
Computer Networks 95 (2016) 97–114

Contents lists available at ScienceDirect

Computer Networks

journal homepage: www.elsevier.com/locate/comnet

Making puzzles green and useful for adaptive identity

management in large-scale distributed systems

Weverton Luis da Costa Cordeiro a,∗, Flávio Roberto Santos b,
Marinho Pilla Barcelos a, Luciano Paschoal Gaspary a, Hanna Kavalionak c,
Alessio Guerrieri d, Alberto Montresor d

a Institute of Informatics, Federal University of Rio Grande do Sul, Porto Alegre, Brazil
b Chaordic Systems, Florianópolis, Brazil
c Dipartimento di Ingegneria e Scienza dell’Informazione, University of Trento, Italy
d Istituto di Scienza e Tecnologie dell’Informazione, Consiglio Nazionale delle Ricerche, Pisa, Italy

a r t i c l e i n f o

Article history:

Received 4 May 2015

Revised 23 October 2015

Accepted 18 December 2015

Available online 23 December 2015

Keywords:

Peer-to-peer networks

Identity management

Proof of work

Computational puzzles

Fake accounts

Sybil attack

a b s t r a c t

Various online systems offer a lightweight process for creating accounts (e.g., confirming

an e-mail address), so that users can easily join them. With minimum effort, however,

an attacker can subvert this process, obtain a multitude of fake accounts, and use them

for malicious purposes. Puzzle-based solutions have been proposed to limit the spread

of fake accounts, by establishing a price (in terms of computing resources) per identity

requested. Although effective, they do not distinguish between requests coming from pre-

sumably legitimate users and potential attackers, and also lead to a significant waste of en-

ergy and computing power. In this paper, we build on adaptive puzzles and complement

them with waiting time to introduce a green design for lightweight, long-term identity

management; it balances the complexity of assigned puzzles based on the reputation of

the origin (source) of identity requests, and reduces energy consumption caused by puzzle-

solving. We also take advantage of lessons learned from massive distributed computing to

come up with a design that makes puzzle-processing useful. Based on a set of experiments,

we show that our solution provides significant energy savings and makes puzzle-solving a

useful task, while not compromising effectiveness in limiting the spread of fake accounts.

© 2015 Elsevier B.V. All rights reserved.
1. Introduction

Online systems such as Facebook, Twitter, Digg, and

BitTorrent communities (among various others) offer a
∗ Corresponding author. Tel.: +55 51 3308 9450.

E-mail addresses: weverton.cordeiro@inf.ufrgs.br, weverton.cordeiro@

gmail.com, wlccordeiro@inf.ufrgs.br (W.L.d.C. Cordeiro), barata@

chaordicsystems.com (F.R. Santos), marinho@inf.ufrgs.br (M.P. Barcelos),

paschoal@inf.ufrgs.br (L.P. Gaspary), hanna.kavalionak@isti.cnr.it

(H. Kavalionak), guerrieri@science.unitn.it (A. Guerrieri), alberto.

montresor@unitn.it (A. Montresor).

http://dx.doi.org/10.1016/j.comnet.2015.12.005

1389-1286/© 2015 Elsevier B.V. All rights reserved.
lightweight process for creating identities1 (e.g., confirm-

ing a valid e-mail address; the actual requirements may

vary depending on the system), so that users can easily

join them. Such convenience comes with a price, however:

with minimum effort, an attacker can obtain a multitude

of fake accounts2 (Sybil attack [1]), and use them to either

perform malicious activities (that might harm legitimate
1 In this paper, the terms “account” and “identity” are used inter-

changeably to refer to an informational abstraction capable of distinguish-

ing users in a given system.
2 We use the terms “fake account”, “counterfeit identity”, and “sybil”

interchangeably to refer to those identities created and controlled by an

attacker, and which are used with the purpose of harming the system

and/or its users.

http://dx.doi.org/10.1016/j.comnet.2015.12.005
http://www.ScienceDirect.com
http://www.elsevier.com/locate/comnet
http://crossmark.crossref.org/dialog/?doi=10.1016/j.comnet.2015.12.005&domain=pdf
mailto:weverton.cordeiro@inf.ufrgs.br
mailto:weverton.cordeiro@gmail.com
mailto:wlccordeiro@inf.ufrgs.br
mailto:barata@chaordicsystems.com
mailto:marinho@inf.ufrgs.br
mailto:paschoal@inf.ufrgs.br
mailto:hanna.kavalionak@isti.cnr.it
mailto:guerrieri@science.unitn.it
mailto:alberto.montresor@unitn.it
http://dx.doi.org/10.1016/j.comnet.2015.12.005

98 W.L.d.C. Cordeiro et al. / Computer Networks 95 (2016) 97–114
users) or obtain unfair benefits. The corruptive power of

counterfeit identities is widely known, being the object of

several studies in the literature [2–4].

It is extremely challenging (if not impossible) to de-

vise a one-size-fits-all solution for identity management. As

a consequence, the research community has focused on

the design of system-specific solutions, in scenarios hav-

ing a well-defined set of purposes, requirements, and con-

straints. In this paper, we approach the issue of fake ac-

counts in large-scale, distributed systems. More specifi-

cally, we target those based on the peer-to-peer paradigm

and that can accommodate lightweight, long-term iden-

tity management schemes [5] (e.g., file sharing and live

streaming networks, collaborative intrusion detection sys-

tems); lightweight because users should obtain identities

without being required to provide “proof of identity” (e.g.,

personal documents); and long-term because users should

be able to maintain their identities (e.g., through renewal)

indefinitely.

In the scope of these systems, strategies such as so-

cial networks [2,4,6,7] and proof of work (e.g., computa-

tional puzzles) [8–11] have been suggested as promising

directions to tackle fake accounts. In spite of the poten-

tialities, important questions remain. A number of investi-

gations [12,13] has shown that some of the key assump-

tions on which social network-based schemes rely (e.g.,

and sybils form tight-knit communities) are invalid. More

importantly, the use of social networks for identity veri-

fication might violate user’s privacy. This is an extremely

sensitive issue, especially because of the growing concern

and discussion about privacy issues in social networks

[14–16].

Puzzle-based schemes inherently preserve users’ pri-

vacy (since no personal information is required to ob-

tain identities) and therefore represent an interesting ap-

proach to stop sybils. Existing schemes focus on the

users’ computing power, and use cryptographic puzzles

of fixed complexity to hinder attackers [8,9]. However,

puzzle-solving incurs in considerable energy consumption,

which increases proportionally to the system popularity

and the interest of attackers in controlling counterfeit

identities. Furthermore, users waste computing resources

when solving puzzles. These aspects lead to the follow-

ing research questions: 1) Is it possible to force poten-

tial attackers to pay proportionally higher costs than le-

gitimate users for each identity they request? 2) Can one

reduce resource consumption required for puzzle-solving,

without compromising its effectiveness? 3) How could

one take advantage of puzzle-solving to perform useful

processing?

To tackle this issue, we build on adaptive puzzles [17] –

a mechanism that defines puzzle complexity based on the

frequency in which users (sources of requests) obtain new

identities – and complement them with waiting time to

introduce a green design for lightweight, long-term iden-

tity management. Our design balances the complexity of

assigned puzzles based on the measured reputation of the

source of identity requests, and also reduces energy con-

sumption incurred from puzzle-solving (hence green). We

also take advantage of lessons learned from massive dis-

tributed computing to come up with a design that makes
puzzle-processing useful – it uses real-life data processing

jobs in replacement to cryptographic puzzles.

To answer the research questions posed earlier, we

evaluated our solution by means of simulation, analytically,

and using the PlanetLab environment. The results obtained

show that it provides significant energy savings and makes

puzzle-solving a useful task, while being effective in limit-

ing the spread of fake accounts.

The remainder of this paper is organized as follows. We

briefly review related work in Section 2, and revisit the

concept of trust score of identity requests in Section 3.

Then, in Section 4, we introduce our design for lightweight,

long-term identity management based on green and use-

ful puzzles. The protocol for identity lifecycle management

is described in Section 5. In Sections 6 and 7 we present

the set of experiments carried out to evaluate our solu-

tion, along with major findings. We then close the paper

in Section 8.

2. Related work

The name “Sybil attack” was coined by Douceur, [1] to

designate the creation of fake accounts in online systems.

In the paper that describes the attack, Douceur proved

that in the absence of a logically centralized entity, an un-

known entity can always present himself to other entities

in the system using more than one identity, unless under

conditions and assumptions that are unfeasible for large-

scale distributed systems. Since then, investigations have

focused on limiting the spread of fake accounts and also

on mitigating their potential harm. There are various so-

lutions that bound the number of valid fake accounts in a

given system. Danezis et al. [5] was the first to categorize

these solutions, classifying them as either strong or weak

identity-based management schemes.

The first category comprises solutions in which users

may only obtain identities certified by trusted third-

parties. Its main advantage is the difficulty imposed to

users that attempt to create and control several identi-

ties, or take control of someone else’s identity. The so-

lutions that fall in this category can be further classi-

fied as certification authorities [18–20] and trusted com-

puting [21]. In spite of their potentialities, both require

a wide availability and acceptance of the trusted entities

that will vouch for the validity of identities (among other

drawbacks).

The second category comprises mechanisms in which

identities are not created with strong authentication guar-

antees (i.e., they do not serve for strongly authenticating

the user/device using it). In this case, although it is not

possible to avoid the existence of sybils, it is possible to

limit their amount to an “acceptable level”. Such mecha-

nisms may be useful, for instance, for applications that can

tolerate a certain fraction of counterfeit identities. The so-

lutions in this category may be further classified according

to the strategy employed to enforce authenticity. Next we

enumerate and discuss some of them.

1. Blacklisting. The solutions that fit in this category

[22,23] rely on a list of addresses or subnets that pre-

sented “bad behavior” in the past (e.g., sending spam).

W.L.d.C. Cordeiro et al. / Computer Networks 95 (2016) 97–114 99

Fig. 1. Sources of identity request.

3 For ethical reasons, the traces collected have been fully anonymized

a priori, in order to make it impossible any sort of user identifica-

tion/tracking. We also assume that the traces contain legitimate identity

request activity only, since no evaluation of peer identity vs. address was

carried out.
The maintenance of these blacklists must be supervised

by a human operator (to prevent legitimate subnets

from being regarded as suspicious), and must be up-

dated often. They also rely on algorithms that are prone

to misidentification of corrupt subnets.

2. Social networks. The use of social networks to detect

and/or limit the occurrence of fake accounts has gained

significant attention, with several prominent solutions

proposed [4,6,7,24]. In addition to detecting/limiting

fake accounts, they also estimate an upper bound for

the number of fake accounts that are “accepted”. Those

solutions have some important drawbacks, however. For

example, they might violate user anonymity. Also, some

investigations have shown that key assumptions upon

which those solutions rely on are invalid [12,13].

3. Trust and reputation. These systems also have been used

to detect fake accounts [25,26]. The actual goal is not

limiting the dissemination of fake accounts, but detect-

ing them once they behave suspiciously. However, such

solutions have been vulnerable to white-washing at-

tacks, except when strategies to make identity assign-

ment a non-trivial task (e.g., moderation by a human

operator) are adopted.

4. Proof of work. Solutions based on this approach (e.g.,

computational puzzles) [8–11] have been effective in

limiting the spread of fake accounts or stopping ma-

licious behavior in general (e.g., spamming). Despite

the advances, existing mechanisms do not adjust puz-

zle complexity. More specifically, when assigning puz-

zles of equal computational complexity to everyone,

it becomes hard to choose one that effectively hin-

ders attackers, without severely compromising legiti-

mate users.

In our research, we took advantage of proof of work

and complemented it with the concept of trust score

for coming up with a design for lightweight, long-term

identity management that (i) preserves users’ privacy, (ii)

adaptively balances the price (in terms of computing re-

sources) to be paid per identity requested (thus mak-

ing potential attackers to be severely penalized, without

significantly harming presumably legitimate users), and

(iii)bounds the number of fake accounts an attacker can

control.

3. Revisiting the concept of trust score of identity

requests

The research reported in this paper is built on the no-

tion that users have to dedicate a fraction of resources to

obtain identities, as a strategy to prevent the dissemina-

tion of fake accounts. As an important step towards dealing

appropriately with presumably legitimate identity requests

and those potentially malicious, we introduced in a previ-

ous work the concept of trust score [17]. It is a reputation

index that establishes likeliness that some identity request,

originated from a certain source of identity requests, is pre-

sumably legitimate or part of an ongoing attack. With such

an index, proof of work based approaches can balance the

price (in terms of resources) per identity requested, by us-

ing the values of trust score as a parameterization factor.
The concept of source of identity requests, illustrated in

Fig. 1, is defined as an aggregation of one or more users

(legitimate and/or malicious), that share locational charac-

teristics (e.g. are behind a same IP address or sub-network,

or are within a same region in the map), from which iden-

tity requests originate. Therefore, the exact meaning of “a

source requests and obtains identities” is “user(s), from a

certain source, request(s) and obtain(s) identities” [17].

3.1. Characterizing users’ recurrence patterns

Our research for a trust score function was driven by

the idea that a good candidate should consider the dynam-

ics of users’ recurrence patterns in large scale distributed

systems, and ensure that they be assigned good values

of trust score. To this end, it is important to character-

ize users’ recurrence in these systems, and assess a base-

line regarded as “regular behavior”. The literature is rich

in investigations analyzing the profile of traffic exchange

(amount of data transferred, download and upload speeds,

etc.), swarm sizes, etc. in traces publicly available [27].

However, the pattern of users’ participation in swarms

has been largely neglected. We focus our analysis on this

aspect.

Our characterization basically consisted in evaluating

aspects such as users’ time and frequency of arrivals.

From the files of users’ participation in torrent swarms

analyzed, we extracted traces that rebuild users’ identity

request events.3 In summary, we obtained five distinct

traces, whose relevant characteristics for our evaluation are

shown in Table 1.

In our analysis of users’ arrival distribution, we ob-

served a consistent behavior over the week, apart from a

few access peaks, characterized by an increase in the num-

ber of joins during daytime (UTC), and decrease overnight.

As for users’ inter-arrival, we observed that some users

left and re-joined the system within relatively short time

100 W.L.d.C. Cordeiro et al. / Computer Networks 95 (2016) 97–114

Table 1

Characteristics of part of the traces used in our analysis.

Trace 1 Trace 2 Trace 3 Trace 4 Trace 5

First identity request date/time (MM-DD-YY HH:MM) 01-01-06 00:00 02-01-06 00:00 03-01-06 00:01 06-15-13 15:00 10-09-13 21:00

Last identity request date/time (MM-DD-YY HH:MM) 01-07-06 20:53 02-06-06 14:48 03-07-06 23:59 06-22-13 15:00 10-16-13 21:00

Total number of identity requests 203,060 738,587 545,134 3,315,363 7,426,316

Total number of sources of identity requests 44,066 50,512 47,968 1,320,074 2,194,519

Trace duration (h) 164.87 134.80 167.97 168 168

Average number of identity requests per minute 20.52 91.31 54.09 328.905 736.737

Table 2

Statistical summary of the frequency of recurrences, for each of the traces considered.

Traces Minimum 1st decile Mean Standard deviation Mode Median Harmonic mean 9th decile Maximum

Trace 1 1 1 4.608 4.576889 1 3 2.39177 9 273

Trace 2 1 1 14.62 35.44363 1 5 3.15381 28 521

Trace 3 1 1 11.36 15.44093 1 6 3.23839 29 134

Trace 4 1 1 2.511 4.766563 1 1 1.342308 5 180

Trace 5 1 1 3.384 5.422933 1 2 1.538539 7 82

Fig. 2. Distribution of users’ recurrences, shown in log–log plots.
intervals. A number of hypotheses can explain this be-

havior, ranging from transient network failure (which

causes users to disconnect often), to monitoring crawlers

(which connect just to obtain a list of online users, and

then disconnect). In summary, these two aspects suggest

that a candidate design for a trust score function should

accommodate seasonal changes in users’ behavior (within

a window of hours, days, or even weeks), and enable users

to rejoin the system with a certain frequency without

being much penalized.

The analysis of users’ recurrence in the system pro-

vided the most interesting insights for the design of our

trust function. Fig. 2 shows the frequency of recurrence

for Traces 1 and 5. Observe from Fig. 2(a) that the vast

majority of users joined the system very few times in

one week. Observe also that the recurrences followed

exponential/power-law distributions; this observation was

confirmed for several other traces studied.

Table 2 presents a statistical summary of the frequency

of recurrences. Note that the amplitude of recurrences is

large in each of the traces. For example, amplitude ob-

served in Trace 1 was 272 (1 and 273). However, at least

90% of users joined the system no more than 9 times. For

Trace 2, at least 90% of users joined the system no more
than 28 times during one week; this is similar for Trace 3

(29 times).

As for the 10% of users that joined the system more fre-

quently, some interesting patterns were observed. For ex-

ample, some users joined/left the system every 5 min, on

average. This behavior is consistent with robots that pe-

riodically collect statistical information from the network,

or that attempt to identify users disseminating copyrighted

content [28]. Apart from these outliers, one important con-

clusion from our analysis, which we explored in our design

for a trust score function, is that the majority of users tend

to join the swarm in a relatively low frequency during a

given period.

In summary, the trace analysis has shown that a can-

didate trust score function should accommodate seasonal

changes in users’ behavior, and enable them to rejoin with

a certain frequency without being much penalized. More

importantly, it has shown that a vast majority of users tend

to access online systems with a relatively low frequency,

during a given period. Attackers on the other hand shall re-

quest a higher number of identities from a limited number

of sources. Therefore, keeping track of sources’ recurrence

becomes a promising approach for the design of our trust

score function.

W.L.d.C. Cordeiro et al. / Computer Networks 95 (2016) 97–114 101
3.2. Computing values of trust score for sources of identity

requests

In the context of this research, trust score (θ) is a repu-

tation index that establishes the likeliness that some iden-

tity request, originated from a certain source, is presum-

ably legitimate or potentially part of an ongoing attack.

Here we provide a brief overview of our trust score func-

tion and related equations (please refer to our previous pa-

per [17] for an in-depth discussion about trust scores and

supporting mathematical formulation).

The main input for computing θ is the number of iden-

tities already granted to the users associated to a given

source. This number is defined as φi(t) for the i-th source,

at instant t (with φi(t) ∈ N). Based on this information, we

formally define the source recurrence (�φi(t)) and network

recurrence (�(t), with �(t) ∈ R and �(t) ≥ 1) metrics.

The former, given by �φi(t) = φi(t) − φi(t − �t), repre-

sents the number of identities granted to users associated

to some source i, in the last �t units of time. The latter

corresponds to the average number of identities granted in

the same period.

The network recurrence metric �(t) is computed using

the simple mean of the values of sources’ recurrence, ac-

cording to Eq. (1). In this equation, n is the number of

currently active sources, i.e., those that have obtained at

least one identity within the interval �t. Note that when

�φk(t) = 0 for some source k, users associated to that

source have not obtained any identity (during �t); such a

source can be safely ignored.

�(t) =

⎧⎪⎨
⎪⎩

1, if n = 0

1

n
×

n∑
i=1

�φi(t), if n ≥ 1
(1)

Observe that �t serves as a bound for the portion of

identity grants considered when computing the sources’

(and the network) recurrence metrics, thus functioning as

a “sliding window” that addresses the seasonality of users’

access patterns. As the window slides forward, older iden-

tity grants are gradually discarded, thus allowing room to

newer ones which are more representative of the current

state of the system.

Recall from the trace analysis that a large fraction of

users presented a similar, consistent behavior in terms of

users’ recurrence. For this reason, we use the network av-

erage as baseline for “normal behavior”. In this context, by

comparing the behavior of a given source i (inferred from

�φi(t)) and the network behavior (inferred from �(t)), we

calculate the relationship between source and network recur-

rences (ρ i(t), with ρi(t) ∈ R). When negative, ρ i(t) indicates

how many times the recurrence of the i-th source is lower

than the recurrence of the network. Eq. (2) provides the

value of ρ i(t).

ρi(t) =

⎧⎪⎪⎨
⎪⎪⎩

1 − �(t)

�φi(t)
, if �φi(t) ≤ �(t)

�φi(t)

�(t)
− 1, if �φi(t) > �(t)

(2)
The value of ρ i(t) serves then as input for computing

the source trust score (θ i(t)). It is calculated at instant t

according to Eq. (3), and assumes values in the interval

(0, 1): on one extreme, 1 denotes a high trust on the le-

gitimacy of (the) user(s) associated to that source; on the

other, 0 indicates high distrust, i.e., a high probability that

there exists an attacker “behind” that source. We refer to

our previous paper [17] for a detailed, in-depth discussion

on the rationale for this equation and trust properties it

holds.

θi(t) = 0.5 − arctan(�(t) × ρi(t)3)

π
(3)

Abrupt but momentarily changes in their behavior

should also be taken into account by our trust score func-

tion. For this reason, we compute the smoothed trust score.

Defined as θ ′
i
(t) for the i-th source at instant t, it is cal-

culated as shown in Eq. (4). The smoothing factor β de-

termines the weight of present behavior in the calculation

of the trust score, assuming values in the interval (0, 1);

values of β close to 0 assign a high weight to historical

behavior, and vice-versa. In Eq. (4), θ ′
i
(t′) refers to the last

computed value of smoothed trust score.

θ ′
i (t) =

{
θi(t), if θ ′

i
(t) was never computed

β × θi(t) + (1 − β) × θ ′
i (t ′), otherwise

(4)

4. Green and useful puzzles for identity management

In this section we briefly discuss the concept of adap-

tive puzzles (Section 4.1). Then, we introduce our proposal

for making puzzles green and useful (Section 4.2).

4.1. Adaptive puzzles

Although being effective in protecting large-scale dis-

tributed systems from Sybil attacks, traditional puzzle-

based defense schemes do not distinguish between iden-

tity requests from (presumably) legitimate users and at-

tackers, and thus require both to afford the same cost per

identity requested. To address this problem, we use trust

scores to parameterize the complexity of the puzzles to be

solved by users prior to obtaining identities. The mapping

between trust and puzzle complexity is given by an ab-

stract function γ :
 → N
∗ (where
 is a set of all possi-

ble values of trust), which depends essentially on the na-

ture of the adopted puzzle; for being effective, the puzzle

must belong to the complexity class NP-complete. In this

function, the trust score θ i(t) ∈
 (of the i-th source) is

mapped to a puzzle having exponential complexity, equiv-

alent to O(2γi(t)).

An example of mapping function is given in Eq. (5);

note that the puzzle complexity is defined based on a max-

imum possible complexity �. In this equation, the constant

1 defines the minimum possible puzzle complexity.

γi(t) = �� · (1 − θi(t))	 + 1 (5)

To illustrate, consider the computational puzzle pre-

sented by Douceur in [1]: given a sufficiently high random

number y, find two numbers x and z such that the con-

catenation x|y|z, after processed by a secure hash function,

leads to a number whose γ least significant bits are 0. This

102 W.L.d.C. Cordeiro et al. / Computer Networks 95 (2016) 97–114
problem can be solved through a brute-force search algo-

rithm, whose complexity is proportional to O(2γ), whereas

the time to assert the validity of the solution is constant.

Any puzzle having similar characteristics can be employed

with our solution. There are examples in the related liter-

ature, such as [1,8,9], so there is no need to invent a new

one.

4.2. Making puzzles green and useful

In the following sections we describe our proposal for

making traditional puzzles green and useful, without de-

grading their effectiveness against fake accounts.

4.2.1. Towards green puzzles

Cryptographic puzzles are effective in stopping abusive

behavior (e.g. dissemination of fake accounts) because of

their time (and resource) consuming nature. This type of

puzzle however poses a trade-off between complexity and

effectiveness. Puzzles that take one second to be solved

(less complex) will barely stop attackers. To keep attackers

away, it is important to assign more puzzles (which take

longer to be solved).

A side effect of making puzzles more complex is an

increase in energy consumption (to power the processor

that will solve them). This problem is negligible consid-

ering a handful of puzzles. However, it becomes consid-

erable as more and more people have to solve them (e.g.

before obtaining an account). Given the growing concern

about rational usage of natural resources, “green puzzles”

(which demand less resources, but remain effective in lim-

iting fake accounts) becomes paramount.

In our research, we propose reducing the average com-

plexity of assigned puzzles by complementing them with

“wait time”. Take as an example the one illustrated in

Fig. 3: suppose that keeping attackers away requires as-

signing puzzles that take five time units to solve. In our

approach, instead of assigning such (traditional) puzzle,

we assign a (green) puzzle that takes two time units; as

a complement, we “ask” him to wait three more time

units (without processing any puzzle) before obtaining an

identity.

The value of trust score is used for estimating both the

puzzle complexity and the wait period. The strategy we

envisage for estimating them depends on the process cur-

rently taking place, which can be either an identity request

or renewal.

(1) Identity request process. It involves the assignment of

a puzzle to be solved and a wait time to be obeyed by the

user. The puzzle complexity γ i(t) is estimated as a func-

tion of the trust score θ i(t), and considers a higher value

of maximum complexity, � = �req. The value of θ i(t) used
Fig. 3. Illustration of the concept of green puzzles and passive wait time.
to estimate the puzzle complexity is saved in the iden-

tity (this aspect is discussed in more detail in Section 5).

Eq. (5) (shown in the previous section) represents a design

we consider for assessing the puzzle complexity.

For the waiting time, we calculate it considering a

similar approach as in the case of puzzle complexity

(recall that the defined wait time must complement the

complexity of the assigned puzzle). In other words, it

increases exponentially, proportionally to 2ω , where ω is

a wait factor also defined as a function of θ i(t). Therefore,

small decreases in the value of trust score will translate

into higher increases in the wait time to be obeyed by the

user. The design we consider for computing ω is given in

Eq. (6). In this function, represents the maximum factor

for the waiting time.

ωi(t) = · (1 − θi(t)) (6)

To prevent that an attacker request a large amount of

puzzles and “parallelize” her wait for all of them, the cur-

rent value of the source trust score must be compared to

the one used to estimate the wait period; if their differ-

ence exceeds a treshold �θ (i.e., θi(t) − θi(t′) ≥ �θ), the

identity request process should be interrupted (similarly to

what happens if the user does not obey the wait time). Re-

call that the trust score of a source changes overtime, es-

pecially after new identities are granted to it.

(2) Identity renewal process. It involves solely the as-

signment of a puzzle to be solved; no wait time is as-

signed. The puzzle complexity is defined as a function of

the value of trust score stored in the identity (represented

by I〈θ〉), saved during the identity request process. This is

an incentive so that users renew their identities, and thus

take advantage of an increasingly better reputation. Eq. (7)

represents a design we consider for assessing the puzzle

complexity in this process. Once completed, θ i(t) must be

saved in the identity (I〈θ〉 ← θ i(t)), for use during future

renewal processes.

θi(t) = β · 1 + (1 − β) · I〈θ〉 (7)

The puzzle complexity is defined considering a lower

complexity factor, � = �renew. If the identity has already

expired, another value of maximum puzzle complexity,

� = �reval , must be used. As a general recommendation

to encourage users to maintain their identities and renew

them before expiration, �renew < �reval < �req.

4.2.2. Towards useful puzzles

There are several proposals of cryptographic puzzles

that can be used with our design to establish a cost for the

identity renewal process [1,8,9]. An important characteris-

tic of such puzzles is that their processing does not result

in actual useful information. For example, consider again

the one proposed by Douceur [1]. The solutions for that

type of puzzle hardly can be used (if not) as useful input

to some other process. We thus propose a different class of

puzzles, which takes advantage of users’ processing cycles

to compute actually useful information.

To assign a puzzle to be solved, every identity request

or renew messages must be replied with (i) an URL that

contains a piece of software that implements the puzzle

(which can be a useful puzzle or a cryptographic one) and

W.L.d.C. Cordeiro et al. / Computer Networks 95 (2016) 97–114 103

Fig. 4. Possible states in an identity lifecycle.
(ii) a set J of jobs (where each job is comprised of a num-

ber of input arguments to the downloaded piece of soft-

ware). The puzzle complexity is given by |J |.
An example of puzzle is a software that runs a simula-

tion and generates the results using plain text. In this con-

text, J contains a number of seeds that must be used as

input to the simulation. Supposing that γi(tk) = 4 (as com-

puted from Eq. (5)), then |J | = 24 = 16. To prevent that an

attacker provide fake solutions, any protection mechanism

adopted in massive distributed computing or crowdsourc-

ing could be used. For example, J could contain some

“test jobs” (for which the result is already known); this ap-

proach follows the same strategy used in schemes such as

ReCAPTCHA [29], which aims at keeping robots away from

websites and helps digitizing books. In this case, the at-

tacker would not be able to distinguish which are test jobs

and real ones.

5. Conceptual design for identity management

Here we focus on the conceptual design that forms the

basis of our solution. In the description that follows, boot-

strap is the entity responsible for granting/renewing iden-

tities to users; a source is the location, identified by the

bootstrap, from which a given user requests an identity.

5.1. Identity schema and lifecycle

In our design, we assume that identity I contains the

following information: I = 〈i, t, θ〉. In this tuple, I〈i〉 is a

unique, universal identifier, and I〈t〉 is the last time it was

processed by the bootstrap (e.g., during a renewal). Finally,

I〈θ〉 represents the trust score associated to the identity (it
Fig. 5. Proposed extension for an identity manageme
will be discussed in the following section). To prevent tam-

pering, identities should be digitally signed by the boot-

strap upon processing.

We also envisage two system-wide parameters for sup-

porting the identity lifecycle management: V and E (with

V ≥ E). V indicates the amount of time provided for the va-

lidity of an identity, whereas E indicates the time for iden-

tity expiration. Being T the current timestamp, an identity

is valid for contacting the bootstrap only if I〈t〉 + V ≥ T ;

otherwise, the user must obtain a new identity (which will

incur in a comparatively higher cost, as discussed earlier).

Likewise, an identity is valid for identifying a user in the

system only if I〈t〉 + E ≥ T . Observe that I may have ex-

pired, but the identity can still be valid for renewal; this

is true as long as I〈t〉 + V ≥ T does not hold yet. Fig. 4 de-

picts the set of possible states of an identity, and possible

transitions between them. Next we describe the conditions

that trigger each transition.

5.2. Protocol for identity lifecycle management

Fig. 5 (a) illustrates a simplified view of the protocol

for managing the lifecycle of identities, and the entities in-

volved. The messages exchanged with this protocol should

be digitally signed, to prevent tampering. Fig. 5(b), in turn,

focuses on the state machine for this protocol. The gray re-

gions in these figures highlight the extension we propose

here considering any traditional, general identity manage-

ment scheme.

In an initial state, the user has no valid identity (ei-

ther because he has never joined the system, or his iden-

tity is no longer valid). Transition A (arrow A in Fig. 4)

after the user obtains an identity from the bootstrap, by

means of an identity request process. This process takes

place when he issues a BeginHandshake message (first ar-

row in Fig. 5(a)) to the bootstrap. In response, the boot-

strap issues a task to be performed, using message Com-

pleteTask (second arrow). In our protocol, task can be of

any type that is commonly understood between the enti-

ties involved. In the context of this research, we envisage

task as a puzzle (or wait time), with complexity (or dura-

tion) determined according to the methodology described

in the previous sections.

After completing the task (e.g., solving the assigned

puzzle, or obeying the determined wait time), the user
nt protocol (left), and state machine (right).

104 W.L.d.C. Cordeiro et al. / Computer Networks 95 (2016) 97–114
contacts the bootstrap and issues the TaskCompleted mes-

sage (third arrow). This message has an optional parame-

ter, solution, which essentially depends on the task nature.

Once verified that the task was correctly completed (e.g.,

by assessing the validity of solution), the bootstrap issues a

new identity to the user, by sending message Handshake-

Completed (fourth arrow). At this stage, the user evolves

to the “up to date identity” state, which means he has a

valid, unexpired identity. It is important to observe from

Fig. 5(b) that the protocol enables as many iterations Com-

pleteTask, TaskCompleted as the bootstrap sees fit. For ex-

ample, in the case a solution based on green and useful

puzzles is used for identity management, a first iteration

of CompleteTask, TaskCompleted may serve for puzzle as-

signment, and a second iteration may serve for establishing

a wait time.

Depending on the system nature, users might be re-

quired to renew their identities periodically. To this end,

we envisage a renewal process following the same proto-

col depicted in Fig. 5(a). The difference is that the mes-

sages exchanged now contain the identity to be renewed

(parameter I). Observe that the bootstrap entity is the

sole responsible for task assignment and validation of re-

turned solutions. This responsibility could be decentralized

to some degree. It is important however that the entities

in charge be trusted (to prevent tampering).

In case the user does not renew its identity and I〈t〉 +
E ≥ T holds, transition C (Fig. 4) takes place; the identity

then becomes no longer valid for joining the system (state

“expired identity”), but it can still be renewed. If the user

renews it before I〈t〉 + V ≥ T holds (transition D), it be-

comes valid again (state “up to date identity”). Otherwise,

transition B takes place and the identity becomes useless;

the user must then go through the process of obtaining a

new identity as if he had never had one.

6. Analytical evaluation

We begin our evaluation by establishing an analytical

model for assessing the effectiveness and robustness of

green and useful puzzles for identity management. Based

on the research questions posed in the introduction, here

(and in the section that follows) we focus on the evalua-

tion aspects enumerated next: (i) what is the impact of our

scheme to legitimate users and attackers? (ii) what are the

potential energy savings? (iii) is it technically feasible to

reuse processing cycles to compute useful information? (iv)

what is the monetary cost of launching an attack against

our scheme (in terms of acquiring the resources necessary

for deploying it)? To help answering these questions, we

define the following evaluation metrics:

• Reduction of fake accounts (R). This metric indicates the

proportion in which the amount of valid fake accounts

was reduced. Formally, we have

R = 1 −
∫ t f

ti
fs(t)dt∫ t f

ti
fb(t)dt

(8)
In the equation above, fs(t) and fb(t) are functions that

describe the number of valid fake accounts in the sys-

tem at instant t, in the scenario where our solution and

a baseline mechanism are used, respectively. tf and ti

represent the period of evaluation (in our experiments,

ti equals to 0 and tf equals to the duration of the ex-

periment). Possible values for this metric range in the

interval (−∞..1]. A value of R = 1 is a global optimum;

it means our solution did not allow any creation of fake

accounts. Due to the nature of the data collected from

the experiments, we use Riemman Summation to com-

pute both integrals.
• Proportion of energy savings (D). It indicates the ratio

of energy savings provided by our solution, when com-
pared to a baseline scenario. Formally, we have

D = 1 − min(consumption (baseline), consumption (solution))

consumption (baseline)

(9)

In the equation above, consumption (solution) is the to-

tal energy consumption caused by our solution, and

consumption (baseline) is the energy consumption ob-

served for the mechanism regarded as baseline. Possi-

ble values for this metric range in the interval [0..1). A

value of D ≈ 1 is a global optimum; it means our solu-

tion provided the highest savings possible, when com-

pared to the baseline scenario.

6.1. Model

Legitimate and malicious requests arrive following

some distribution fk(t; . . .); index k can be either leg (for

legitimate requests) or mal (for malicious ones). Note that

either distribution can be Gaussian, exponential, uniform,

fixed, or any other. In this case, we can derive as λk(t) =
U−1

k
· fk(t; . . .) the arrival rate for each legitimate (k = leg)

and malicious (k = mal) source. In these equations, Uk

stands for the number sources.

The analysis in our model evolves in rounds, with du-

ration �t. In this case, the number of identity requests

per source within a given round i (∀i > 0) is given by

Eq. (10). In this equation, k can be either leg or mal, and Rk

is the total number of requests of type k made during the

evaluation.

�k(i) = Rk

∫ i·�t

(i−1)·�t

λk(t) dt (10)

To accommodate identity renewal in our model, we de-

fine a function �′
k
(i) (computed following Eq. (11)), which

is the sum of the number of requests per source that ar-

rived for the first time in the network (defined by �k(i)),

and the number of identities per source that expired in the

previous round and thus must be renewed (see Eq. (18)),

�k(i − 1). Uk is the number of sources of type k in the sys-

tem. For simplicity, we assume here that both legitimate

users and attackers renew their identities once expired.

�′
k(i) = �k(i − 1)

Uk

+ �k(i) (11)

The rate in which identities are granted per second

(service rate), defined for a given round i, is given by

W.L.d.C. Cordeiro et al. / Computer Networks 95 (2016) 97–114 105
Eq. (12) (for k ∈ {leg, mal}). Observe that it captures the

penalties imposed by both cryptographic puzzles and wait

time. The former is captured through the exponential com-

plexity O(2γ (t)) of the brute force search algorithm used

to solve the puzzles. The latter, following our design for

green puzzles, is a passive wait that grows exponentially

with 2ω(t). In this equation, Ck is the total number of com-

puting devices of type k, and Pk is the average computing

power of each device in possession of a given user (either

a legitimate user or an attacker). A value of Pk = 1 repre-

sents a standard, off-the-shelf hardware (for reference); a

value of Pk = 2 denotes a hardware twice as fast. The val-

ues of γ k(i) (puzzle complexity factor) and ωk(i) (waiting

time factor) are computed according to Eqs. (5) and (7), re-

spectively (as discussed in Section 3).

μk(i) = 1

2γ +2γk (i)

Pk ·Ck ·U−1
k

+ 2ω + 2ωk(i)
(12)

Based on the service rate defined above, the maximum

number of identities that one can obtain in each round can

be computed using Eq. (13).

Mk(i) = �t · μk(i) (13)

For defining the service rate (as shown in Eq. (12)),

we need the average trust score of the sources of iden-

tity requests (either legitimate or malicious). To estimate it,

we must first estimate the average recurrence of sources,

and the network recurrence rate. The former is given by

Eq. (14), whereas the latter is given in Eq. (16).

� ˆφk(i) = min(�′
k(i) + ψk(i − 1) , Mk(i − 1)) (14)

The rationale for computing � ˆφk(i) is the following. In

each round i, �k(i) requests arrive in the system. However,

the number of identities granted in previous rounds can

be smaller (�k(i) > Mk(i)). In practice, it means that some

user may be either solving puzzles or respecting the wait-

ing period. As a consequence, there will be a number of re-

quests that will not be granted in that round, and thus will

retry. Therefore, for computing � ˆφk(i) in the i-th round,

we take the minimum between the number of requests (i)

from round �′
k
(i) plus those still in process from previous

rounds ψk(i − 1), and (ii) those already granted an identity

in the previous round Mk(i − 1). Note that the service rate

in the next round depends on the arrival rate in the previ-

ous one. Similarly, the number of requests that have not

been granted an identity and therefore will retry in the

next round (ψk(i), given in Eq. (15)) is defined as the dif-

ference between the number of identities that arrived and

the estimated value of �φk(i).

ψk(i) = �′
k(i) + ψk(i − 1) − � ˆφk(i) (15)

The network recurrence rate (Eq. (16)) is given by the

minimum between 1 (in case no request was granted yet)

and the average of already granted requests. In this equa-

tion, K is a set that indicates what types of users have

requested at least one identity during that round (K ⊆
{leg, mal}). In case K = ∅ (i.e., neither legitimate users nor

attackers have obtained identities during that round), it re-
turns 1.

ˆ�(i) = max

(
1 ,

1

max (1, |K|) ·
∑
k∈K

� ˆφk(i − 1)

)
(16)

Finally, the number of identities of type k that are valid

after i rounds (where i can be given by the total period

of analysis T divided by �t, i.e., �T/�t) is given by Gk(i),

as shown in Eq. (17). In this equation, v is the number of

rounds in which an identity is valid, and is given by the

maximum validity v = V/�t .

Gk(i) =
⌊

Uk ·
i∑

j=i−v

� ˆφk(j)

⌋
(17)

It is important to keep track of the number of identi-

ties that expire, so that they re-enter the system as new

requests. This number, denoted as �k(i) for the i-th round,

and computed according to Eq. (18), is defined as the dif-

ference between the total number of requests that have ar-

rived since the first round, and the number of identities

currently valid plus the number of requests that were not

yet granted.

�k(i) = Uk ·
i∑

j=0

�k(j) − (Gk(i) + ψk(i) · Uk) (18)

6.2. Complexity analysis of the attack

The number of fake accounts an attacker may obtain

basically depends on the amount of resources provided to

the attack, and conditions in which these resources are

used. The algorithm for implementing an attack against

our solution is straightforward. Given as input the num-

ber of fake identities that must be created, number of ma-

licious sources available, and total period for the attack,

the attacker must determine, for each malicious source, (a)

how many requests will originate from it, and (b) when

each request will be made. Algorithmically, the complex-

ity of determining an allocation of number of identity re-

quests per sources, and instant in which each request will

be performed, is equivalent to O(r), where r stands for the

number of malicious requests.

While the complexity of the algorithm above is rel-

atively small, implementing a successful attack depends

on the strategy used to materialize steps (a) and (b).

We argue that the best strategy an attacker can use to

maximize her profit, given a finite amount of resources

(computing power and sources), is: (i) making an equal

allocation of malicious requests among those sources in

her hands, (ii) uniformly spread those malicious requests

overtime, and (iii) prevent sharing malicious sources with

legitimate users.

To illustrate (i), consider γ = ω = 0, and Pmal = 1. In or-

der to obtain puzzles of lower complexity, the trust score

θ (t) of the malicious sources must be as high as possible,

or at least around 0.5 (θ (t)�0.5). To this end, the recur-

rence of a source must be as low as possible, or at most

around the same value of the measured network recur-

rence rate (�φ(t)��(t)). To achieve this, and at the same

time perform r malicious requests, the attacker must di-

vide them as uniformly as possible among the u sources

106 W.L.d.C. Cordeiro et al. / Computer Networks 95 (2016) 97–114
available (i.e., �φ(t) = r
u), so as to keep the average re-

currence per source low and thus appear less suspicious.

Suppose that, by doing this, the recurrence of malicious

sources becomes �(t) (i.e., �φi(t) = �(t), where i is the

index of a malicious source). We thus have θi(t) = 0.5.

From Eq. (12), the attacker’s capability to solve puzzles is

then μ = 1/(20.5·� + 20.5· + 2).

The logic behind statement (ii) is analogous. First, con-

sider γ = ω = 0, and Pmal = 1. Let �t be the window con-

sidered for computing �φ(t) and �(t). Consider also that

the time period begins in T0 and ends in Tf. For simplic-

ity, we consider that the attacker controls a single source.

The results presented here, however, can be generalized for

multiple sources. In order to obtain puzzles of lower com-

plexity, the value of θ (t) of the malicious source must be

as high as possible, or at least around 0.5 (θ (t) � 0.5). To

this end, the recurrence of that source, �φ(t), must be as

low as possible, or at most around �(t). To achieve this,

and at the same time perform r malicious requests in T

units of time, the attacker must divide them as uniformly

as possible along T (i.e., �φ(t) = r/T · �t), so as to keep

the average recurrence of her source low within the slid-

ing window �t. Suppose that, by doing this, the recurrence

of the malicious source becomes equal to �(t). In this case,

we achieve θi(t) = 0.5. From Eq. (12), the attacker’s capa-

bility to solve puzzles is then μ = 1/(20.5·� + 20.5· + 2).

Finally, the logic behind statement (iii) is similar to that

of statements (i) and (ii): sources will be assigned higher

values of trust score should they be associated with fewer

identity requests. Therefore, sharing sources of identity re-

quests ultimately means increasing their recurrence, which

of course degrades the measured trust score.

6.3. Attacker’s strategy

Here we provide proof of the validity of the attack strat-

egy discussed above, showing that it is in fact the best the

attacker could use.

Theorem 1. Let Smal = u be a set of sources in hands of the

attacker, and Rmal = r the number of identities to be obtained.

The strategy that maximizes the profit of the attacker (i.e.,

that minimizes the overall complexity of the puzzles to be

solved) is to make an equal allocation of the Smal requests

among the Rmal sources.

Proof. Suppose that some different, generic attack strat-

egy in which malicious requests are not evenly divided

is the best one an attacker could use. Therefore, for

some source(s), its recurrence will be larger than �(t) =
r
u . Conversely, the recurrence of other malicious sources

will be proportionally lower (and smaller than �(t) as

well). Assume that k sources (with k ∈ N
∗ and k < u) re-

quest less x identities each (with x ∈ N
∗). �φ(t) will de-

crease to r
u − x. Consequently, the trust score of these k

sources will increase to θ ′
1

= 0.5 + ϑ1 (with ϑ1 ∈ (0, 0.5]);

the attacker’s capability to solve puzzles becomes μ′
1

=
1/(2θ ′

1
·� + 2θ ′

1
· + 2).

The number of identities which remain to be requested

(from the attacker’s goal of r identities) is k · x. These

requests must be originated from the remaining u − k
sources. If the remaining requests are evenly distributed

among sources, their recurrence rate will increase to

�iφ(t) = r
u + k · x

u−k
. Such a recurrence will be higher than

�(t) = r
u ; the trust score of these k sources will decrease

to θ ′
2 = 0.5 − ϑ2 (with ϑ2 ∈ (0, 0.5]); the attacker’s capa-

bility to solve puzzles becomes μ′
2 = 1/(2θ ′

2
·� + 2θ ′

2
· + 2).

Comparing this situation with the previous one (in which

requests are evenly divided among sources), we have μ′
2

�
μ � μ′

1. Note that, while the attacker has a gain with the

sources that request fewer identities, the overhead with

the sources that request more identities increases signifi-

cantly, given the exponential growth rate of puzzles. This

proof evidences that any attack strategy that does not

evenly divide requests among sources will result in even

more complex puzzles being assigned. �

Theorem 2. Let r be the number of identities an attacker

must obtain, and T the time period during which these iden-

tities should be requested. The strategy that maximizes the

profit of the attacker is to spread the r requests throughout

period T.

Proof. Suppose that some different, generic attack strategy

in which malicious requests are not uniformly requested

along T is the best one an attacker could use. Therefore,

for some period �t ∈ T, its recurrence will be larger than

�φ(t) = r/T · �t (and thus larger than �(t)). Conversely,

for the rest it will be proportionally lower (and smaller

than �(t) as well). Assume that from Ti−1 to Ti (with 0 <

i < f) that source request less x identities (with x ∈ N
∗).

�φ(t) will decrease to r−x
T · (Ti − Ti−1) and, therefore, it

will be lower than �(t). Consequently, the trust score of

these k sources will increase to θ ′
1

= 0.5 + ϑ1 (with ϑ1 ∈
(0, 0.5]); the attacker’s capability to solve puzzles becomes

μ′
1

= 1/(2θ ′
1
·� + 2θ ′

1
· + 2).

The number of identities which remain to be requested

is x, so that all r requests are performed. They must be

performed in the remaining Tf − Ti period of time. If the

remaining requests are evenly distributed among sources,

their recurrence will increase to �φ(t) = r+x
T · (Tf − Ti).

Such a recurrence will be higher than �(t); the trust score

of these k sources will decrease to θ ′
2

= 0.5 − ϑ2 (with ϑ2

∈ (0, 0.5]); the attacker’s capability to solve puzzles be-

comes μ′
2

= 1/(2θ ′
2
·� + 2θ ′

2
· + 2). Comparing this situation

with the previous one (in which requests are evenly di-

vided throughout time), we have μ′
2

� μ � μ′
1
. Note that,

while the attacker has a gain with the sources that re-

quest fewer identities, the overhead with the sources that

request more identities increases significantly. This is be-

cause the complexity of the puzzle increases exponentially.

This proof evidences that any attack strategy that does not

evenly divide requests throughout the time will result in

even more complex puzzles being assigned. �

Theorem 3. Let �φl(t) be the recurrence of sources shared

by legitimate users, and let �φm(t) be the recurrence of

a source originating malicious requests. In order to achieve

as high values of trust score as possible for the malicious

requests, the attacker must originate those requests from

sources not being shared with legitimate users.

W.L.d.C. Cordeiro et al. / Computer Networks 95 (2016) 97–114 107
Proof. Consider the scenario where legitimate users do not

share sources with an attacker; in this scenario, the recur-

rence of a source that originates legitimate requests only

is �φl(t) = x, and the recurrence of a source originating

malicious requests is �φm(t) = y (with x, y ∈ N
∗). In the

scenario the attacker shares sources with legitimate users,

the recurrence of a single source originating both legiti-

mate and malicious requests is now �φl,m(t) = x + y. This

increased recurrence ultimately results in lower values of

trust scores assigned to requests coming from this source

– and consequently puzzles of higher complexity. While

these lower values of trust scores affect both legitimate

and malicious requests, it is worth noting that a legiti-

mate user is minimally penalized, as it performs only a few

identity requests. An attacker, in contrast, should be more

penalized as her number of identity requests will be sig-

nificantly larger. �

6.4. Dynamics of identity assignment

Fig. 6 presents the results of an evaluation to under-

stand how our solution would behave in a large scale

setting. In this analysis, we considered 3.6 million legiti-

mate users that attempt to obtain one identity each, during

one year (366 days). An attacker, controlling a botnet of

10,000 machines, attempts to control 1.8 million identities

in the same period (one third of legitimate identities).

We adopted the following distributions for the arrival of

legitimate users: fixed rate, exponential, and Gaussian. The

attacker evenly divides her malicious requests over time,

and among the sources in her control. The other parameter

settings for the analysis are: Pleg = Pmal = 1; γ = 6 (which

means puzzles will have a fixed complexity which takes

64 s to solve on an standard hardware); � = 13 (meaning

that most complex puzzles will take at most 2.275 h to

solve); ω = 0; and = 17 (meaning a wait time assigned

between 0 and 36 h, depending on the source trust score).

The identities assigned are valid for a period of four days,

or twice the duration of the sliding window.

With regard to the setting for the sliding window �t

and smoothing factor β , we refer to our previous work

[17], for a sensitivity analysis and methodology for deter-

mining a proper setting those parameters, considering the

identity manegement scheme based on adaptive puzzles.

In summary, the sensitivity analysis shown in our previ-
Fig. 6. Number of valid identities for legitimate and malicious users.
ous work suggested that the values of �t = 48 h and β =
0.125 are promising to control the dissemination of fake

accounts without hampering legitimate users. Of course, a

proper setting these parameters requires considering the

particularities of users’ behavior (e.g. expected frequency

of one’s identity requests) and conservativeness with re-

gard to changes in users’ behavior.

As one can see, legitimate users were minimally pe-

nalized, and managed to control 70% of the identities

(≈ 2.5 millions) by the end of the analysis, in all of the

considered scenarios. In contrast, the attacker was able

to achieve only 6% of her goal (of controlling 1.8 million

identities). Considering only the valid identities in the

system, the attacker was able to maintain 4.8% of the

identities only. These results, in addition to confirming

the results achieved with simulation and experimentation,

provide strong evidence that our solution not only is able

to control the dissemination of fake accounts, but remains

effective in environments comprised of millions of users.

7. Simulation and experimentation with PlanetLab

Next we present the results achieved with simulation

and experimentation using the PlanetLab environment.

Here we take advantage of the analytical model, in order

to cross-validate the outcome of both the simulation and

experimental evaluation.

7.1. Simulation

We developed a simulation environment4 that mimics

the dynamics of puzzle assignment and resolution for our

evaluation. In summary, it aggregates the functionalities of

managing users’ identity requests, puzzle assignment and

validation, and granting (or denial) of requests (according

to the correctness of received puzzle solutions). Although

based on simulation, we made sure to use in our eval-

uation real life traces of identity requests. It is also im-

portant to emphasize that our simulation environment is

system-agnostic, thus being suitable for evaluation of other

(peer-to-peer) systems that can accommodate a puzzle-

based identity management scheme.

We have evaluated scenarios with and without attack,

considering the following solutions: without control, based

on static puzzles (as proposed by Rowaihy et al. [9]), and

our solution. To evaluate them through simulation, the fol-

lowing aspects had to be observed: (i) behavior of legit-

imate users, (ii) their computing power, (iii) puzzle com-

plexity, and (iv) attacker’s goal. Each of these aspects is

discussed next.

7.1.1. Parameter setting of the simulation environment

In a previous work [17], we carried out an extensive

sensitivity analysis to understand the influence of vari-

ous parameter settings on the effectiveness of adaptive

puzzles; here we take advantage of its major findings to

define parameter setting. It is important to emphasize that
4 The simulator and trace used in our evaluation are available for

download at http://www.inf.ufrgs.br/∼wlccordeiro/adaptive_puzzles/.

http://www.inf.ufrgs.br/~wlccordeiro/adaptive_puzzles/

108 W.L.d.C. Cordeiro et al. / Computer Networks 95 (2016) 97–114
adopted settings characterize scenarios favorable to the

attacker.

The simulation has duration of 168 h. In this period,

160,000 users (from 10,000 sources) arrive 320,000 times

in the system. The number of users per source is expo-

nentially distributed (between 1 and 32). This choice is

supported on a study [30] that suggests that the number

of unique end-hosts behind NAT networks – in residential

DSL lines of a major European ISP – follows an exponen-

tial distribution. The arrival per source is exponentially dis-

tributed (bounded between 1 and 64).

The first arrival of each user is normally distributed

throughout the simulation; inter-arrivals follow an expo-

nential distribution, bounded between 1 min and 48 h;

each user’s recurrence is uniformly distributed, between

1 and 4; finally, the computing power of legitimate users

is normalized and exponentially distributed, bounded be-

tween 0.1 and 2.5 times the capacity of a standard, off-

the-shelf hardware used as reference.

To model the delay incurred from puzzle-solving, we

consider that a puzzle of complexity γ i(tk) takes 26 +
2γi(tk)−1 s to be solved using the standard, off-the-shelf

hardware; a computer twice as fast takes half of that time.

As for the waiting time, we consider that a factor of ωi(tk)

results in 2ωi(tk) s of wait.

We consider two situations for the attacker: one in

which she is able to increase her computing power (us-

ing a cluster of high-performance computers), and another

in which she increases both the computing power and the

number of sources from which her requests depart (e.g.,

using a botnet of high-performance computers).
Fig. 7. Number of accounts (legitimate and fake), in the scenario wher
The other parameters in our evaluation are defined as

follows. For adaptive green and useful puzzles, �t = 48 h

and β = 0.125. We use �req = 15 (as maximum possible

complexity when the user does not have a valid iden-

tity), �reval = 14 (when the user has a valid but expired

identity), and �renew = 13 (otherwise). The waiting factor

is = 17. Given the short scale of our simulation (one

week), we consider that identities expire E = 24 h after

created/renewed, and become invalid after V = 48 h. For

static puzzles, we consider a scenario with complexity � =
10 (which take around 17 min to solve, depending on the

hardware) and � = 15 (which take around 9 h to solve).

We also compare the performance of our solution with the

traditional adaptive puzzles [17]; the adopted parameter

setting is � = 17, �t = 48 h, and β = 0.125.

7.1.2. Effectiveness in mitigating fake accounts

Fig. 7 shows the results achieved when the attacker

increases her computing power to solve puzzles more

quickly. We consider scenarios in which the attacker has

Mu = 10 sources (Fig. 7(a) and (b)), and Mu = 500 sources

(Fig. 7(c) and (d)) in her control. The number of high-

performance computers available for the attack is defined

proportionally to the number of legitimate sources: Mc =
1 computer; Mc = 10; Mc = 0.5% (50 computers); Mc = 1%

(100 computers); and Mc = 5% (500 computers). In the at-

tack scenarios where static puzzles are used, the num-

ber of high-performance computers available for the attack

is Mc = 5%. For the sake of legibility, we omit curves for

adaptive puzzles (see Table 4 for a summary). It is impor-

tant to mention that, for legitimate users, the total number
e the attacker increases her computing power to solve puzzles.

W.L.d.C. Cordeiro et al. / Computer Networks 95 (2016) 97–114 109

Fig. 8. Number of legitimate and fake accounts in the botnet scenario.
of identities created is depicted in the plots; as for the at-

tacker, the plots depict the number of valid identities she

controls in a given instant. This choice is because legiti-

mate users request only one (or very few) identities during

the simulation period, for use in a period shorter than its

validity. As for the attacker, his goal is both creating and

maintaining valid fake accounts.

One can see in Fig. 7(b) that the use of green and useful

puzzles (also referred to as “our solution” in the remainder

of this section) clearly limits the number of fake accounts

the attacker can control, in contrast to the scenario where

static puzzles [9] are used (curves “Static (10)” and “Static

(15)”). This observation holds even for the worst case sce-

nario to our solution, i.e., when the attacker has a cluster

of Mc = 5% high-performance computers: our solution re-

duced in 81% (R = 0.81) the number of fake accounts, com-

paring to the scenario “Static (15)” (
∫ 168

0 f (t)dt = 936, 087

for static puzzles, and
∫ 168

0 f (t)dt = 169, 619 for our so-

lution). As for the overhead imposed to legitimate users,

Fig. 7(a) shows that it was negligible.

Fig. 7(d) evidences that increasing the computing power

available is the only way the attacker can circumvent our

solution; even so, she is not able to control more identities

than would happen in the case of static puzzles with com-

plexity � = 15. Fig. 7(c) shows that legitimate users remain

unaffected.

From the results described above, two major conclu-

sions can be drawn. First, our solution makes it more ex-

pensive for an attacker to control fake accounts in the

system, and she cannot repeat the same performance as

seen in traditional approaches. Second, static puzzles im-

pose an important trade-off between effectiveness (in mit-

igating fake accounts) and overhead (to legitimate users);

with � = 10, static puzzles were totally ineffective; with

� = 15, there was a considerable overhead imposed to le-

gitimate users, in exchange for some improvement in mit-

igating fake accounts.

The attack does not improve much when the attacker

uses a botnet to solve puzzles. Fig. 8 shows that she only

achieves a relative success in the extreme scenario where

the botnet represents 5% of the total of sources. However,

such success is not sustainable, because of the poor repu-

tation of malicious sources; by the end of the evaluation,

she has only a few identities more than she would have if

static puzzles were used. Again, the overhead to legitimate

users was minimal.
It is important to emphasize here that our solution does

not necessarily distinguishes users between either legiti-

mate or malicious. Instead, we compute the likeliness that

an identity request, coming from a certain source, is pre-

sumably legitimate or part of an ongoing attack. We have

chosen such design because our solution must deal with

a potentially large number of users (in the order of mil-

lions), having a diverse set of identity request patterns, in

scenarios more suitable to weak-based identity schemes.

Therefore, we have focused on a solution in which legiti-

mate users be minimally penalized, while imposing a sig-

nificant penalty to a large fraction of malicious requests. To

this end, our trust score metric (used to establish the “rep-

utation” of some request) varies between 0 and 1, being 0

total distrust and 1 complete trust on that request.

Having said that, we analyzed for the botnet sce-

nario the perceived reputation of legitimate and malicious

identity requests. In summary, the results achieved were

promising. At least 61% of legitimate requests were as-

signed a good reputation (i.e. 0.5 or higher), thus being

regarded as presumably legitimate and minimally penal-

ized. Another 34% of legitimate requests were assigned a

value of trust score that, although suggesting a worse rep-

utation, resulted into puzzles whose complexity were by

far smaller than those assigned to malicious requests. Con-

versely, less than 5% of malicious requests (considering a

handful requests made) were assigned good values of trust

score. These results evidence that our solution is able to

effectively identify legitimate requests as being so, with a

low rate of false positives.

In Table 3 we compare the results achieved with the

analytical model to those obtained through simulation. Ob-

serve that the model enables us to assess identity assign-

ment trends for a given set of parameters, also establishing

an upper bound for the number of malicious identities cre-

ated/valid. It is important to emphasize that the difference

observed when comparing the number of valid malicious

identities occurs due to the simplified nature of our ana-

lytical model. For example, the model uses a same value

of trust score for all identity requests within a given round

(which has the duration of an entire window �t). The sim-

ulation, in contrast, updates the value of trust score after

every identity is assigned (similarly to what would take

place in the wild).

Table 4 presents a statistical summary of puzzle resolu-

tion times, in the botnet scenario. The results show that in

110 W.L.d.C. Cordeiro et al. / Computer Networks 95 (2016) 97–114

Table 3

A comparison of the number of identities created (fake and legitimate) considering the results obtained through simulation and through

the analytical model.

Scenarios 1 10 0.5% 1% 5%

Model Sim. Model Sim. Model Sim. Model Sim. Model Sim.

Legitimate, Mu = 10 159,636 159,918 159,636 159,917 159,636 159,917 159,636 159,917 159,636 159,921

Malicious, Mu = 10 463 10 1039 72 1168 115 1187 273 1202 1303

Legitimate, Mu = 5% 159,636 159,918 159,636 159,917 159,636 159,918 159,636 159,918 159,636 159,924

Malicious, Mu = 5% 1336 40 6767 256 24,073 1115 35,453 1661 45,714 4476

Legitimate, botnet 159,636 159,918 159,636 159,917 159,636 159,917 159,636 159,916 159,636 159,925

Malicious, botnet 103 5 1039 72 5203 400 10,431 908 45,714 4476

Table 4

Puzzle resolution times (s) in the botnet scenario.

Scenario Mean Std. dev. Median 9th decile

Adaptive puzzles legitimate users, “Mu = 10” 2409 6641 82 7623

attacker, “Mu = 10” 12,330 9758 13,140 26,242

legitimate users, “Mu = 5%” 2960 7880 63 11,178

attacker, “Mu = 5%” 10,050 9426 6582 26,242

Green and useful puzzles legitimate users, “Mu = 10” 697 1766 60 2093

attacker, “Mu = 10” 1716 1647 1666 3305

legitimate users, “Mu = 5%” 754 1850 55 2592

attacker, “Mu = 5%” 1338 1550 847 3305

Static puzzles, � = 10 legitimate users, “Mu = 5%” 517 228 471 629

attacker, “Mu = 5%” 412 0 412 412

Static puzzles, � = 15 legitimate users, “Mu = 5%” 16,420 6546 14,990 20,025

attacker, “Mu = 5%” 13,110 0 13,110 13,110
the case of green and useful puzzles, legitimate users are

assigned easier-to-solve ones (each puzzle took 697 s on

average to be solved, in the scenario “Mu = 10”). In con-

trast, the attacker took 146% more time on average to solve

puzzles (1716 s in the same scenario). More importantly,

90% of users took at most 2093 s to solve puzzles; for the

attacker, it took 3305 s.

For static puzzles, legitimate users and attacker took on

average almost the same time to solve them (which was

extremely high for “� = 15”); the difference observed is

because the computing power of legitimate users is not

uniform, and different from the attacker (which is fixed).

In summary, these results evidence that green and use-

ful puzzles represent an interesting approach for tackling

fake accounts, as they (i) impose a significant overhead per

identity obtained by the attacker, (ii)minimizes the burden

caused to legitimate users, and (iii) decreases the overall

processing effort required for puzzle solving, without los-

ing effectiveness in stopping attackers.

7.1.3. Energy efficiency

We calculated an estimate for energy consumption

based on the resolution of puzzles written in python, on an

Intel Core i3-350M notebook, with 3MB of cache memory,

2.26 GHz CPU clock, and Windows 7. We used JouleMeter5

for measurement, and considered only the processor en-

ergy consumption. After 150 runs, we observed an average

consumption of 1.215 J. It is important to emphasize that,

although we do not consider the various existing hardware
5 JouleMeter page: http://research.microsoft.com/en-us/projects/〈?PMU

?〉joulemeter/.
and processor types, this estimate remains as an important

indicator – neglected in previous investigations – for the

average energy consumption expected for a puzzle-based

solution.

The total energy consumption (summing up legitimate

users and the attacker) caused by green puzzles in the

Mu = 5% botnet scenario (330 MJ) is significantly lower

compared to the measured for adaptive puzzles (1490 MJ);

the savings ratio is D = 0.71. More importantly, it is

only 4.9% of the consumption estimated for static puzzles

(6742 MJ: 319,433 puzzles of complexity 15 assigned to le-

gitimate users, and 23,176 to the attacker). In this com-

parison, the savings ratio is D = 0.95, i.e., a difference of

6412 MJ (1.78 MWh); this is equivalent to 69% of the an-

nual energy consumption per capita in Brazil [31]. These

results not only emphasize the need for green puzzles, but

also highlight the potentialities of using waiting time to

materialize them.

An important observation regarding energy consump-

tion on the bootstrap side is that the puzzle verification

load remains similar when comparing adaptive puzzles

with green and useful puzzles, and also with static puz-

zles. This is because the cost of verifying the solution of

a puzzle is constant and deemed negligible, and does not

change regardless of its complexity. As these figures are

similar, we do not take into account bootstrap-side energy

consumption for puzzle verification on our evaluation.

7.1.4. Monetary analysis of the attack

Here we present a budgetary analysis of the attack,

considering each identity the attacker could obtain dur-

ing the 168 h simulation period. For estimating prices, we

http://research.microsoft.com/en-us/projects/joulemeter/

W.L.d.C. Cordeiro et al. / Computer Networks 95 (2016) 97–114 111

Table 5

Budgetary analysis of an attack launched against our solution.

Scenario Cluster Mu = 10 Mu = 5%

Identities (% of attackers’ goal) Total US$/id Identities (% of attackers’ goal) Total US$/id

Mc = 1 1 10 (less than 0.1%) $14 1.40 40 (less than 0.1%) $259 6.47

0.8Mc = 10 10 72 (less than 0.1%) $102 1.41 256 (0.3%) $347 1.35

Mc = 0.5% 50 115 (0.1%) $492 4.27 1115 (1.3%) $737 0.66

0.8Mc = 1% 100 273 (0.3%) $979 3.58 1661 (2%) $1224 0.73

Mc = 5% 500 1303 (1.6%) $4877 3.74 4476 (5.5%) $5122 1.14
considered a 2-vCPU Amazon EC2 Compute Optimized so-

lution (for providing computing power), which can be

hired for as low as US$0.116/h each, US$0.058/h per vCPU

(an equivalent Microsoft Azure D-series virtual machine

solution costs US$0.094/h) [32,33]. For spoofing sources of

identity requests, we considered a botnet consulting ser-

vice offered in the black market for US$500 per 1000 pre-

mium, non-blacklisted, zombie computers ([34,35]. Table 5

presents an overview of the results achieved for our solu-

tion. The values in field “cluster” are displayed in comput-

ing units hired. Field “identities” displays the number of

valid fake accounts by the end of the simulation (and per-

centage of the attackers’ goal fulfilled); field “total” con-

tains the budget of the attack in each scenario considered

(in US dollars); and field “US$/id” contains the cost per

fake account. In the scenarios where static puzzles were

used, the number of cluster instances hired was 500. In

total, the budget for the attack was US$ 4,872 (for a 168 h

computing power rental period). In the case of � = 10,

each of the 79,945 identities created (99.9% of attackers’

goal) had a cost of ≈ US$ 0.06; in the case of � = 15, it

rose to ≈ US$ 0.77 for each of the 6327 identities created

(7.9% of attackers’ goal).

There is no precise estimate on the profit one can make

with fake accounts. According to one study by Barracuda

Labs, cited by The New York Times [36], the average price

for 1000 twitter followers ranges around US$ 18 in the

black market; prices can be as low as US$ 11 depending on

the reseller [37,38]. There are also dealers offering a bulk of

100 Gmail accounts for US$ 10 [39]. In both cases, the min-

imum expected value one can obtain with fake accounts

(US$ 0.018 per fake follower, or US$ 0.10 per fake mail ac-

count) is surpassed by the cost of obtaining a single fake

account that our solution imposes; in the scenario the at-

tacker maximizes the number of identities obtained, each

had a cost of US$ 1.14. Observe also that the cost per iden-

tity with our solution is much higher compared to static

puzzles.

7.2. PlanetLab

The primary goal of this evaluation – carried out using

BitTornado – is to assess the technical feasibility of our

solution. We also compare it with existing approaches.

It is important to emphasize that the parameter setting

adopted in this evaluation attempted to replicate, in a

smaller scale, the scenarios considered in our simulations.

In summary, we considered an environment having 240

legitimate sources and 20 malicious ones. The legitimate
users request 2400 identities during one hour. The first

request of each user is uniformly distributed during this

period; their recurrence follows an exponential distri-

bution, varying from 1 to 15 min. The interval between

arrivals is also exponentially distributed, between 1 and

10 min. The attacker requests 1200 identities (1/3 of the

requests of legitimate users), making an average of 60

identities per malicious source; their recurrence follows a

fixed rate of one request per minute. Our evaluation (in-

cluding the behavior of legitimate users and the attacker,

and duration of the evaluation) was defined observing

the technical constraints imposed by the PlanetLab envi-

ronment (e.g., limited computing power, unstable nodes,

and network connectivity); due to these constraints, the

identity renewal aspect of our solution could not be

evaluated. As for the proportion of 1/3 of identities, it was

chosen since it exceeds the fraction of fake accounts that

sybil-resilient solutions tolerate [40,41].

To make puzzles useful in our design, we used a soft-

ware that emulates a small simulation experiment; it re-

ceives a list of random number generator seeds, and gen-

erates a single text file containing the results (for all seeds

informed). The puzzle complexity is determined by the

number of seeds informed, which in turn is proportional

to 2γi(t)−1. For static puzzles, we considered the one pro-

posed by Douceur [1] (discussed in Section 4.1).

The other parameters were defined as follows. For

our solution, �t = 48 h, β = 0.125, �pl,req = 22 (which

is equivalent to � = 4 used in the simulation model),

�pl,reval = 21 (�reval = 3), �pl,renew = 20 (�renew = 2), and

 = 10. For the mechanism based on static puzzles, we

considered three scenarios: γpl,1 = 16 (γ = 1), γpl,2 = 20

(γ = 2), and γpl,3 = 24 (γ = 6). The adjust in the puz-

zle complexity, comparing the simulation model with the

evaluation presented next, was necessary for adapting the

puzzle-based mechanisms to the computing power con-

straints in the PlanetLab environment.

Fig. 9 shows that the dynamic of identity assignments

to legitimate users with the proposed solution (curve “Our

solution”) is similar to the no control scenario (“No con-

trol”). In contrast, it evidences the overhead/ineffectiveness

of using static puzzles for identity management. Focus-

ing on the attacker, our solution reduced significantly the

number of fake accounts she created (compared to the sce-

nario without control).

The energy consumption estimates obtained also indi-

cate the efficacy of our solution. While static puzzles with

γpl,1 = 16, γpl,2 = 20, and γpl,3 = 24 consumed 58.70 KJ,

533.85 KJ, and 803.92 KJ (respectively), our solution

112 W.L.d.C. Cordeiro et al. / Computer Networks 95 (2016) 97–114

Fig. 9. Results achieved with the PlanetLab environment.
led to a consumption of 13.39 KJ only. It represents

22.81% (Dγpl,1
= 0.7718), 2.41% (Dγpl,2

= 0.9749), and 1.66%

(Dγpl,3
= 0.9833) of the estimated consumption with static

puzzles.

Our experiments with the PlanetLab environment also

served to prove the effectiveness of using data processing

jobs in replacement of cryptographic puzzles, as a strat-

egy to make puzzles useful. In summary, the experiments

carried out in the PlanetLab environment not only con-

firmed the results achieved through simulation, but also

evidenced the technical feasibility of using adaptive puz-

zles, waiting time, and massive distributed computing for

green and useful identity management.

8. Final considerations

The use of puzzles to limit the spread of fake accounts

has been hampered, among other reasons, due to the lack

of mechanisms that deal properly with situations in which

there is a gap of computing power between legitimate

users and attackers. Existing solutions do not take advan-

tage of discrepant behaviors observed between legitimate

users and attackers as an approach to weight the complex-

ity of assigned puzzles. To bridge this gap, we proposed

a lightweight scheme for long-term identity management,

based on adaptive puzzles, waiting time, and massive dis-

tributed computing.

The experiments carried out have shown the effective-

ness of our solution in decreasing the attackers’ ability of

creating an indiscriminate number of counterfeit identities,

without compromising legitimate users, using puzzles that

consume resources in an efficient and useful manner. In

summary, our solution has shown to be possible to force

potential attackers to pay substantially higher costs for

each identity; conversely, legitimate users received more

easier-to-solve puzzles than the attacker, and took 43% less

time on average to solve them. The use of waiting time,

technique traditionally used in websites to limit the ac-

cess to services, led to significant energy savings (at least

94% when compared to static puzzles [9]). More impor-

tantly, we observed an improvement of 81% in the mitiga-

tion of fake accounts when compared to the state-of-the-

art mechanisms; this provides evidence to our claim that

a puzzle-based identity management scheme can be modi-
fied so as to reduce its resource consumption, and without

compromising its effectiveness. Finally, the use of massive

distributed computing has shown to be technically feasi-

ble (considering several experiments carried out in envi-

ronments such as PlanetLab) for providing utility for the

processing cycles dedicated to solve puzzles.

The experiments carried out evidenced two major

issues associated to puzzles. First, it was confirmed the

unfeasibility of using static puzzles, given the difficulty in

establishing a complexity that is effective against attackers

and less harmful to legitimate users. Second, cryptographic

puzzles have not shown to be reliable in assuring that an

attacker will be penalized as expected. For example, the

resolution time of a puzzle having a given complexity,

in a certain multi-core hardware, varied from a few sec-

onds to hundreds of minutes. The use of lessons learned

from massive distributed computing, and the replacement

of cryptographic puzzles with real data processing jobs

(in our evaluation, simulation jobs), has shown to be a

promising direction to deal with this issue.

In spite of the progresses reported, many opportunities

for research remain. The most prominent one is the in-

stantiation of our solution in the context of online social

networks. Our idea is to introduce an admission process

in which newly created accounts are regarded as “verified”

only after a number of users already in the system (deter-

mined as a function of a trust score value) have vouched

for them.

Acknowledgments

This research work was supported in part by fund-

ing from Project 462091/2014-7, granted by CNPq

(MCTI/CNPQ/Universal 14/2014 - Faixa A).

References

[1] J.R. Douceur, The sybil attack, in: Proceedings of the 1st International

Workshop on Peer-to-Peer Systems (IPTPS 2002), 2002, pp. 251–260.

[2] O. Jetter, J. Dinger, H. Hartenstein, Quantitative analysis of the sybil
attack and effective sybil resistance in peer-to-peer systems, in: Pro-

ceedings of International Communications Conference (ICC 2010),
Cape Town, South Africa, 2010, pp. 1–6.

[3] H. Yu, Sybil defenses via social networks: a tutorial and survey,
SIGACT News 42 (3) (2011) 80–101, doi:10.1145/2034575.2034593.

http://refhub.elsevier.com/S1389-1286(15)00481-8/sbref0001
http://refhub.elsevier.com/S1389-1286(15)00481-8/sbref0001
http://refhub.elsevier.com/S1389-1286(15)00481-8/sbref0002
http://refhub.elsevier.com/S1389-1286(15)00481-8/sbref0002
http://refhub.elsevier.com/S1389-1286(15)00481-8/sbref0002
http://refhub.elsevier.com/S1389-1286(15)00481-8/sbref0002
http://dx.doi.org/10.1145/2034575.2034593

W.L.d.C. Cordeiro et al. / Computer Networks 95 (2016) 97–114 113

/.
[4] L. Alvisi, A. Clement, A. Epasto, S. Lattanzi, A. Panconesi, Sok: the
evolution of sybil defense via social networks, in: Proceedings of

IEEE Symposium on Security and Privacy (SP), 2013, pp. 382–396.
[5] G. Danezis, P. Mittal, Sybilinfer: detecting sybil nodes using social

networks, in: Proceedings of Network and Distributed System Secu-
rity Symposium (NDSS 2009), The Internet Society, San Diego, Cali-

fornia, USA, 2009.

[6] Q. Cao, M. Sirivianos, X. Yang, T. Pregueiro, Aiding the detection of
fake accounts in large scale social online services, in: Proceedings of

the 9th USENIX conference on Networked Systems Design and Im-
plementation (NSDI 2012), USENIX Association, Berkeley, CA, USA,

2012, p. 15.
[7] P. Liu, X. Wang, X. Che, Z. Chen, Y. Gu, Defense against sybil

attacks in directed social networks, in: Proceedings of the 19th
International Conference on Digital Signal Processing (DSP), 2014,

pp. 239–243.

[8] N. Borisov, Computational puzzles as sybil defenses, in: Proceedings
of the 6th IEEE International Conference on Peer-to-Peer Computing

(P2P 2006), 2006, pp. 171–176.
[9] H. Rowaihy, W. Enck, P. McDaniel, T. La Porta, Limiting sybil attacks

in structured p2p networks, in: Proceedings of the 26th IEEE Inter-
national Conference on Computer Communications (INFOCOM 2007),

Anchorage, Alaska, USA, 2007, pp. 2596–2600.

[10] B. Groza, B. Warinschi, Cryptographic puzzles and dos resilience,
revisited, Des. Codes Cryptogr. 73 (1) (2014) 177–207, doi:10.1007/

s10623-013-9816-5.
[11] T.L.Q. Bui, Using Spammers’ Computing Resources for Volunteer

Computing, Portland State University, 2014 (Master’s thesis). http:
//archives.pdx.edu/ds/psu/11031

[12] A. Mohaisen, A. Yun, Y. Kim, Measuring the mixing time of social

graphs, in: Proceedings of the 10th annual Conference on Internet
Measurement, ACM, New York, NY, USA, 2010, pp. 383–389.

[13] Z. Yang, C. Wilson, X. Wang, T. Gao, B.Y. Zhao, Y. Dai, Uncover-
ing social network sybils in the wild, in: Proceedings of ACM SIG-

COMM Conference on Internet Measurement Conference (IMC’11),
ACM, New York, NY, USA, 2011, pp. 259–268.

[14] J. Angwin, J. Singer-Vine, Selling you on facebook, Wall Street

J. (2012). http://online.wsj.com/article/SB100014240527023033
02504577327744009046230.html

[15] B. Fung, Whisper: the ‘anonymous’ messaging app that reportedly
tracks your location and shares data with the pentagon, 2014,

[Online]. Available: URL: http://www.washingtonpost.com/blogs/the-
switch/wp/2014/10/16/whisper-the-anonymous-messaging-app-that-

reportedly-tracks-your-location-and-shares-data-with-the-pentagon

[16] S. Jayson, Social media research raises privacy and ethics issues, USA
Today (2014). http://www.usatoday.com/story/news/nation/2014/03/

08/data-online-behavior-research/5781447/
[17] W. Cordeiro, F.R. Santos, G.H. Mauch, M.P. Barcelos, L.P. Gas-

pary, Identity management based on adaptive puzzles to protect
p2p systems from sybil attacks, Comput. Netw. 56 (11) (2012) 2569–

2589.

[18] M. Castro, P. Drushel, A. Ganesh, A. Rowstron, D.S. Wallach, Secure
routing for structured peer-to-peer overlay networks, in: Proceedings

of the 5th Usenix Symposium on Operating Systems Design and Im-
plementation (OSDI 2002), 2002, pp. 299–314.

[19] K. Aberer, A. Datta, M. Hauswirth, A decentralized public key infras-
tructure for customer-to customer e-commerce, Int. J. Bus. Process

Integr. Manag. 1 (1) (2005) 26–33.
[20] R. Morselli, B. Bhattacharjee, J. Katz, M.A. Marsh, Keychains: A De-

centralized Public-key Infrastructure, 2006 URL: http://hdl.handle.

net/1903/3332.
[21] D. Levin, J.R. Douceur, J.R. Lorch, T. Moscibroda, Trinc: small trusted

hardware for large distributed systems, in: Proceedings of the 6th
USENIX Symposium on Networked Systems Design and Implemen-

tation (NSDI), 2009.
[22] J. Liang, N. Naoumov, K.W. Ross, The index poisoning attack in

p2p file-sharing systems, in: Proceedings of the 25th IEEE Interna-

tional Conference on Computer Communications (INFOCOM 2006),
Barcelona, Catalunya, Spain, 2006, pp. 1–12.

[23] SpamHaus, The SpamHaus Project, 2013. URL: http://www.
spamhaus.org/

[24] N. Tran, J. Li, L. Subramanian, S. Chow, Optimal sybil-resilient node
admission control, in: Proceedings of the 30th IEEE International

Conference on Computer Communications (INFOCOM 2011),Shangai,

China, 2011, pp. 3218–3226.
[25] A. Jøsang, R. Ismail, C. Boyd, A survey of trust and reputation systems

for online service provision, Decis. Support Syst. 43 (2) (2007) 618–
644.Emerging Issues in Collaborative Commerce
[26] A. Jøsang, Robustness of trust and reputation systems: Does it mat-
ter? in: Proceedings of 6th IFIP WG 11.11 International Conference

on Trust Management VI (IFIPTM 2012), in: IFIP Advances in In-
formation and Communication Technology, vol. 374, Springer, 2012,

pp. 253–262.
[27] B. Zhang, A. Iosup, J. Pouwelse, D. Epema, The Peer-to-Peer

Trace Archive, 2012. URL: http://p2pta.ewi.tudelft.nl/pmwiki/?n=

Main.Home
[28] R.B. Mansilha, L.R. Bays, M.B. Lehmann, A. Mezzomo, G. Fac-

chini, L.P. Gaspary, M.P. Barcellos, Observing the bittorrent universe
through telescopes, in: Proceedings of the 2011 IFIP/IEEE Interna-

tional Symposium on Integrated Network Management, IEEE Com-
puter Society, Washington, DC, USA, 2011.

[29] L. von Ahn, B. Maurer, C. McMillen, D. Abraham, M. Blum, Recaptcha:
human-based character recognition via web security measures, Sci-

ence 321 (5895) (2008) 1465–1468.

[30] G. Maier, F. Schneider, A. Feldmann, Nat usage in residential broad-
band networks, in: N. Spring, G. Riley (Eds.), Passive and Active Mea-

surement, Lecture Notes in Computer Science, vol. 6579, Springer,
Berlin/Heidelberg, 2011, pp. 32–41.

[31] EPE, Anuário Estatístico de Energia Elétrica–population, Consump-
tion and Per Capita Consumption, 2015 URL: http://www.epe.gov.br/

AnuarioEstatisticodeEnergiaEletrica/Forms/Anurio.aspx.

[32] Microsoft Azure, Virtual Machines Pricing–Linux, 2015. URL: http://
azure.microsoft.com/en-us/pricing/details/virtual-machines/#Linux

[33] AMAZON.COM, Amazon ec2 Pricing, 2015. URL: http://aws.amazon.
com/ec2/pricing/.

[34] J. Leyden, Need an Army of Killer Zombies? Yours for Just $25 per
1,000 pcs, 2013. URL: http://aws.amazon.com/ec2/pricing/

[35] B. Prince, Botnet Business Continues to Thrive: Fortinet, 2013.

URL: http://www.eweek.com/security/botnet-business-continues-
to-thrive-fortinet/

[36] NEW YORK TIMES, Fake Twitter Followers Become Multimillion-
dollar Business, 2013. URL: http://bits.blogs.nytimes.com/2013/04/05/

fake-twitter-followers-becomes-multimillion-dollar-business/
[37] SOCIAL TIMES, Market for Fake Twitter Accounts is Boom-

ing, 2013. URL: http://socialtimes.com/market-for-fake-twitter-

accounts-is-booming_b131197.
[38] eWEEK, Market for Fake Social Network Accounts Still Booming,

2013. URL: http://buygmailaccounts.org/.
[39] Buy Gmail Accounts, 2013. URL: http://buygmailaccounts.org/.

[40] H. Yu, M. Kaminsky, P.B. Gibbons, A. Flaxman, Sybilguard: defend-
ing against sybil attacks via social networks, in: Proceedings of 2006

Conference on Applications, Technologies, Architectures, and Proto-

cols for Computer Communications (SIGCOMM ’06), ACM Press, New
York, NY, USA, 2006, pp. 267–278.

[41] H. Yu, P.B. Gibbons, M. Kaminsky, F. Xiao, Sybillimit: a near-optimal
social network defense against sybil attacks, in: Proceedings of IEEE

Symposium on Security and Privacy, IEEE Computer Society, 2008.

Weverton Luis da Costa Cordeiro is a Post-

doctoral Fellow at the Institute of Informat-
ics of the Federal University of Rio Grande do

Sul, Brazil. He holds a Ph.D. degree in Com-

puter Science from the Federal University of Rio
Grande do Sul (2014). His research interests in-

clude large scale distributed systems, informa-
tion technology service management, software

defined networks, network security and moni-
toring, future internet, and mobile ad hoc net-

works.

Flávio Roberto Santos holds a Ph.D. degree in

Computer Networks from the Federal University
of Rio Grande do Sul, Brazil. He completed his

bachelors in Computer Science at the Federal

University of Campina Grande. His research in-
terests include algorithms, peer-to-peer and live

streaming systems, reputation mechanisms, and
grid computing.

http://refhub.elsevier.com/S1389-1286(15)00481-8/sbref0004
http://refhub.elsevier.com/S1389-1286(15)00481-8/sbref0004
http://refhub.elsevier.com/S1389-1286(15)00481-8/sbref0004
http://refhub.elsevier.com/S1389-1286(15)00481-8/sbref0004
http://refhub.elsevier.com/S1389-1286(15)00481-8/sbref0004
http://refhub.elsevier.com/S1389-1286(15)00481-8/sbref0004
http://refhub.elsevier.com/S1389-1286(15)00481-8/sbref0005
http://refhub.elsevier.com/S1389-1286(15)00481-8/sbref0005
http://refhub.elsevier.com/S1389-1286(15)00481-8/sbref0005
http://refhub.elsevier.com/S1389-1286(15)00481-8/sbref0006
http://refhub.elsevier.com/S1389-1286(15)00481-8/sbref0006
http://refhub.elsevier.com/S1389-1286(15)00481-8/sbref0006
http://refhub.elsevier.com/S1389-1286(15)00481-8/sbref0006
http://refhub.elsevier.com/S1389-1286(15)00481-8/sbref0006
http://refhub.elsevier.com/S1389-1286(15)00481-8/sbref0007
http://refhub.elsevier.com/S1389-1286(15)00481-8/sbref0007
http://refhub.elsevier.com/S1389-1286(15)00481-8/sbref0007
http://refhub.elsevier.com/S1389-1286(15)00481-8/sbref0007
http://refhub.elsevier.com/S1389-1286(15)00481-8/sbref0007
http://refhub.elsevier.com/S1389-1286(15)00481-8/sbref0007
http://refhub.elsevier.com/S1389-1286(15)00481-8/sbref0008
http://refhub.elsevier.com/S1389-1286(15)00481-8/sbref0008
http://refhub.elsevier.com/S1389-1286(15)00481-8/sbref0009
http://refhub.elsevier.com/S1389-1286(15)00481-8/sbref0009
http://refhub.elsevier.com/S1389-1286(15)00481-8/sbref0009
http://refhub.elsevier.com/S1389-1286(15)00481-8/sbref0009
http://refhub.elsevier.com/S1389-1286(15)00481-8/sbref0009
http://dx.doi.org/10.1007/s10623-013-9816-5
http://archives.pdx.edu/ds/psu/11031
http://refhub.elsevier.com/S1389-1286(15)00481-8/sbref0012
http://refhub.elsevier.com/S1389-1286(15)00481-8/sbref0012
http://refhub.elsevier.com/S1389-1286(15)00481-8/sbref0012
http://refhub.elsevier.com/S1389-1286(15)00481-8/sbref0012
http://refhub.elsevier.com/S1389-1286(15)00481-8/sbref0013
http://refhub.elsevier.com/S1389-1286(15)00481-8/sbref0013
http://refhub.elsevier.com/S1389-1286(15)00481-8/sbref0013
http://refhub.elsevier.com/S1389-1286(15)00481-8/sbref0013
http://refhub.elsevier.com/S1389-1286(15)00481-8/sbref0013
http://refhub.elsevier.com/S1389-1286(15)00481-8/sbref0013
http://refhub.elsevier.com/S1389-1286(15)00481-8/sbref0013
http://online.wsj.com/article/SB10001424052702303302504577327744009046230.html
http://www.washingtonpost.com/blogs/the-switch/wp/2014/10/16/whisper-the-anonymous-messaging-app-that-reportedly-tracks-your-location-and-shares-data-with-the-pentagon/
http://www.usatoday.com/story/news/nation/2014/03/08/data-online-behavior-research/5781447/
http://refhub.elsevier.com/S1389-1286(15)00481-8/sbref0016
http://refhub.elsevier.com/S1389-1286(15)00481-8/sbref0016
http://refhub.elsevier.com/S1389-1286(15)00481-8/sbref0016
http://refhub.elsevier.com/S1389-1286(15)00481-8/sbref0016
http://refhub.elsevier.com/S1389-1286(15)00481-8/sbref0016
http://refhub.elsevier.com/S1389-1286(15)00481-8/sbref0016
http://refhub.elsevier.com/S1389-1286(15)00481-8/sbref0017
http://refhub.elsevier.com/S1389-1286(15)00481-8/sbref0017
http://refhub.elsevier.com/S1389-1286(15)00481-8/sbref0017
http://refhub.elsevier.com/S1389-1286(15)00481-8/sbref0017
http://refhub.elsevier.com/S1389-1286(15)00481-8/sbref0017
http://refhub.elsevier.com/S1389-1286(15)00481-8/sbref0017
http://refhub.elsevier.com/S1389-1286(15)00481-8/sbref0018
http://refhub.elsevier.com/S1389-1286(15)00481-8/sbref0018
http://refhub.elsevier.com/S1389-1286(15)00481-8/sbref0018
http://refhub.elsevier.com/S1389-1286(15)00481-8/sbref0018
http://hdl.handle.net/1903/3332
http://refhub.elsevier.com/S1389-1286(15)00481-8/sbref0019
http://refhub.elsevier.com/S1389-1286(15)00481-8/sbref0019
http://refhub.elsevier.com/S1389-1286(15)00481-8/sbref0019
http://refhub.elsevier.com/S1389-1286(15)00481-8/sbref0019
http://refhub.elsevier.com/S1389-1286(15)00481-8/sbref0019
http://refhub.elsevier.com/S1389-1286(15)00481-8/sbref0020
http://refhub.elsevier.com/S1389-1286(15)00481-8/sbref0020
http://refhub.elsevier.com/S1389-1286(15)00481-8/sbref0020
http://refhub.elsevier.com/S1389-1286(15)00481-8/sbref0020
http://www.spamhaus.org/
http://refhub.elsevier.com/S1389-1286(15)00481-8/sbref0021
http://refhub.elsevier.com/S1389-1286(15)00481-8/sbref0021
http://refhub.elsevier.com/S1389-1286(15)00481-8/sbref0021
http://refhub.elsevier.com/S1389-1286(15)00481-8/sbref0021
http://refhub.elsevier.com/S1389-1286(15)00481-8/sbref0021
http://refhub.elsevier.com/S1389-1286(15)00481-8/sbref0022
http://refhub.elsevier.com/S1389-1286(15)00481-8/sbref0022
http://refhub.elsevier.com/S1389-1286(15)00481-8/sbref0022
http://refhub.elsevier.com/S1389-1286(15)00481-8/sbref0022
http://refhub.elsevier.com/S1389-1286(15)00481-8/sbref0023
http://refhub.elsevier.com/S1389-1286(15)00481-8/sbref0023
http://p2pta.ewi.tudelft.nl/pmwiki/?n=Main.Home
http://refhub.elsevier.com/S1389-1286(15)00481-8/sbref0024
http://refhub.elsevier.com/S1389-1286(15)00481-8/sbref0024
http://refhub.elsevier.com/S1389-1286(15)00481-8/sbref0024
http://refhub.elsevier.com/S1389-1286(15)00481-8/sbref0024
http://refhub.elsevier.com/S1389-1286(15)00481-8/sbref0024
http://refhub.elsevier.com/S1389-1286(15)00481-8/sbref0024
http://refhub.elsevier.com/S1389-1286(15)00481-8/sbref0024
http://refhub.elsevier.com/S1389-1286(15)00481-8/sbref0024
http://refhub.elsevier.com/S1389-1286(15)00481-8/sbref0025
http://refhub.elsevier.com/S1389-1286(15)00481-8/sbref0025
http://refhub.elsevier.com/S1389-1286(15)00481-8/sbref0025
http://refhub.elsevier.com/S1389-1286(15)00481-8/sbref0025
http://refhub.elsevier.com/S1389-1286(15)00481-8/sbref0025
http://refhub.elsevier.com/S1389-1286(15)00481-8/sbref0025
http://refhub.elsevier.com/S1389-1286(15)00481-8/sbref0026
http://refhub.elsevier.com/S1389-1286(15)00481-8/sbref0026
http://refhub.elsevier.com/S1389-1286(15)00481-8/sbref0026
http://refhub.elsevier.com/S1389-1286(15)00481-8/sbref0026
http://www.epe.gov.br/AnuarioEstatisticodeEnergiaEletrica/Forms/Anurio.aspx
http://azure.microsoft.com/en-us/pricing/details/virtual-machines/#Linux
http://aws.amazon.com/ec2/pricing/
http://aws.amazon.com/ec2/pricing/
http://www.eweek.com/security/botnet-business-continues-to-thrive-fortinet/
http://bits.blogs.nytimes.com/2013/04/05/fake-twitter-followers-becomes-multimillion-dollar-business/
http://socialtimes.com/market-for-fake-twitter-accounts-is-booming_b131197
http://buygmailaccounts.org/
http://buygmailaccounts.org/
http://refhub.elsevier.com/S1389-1286(15)00481-8/sbref0027
http://refhub.elsevier.com/S1389-1286(15)00481-8/sbref0027
http://refhub.elsevier.com/S1389-1286(15)00481-8/sbref0027
http://refhub.elsevier.com/S1389-1286(15)00481-8/sbref0027
http://refhub.elsevier.com/S1389-1286(15)00481-8/sbref0027
http://refhub.elsevier.com/S1389-1286(15)00481-8/sbref0028
http://refhub.elsevier.com/S1389-1286(15)00481-8/sbref0028
http://refhub.elsevier.com/S1389-1286(15)00481-8/sbref0028
http://refhub.elsevier.com/S1389-1286(15)00481-8/sbref0028
http://refhub.elsevier.com/S1389-1286(15)00481-8/sbref0028

114 W.L.d.C. Cordeiro et al. / Computer Networks 95 (2016) 97–114
Marinho Pilla Barcellos received B.Sc. and

M.Sc. degrees in Computer Science from Fed-
eral University of Rio Grande do Sul (1989 and

1993, respectively) and PhD degree in Computer

Science from University of Newcastle Upon
Tyne (1998). In 2003–2004, he worked in a

joint project between University of Manchester
and British Telecomm research labs on high-

performance multicast transport. Since 2008
Prof. Barcellos has been with the Federal Uni-

versity of Rio Grande do Sul (UFRGS), where

he is an Associate Professor. He has authored
many papers in leading journals and confer-

ences related to computer networks, network and service management,
distributed systems, and computer security, also serving as TPC mem-

ber and chair. He is a member of SBC, IEEE and ACM. His interests
are security of peer-to-peer, virtualized and cloud-oriented networks. See

http://www.inf.ufrgs.br/∼marinho for further details.

Luciano Paschoal Gaspary received the Ph.D.
degree in Computer Science from the Insti-

tute of Informatics of the Federal University of
Rio Grande do Sul (UFRGS), Brazil, in 2002. In

2006, he joined the same institute, where he
is now an associate professor. He is member of

the SBC, IEEE, and ACM. Prof. Gaspary is au-

thor of more than 100 full papers published
in leading journals and conferences related to

computer networks, network and service man-
agement, and computer security. Furthermore,

he has been directly involved in the organiza-
tion and served as technical program commit-

tee member of several IEEE, IFIP and ACM conferences including IM,
NOMS, GLOBECOM and ICC. See http://www.inf.ufrgs.br/∼paschoal for fur-

ther details.

Hanna Kavalionak received the M.Sc. degree
in physics, from Belarusian State University in

2008, and the Ph.D. degree in Information and

Communication Technologies from the Univer-
sity of Trento, Italy, in 2013. Since 2014, she

has been a Postdoctoral Researcher at Istituto
di Scienza e Tecnologie dell’Informazione, Con-

siglio Nazionale delle Ricerche. Her research fo-
cuses on distributed systems, autonomous re-

source management in P2P and hybrid P2P-

Cloud systems, gossip-based algorithms, and
data stream management. She authored several

papers in international conferences.
Alessio Guerrieri is a Ph.D. student in Com-

puter Science at the University of Trento, Italy.
He obtained Dual Master Degree in Computer

Science at University of Trento and at Georgia

Institute of Technology. His research interests
interests lie in decentralized and distributed al-

gorithms in general.

Alberto Montresor is Associate Professor at the
University of Trento since 2005. Before that, he

has been on the faculty of the University of
Bologna (2002–2005). He has authored more

than 70 papers on large- scale distributed sys-

tems, cloud computing and P2P networks. His
main goal is to develop distributed protocols

and systems that “survive”: to large scale, to
dynamism, to failures, to adversarial environ-

ments. He is Steering Committee Chair of the
IEEE Conference on P2P Computing, Associate

Editor of Springer Computing and has served as

General Chair and Program Chair in several con-
ferences (DOA, DAIS, SASO, P2P).

http://www.inf.ufrgs.br/~marinho
http://www.inf.ufrgs.br/~paschoal

	Making puzzles green and useful for adaptive identity management in large-scale distributed systems
	1 Introduction
	2 Related work
	3 Revisiting the concept of trust score of identity requests
	3.1 Characterizing users’ recurrence patterns
	3.2 Computing values of trust score for sources of identity requests

	4 Green and useful puzzles for identity management
	4.1 Adaptive puzzles
	4.2 Making puzzles green and useful
	4.2.1 Towards green puzzles
	4.2.2 Towards useful puzzles

	5 Conceptual design for identity management
	5.1 Identity schema and lifecycle
	5.2 Protocol for identity lifecycle management

	6 Analytical evaluation
	6.1 Model
	6.2 Complexity analysis of the attack
	6.3 Attacker’s strategy
	6.4 Dynamics of identity assignment

	7 Simulation and experimentation with PlanetLab
	7.1 Simulation
	7.1.1 Parameter setting of the simulation environment
	7.1.2 Effectiveness in mitigating fake accounts
	7.1.3 Energy efficiency
	7.1.4 Monetary analysis of the attack

	7.2 PlanetLab

	8 Final considerations
	 Acknowledgments
	 References

