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Abstract

Distributed estimation of global parameters in internmithe connected mobile envi-
ronments is a challenging problem. In this paper, we intceduset of methods, based
on gossip techniques and population protocols, for perfograuch task. The applica-
bility of such techniques to various environments, chadoed by different mobility
patterns, is evaluated through numerical simulations &sulidsed extensively. Guide-
lines are provided to help practitioners choosing the riglethod for their specific
application problem.
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1. Introduction

Distributed estimation of global parameters is a relevanblgm in many dis-
tributed computing applications. In general, connegtigit the underlying network
is taken as granted and attention is focused on optimiziagtturacy of estimation
while minimizing the incurred communication costs. Dramgpihe connectivity as-
sumption, methods need to be adapted (if not re-thought)dardo be able to cope
with possible disconnections. In this paper, we focus onpttedlem of estimating
global parameters in the class of intermittently—conreatebile wireless networks
usually referred to as delay—tolerant networks (DTNs) [1].

In order to better understand the problem, let us considefalfowing two exam-
ples (one more technical, one more application—oriented):

e Inagiven DTN deployment, we want to optimize the routingoaithm to mini-
mize a given cost function. To do so, we include adaptati@ategies in the pro-
tocol itself, so that it changes its behavior in order to erdesaits performance.
The cost function may include a term that depends on theriataber of copies
of a packet made in order to reach the destination. Estigatiich number is
one of the problems addressed by our framework.
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e A company developed a new service (e.g., exchange of MP3 filesing on
smart-phones which exploit phones’ Bluetooth interfadee Service can spread
“virally”, so that a user having the software can dissengneamong her friends
(again, through the Bluetooth interface). The company wamtestimate the
number of users running its service: this problem fits oungevork.

Problems like these — wherdaral summary of somglobal system property must
be obtained — are well-known in distributed systems, andftem generically referred
asaggregation2]. Aggregation allows local access to global informatiororder to
simplify the task of controlling, monitoring and optimigjistributed applications. In
this paper, we discuss algorithms for computitigtributive and algebraicaggregate
functions, such as min, max, sum, average, counting, efcw@& do not consider
holistic functions like median, mode, and rank. However, our nunaéeoalysis will
focus on counting, which has proven to be the most sensitivetion w.r.t. to failures
and lack of connectivity.

Our work started from a study of the applicability of two cas of algorithms (pair-
wise averaging [4] and population protocols [5]) to a DTN ieowment. In general,
such algorithms do not perform satisfactorily, especialhen considering the typical
features (in terms of mobility patterns) of real-world DTRpdoyments. Hence the
need for inferring new methods specifically tailored to senhironments:

The contributions of our work are as follows:

e To provide algorithms and methods to efficiently estimategbgl parameters in
intermittently connected networks; the term efficiencptes to fast convergence
and good scalability properties;

e To provide mechanisms for termination of the estimatiorcpsses presenting a
good trade-off between accuracy and speed of convergence;

e To provide numerical results, based on the use of both stiotied real—-world
mobility traces, on the performance of the methods intredyc

e To provide guidelines for practitioners on which methodhoase depending on
the specific application needs and deployment features.

The remainder of the paper is organized as follow. Sec. Z2ptes quick intro-
duction to distributed techniques for estimation of glopatameters, together with a
description of the system settings and assumptions usedghout the paper. Sec. 3
describes efficient estimation methods and terminatiooréifgns. Sec. 4 evaluates the
performance of the proposed methods and reports outconmesyadrical simulations.
Sec. 6 overviews related works. Sec. 7 concludes the papaustiing guidelines for
applications to real-world DTN deployments.

2. System Model and Problem Description

We consider alelay-tolerant networlcomposed of a collection of cooperating,
mobile nodes communicating wirelessly. Communicationasea onmeetingsi.e.,
encounters during which nodes come within mutual radioedfy

Our work is based on the following assumptions:



e Homogeneitynodes participate equally in the aggregation computataiow-
ing the same set of rules/algorithms.

e Cooperation nodes are trustworthy (i.e., they do not provide wronggfaor-
mation to other nodes).

e Sparsity at any time instant, nodes are isolated with a probabilidge to 1;
meetings are thus sporadic events and connectivity is mga@anteed.

e Failures nodes may fail, either by abruptly leaving the system or toypging
operations.

e Meeting duration meetings last enough to ensure the transmission of all data
needed for a message exchange. This corresponds to assatonmgity of the
transactions performed by the algorithri$ provides an analysis of the robust-
ness with respect to message loss).

The goal of this paper is to compute, in intermittently casted network, generic
aggregation functions of the type:

FIX(@), X(2),..., X(N)], (1)

where X (i) is known at node and the function is computed over all values. Playing
with both the function and the values, such definition is gahenough to include
several applications of practical interests:

Example 1: Let us takeX (i) = 1 for all nodes running a given software, aidi) = 0
otherwise. Iff corresponds to the sum function, we can easily measure thbenof
nodes having installed and running such software.

Example 2: Take X (¢) = 1 if the battery level of device exceeds a given threshold,
and0 otherwise. Further, we také;(i) = 1 for all nodes in the system. We can
therefore compute the fraction of nodes whose battery lexeteds a given threshold

asy. X (i) / XY (i).

Example 2.Consider the use of a routing protocol that makes multiplgieof a
given message (e.g., epidemic routing, spray—and—wditjveldenote byX (i) the
number of copies made by nodef a given message in the delivery process, we can
estimate the resource usage (in terms of number of copissrisated) associated to
the message delivery process. This, in turn, can be usedtirteg¢s the performance of
the routing protocol used.

The actual performance of the various mechanisms we witlystnay depend on
the type of function considered in (1). As in this paper weiaterested in comparing
the performance of various mechanisms and understandiirgthengths/shortcomings,
we have decided to focus on counting, where the goal is taiat@the total number
of nodes in the system. Such assumption is usdy for the performance evaluation
part, and it is motivated by the inherent difficulty of coungti The mechanisms intro-
duced in the following section will be presented with refere to the general class of
problems represented by (1).



Algorithm 1 PAIRWISEAVG(v(3)) > @ node;

Init: v(7) — X (7), X(1) «— X(3) > Default to X (7)
1w(i) — (v(i) +v(7))/2

-~

2: X (4) HAU(Z')
3: return X (7)

3. Algorithms for Distributed Estimation

The algorithms presented here are adaptations of well-knaggregation algo-
rithms for connected networkpairwise averaging4] andpopulation protocol$5].

The former belongs to the general class of gossip/epideniogols. Since the
seminal work of Demers on the epidemic spreading of datalyadates [7], the gossip
paradigm has gone far beyond dissemination, solving a Emdediverse collection of
problems — including aggregation [4].

In the population protocols framework, mobile agents itémwith each other to
carry out a computation. Interactions between agent pausethem to update their
states; they are unpredictable but subject to a fairnesstreant. Population protocols
can be profitably used to model algorithms over DTNs, wheretimgs are caused by
mobility.

3.1. PAIRWISEAVG algorithm

This algorithm is an adaptation to DTNs of the algorithm ovély introduced
in [4] to compute distributed averages, i.¢(X(1),...,X(n)) = & >, X(i). The
PAIRWISEAVG algorithm is well suited to the DTN scenario. In particuthe variant
based on a random node matching described in [4] can be poatedally to sparse
mobile ad-hoc networks; the required matching, in paréigu$ here induced by pairs
of nodes coming into radio range.

Alg. 1 reports the pseudocode. It works as follows. Everyenostores variable
v(1), initially set to X (7). At each meeting, nodésand;j exchange their current values
v(i) andwv(j), and update the stored variablews) = v(j) = (v(i) + v(j))/2. The
current estimateX (i) is obtained according t& (i) = X (i) whenuv(i) = 0 and
X (i) = v(4) otherwise.

Node count.At the beginning, one nodestoresz(i) = 1 and all the remaining nodes
store0. It is easy to see that with this values, the protocol coregitgl/N as long
as the resulting contact graph [4] is connected. The numbeodes is obtained as
the inverse of the estimate. To solve the problem of ideintifya single node and to
provide a more robust estimate, several concurrent inesaofthe basic version can
be run, each started by a single node.

3.2. PoPULATION Algorithm

In this algorithm, the estimate is calculated basedakens At the beginning of
the run, every node is assigned a set @fi) = X () tokens (notice thak (i) may



Algorithm 2 POPULATION(t(j), a) > @ node;
Init: ¢(i) «— X (i) > Initialize tokens

- X (i) — max{ X (i), X(j), t(i) + t(j)}
:if a < 0.5 then
t(i) — t(i) + t(4)
else
t(l) —0
:endif R
: return X (7)

N areDNRE

be real valued though). At each meeting, no@dad nodej toss a fair coin: the node
winning the ballot, say nodg gathers the overall tokens. The counters are updated
accordingly:t(i) < t(i) + t(j) andt(j) < 0. The estimate produced by the meeting
pair is then given by the maximum value between the old estisn@nd the sum of the
tokens. At the increase of the number of inter-meetinggnelgather on a single node
J which possess the exact estimatéj).

Alg. 2 contains the pseudocode. For the ease of readingotheassing procedure
is assumed to generate an input variable « < 1 at nodei, whereas at nodg¢ the
input argumentig — a.

Node count.At the beginningt(i) = X (i) = 1 for all nodesi; i.e., each node owns a
token. This variant applies also to the two protocols désctin the following.

3.3. C-PopULATION Algorithm

This variant of ®PULATION takes advantage of non-uniform meeting patterns
among nodes. In this protocol, the input variables generated according to the rela-
tive fraction of the node meetings experienced by the tweesod he rationale is that
tokens should be gathered at those nodes which are ableftorpeand diffuse the
estimate faster.

This variant works as follows. A local meeting countefi) is maintained at each
node, initialized at 1 at the beginning of a run. When a meaticcurs, node exchange
their¢() andm() variables. Variable is now computed ag «— m(z)/(m(i) + m(j));
note that one node will get a value= v, and the other the value= (1 — v), meaning
that only one of them will get all the tokens, as iDPRULATION. Finally, the meeting
countis incrementedy (i) <« m(i) + 1.

In the following, we will refer to this variant as CaGPULATION algorithm, where
the C reads “clustered”.

The complete pseudo-code is shown in Algorithm 3.

3.4. Two-Phases Algorithm

This algorithm builds on C-8rPULATION adding a further phase in order to speed
up the final stages of the computation - where most of the ®kea concentrated in
few nodes that are unlikely to meet. The idea is that if a nod@nnot improve the
estimate for a given numberiN-TOKEN of consecutive meetings, and it possesses



Algorithm 3 POPULATION(E(5), m(5)) > @ nodei
Init: ¢(i) «— X (i), m(i) — 1 > Initialize tokens

L X (i) — max{ X (i), X (j), 1) + £(j)}
a—m(i)/(m(i) + m(j)
. if a < 0.5 then
(i) — 1) + 1(j)
else
t(l) —0
end if
: return X (4)
m(i) — m(i) + 1

© XN TR O®NER

Algorithm 4 2-PHASESt(j), m(j), E;) > @ nodei
Init: ac+« 0,E; «— 0 > Aggregation counter

B, — E; U Ej

. )/(:Old(i) — X(Z)

X (i) «— C-PopPULATION(t(j), m(j))

ac — ac +A1

S if X (4) > Xoa(4) then
ac «— 0 > Reset the aggregation counter

end if

. if ac > MAX-AGGRand ¢(i) > MIN-TOKEN then
E; — E; U{(randID(),t(i))

t(i) <0

- end if R

2 X (i) — max{ X (i), 1(1) + X (i), S}

: return )?(i)
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a number of tokens larger than a reference threshald -AGGR, it start to spread
epidemically the news that nodepossess a given amount of tokens. Nodes collect
news coming from different nodes and compute a more prestsaate of the size.

The pseudocode of this algorithm is reported in Alg. 4. Atheaeetings, nodes
exchange the information required for GPULATION (#(j) andm(j)) plus a cache
of “signed” estimated”; (stored at each node). The received estimates are merged
to the local cache (line 1) and a new estimate is computedidfir@-ROPULATION
(line 3). Theac counter of meetings is increased by 1, unless the new estiskrger
than the previous one, in which case it is reset to zero (HR€9. If ac is now larger
thanmIN-TOKEN and the number of local tokens is larger thasx -AGGR, a new pair
(identifier, number of tokens3 inserted ink;, while the token counter is set to zero
(lines 8-11).

Note that for the sake of simplicity we referred to the casearfnegativeX (i)s.



Trace PAIRWISEAVG C-POPULATION
RWP 8.00£0.00-10% | 2.06 4+ 0.24 - 10°
Reality || 2.47+0.16 - 10® | 2.16 +0.19 - 107
Hagglel|| 1.234+0.01-107 | 1.854+0.14- 106
Haggle2|| 1.804+0.02-107 | 2.11+0.19 - 106
Haggle3|| 1.63+0.06 - 10° | 9.67 £ 0.76 - 10°
NUS 1.06 +0.01 - 108 | 5.35 £ 0.87 - 107
CN 3.25+0.25-10* | 1.61 +0.82-10°
Trace POPULATION 2-PHASES
RWP || 2.10+0.23-10° | 2.21 £0.09 - 10*
Reality || 2.1940.40-10° | 2.24 4 0.05 - 107
Hagglel|| 2.204+0.30-107 | 1.66 +0.18 - 106
Haggle2|| 4.154+1.21-107 | 1.66 +0.10 - 106
Haggle3|| 7.52+1.21-10° | 7.4340.42-10°
NUS 1.544+0.30-10° | 3.29 +£0.13- 107
CN 9.024+6.50 - 10* | 8.92 +4.75-10*

Table 1: Convergence time (w/o termination), in secofd$§f confidence intervals computed o\3#r runs.

4. Performance Evaluation

4.1. Evaluation Methodology

DTNs are characterized by a fully distributed architecturkere the information
is conveyed by exploiting the physical mobility of nodes.sAh, the mobility pattern
of nodes plays a crucial role in the performance evaluatfdghese networks. In order
to deal with this issue, two standard approaches exist. T$teofie leverages synthetic
mobility models which mimic the real behavior of mobile ned& he second one is
based on empirical studies, in which nodes’ encounters argtared by tracing their
proximity for a given period of time: collected traces arerthused to reproduce the
meeting pattern of nodes. In this work, we have considerdudygproaches. Each mo-
bility model has been characterized by the correspondirggingepattern of the nodes.
In real-world traces, meetings are simply the result of apienal study, whereas in
the case of synthetic mobility models the contact patteave lbeen measured through
a preliminary experiment.

With respect to synthetic mobility traces, we considereslRandom Waypoint
(RWP) model, where nodes select a destination at randomal{ysccording to a uni-
form distribution) and move, on a straight line, till theyaoh it, and theCommunity
Model[8], which reflects the non-homogeneous nature of meetingsg people.

As concerns real world traces, we utilized the Haggle trg@gsvhich report the
results of three experiments conducted for tracing the imggtattern of people in-
side Intel Research Cambridge Corporatelidadgle 1), people inside the Computer
Lab of the Cambridge UniversityHaggle 2 and people attending the IEEE Infocom
2005 conferenceHaggle 3; the MIT Realitymeasurement campaign (2004-2005), in-
volving approximatelyl 00 faculty members and students at MIT; tR&JS[9] dataset,
which contains Bluetooth contact traces collected in Siioga (2005-2006), and the
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Figure 1: Convergence time vs value of theéendly parameter, community modeéN = 200, mov = 0.2,
k = 40.

Create-NetCN trace, obtained by monitorirgl employee for a 4-week period. Ad-
ditional details can be found in Appendix A.

In what follows, results were obtained by a trace-drivenuator based on Peer-
Sim [10]. The simulator reproduces the contact pattern desand, at each meeting,
one of the algorithms described in Sec. 3 is executed.

Each experiment has been repeated several times and @suteported together
with their confidence intervals. Different runs are obtdilg randomly choosing the
contact from which the simulation starts. Each simulatindsewhen the termination
condition is satisfied. Due to the limited length of some measents, traces were
arranged in a cyclic fashion, and their pattern was iterated the end of the experi-
ment.

The performance evaluation of our algorithms is dividedwo parts. First, we
consider theasymptotigperformance of the algorithms, in the sense of their belavio
when no termination mechanism is employed. For such a caseyvaluate the con-
vergence time and the ability of the algorithms to scale wéh the number of nodes.
Second, we consider the performance of the algorithms whetermination mecha-
nisms are applied: for this case, we analyze the tradeoffdet convergence time and
estimate accuracy, and the ability of the algorithms togrenfwell in the presence of
message losses.

4.2. Without Termination: Convergence

In the absence of termination mechanisms, the main metriwonsider is the con-
vergence time, defined in this case as the time needed to rgenieethe actual value
of the number of nodes in the system.

We started by considering the community model. We took aademnwith 200
nodes and varied the three parameters describing such mode| & and friendly.

We found that, RIRWISEAVG is the one offering the best performance in terms of
convergence time. GPULATION conversely, performs rather poorly, showing large



convergence time. A more detailed analysis revealed tltdt alehavior is due to the
slow dynamics at the end of the execution, where meetingseofdw nodes having
tokens become less frequent.

We notice that C-BPULATION behaves slightly better tharoPULATION, whereas
2-PHAasEsoffers some advantages over ©#RULATION. Also, performance turns out
to be only loosely dependent on the value of the parametersandk. Conversely,
things change drastically when varying the paramétemdly. The results are de-
picted in Fig. 1 fork = 40, mov = 0.2 and inter-meeting intensity = 0.1 s~!. For
low values offriendly, in fact, meetings are driven by the Zipf's law regulatingate
ings among non-friends. In such case, clusters appeaijmmn&sPoPULATION and
2-PHAsEsalgorithms to significantly enhance their performanceraaghing closely
the performance of RRWISEAVG. As the value of the parametgtiendly increases,
on the other hand, their performance decreases quite ghamglapproaches that of
PoPULATION. This is due to the fact that, for high values piendly, the result-
ing meeting pattern is driven by the Watts—Strogatz smalHdvmodel, presenting
a rather regular (i.e., memoryless) pattern. Hence, thare@ments introduced by
C-PoPULATION and 2-RMASES are quite ineffective and, in fact, the gain over pure
population protocol is very small.

Next, we evaluated the scalability of the four considergdathms. We used again
a community model, with parametersov = 0.2 and friendly = 0.2. We considered
a number of nodes ranging frohd? to 10°. The scaling of the inter-meeting intensity
is performed considering nodes moving in an area with constansity of nodes per
square meter [11].

We considered a fixed number of friends= 150. This corresponds to the value
known in social sciences as Dunbar’'s number [12], which gpssed to represent a
limit to the number of individuals with whom people can maintstable social rela-
tionships. The results are shown in Fig. 2. It can be seendakdahe number of nodes
increases, the performance of @#ULATION increases and exceeds that efif>
WISEAVG. This is due to the fact that, under a constant number ofdgén large
values of N lead to the formation of a number of (small) clusters. In scahditions,
C-PoruLATION offers an advantage ovenRRWISEAVG. Finally, the best scalability
is attained by 2-RASES(MIN-TOKEN = 150, MAX-AGGR = 50 in the experiment).

These first results tell us than RwWISEAVG behaves best in the presence of uni-
form meeting patterns. When clusters are present,0BtRATION and 2-RMASES
offer competitive advantages in terms of convergence time.

We next evaluated the case of real-world traces. The remeligresented in Tab. 1.
Neglecting RWP, it can be seen that 2A5esand C-ROPULATION present the best
performance among the algorithms considered (the formarpgrforming the latter).
This comes from the fact that real—world traces tend to shioigladegree of clustering,
typical of real-world mobility patterns. This indicategttsuch algorithms fit well the
features of deployments in which nodes are personal degiteg¢he contact pattern is
driven by human mobility.

4.3. With Termination: Convergence and Accuracy

To measure the relative performance of the our algorithnesadopted aylobal
termination condition that stops the simulation whenelveraverage estimate of nodes
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approximates the true value by a nominal threshold, e.g. Bb®%ur experiments.
In practice, this simulation trick cannot be employed, aadhenode requireslacal
termination condition to validate the estimate and prodeddrther computations.

We now study the performance of the aforementioned algostivhen a termina-
tion condition is enforced. We evaluated the algorithmeimis of the tradeoff between
convergence time (time at which the termination rule stbygsestimation algorithm)
and accuracy (ability of the algorithm to achieve the exatie of NV without incurring
in premature stops).

4.3.1. Termination condition

The termination condition proposed here works as followserf node stores a
meeting counter, which is incremented at each meeting. ©heter starts frond,
and is reset t@) whenever the estimate changes. When the counter reachesra gi
threshold, the computation is considered terminated atnth@e and the output value
is validated. Note that the node continues to perform thepedation, in order to
support the distributed algorithm and to detect subsequientges.

In the case of node count procedures, the termination donds inherently differ-
ent for ROPULATION and C-ROPULATION, compared to RRWISEAVG. In fact, in the
former case the estimate is increasing, so that changesgoly positive integer in-
crements, whereas in the latter case, the estimate of theenwhnodes is the inverse
of a fraction. Hence, in the first case, the counter is reseivthe estimate increases,
whereas in the latter, the counter is reset when the estichateges of a conventional
percentagel( in the following experiments).

4.3.2. Convergence vs. Accuracy

We first performed extensive numerical simulations to usi@ed how the val-
ues MAX -AGGR and MIN-TOKEN should be dimensioned in order to let the termi-
nation algorithm behave efficiently. We found that settmgu-TOKEN = 1 and

10



Trace PAIRWISEAVG C-POPULATION 2-PHASES
Reality || 1.354+0.01-10° | 5.86 £0.32-10% | 5.524+0.32- 10°
RWP 2.5540.00-10* | 3.50+£0.33-10* | 3.46 £ 0.14 - 10*
Hagglel|| 3.0240.03-107 | 1.41 £0.09-107 | 1.30 4 0.09 - 107
Haggle2|| 1.05+0.09-10% | 7.65 £ 0.68 - 107 | 7.07 4 0.80 - 107
Haggle3|| 1.344+0.10-10% | 1.1040.13-10% | 1.11+£0.13- 108
NUS 6.404+0.22-10% | 5.024+0.28-10% | 4.33+£0.20- 108
CN 3.70+£0.01-10° | 3.354+0.34-10° | 3.474+0.27-10°

Table 2: Convergence time (with terminatiomax -AGGR = 10, MIN-TOKEN = 1 for RWP, Haggle1/2/3,
and CN,MIN-TOKEN = 10 for Reality and NUS; confidence intervals computed @&geruns.

MAX -AGGR = 10 leads to a good compromise for a wide range of settings. W& use
such parameters for all considered traces, apart from thitjRand the NUS ones, for
which amIN-TOKEN = 10 was used. We evaluated the performanceroR®ISEAVG,
C-PorpuLATION and 2-RPi1asesalgorithms using both synthetic mobility traces (RWP)
as well as real-world ones. The results are reported in Tabte2ms of convergence
time and in Tab. 3 in terms of average estimated value at tetion (averages are
computed oveB0 runs). For all real-world traces CaPULATION and 2-RHASESof-

fer faster convergence thanIRWISEAVG. 2-PHASESovercomes C-BPULATION, in
terms of estimate accuracy, when applied to regular saesarig., RWP trace.

As RWP presented a large gap of performance for the considdgerithms, we
studied the case more in detail by tracking the dynamics efatgorithms (in terms
of value of estimated size vs. time) f80 runs. The results are shown in Fig. 3.
It can be seen thatARRWISEAVG converges quickly and in a very regular way (i.e.,
logs from all runs get superimposed) after an initial overding. The convergence
of 2-PHASESS somehow noisy, but it attains the correct value for allscu®n the
contrary, C-®PULATION algorithm shows a very large variability in both the value at
which the estimate converges as well as in the time at whietettimate stops. We
can conclude that such algorithm is not suitable for appibogo regular patterns. We
may also conclude that the 2HRsES algorithm represents an interesting choice for
deployment, as it is able to achieve a good accuracy whilgerging quickly in all
considered settings.

In order to complete the picture, we also studied the numbeiigmed values
produced by 2-RASES Indeed, as one node needs to keep track of the signed val-
ues it received/sent, such parameter describes well tHéadd resources needed by
2-PHASESover C-POPULATION. The results are presented in Tab. 4. These numbers
give an idea of the additional resources needed to rurZsBs

4.4. With Termination: Robustness

One important aspect when dealing with wireless networkblésimpact of lost
packets. Packet losses may be due, e.g., to interferense,atdhe receiver or simply
the fact that the mobility of nodes led them out of mutual camioation range before
completion of a message exchange. Each considered algpdgthased on based on
the exchange of a request/reply pair of packets betweernimgesides. If the request

11
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is lost, nothing happens. Here, we provide an analysis ot Wajppens if the reply is
lost.

The situation is depicted in Fig. 4. At the beginning of thelenge, both nodes
maintain a variablé’;, a function of the current estimate of the global param&ar-
ing the execution of the algorithm, the values of such véeigiet exchanged. If the
second message is missing, only one of the nodes updatesuts VI his may affect
the final estimated value. This lack of atomicity cannot baided in a systems subject
to omission failures.
Example: consider RIRWISEAVG. Y; represents in this case the inverse of the esti-
mated size. Consider the case whign= 0.1 andY> = 0.5. The average of their
estimated size before the meeting equaldJpon the reception of the first message,
the second node updates its estimat&as- 0.3. As the second message gets 165t,
stays ai).1. After the meeting, the new average of the estimated sizaleq67. If
we reverse the initial estimates, we get a new estimated after the meeting) equal
t0 2.67. So the average estimated size may increase or decreaseditgpon which
message gets lost.
Example: consider BPULATION with tokensY; = 1 andY: = 3. Upon the reception
of the message, nodesetsY> = 0 and returns its tokens to node As the message
does not get received; stays atl and three tokens get lost. In this case, message
losses always lead to a decrease in the average estimated siz

We considered for this case the community model, with patara&/ = 1000,
friendly = 0.1, mov = 0.2 andk = 200, and varied the probability that the return
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Trace Real N | PAIRWISEAVG | C-POPULAT. | 2-PHASES
RWP 200 200 76.66 199.73
Reality 2135 2135 2135 2135
Hagglel|| 110 110 110 109.96
Haggle2| 187 187 187 187
Haggle3 214 214 214 214
NUS 841 841 839.42 841
CN 21 21 20.86 20.93
Table 3: Average estimated value at termination.
Trace N | MAX-AGGR | MIN-TOKEN | # signed values
RWP 200 10 1 15.63
Reality || 2135 10 10 168.06
Hagglel|| 105 10 1 29.70
Haggle2|| 187 10 1 56.03
Haggle3|| 215 10 1 82.73
NUS 842 10 10 72.50
CN 21 10 1 6.26

Table 4: Details on the performance and resource consumgtia-PHASES

packet is lost during an exchange. We used a loss probadsilityt %, 1% and10% in
our experiments. In general, the loss of a packet may leadddytpes of problems.
The first one is loss in accuracy, as the algorithm may stovalue different from the
real one. The second one is loss in convergence speed, ag iem&cessary now to
undergo additional exchanges before reaching convergérteeresults are depicted
in Fig. 5. As it can be seen ARRWISEAVG is very robust to noise: message losses
impact the convergence time but most of the runs convergee®xpected size (or
values very close to it). On the other hand, ©FRLATION suffers quite heavily in the
presence of message losses. These affect both the convetgaa (which gets noisy,
while still being lower than that of @RwWISEAVG) as well as the estimated network
size. 2-RIASES on the other hand, offers a good compromise. It offers thekgst

37 [V |
to=v \ T
y2
Update Y,
Error *
37 [V
QU . (-
o no/ Node 1 Node 2 -\Z;Lﬁed
updated

Figure 4: Message loss pattern considered.
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Figure 5: Convergence time and final estimated value for ConitynModel, N = 1000, friendly = 0.1,
mov = 0.2, k = 200, 30 runs.

convergence and in general the estimated value is quite thathe real one. We only
experienced one case in which the estimate was far from talaane: the cause was
the loss of a key message during the final phase of the algarithe may conclude

that 2-RHASES offers again a good compromise between performance andaagcu
even in case of message losses.

5. Online Protocol Tuning

The distributed estimation of parameters is a very powedl, especially in the
case of dynamic scenarios, where network conditions chaveetime (e.g., the num-
ber of nodes). In this case, the result of the estimation eausled in order to let nodes
behavior of the system adapt dynamically. In this sectioa,d@scribe the applica-
tion of node counting to the dynamic tuning of the paramedéis specific message
forwarding algorithm.

In the following, we assume an opportunistic communicagigsiem to be deployed
in an urban environment, and the density of nodes to be fallgthe daily patterns of
people. In particular, we assume the density of nodes tovb€20 nodes) untis AM
in the morning, when people leave their homes for going toskhwvork, etc.. The city
remains “busy” 200 nodes) betweed AM and 19 PM, before slowing in the evening
time (90 nodes) and finally going back to sle€j) (hodes) after midnight.

5.1. Dynamic Node Counting

As a first experiment we measured the ability of the proposeshiing schemes
to keep the pace of such daily patterns, and the accuracyeddtimates over time.
Starting from the algorithms described in Sec. 3, we intoedarestarting mechanism
which periodically restarts the counting process. The pewbduced estimate of the
number of nodes is then used by the different algorithms asc¢he forwarding mech-
anism. Clearly, the more often the counting process is ntestathe faster is able to
detect the change in the environment conditions. At the d@mme as confirmed in
Tab. 2 and in Fig. 3, too small restarting periods corresgoralbad accuracy of the
algorithm, due to the convergence time of the algorithm.

Fig. 6 presents theAPRWISEAVG estimate of the number of nodes over time, for a
restarting period ot0, 20 and30 minutes, respectively. As it can be easily observed,
for a restarting period of0 and20 min. the RAIRWISEAVG algorithm is not able to
adapt to the system dynamics. This is due to the prematys@stbe algorithm, which
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Estimation using Aggregation, Community Model, freq=2/s, Friendly=0.2 Mov=0.2 kperc=0.2
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Figure 6: Dynamic estimation of the number of nodes in the @fsCommunity Model mobility model
(friendly = 0.2, mov = 0.2, kpere = 0.2), utilizing the RAIRWISEAVG algorithm.

is not yet converged to the correct value of nodes. In thealemin., PAIRWISEAVG

is estimating a lower value of nodes, and this is reflectedtireea lower (as in the
case of20 nodes) or in a noisy (as in the casedofnodes) estimate. Differently, with
a restarting period a0 min, PAIRWISEAVG is probably in its “overshooting” phase,
which leads to a much higher estimate of the number of nodesyident in the case
of 20 nodes.

5.2. Dynamic Adaptation of Forwarding Mechanisms

As a second step, we have evaluated how such dynamic estifrtate number of
nodes in the system can be used by other algorithms. In pktjave have focused
on the dynamic tuning of forwarding mechanisms in DTN netsdf], which use op-
portunistic forwarding for achieving network-wide comnieations. The forwarding
mechanism is highly dependant on the density of the netvewrkt,regulates the num-
ber of copies that each node is allowed to generate for easbage. Clearly, the larger
the number of copies of a message in the system, (i) the fiasteiches its destination
(i) the more it is robust with respect to the nodes mobilitglanode/link failures. On
the other hand, in order to have more copies of the same meessagling in the net-
work at the same time, a larger amount of network resourcestze exploited. Given
this tradeoff, the knowledge of the number of nodes in thevaek can be of great help
in fine tuning the forwarding mechanism.

In the following, we will refer to the Spray-and-Wait [13,]1gFotocol, since it rep-
resents a reference case in literature due to its provagteddficiency in trading off
number of messages and end-to-end delay. The Spray-ang®eicol has a budget
of L copies that can be released in the network; initially thealVbudget is retained
at the source. Depending on the strategy used to releases¢dpé protocol shows
different performances.

As depicted in Fig 7, the effect on the choicelohas an impact on both the delay

experienced by messages to reach the intended destiratidthe overall number of
copies generated in the network. As it is intuitively clele higher the valué, the
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Figure 7: Delay and number of copies over time, for variougie® budget’, in the case of Community
Model mobility model friendly = 0.2, mov = 0.2, kpere = 0.2) and thePAIRWISEAVGlgorithm for
the estimation of the nodes number.

Average Delay,30m restarting, freq=2 meetingls, Friendly=0.2 Mov=0.2 kperc=0.2 Number of copies in the last hour, 30m restarting, freq=2 meetingls, Friendly=0.2 Mov=0.2 kperc=0.2
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Figure 8: Delay and number of copies over time, for the varioodes estimation algorithms, in the case of
Community Model mobility modelffiendly = 0.2, mov = 0.2, kperc = 0.2).

more copies are generated. This leads to a better diffugidata in the network and,
consequently, a lower delay. Such difference is evidentwihereasing. from 1 to 5,
while is less significant for higher values.

We performed a set of experiments that demonstrate how ttiegwf the algo-
rithm works in the dynamic case.

6. Related Work

Aggregation is an hot problem in distributed systems; it basn studied in the
most diverse environments, including both wired and wgelgettings. In wired net-
works, the possibility of building structured and semisstured topologies allows for
several different approaches, such as tree-based [2] asgipgbased [4, 15]. AR-
WISEAVG is derived from the work of Jelasity et al. [4], where the aitjon is applied
to random topologies maintained through a peer samplingcgef16]. At the best of
our knowledge, this is the first time thatIRWISEAVG is applied to DTNSs.
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In wireless networks, the problem of distributed averadaigo known as the dis-
tributed consensus problem, or the agreement algorithas)bben introduced by Tsit-
siklis [17], and it is concerned with letting a distributest ©f processors converge to
some common value. This problem has been studied in thextaiteensor fusion by
Spanos et al. [18], as well as by Xiao et al. [19], and in thaextrof vehicle formation
control by Fax and Murray [20].

The other algorithms described in this work are derived ftbenliterature on pop-
ulation protocols [5]. The population protocol framewognde used to model mobile,
ad hoc sensor networks consisting of very limited agents matcontrol over their own
movement. Agents are identically programmed finite statehim@s that interact with
one another to carry out a computation. Meetings betweeas plagents cause them
to update their state.

Examples of mechanisms for aggregating information oveN®@&re included in
the work of Spyropoulos et al. [13, 14] and Walker et al. [21]. particular, as al-
ready described before, the Spray-and-Wait algorithm{43js based on the knowl-
edge of the number of nodes included in the network; the asiihimpose a complex
mechanism to evaluate this parameter, which assumes apmatety exponentially
distributed meeting times. We have shown already that ferathline tuning of that
protocol, our algorithms do not require this assumptiongdrbe. The work of Walker
et al. [21] describes a particular application of an aggiiegdechnique; the goal is to
limit the carrier fraction, i.e. the ratio of the number of nodes who carry a message
w.r.t. the total number of nodes.

7. Discussion and Conclusions

In this paper, we have presented methods for estimatingbpatvameters in DTNs.
Starting from techniques developed for distributed conmgrapplications (RIRWISEAVG,
PopPULATION), we have developed variants thereof (OFRILATION, 2-PHASES), which
achieve better performance by exploiting features comynprgésent in real-world
DTN mobility patterns (in particular: clustering). Termaition algorithms have also
been introduced and described. Validation has been pegfibthrough extensive sim-
ulations, carried out using a variety of contact tracesh lsghthetic and experimental.

Our study can lead to the following recommendations foriitianers dealing with
real-world DTN deployments:

e Ifthe meeting patternis regular (i.e., memorylesa)RVISEAVG offers the best
performance in terms of convergence speed and robustnasssiage losses;

¢ |f the meeting pattern is irregular (i.e., clustered) andeshave stringent mem-
ory requirements, C-®PULATION offers a good trade—off in terms of perfor-
mance and resource usage;

¢ Ifthe meeting pattern isirregular and no stringent memonstraints are present,
2-PHAsEsoffers very good performance in terms of convergence timeyi@cy
of estimation and robustness to message losses.
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The counting algorithms presented here can be easily atlapteompute other
functions. E.g., itis possible to compute how many uniquiasdave a copy of a given
message by creating tokens only in those nodeRWISEAVG is clearly suitable for
any kind of average; etc.

Future work includes extending the presented mechanisrsisu@tions in which
the quantitiesY (i) vary dynamically. In this case, one would like to track thelation
over time of a given global parameter. This could be achiéyee.qg., by periodically
restarting the counting algorithms introduced. Howeverersophisticated techniques
can be envisaged, leading to a better and smoother trackitigeovariation in the
network status.
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A. Mobility Models
In the present work, we considered the following synthetibitity models:

e Random Waypoint (RWF the RWP model, nodes select a destination at ran-
dom (usually according to a uniform distribution) and moee,a straight line,
till they reach it. When reaching the destination, nodesspdar a random in-
terval of time, and then repeat the process. In our impleatiemt of RWP, MNs
move at a constant speed and without pausing. We reprodysediesct simula-
tion [22], sampling the initial location of nodes accordtegthe corresponding
stationary distributions (which is not uniform). Subseqjieestinations are then
sampled from the uniform distribution. This approach etiaies the time needed
for the simulation to reach the stationary regime. In patéic we considered the
case of 100 nodes moving ove2800 m x 2500 m playground with no pausing
and a speed of = 5 m/s. Two nodes are assumed in communication range if
their distance falls belou® = 25 m.

e Community Modelin [8], a mobility model capturing key social and temporal
aspects of mobile environments has been introduced. Iicpkat, authors con-
sidered those application scenarios where the mobile nadesonstituted by
the mobile devices of people. In this case, the mobilitygratdf nodes is deter-
mine by the social dynamics of people. In order to capture dBpect, authors
proposed a mobility model where meetings are distinguisleédeen friend and
strangers encounters. In particular, a Watts-Strogatlsmad model is as-
sumed to regulate the contact among friends, while a Barabate-free model
is used to generate encounters between strangers. Clinslynakes friends
meetings more frequent than those with strangers, as aegumrreal social dy-
namics. The parameters of this mobility model are the nurobérends per
nodek, the Zipf parameted regulating the stranger distribution, the probability
friendly of encountering a friend.

and the following real-world mobility traces:

e Haggle in [6], the authors report extensive experimentationslooited in order
to trace the meeting pattern of mobile users. A slightly rfiediversion of
iMotes, equipped with a Bluetooth radio interface, wastitigted to a number of
people, each device collecting the time epoch of meetings ether Bluetooth
devices. Due to technical problems, some of the traces haveeen collected.
Three experiments have been conducted:

— Haggle T 12 out of 16 iMotes, staff of Intel Research Cambridge Cerpo
rateLab, 1 week;

— Haggle 2 12 out of 12 iMotes, students of the Computer Lab of the Cam-
bridge University, 1 week;

— Haggle 3 42 out of 50 iMotes, people attending the IEEE Infocom 2005
conference, 3 days.
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e Reality the MIT Reality Mining experiment [23], carried out thrdugut aca-
demic year2004 /05, involved approximately 00 people (faculty and students)
at MIT. A software for Nokia Symbian Series 60 Phone, ableetmrd all meet-
ings exploiting a Bluetooth interface, was developed. Témuit is a single,
extremely large, trace file, covering ab&s0, 000 hours. We used for our nu-
merical analysis the fir&x00, 000 entries of the file.

e NUS the NU S dataset [9] contains Bluetooth contact traces collect&inga-
pore from end005 to early2006. The measurements campaign consistetof
devicesg static and mobile. The static devices were line powered, and placed
in three of the busiest lecture theaters on National Unityeo$ Singapore cam-
pus. The9 mobile probes were distributed to various people with aedéit
social role, including students on campug,faculty members and students
who lived off campus.

e CN: the Create-Net dataset [] has been obtained by monitofirenZployee —
playing different roles within our organization and worgion different floors
of the same building — for a 4-week period. Employee were éiskecarry a
mobile running a java application, and relying on Bluetoodhnectivity for ex-
changing data. The application periodically triggers (g\6® seconds) a Blue-
tooth node discovery. Whenever another device is deteitte®|uetooth ad-
dress, together with the current timestamp is saved in thegeent storage of
the device for a later processing.

B. Scalability Measurements

In section 4.2, we addressed the scalability of the propafggatithms, character-
izing the convergence time with respect to the number of sdde The intensity of
the base contact process,was scaled with reference to a set\diodes moving on a
square playground of siaZ€N x /N, i.e. we considered a scenario with constant node
density. For synthetic mobility models such as Random WantpBandom Direction
and Brownian Motion, in particular, it was shown in [24] thlag inter-meeting inten-
sity, i.e., the number of meetings per second of any pair déspcan be approximated
ask - v/L? whereL is the playground sidey is the node speed andis a posi-
tive constant. Thus, since distances increase as fagiasvith the area, for a given
constant speed, the inter-meeting intensity decreases\d¥. Finally, the meeting
process intensity for all pairs of nodesNs= kz(g’)v/LQ, so that the required scaling
for \(N) ~ N3/2 571,
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