow Zipf’s law with skewness1 s = 1 and items
are distributed among nodes uniformly at random. In such a system, the frequency of
item ranked k is expected to be:

f(k) =M
1/k∑m
i=1 1/i

where m is the number of distinct items and M is the total number of items in the
system. Note that f(k + 1) can be expressed as f(k) · k/(k + 1).

The number of k-ranked items assigned to a node follows a binomial distribution
with mean µ(k) = f(k)/N and variance σ2(k) = f(k)/N ·(1−1/N) = f(k)·(N−1)/N2.
In fact, this scenario can be interpreted as a balls-into-bins problem [16], where f(k)
balls (items ranked k) are distributed among N bins (corresponding to nodes).

Zipf distributions have been shown to accurately model item distributions in many
large datasets [13]. Our generic approach can be applied to other item distributions
too, such as normal and uniform. In this section we focus on a Zipf distribution as the
most representative case for large datasets.

1 Other cases with s 6= 1 are similar.
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5.3 Convergence time

The convergence time, as defined by Formula 2, is maximized when x ∈ MF is an item
ranked k and y /∈ MF is an item ranked k + 1. In the worst possible case, all items
are assigned to a single node so that µx −∆x is equal to zero and µy +∆y reaches a
maximum possible value of µy + F (y). Hence:

∆x = f(k)/N

∆y = f(k + 1)− f(k + 1)/N.

By substituting ∆x, ∆y, µx, and µy in Formula 2 we thus obtain a bound on the
algorithm’s expected convergence time:

t > 2 log1/ρ
f(k)/N + f(k + 1)− f(k + 1)/N

f(k)/N − f(k + 1)/N

= 2 log1/ρ(1 +
Nf(k + 1)

f(k)− f(k + 1)
)

= 2 log1/ρ(1 +
Nf(k) k

k+1

f(k)− f(k) k
k+1

)

= 2 log1/ρ(1 +
N k
k+1

1− k
k+1

)

= 2 log1/ρ(1 +Nk)

We validate our theoretical model by running the naive algorithm in the event-
driven engine of the peer-to-peer simulator Peersim [15]. We run the algorithm 250
times with M = 106 and m = 103, for different values of N and we record the
convergence time. Figure 1 shows the theoretical bound and the empirical results.
The outputs from experiments are shifted by small random values along both axes
to indicate variance. The theoretical curves are extremely low – a few rounds are
sufficient to reach convergence – and yet this is only a theoretical upper bound; the
naive algorithm performs much better in all simulation runs than the theoretical bound.

6 FreqMF evaluation

The theoretical analysis described in the previous section provides us with a good
understanding of the naive algorithm. However, already for this simple protocol, the
performance model is surprisingly complicated and our theoretical convergence bound
significantly overestimates empirical results. To evaluate the the full FreqMF algo-
rithm we thus resort to simulation experiments. In particular, we address in this section
the following questions:

– How does the message size s impact on the convergence speed?
– What is the impact of the termination condition on the results?
– What is the behavior of our protocols with realistic datasets?
– How does the protocol behave in the presence of failures?
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(d) N = 105

Fig. 1 Convergence time bound (curves without dots) and simulation results (individual dots)
for different values of N and increasing values of k.

We evaluate FreqMF and FreqRF based on the communication overhead, storage
cost, convergence speed, and result accuracy. Communication overhead is measured as
the number of items exchanged by a node, either per round or during an experiment.
Storage cost is the number of items stored by node during an experiment. Convergence
speed is measured either as convergence time, i.e., the number of rounds needed for all
nodes to correctly identify the most frequent item set, or as execution time, i.e., the
number of rounds by which all nodes terminate the algorithm. Finally, we evaluate the
result accuracy by measuring the error defined as the number of items in the result
set that do not belong to MF .

The evaluation is performed using Peersim. Unless specified otherwise, the param-
eters and their default values used in this section are listed in Table 1. Each experiment
is repeated 100 times and when possible each individual measurement is shown or error
bars are indicated to illustrate the variability in experiments.

Parameter Value Description
k 10 Number of most frequent items to be selected
s 2k Number of items per FreqMF messages
d 8 Termination condition

Table 1 Configuration parameters.
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(a) Convergence time

 0

 50

 100

 150

 200

 250

 300

 350

 400

 450

 500

 10  15  20  25  30  35  40  45  50

T
o

ta
l 
c
o

m
m

u
n

ic
a

ti
o

n
 o

v
e

rh
e

a
d

 (
It

e
m

s
)

s

(b) Communication overhead
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(d) Convergence time penalty for FreqMF
over the naive protocol

Fig. 2 Behavior of the FreqMF protocol when varying parameter s. The legend of (b) and
(c) are the same as (a).

6.1 Message size

Figures 2(a), 2(b) and 2(c) show the influence of the message size s on the convergence
time, communication overhead, and storage cost in FreqMF. The following experi-
ments are based on a Zipf distribution for item frequency with skewness 1, with items
distributed uniform at random between nodes. We consider several different combina-
tions of N and M , with m set to 1000.

It is possible to observe only a marginal decrease in convergence time when the ratio
s/k is larger than 2, while the overhead grows linearly after that threshold. Moreover,
nearly constant storage costs show that very little additional knowledge is gained when
s increases. For these reasons, we fix s at 2k in the remaining experiments in this paper.

Figure 2(d) compares the convergence time of FreqMF and the naive algorithm
for increasing values of k. Interestingly, the ratio between FreqMF and the naive
algorithm is approximately constant. FreqMF is only about 50% slower than the
naive algorithm with unlimited message size.

6.2 Termination condition

With a message size fixed at 2k we are in a position to evaluate the termination
condition explained in Section 3.4. As we see in Figure 3(a), the execution time in
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Fig. 3 Execution time and result accuracy when the termination condition is applied.

FreqMF grows linearly with d. However, for small values of d, not all nodes obtain a
correct top-k set. Figure 3(b) shows the average error, i.e. the number of MF items not
included in the output set when the algorithm terminates. For each value of d between 1
and 10 we plot the results from 100 individual experiments shifted randomly along the
x-axis. Experiments where the observed error is strictly equal to zero are not plotted
due to the logarithmic y-axis. For small values of d, most experiments end before
convergence has been reached and hence the recorded error is high. However, starting
from d = 7, all nodes in all experiments correctly identify all most frequent items. In
the remainder of this paper we thus set d = 8.

6.3 Realistic dataset

Experiments described so far are based on artificial distributions. In this section we
evaluate FreqMF using a realistic dataset which represents a typical application of
top-k monitoring [2]. We consider the problem of HTTP request monitoring across a
distributed set of mirrored web servers. We initialize our simulations based on an access
log from a popular website set up for the 1998 FIFA Soccer World Cup, one of the
world’s largest sporting events. The website that was accessed over 1.3 billion times
between April 30, 1998 and July 26, 1998, which represents an average of over 11, 000
accesses per minute [1]. In our experiments, each web page is an item and the number of
page accesses corresponds to the item frequency. We assume the web site is replicated
on a number of web servers and we distribute items (page accesses) randomly between
nodes (web servers) in our simulated network.

Figure 4(a) shows the characteristics of the dataset from day 6 to the last day
92 (the first 5 days have very few accesses). The solid line represents the number of
distinct items (pages)m and the dashed line represents the total number of items (page
accesses) M . Note that the units for m are on the left side of the graph while the units
for M are on the right side of the graph.

For each day recorded in the trace, we use FreqMF to determine the most fre-
quently accessed web pages (items). Except very few, marginal cases, we obtain fully
correct results in all experiments. Figure 4(b) shows the error during a sample exe-
cution corresponding to day June 15th 1998, i.e., the day with the largest number of
website accesses. In all considered settings, with the number of web servers (nodes)
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Fig. 4 Experiments over the World Cup data set.

N between 100 and 10, 000, the error converges to zero within less than 40 rounds.
Figure 4(c) shows the average execution time for the entire data set. Error bars are
not shown due to a lack of space, however, the maximum execution time for all the
experiments (100 repetitions for each of the 87 days) is 59.

Figure 4(d) shows the storage cost measured as the average percentage of items
discovered by a node. Clearly the smaller the network, the more items are known to
nodes. Note that the number of distinct items is between 14, 624 and 75, 632 and the
average number of items stored per node is between 945 and 6, 968 (for N = 100) and
between 116 and 248 (for N = 10, 000).

Communication overhead is not plotted because it is constant throughout all ex-
periments and depends only on s. Each node generates one request per round and
receives on average one request per round. Hence, a node sends on average 2 · s items
per round. To put these numbers into perspective, assuming an 〈item id, frequency〉
pair size of 160 bits, round duration of 1 second, and k = 10, a node transmits at an
average rate of 0.8KB/s. In an experiment running for 50 rounds, a node generates on
average 40KB of network traffic.

6.4 Failures

Figure 5(a) shows the behavior of FreqMF in the presence of node failures. At the
beginning of the experiment the network consists of 10, 000 nodes and at every round
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Fig. 5 Behavior of FreqMF under failure scenarios. N = 104, World Cup data set

each node fails with probability p, with no substition. For p equal to 0.001 and 0.001
the algorithm correctly identifies all the top-k most frequent items and there is very
little impact on convergence speed. Note that probability p = 0.001 corresponds to
a mean session duration of approximately 15 minutes (assuming a round length of 1
second), which matches the rates observed in real P2P systems [17]. For a churn rate
ten times higher, p = 0.01, the behavior is different. Convergence is much slower and
in 12% of cases only 9 out of 10 frequent items are correctly identified. We show the
results from this experiment as an additional scatter plot in Figure 5(a).

In case of communication failures, the algorithm returns in our settings either a
correct item set or misses a single item (i.e., identifies 9 out of 10 items). Figure 5(b)
shows the percentage of incorrect runs when messages are lost with probability p be-
tween 0% and 20%. Note that such a message loss rate is exceptionally high and real
implementation can mitigate the problem by using a reliable transport layer.

6.5 FreqRF

We have focused so far on the FreqMF algorithm, our main contribution in this
paper. In this section we briefly evaluate FreqRF. We leave out FreqAF because its
behavior is almost identical to FreqRF.

While most of the evaluation metrics such as convergence time and communication
overhead are the same as in the previous sections we need to extend the error definition.
In FreqMF the size of the target set is constant (k) and so each false negative (missing
an item) corresponds to a false positive (selecting an incorrect item). In FreqRF false
positives and false negatives are independent. For this reason, we define precision as the
fraction of the RF set correctly identified by the algorithm and recall as the fraction
of the result set that is actually correct. We evaluate the algorithm using an F-score
defined as a geometric mean of precision and recall.

Figure 6(a) shows the F-score for FreqRF applied to the World Cup datasets with
a relative frequency threshold φ = 0.01 (corresponding to 166 items) and increasing
values of the termination threshold d and several network sizes. Individual experiments
are marked as dots randomly shifted along the x-axis. The curves indicate average F-
scores. Similarly to FreqMF, for d larger than 6 all experiments terminate with no
error.
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Fig. 6 Behavior of FreqRF with different values of d and Φ.

Figure 6(b) shows the communication cost in the same experiments measured as
the total number of items exchanged until termination, averaged over all nodes. As
expected, the communication cost grows with d. The sweet spot for d appears to be
around 8 as in the FreqMF algorithm.

With d fixed at 8, we evaluate the behavior of FreqRF for different values of the
relative threshold parameter φ. Figures 6(c) and 6(d) show the communication over-
head and the convergence time for φ between 0.001 and 0.01. Note that Figure 6(c)
also shows the correspondence between the threshold φ and the size of the RF set. In
particular, only 7 items belong to RF when φ = 0.01. Our experiments seem to have
a high jitter which is explained by the fact the algorithm must run longer when the φ
threshold is close to some item frequency F̂ (i). In such cases, a higher F̂ (i) approxi-
mation accuracy is required to determine if item i is above or below the threshold.

7 Related work

Several algorithms have been proposed for finding frequent items in a distributed data
set [6], either in the form of an MF set [4,2] or RF and AF sets [12,13,14]. To the best
of our knowledge, this paper is the first one to describe a generic scheme that addresses
all three variants of the problem.

The existing approaches can be divided into three classes based on the communica-
tion architecture: master-slave [4,2], hierarchical [13,14], and fully decentralized [12].
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Fig. 7 Communication overhead, per node, of FreqMF and FreqRF compared against
state-of-the-art algorithms.

The master-slave algorithms have a common drawback that the master node is a single
point of failure and potentially a performance bottleneck. For instance, tput is master-
slave protocol proposed by Cao and Wang [4] which consists of three request-response
phases. In the first phase, master asks all slave nodes hosting the distributed data set
for their current top-k items and computes a lower bound on the local frequency for
the k-th item. In the second phase, master asks the slaves for the frequencies of items
above the lower-bound and refines the candidate top-k set. In the last phase, master
obtains from the slaves the final MF set.

Figure 7(a) compares the communication overhead, per node, generated by the
execution of tput and FreqMF on a one-day subset (June 15th, 1998) from the
World Cup dataset. tput generates one order of magnitude less traffic than FreqMF,
however, it is important to note that it sends all messages to a single node – the master.
In a network of 10, 000 nodes the master would for example receive more than 25MB of
traffic. In contrast, our approach is fully symmetric and every node receives on average
the same load.

The netFilter protocol [13] and the algorithm described by Manjhi et al. [14] are
examples of hierarchical approaches. The netFilter divides items into groups and uses
a hierarchical aggregation algorithm to select frequent item candidates. It then runs a
second-stage algorithm to select a final result set amongst the candidate items. Manjhi
et al. [14] aggregate (ε, α)-synopsis data structures over a node hierarchy and adjust
the data compression rate using a precision gradient to minimize the total commu-
nication cost. Both these approaches require a separate control plane to maintain a
node hierarchy. Furthermore, both approaches are prone to failures of nodes and links
close to the root in the hierarchy. In contrast, our algorithm is fully decentralized,
has no performance of reliability bottlenecks because all nodes share exactly the same
responsibilities, and requires a very simple membership model which allows it to scale
to extremely large systems.

Lahiri and Tirthapura [12] proposed two gossip protocols based on random sam-
pling that solve the RF and AF problems in a fully decentralized way. Their approach
is based on the observation that a frequent item is likely to occur at an approximately
the same relative frequency in an appropriately sized random sample. To give guaran-
teed accuracy, a large enough sample has to be inspected. The sample size is not known
in advance and thus the protocols adaptively select a sampling probability based on
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min-wise independent permutations [3]. The algorithm has two parameters: the ap-
proximation error ψ and the error probability δ. An item i is considered frequent if
F̂ (i) ≥ φ and infrequent if F̂ (i) < φ−ψ. When the algorithms is executed long enough,
the following probabilistic guarantee holds: with probability at least 1− δ every node
reports all frequent items and does not report any infrequent items. The algorithm runs
for 4N logN rounds and each node exchanges t = 0.25

ψ2 ln 2
δ items per round. Thus for

small ψ and δ the algorithm incurs a large communication cost. Figure 7(b) shows the
communication cost for FreqRF and Lahiri and Tirthapura’s algorithms applied to a
one-day subset (again, June 15th 1998) of the World Cup dataset, where we conserva-
tively assume a low result accuracy (δ = 0.1 and ψ = φ/2). Clearly, FreqRF has a
multiple orders of magnitude lower cost.

Finally, we note that some algorithms address a streaming variant of the frequent
item discovery problem in which item frequency is measured in a data stream using a
sliding window. In particular, Babcock and Olston [2] address the streaming problem
only and Manjhi et al. [14] tackle both the streaming and static-set problems. We are
planing to adapt our algorithm to the streaming model in our future work.

8 Conclusions

FreqMF, FreqAF and FreqRF are a family of gossip algorithms that efficiently
identify the most frequently occurring items in a massively distributed data set. Unlike
current state-of-the-art approaches, these algorithms are fully decentralized, have no
performance or reliability bottlenecks, and require a very simple membership model,
which together allow it to scale to extremely large and dynamic systems. Using a
combination of analytical models and experimentation with real-world data traces, we
show that our algorithms are fast, highly scalable, and resilient to churn.
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