
ETSCH: Partition-centric Graph Processing

Alessio Guerrieri
DISI

University of Trento
Email: a.guerrieri@unitn.it

Alberto Montresor
DISI

University of Trento
Email: alberto.montresor@unitn.it

Simone Centellegher
ICT Doctoral School
University of Trento

Email: s.centellegher@unitn.it

Abstract—This paper presents ETSCH1 , a novel paradigm
for processing large graphs. ETSCH departs from the vertex-
based approach of BSP frameworks like PREGEL in two ways:
first, the units of computation are not the vertices, but rather a
collection of subgraphs, obtained by partitioning the input graph;
second, the subgraphs are obtained through an edge-partitioning
algorithm, in which edges, rather than vertices, are subdivided
into disjoint subsets Global computations over the graph are then
easily expressed using classical centralized algorithms executed
on each of the partitions, with the only additional burden of
specifying simple reconciliation procedures when vertices are
replicated in multiple computing nodes. The ETSCH paradigm
has been implemented both on top of existing frameworks like
HADOOP and SPARK, and as a stand-alone service based on
AKKA, a toolkit for building distributed message-driven appli-
cations. When considering problems like single-source shortest
path and PageRank, our experiments show that solutions based
on ETSCH/HADOOP and ETSCH/SPARK already outperform the
standard solutions to the same problems in HADOOP and SPARK,
respectively. But it is our AKKA implementation that really shines:
the execution time on graphs with millions of edges falls down
from from thousands of seconds (ETSCH/HADOOP) to tens of
seconds (ETSCH/SPARK) to seconds (ETSCH/AKKA), while easily
scaling to graphs with billions of edges. ETSCH/AKKA is also
faster than other partition-centric frameworks like BLOGEL and
GPS.

I. INTRODUCTION

The “big data” phenomenon has created the need to manage
and analyze larger and larger datasets. The scale of such
datasets keeps increasing exponentially, moving from giga-
bytes to terabytes and now even to petabytes. While parallel
(multi-CPU, multi-core) systems have been used to deal with
this deluge of data, there are many cases in which distributed
approaches are the only viable road. A distributed system is
able to cope with potentially unlimited datasets, is more robust
to hardware failures, is often cheaper and, with the emergence
of distributed frameworks for data analysis, is also much easier
to use than it was a decade ago.

Since many of these large datasets represents connected
entities, there has been strong focus on frameworks that
are specialized on graph computation. PREGEL [1], the most
influential of these frameworks, has been designed following
the “think like a vertex” philosophy: each vertex is considered
as a single processing unit, that receives information from
neighbor vertices, computes a very simple function and sends
up-to-date information back; all these steps are performed in
periodic rounds. Vertices are thus assigned to a collection

1“Etsch” is the German name for the river Adige, that flows through Trento.
Its German pronunciation is similar to the English pronunciation of the word
“edge”.

of workers. Each worker takes care of scheduling the vertex
programs that are assigned to it and handles the communication
between vertices.

While this is a very simple and elegant paradigm, it
does not take into consideration that many interesting graph
properties could be more easily computed by considering
larger groups of vertices and edges, beyond the adjacency list
of a single node.

In this paper we make the case for a different approach
based on two ideas: edge partitioning and subgraph computing.
The partitioning process happens along the edges and not the
vertices, meaning that each partition is actually a collection of
edges; the vertices associated to those edges may be replicated
between distinct partitions. Each of the subgraphs is assigned
to a different worker and each worker computes a function
over the entire subgraph. The results obtained in each separate
subgraph may be later reconciled into a global view by
considering the vertices shared between different workers as
communication channels.

The contribution of this paper is ETSCH, the first distributed
graph processing framework that combines the ideas expressed
above: computation is associated to partitions rather than ver-
tices, and partitions are edge-disjoint rather the vertex-disjoint.
Each machine will be responsible for a collection of edges,
while communicating with other machines through vertices
that appear in multiple partitions. A simple programming
model is defined to support such abstraction. Experiments
performed in the Amazon EC2 cluster show that ETSCH is
highly scalable and outperforms or is on par to the most
important distributed graph processing frameworks.

The rest of the paper is structured as follows: Section II
presents an overview of the existing vertex-centric and partit-
ion-centric distributed frameworks. Section III presents the
architecture of ETSCH, together with a few sample algorithms
implemented on top of it. The experimental results are pre-
sented in Section V. The paper is concluded in Section VI.

II. RELATED WORK

The MapReduce programming model [2] has been intro-
duced by Google to facilitate the development and execution of
algorithms on very large quantities of data. This model inherits
the map and reduce functions from functional programming
to create a simple and inherently parallelizable programming
model. While the MapReduce programming model has been
proposed by Google, the most common open-source imple-
mentation is Apache’s HADOOP [3]. While one of the orig-
inal examples of MapReduce application was PageRank [2],

MapReduce is not very efficient for graph analysis. PREGEL [1]
was developed again by Google as an answer to these issues. In
similar vein to the Bulk Synchronous Parallel (BSP) model [4],
each iteration is composed of two phases, computation and
communication, terminated by a single synchronization barrier.
Each vertex is represented as a process, with knowledge of its
own neighbors. In the first phase, the processes independently
execute a number of computation steps and possibly issue
messages to other processes. During the second phase, all
the messages are sent across the network and delivered to
the processes. The synchronization barrier makes sure that
all vertices receive all messages sent to them during the
current iteration before the start of the next one. During the
computation phase each process updates its state by using the
messages arrived during the previous iteration, sends messages
to its neighbors and may vote to halt the computation.

SPARK [5] is a generic framework for large scale data
processing based on resilient distributed datasets (RDD) that
are transformed by applying functions such as map, reduce
and join. If possible, the RDDs are kept in memory and only
dumped to the distributed filesystem if needed, thus making
it very efficient for iterative computation. GRAPHX [6], a
specialized framework built over SPARK, efficiently stores and
transforms very large graphs, while also offering a PREGEL-
like interface for iterative graph algorithms.

A different approach is offered by the GRAPHLAB frame-
work [7], with the asynchronous Gather–Apply–Scatter pattern
(GAS). In the Gather phase each vertex receives messages
from neighboring vertices which are aggregated in a single
message that changes the local states in the Apply phase.
Eventual changes are spread across outgoing edges in the
Scatter phase. This approach has the distinct advantage of
moving the computation from vertices to edges, thus allowing
more flexibility and scalability in presence of high-degree
vertices that can be split in different partitions.

This last feature has also been implemented in GPS [8],
that introduced an optimization called large adjacency list
partitioning (LALP), which partitions the outgoing edges of
high degree vertices in different workers. GPS has also some
support for global computation and global objects, which can
help speed up the convergence for some graph algorithms.

Frameworks that are most similar to ETSCH are those
that allow partition-centric computation, in which iterative
programs are executed by each machine on the entire partition
assigned to it. Both GIRAPH++ [9] and BLOGEL [10] allow
users to execute their algorithms on the entire partition. GI-
RAPH++ then sends messages from boundary vertices (those
that are connected to the outside of the partition) across
different workers. GIRAPH++ also offers a third interface that
allows changing the graph, useful for problem such as graph
coarsening and summarization. BLOGEL supports different
modes of execution. It executes vertex-centric algorithms,
block-centric algorithms and even hybrid algorithms, in which
all vertices execute before the entire block. These modes of
execution allow BLOGEL to offer a very fast implementation
of PageRank that first operates in block mode, initializing the
PageRank of the vertices using only local information and
the connection between blocks, and then execute the classical
vertex- centric PageRank algorithm, which will converge faster
than normal thanks to the better starting values.

Fig. 1: Example of vertex and edge partitioning: on the top
figure, vertices are partitioned and a few cut edges connect
vertices belonging to different partitions. On the bottom figure,
edges are partitioned and a few frontier vertices appear in more
than one partition

III. ETSCH

Figure 1 shows the differences between partitioning the
vertex set and partitioning the edge set (vertex partitioning
and edge partitioning).

When a graph is subdivided using a vertex-partitioning
algorithm, each subgraph has a number of external edges that
connect vertices across partitions. These are called cut edges
and are not really part of the subgraph, since the partition does
not have knowledge of the other endpoint of the edge. The
approach in this case is to consider vertices as computational
entities that “send” messages to their neighbors, potentially
across partitions using cut edges.

This is not the case with edge partitioning. Both vertices
and edges of a local graph can be associated with local state.
Edges are part of exactly one subgraph, therefore their states
belong exactly to one partition. The same happens with vertices
that are not replicated. The nodes that are replicated in different
partitions are called frontier edges; their state need to be
periodically reconciled.

Figure 2 shows the organization of ETSCH. First of all, the
graph is decomposed into K partitions by an edge-partitioning
algorithm. Each partition is assigned to a different worker,
which executes the following steps:

1) The initialization phase is run once, by taking the
subgraph representing the partition as input and ini-
tializing the local state of vertices and edges.

2) Once completed the initialization, each subgraph state
is fed to the local computation phase, that runs an
independent instance of a sequential algorithm that
updates the local state of the subgraph.

3) The aggregation phase logically follows the local
computation: for each frontier vertex, the framework
collects the distinct states of all replicas and computes
a new state, that is then copied into the replicas.

Step (2) and (3) are executed iteratively, until the desired goal

S1 S2 S3

S1
'

Local
Algorithm

Local
Algorithm

Local
Algorithm

S2
' S3

'

Collection of all copies of each vertex

Aggr
Algo

Aggr
Algo

Aggr
Algo

Aggr
Algo

Aggr
Algo

Updated states sent back to partitions

S1
'' S2

'' S3
''

Input Graph

G1 G2 G3

Init Init Init

Partitioning
Algorithm

M
a
i
n

C
y
c
l
e

Fig. 2: Illustrative schema of ETSCH

is reached and the distributed algorithm has completed its goal.

In order to use ETSCH, three functions corresponding to
the three phases must be implemented. Functions init() and
localComputation() take a subgraph as input and perform their
computation on it. aggregation() takes an array of replica state
(whose type is defined by user) and should return a single state
that reconcile those contained in the array. The framework
takes care of calling init() and localComputation() in each of
the worker, and provides them with a subgraph to be computed;
it then collects the replicated states from the replicas, calls
aggregation() on them and then copy the aggregated state back
to the replicas.

A. Application examples

Algorithms 1 and 2 provide a couple of application ex-
amples; the former shows how to compute the distances of
vertices from a source vertex, while the latter shows how to
identify the connected components of a graph using ETSCH.

For the problem of distance computation (Algorithm 1),
each vertex is associated with a state containing just the

Algorithm 1: Distance computation
function init(SubGraph Gi)

foreach v ∈ Gi.V do
if v = source then

v.dist = 0;
else

v.dist =∞;

function localComputation(SubGraph Gi)
changed = true;
while changed do

changed = false;
foreach e ∈ Gi.E do

s = e.sourceVertex ;
d = e.destVertex ;
if s.dist + 1 < d.dist then

d.dist = s.dist + 1;
changed = true;

else
if d.dist + 1 < s.dist then

s.dist = d.dist + 1;
changed = true;

function Distance aggregation(Distance[] D)
return min(D);

distance variable dist. Initially, all vertices are initialized to
+∞, apart from the source vertex which is initialized to 0. In
the local computation phase, the vertices distances are updated
by executing the Bellman-Ford algorithm until no changes are
made. In the aggregation phase, replicated states of vertices are
represented as a vector of distances, from which the minimum
distance is taken.

This approach decreases substantially the number of itera-
tions needed by the framework to complete its execution. If the
shortest path between a node and the source passes through
K partitions, that node will have the correct distance from
source after only K iterations. Since the length of a path is an
upper bound to the number of partitions traversed by that path
and a vertex-centric algorithm can only move by one edge
during each iterations, our approach can reduce the amount
of iterations needed to converge. Comparing the number of
iterations needed by the vertex-centric approach against our
partition-centric approach, we measured a 30% decrease on
small-world graphs and over 95% decrease on road network
with large diameter.

The algorithm for computing the connected components
uses a variation of Dijkstra’s Algorithm (Algorithm 2). Each
vertex is associated with a connected component identifier id,
which is generated randomly for each vertex. The local com-
putation phase epidemically spread the smallest component
identifier by passing it through the local edges, until all vertices
have been reached. In the aggregation phase the smallest
identifier is selected from all the replicas and returned as their
connected component identifier. Eventually, each connected
component will be identified by a single value, which is

Algorithm 2: Connected components computation
function init(SubGraph Gi)

foreach v ∈ Gi.V do
v.id = random();

function localComputation(SubGraph Gi)
PQ = new PriorityQueue〈Vertex〉();
foreach v ∈ gi.V do

PQ.add(v);
while not PQ.() do

q = PQ.pop();
foreach v ∈ q.neighbors do

if v.id > q.id then
v.id = q.id;
PQ.update(v);

function aggregation(ID[] D)
return min(D);

Algorithm 3: Gather-Apply-Scatter
function localComputation(SubGraph Gi)

foreach (u, v) ∈ gi.E do
Du,v = scatter(Du,D(u,v),Dv)

foreach u ∈ Gi.V do
foreach v ∈ u.neighbors do

u.Accum =
sum(u.Accum, gather(Du,D(u,v),Dv));

function aggregation(Accum[] a,D curstate)
Accum cur = nil;
foreach i ∈ a do

cur = sum(cur, i);
return apply(cur, curstate);

the smallest identifier randomly generated in each connected
component.

Both are basic problems that can be used as building
blocks for other, more complex computations. For example,
the problem of distance computation is needed to compute
properties like betweenness centrality [11]. It is also possible to
implement Luby’s maximal independent set algorithm [12] in
ETSCH, by spreading the random values in the local phase and
choosing if a vertex must be added to the set in the aggregation
phase.

B. Applicability of Etsch

As a general guideline, problems that need several itera-
tions to complete in a vertex-centric framework are the ones
that can gain the most from a partition-centric framework such
as ETSCH. In other problems, such as computing the number
of triangles in a graph or solving PageRank, most algorithms
need only local computation and therefore a vertex-centric
interface can allow simpler algorithms. For these reasons we
implemented the gather–apply–scatter model on top of ETSCH,

as shown in Algorithm 3. The scatter phase is executed in the
local phase and the messages sent inside the partitions can
already be gathered and collected. The ETSCH aggregation
phase will collect the messages sent to that node from different
partitions and apply it to the state of the node.

This additional module will allow users to run a program
written in GAS or following ETSCH programming model,
while following the same partitioning. Some of the experi-
ments presented in Section V has been obtained by running
the standard PageRank algorithm on top of this gather–apply–
scatter module (see [13] for the pseudocode).

C. Partitioning schemes

The quality of the partitioning chosen for the execution of
ETSCH can have a huge impact on the efficiency of the system
and deserves some careful consideration. The most important
metric to consider to evaluate the quality of such partition is
the number of frontier nodes, the vertices that appear in more
than one partition and thus cause the creation of replicas and
the need of the aggregation phase. A smaller amount of frontier
nodes affects the execution of ETSCH in different ways:

• Workers need less memory to store all the replicas that
refers to the copies of the frontier vertices

• ETSCH sends less messages to reconciliate the replicas
of each node

• The aggregation phase of ETSCH is shorter, since there
are less nodes on which it has to execute.

While having less frontier nodes is always better, there is
a trade-off between the time spent to improve the partitioning
and the time needed by ETSCH to complete its execution. It is
clearly not a good idea to run a complex, slow partitioning al-
gorithm if the algorithm to be run is not very time-consuming,
or if the system will spend more time in partitioning the graph
than in analyzing it.

There are many very fast hash-based random partitioning
algorithms that can be used when the quality of the partitioning
is not very important, but they tend to create extremely discon-
nected partitions and a huge number of frontier nodes. ETSCH
can still be executed on these partitions but the advantages of
a partition-based framework might disappear.

A better compromise is POWERGRAPH’s random vertex
cut [13], a greedy algorithm that computes a good edge
partitioning by following few simple rules for each edge. If
there is a need of a more connected partition, DFEP [14]
is a diffusion-based algorithm that, while slower, will allow
ETSCH to run more efficiently. JA-BE-JA [15] needs even
more iterations to converge, but computes extremely balanced
partitions with good connectedness.

In many cases, the graph comes with additional information
about its vertices and edges. A web graph can contain the URL
of the pages, a road network can contain information about the
coordinates or the type of connections, collaboration networks
can contain data about the people involved. This information
can be exploited to obtain high quality partitions very quickly.
In our experiments in Section V that involve web data, we
used a variant of the URL partitioning algorithm offered by

BLOGEL [10] that groups together all out-edges of each web
domain and then assign greedily each group to the less loaded
partition. We found that the fraction of frontier nodes in web
graphs can be very few (around 2% in our experiments) and
therefore the amount of bandwidth needed is very small. We
estimate less than 7Mb of data was sent around the network for
each iteration of PageRank of ETSCH on the ARABIC graph,
which contains over 20 million nodes.

IV. IMPLEMENTATION DETAILS

This Section describes the three different implementations
of ETSCH that are compared in Section V. Each of these
implementations can give some insight in the advantages and
disadvantages of the system that has been used to develop
them.

A. Hadoop

ETSCH has first been implemented as a Map-Reduce job
on top of Apache HADOOP. HADOOP has arguably the largest
user base between all big-data analysis frameworks, and its
implementation, while not very efficient, is very stable without
any unpredictable behavior.

Because of the limitations of the Map-Reduce model, two
iterations of HADOOP must be executed for each super-step of
ETSCH: one Map-Reduce program for the local computation
phase and one for the aggregation phase. In each of these steps,
the entirety of the graph must be loaded from scratch from the
distributed file system, thus incurring in significant overhead.

The termination condition is controlled by the driver pro-
gram, which checks the appropriate HADOOP counters to see
if ETSCH’s phases have modified the state of any node in the
graph.

B. Spark

The second implementation has been developed in Apache
SPARK/GRAPHX, a faster and more flexible alternative than
HADOOP. What made GRAPHX especially intriguing is the fact
that it uses edge partitions and therefore is already close to our
model.

In particular GRAPHX’s implementation of the graph offers
a mapTriplets function that executes an user defined function
on the entirety of a partition. For our scope we extended that
function, enveloping the partition in a custom class that keeps
track of changes in the states of the nodes. The entirety of
the ETSCH pipeline is then implemented as a sequence of API
calls, with accumulators used to count state changes in the
entirety of the system.

For this version of ETSCH, the implementation had been
written in Scala, to test the efficiency of SPARK in its most
publicized language. This choice made initial coding much
faster, but also created difficulties in debugging because of
the immutability of Scala’s objects. This characteristics also
caused our implementation to waste time in converting data
from immutable to mutable objects to make them accessible
and editable by the user defined functions.

C. Akka

AKKA [16] is a Java framework for parallel and distributed
Actor-based programming. AKKA offers the possibility to
create generic actors, stored using very few memory, that
can react asynchronously to incoming, user-defined messages.
While the absence of graph-specific services meant more work
to implement ETSCH, it allowed us to avoid using work-
arounds to overcome the other frameworks’ limitations.

Our ETSCH implementation creates one single actor for
each worker and one actor as a master. Currently the master
actor functions only as a check-in point for the actors to
discover the system and does not do any computation. The
worker actors store their partitions and execute the algorithms
defined on top of ETSCH programming model.

At startup, each worker reads its input partition indepen-
dently. Since in the data there is no information about which
nodes have replicas and in which partitions they reside, the
workers needs to spend a communication phase and exchange
the list of nodes. Each frontier node is then assigned to a
random partition, which will receive updates to its state from
the other partitions and eventually execute the aggregation
program.

During the execution phase, each worker/partition executes
the local computation phase independently and, once it has
finished, sends a message to each of the other workers with
the list of changed states. Once a worker has received updates
from all workers, it will move to the aggregation phase.

Our current implementation does not yet use AKKA’s
services for obtaining fault-tolerance and load-balancing and
assumes failure-free executions. While we plan to extend our
framework to deal with failures in a future work, we underline
that even the largest datasets tested in this section are analyzed
in less than one minute, and thus it is perfectly feasible to re-
start the entire job in case of failures.

Internally, each partition is stored as a single sorted edge
list with pointers to the outgoing edges of each node. This
approach allowed a more efficient representation of the graph
in memory, without the large overhead of efficiency caused by
the use of Java’s standard collection. The graph is effectively
stored in a low-level array of longs thus decreasing the impact
of memory issues on the execution.

V. RESULTS

ETSCH has been implemented on top of three different
frameworks for distributed computation, HADOOP, SPARK and
AKKA. This section compares the three implementations of
ETSCH against native vertex-centric algorithm in the respec-
tive frameworks. A final comparison shows that our AKKA
implementation of ETSCH is orders of magnitude faster than
the other implementation and obtains generally better results
with respect to competitor frameworks such as BLOGEL and
GPS.

All these experiments have been executed using Amazon
AWS. The machines used in the experiments are m3.large,
equipped with High Frequency Intel Xeon E5-2670 v2 (Ivy
Bridge) Processors (2 virtual cores) and 7.5 GB of RAM.

Name |V | |E| � dmax

DBLP 317, 080 1, 049, 866 21 343
YOUTUBE 1, 134, 890 2, 987, 624 20 28754
AMAZON 400, 727 2, 349, 869 18 9905

ROADNET-PA 1, 087, 562 1, 541, 514 784 9
LIVEJOURNAL 3, 997, 962 34, 681, 189 16 14815

TABLE I: Datasets used with ETSCH/HADOOP and
ETSCH/SPARK

Name |V | |E| � degmax

INDOCHINA 7, 414, 866 194, 109, 311 28.12 6985
UK-2002 18, 520, 486 298, 113, 762 21.59 2450
ARABIC 22, 744, 080 639, 999, 458 22.39 9905

UK-2005 39, 459, 925 936, 364, 282 23.19 5213

TABLE II: Datasets used with ETSCH/AKKA

A. Datasets

In our experiments, we used different datasets to test the
performance of our framework on different problems. The
five graphs that are used in our implementation of ETSCH in
SPARK and HADOOP are presented in Table I. DBLP is the
co-authorship network from the DBLP archive, YOUTUBE is
the friendship graph between the users of the service while
AMAZON is a co-purchasing network of the products sold by
the website. Finally, ROADNET-PA is a large-diameter graph
representing a road network and LIVEJOURNAL is a large
social network graph with a small diameter. All these networks
have been taken from the SNAP graph library [17] and cleaned
for our use, making directed edges undirected and removing
disconnected components. These datasets do not contain any
additional information outside of the structure of the graph and
have been partitioned using DFEP [14].

The larger datasets used in AKKA, presented in Table II,
have been downloaded from the Laboratory of Web Algorith-
mics of the University of Milan2. Such datasets are compressed
via LLP [18] and WebGraph [19] and contain additional
information about the domain of the web page. We partitioned
them using a variant of BLOGEL’s URL partitioner based on
edges rather than vertices.

B. Hadoop

To test the practical advantages of ETSCH we first prepared
a HADOOP implementation of the framework in which the
user can define the three functions as defined in Section III.
We compared this approach against running a baseline vertex-
based implementation of the shortest path algorithm on the
unpartitioned graph, in which every vertex sends messages
in the Map phase and receive them in the Reduce phase.
Figure 3 shows that our approach is much more efficient
when the number of processing nodes is small, since the
partitions are larger and paths are more easily compressed.
When the number of partitions grows, the baseline approach
gets closer to ETSCH, but the latter is still more efficient. This
implementation, while not very efficient with later ones, is very
stable without any unpredictable behavior.

2http://law.di.unimi.it

 0

 2000

 4000

 6000

 8000

 10000

 12000

 2 4 8 16

T
im

e
 (

s
)

Computing nodes

HADOOP
Youtube: ETSCH/HADOOP

Amazon: HADOOP
Amazon: ETSCH/HADOOP

DBLP: HADOOP
DBLP: ETSCH/HADOOP

Fig. 3: Running time of single source shortest path algorithm in
HADOOP comparing a standard baseline algorithm and ETSCH,
with m3.large machines on EC2.

C. Spark

As the experimental results show, SPARK is much more
efficient but is still unstable and we encountered strange
behaviors when the memory available is smaller than optimal.
This is expected since SPARK makes a larger use of the
memory than HADOOP.

As before, we compared the single-source shortest path
algorithm implemented on ETSCH with the standard PREGEL
approach, following the example presented in the GRAPHX
programming guide. Given the large speedup obtained by
moving from HADOOP to SPARK, we were able to use the
last two datasets from Table I as well.

We show the experimental results in Figure 4. In the
LIVEJOURNAL graph we can see that our approach is faster,
but the greater the number of partitions the smaller is the
speedup caused by processing each partition as a subgraph.
The ROADNET-PA graph shows that, as expected, when the
diameter is huge ETSCH is extremely efficient. While the
PREGEL version needs hundreds of iteration to complete,
ETSCH finishes in only few iterations thus decreasing the
synchronization overhead.

D. Akka

AKKA’s implementation has been tested on the larger web
graphs, therefore in the rest of the section we focus on the
PageRank problem and we compare ETSCH, BLOGEL and
GPS against it. We believe that the advantages of a partition-
centric approach in problems such as single-source shortest
path have been already shown by the previous sections and
by results in [10] and [9]. For ETSCH, we implemented the
standard PageRank algorithm on top of the Gather-Apply-
Scatter module presented in Section III.

Figure 5 shows the scalability of our approach, running
PageRank on the 4 large datasets in Table II on different
numbers of m3.large machines. ETSCH can analyze even
the largest, 1–billion edges dataset with only 4 machines, but
the addition of more machines allow the system to use the
memory more efficiently and thus significantly speed up the

http://law.di.unimi.it

 20

 40

 60

 80

 100

 120

 140

 160

 180

 2 4 8 16

T
im

e
 (

s
)

Computing nodes

Graphx/Pregel
ETSCH/SPARK

(a) LIVEJOURNAL

 0

 200

 400

 600

 800

 1000

 1200

 1400

 1600

 2 4 8 16

T
im

e
 (

s
)

Computing nodes

Graphx/Pregel
ETSCH/SPARK

(b) ROADNET-PA

Fig. 4: Comparison between ETSCH and the standard PREGEL implementation in SPARK/GRAPHX

Dataset ETSCH/ ETSCH/ ETSCH/
HADOOP SPARK AKKA

DBLP 755s 7.8s 1.75s
YOUTUBE 1400s 11.1s 2.45s
AMAZON 984s 12.2s 2.33s

ROADNET-PA NA 75.1s 1.43s
LIVEJOURNAL NA 61.3s 8.78s

TABLE III: Comparing different frameworks for ETSCH, using
4 machines.

computation. Using 8 machines on the UK2005 causes a 2.37
speedup with respect to the same experiment with 4 machines.
Investigating this result indicates that when the number of
edges is too big, the system is slowed down by Java’s garbage
collector. Moving away from Java’s collections and using ad-
hoc, array-based data structure might be a solution that we will
explore in future works.

Even with these memory issues, our AKKA implementation
is order of magnitude faster than implementations on other
frameworks, as seen in Figure III

E. Comparison with Blogel and GPS

Comparison against other frameworks is shown in Ta-
ble IV. Given that in most datasets we were not able to run
BLOGEL and GPS on only 4 machines, we decided to run
the following experiments using 8 m3.large machines in
EC2. We executed BLOGEL’s URL partitioner on the datasets
and then ran both BLOGEL and GPS on the same partitioned
graph. Since GPS implements only a round-robin scheme, we
exploited the BLOGEL URL partitioning scheme and assigned
node identifiers so that GPS’s round-robin distribution reflects
the URL partitioning. For each of them we measure the run-
ning time of the vertex-centric PageRank part of computation,
discarding the setup phase, and we divided it by the number of
iterations needed to converge to measure the average running
time per iteration.

Dataset ETSCH/AKKA BLOGEL GPS
INDOCHINA 0.94s± 0.01s 4.51s± 0.01s 10.37s± 0.17s
UK-2002 2.33s± 0.05s 3.44s± 0.02s 8.11s± 0.18s
ARABIC 5.12s± 0.05s 8.49s± 0.04s 15.42s± 0.09s
UK-2005 11.90s± 0.18s 10.91s± 0.08s 23.51s± 0.05s

TABLE IV: Comparison of running time of a single PageRank
iteration in ETSCH, BLOGEL, GPS (8 m3.large machines)

Aside from UK-2005, where some memory issues with
the Java’s garbage collector make ETSCH slightly slower than
BLOGEL, our approach is significantly faster. An interesting
behavior can be noticed in the processing of INDOCHINA.
Despite the smaller size of that dataset with respect to UK-
2002, both BLOGEL and GPS take more time to complete a
PageRank iteration. We investigated the problem and we found
that the reason is that the partitions created by BLOGEL are
balanced with respect to the number of vertices, but not with
respect to the number of edges. This is a limitation of vertex-
partitioning schemes: since we are dealing with graphs with
a power-law degree distribution, the number of edges inside
the partitions can be wildly different even if the number of
the nodes stays the same. In the case of INDOCHINA, BLOGEL
created a partition that has 4X more edges with respect the
other partitions, thus slowing the system significantly.

GIRAPH++’s implementation of PageRank has been ex-
ecuted on UK-2002 and UK-2005 by the authors in their
paper. Their reported results (respectively 4 and 13 seconds)
are worse than what both BLOGEL and ETSCH/AKKA obtain;
furthermore, note that they used more resources (10 quad-core
machines with 32G of ram against 8 m3.large machines).

VI. FUTURE WORK

As future work, we plan to study the ETSCH framework
both from a theoretical and a practical point of view. We plan
to investigate which type of graph problems are solvable in
ETSCH and which ones need a completely different framework.
For some problems, the classical solutions could be easily

 1

 2

 3

 4

 5

 6

 7

 2 4 6 8 10 12 14 16

T
im

e
 (

s
)

Computing nodes

Indochina
UK-2002

 5

 10

 15

 20

 25

 30

 2 4 6 8 10 12 14 16

T
im

e
 (

s
)

Computing nodes

Arabic
UK-2005

Fig. 5: Scalability of ETSCH/AKKA on the larger datasets, using m3.large machines on EC2. For each experiment we measure
the average time for a complete iteration of PageRank

translated into ETSCH, while for others novel algorithms could
be needed. On the technical side we plan to add fault tolerance
and to the system, by exploiting AKKA’s features, and make it
usable by general users. We also want to add the partitioning
algorithm to the system, to allow users to download, partition
and analyze a large graph with a single command. An even
more exciting project would be to extend ETSCH programming
model to avoid the need for synchronization. In this extended
frameworks both replicas and partitions would be able to
execute in random order, thus hopefully allowing less waiting
time and more efficient analysis of the graph.

REFERENCES

[1] G. Malewicz, M. Austern, A. Bik, J. Dehnert, I. Horn, N. Leiser, and
G. Czajkowski, “Pregel: a system for large-scale graph processing,” in
Proc. of the 2010 international Conference on Management of data.
ACM, 2010, pp. 135–146.

[2] J. Dean and S. Ghemawat, “MapReduce: Simplified data processing
on large clusters,” Communications of the ACM, vol. 51, no. 1, pp.
107–113, 2008.

[3] A. Bialecki, M. Cafarella, D. Cutting, and O. O’Malley, “Hadoop: a
framework for running applications on large clusters built of commodity
hardware,” http://lucene.apache.org/hadoop, 2005.

[4] L. Valiant, “A bridging model for parallel computation,” Communica-
tions of the ACM, vol. 33, no. 8, pp. 103–111, 1990.

[5] M. Zaharia, M. Chowdhury, T. Das, A. Dave, J. Ma, M. McCauley, M. J.
Franklin, S. Shenker, and I. Stoica, “Resilient distributed datasets: A
fault-tolerant abstraction for in-memory cluster computing,” in Proc.
of the 9th USENIX Conference on Networked Systems Design and
Implementation. USENIX Association, 2012, pp. 2–2.

[6] R. S. Xin, J. E. Gonzalez, M. J. Franklin, and I. Stoica, “Graphx:
A resilient distributed graph system on spark,” in First International
Workshop on Graph Data Management Experiences and Systems.
ACM, 2013, p. 2.

[7] Y. Low, J. Gonzalez, A. Kyrola, D. Bickson, C. Guestrin, and J. M.
Hellerstein, “Graphlab: A new framework for parallel machine learn-
ing,” arXiv preprint arXiv:1006.4990, 2010.

[8] S. Salihoglu and J. Widom, “Gps: A graph processing system,” in
Proceedings of the 25th International Conference on Scientific and
Statistical Database Management. ACM, 2013, p. 22.

[9] Y. Tian, A. Balmin, S. A. Corsten, S. Tatikonda, and J. McPherson,
“From think like a vertex to think like a graph,” Proceedings of the
VLDB Endowment, vol. 7, no. 3, pp. 193–204, 2013.

[10] D. Yan, J. Cheng, Y. Lu, and W. Ng, “Blogel: A block-centric frame-
work for distributed computation on real-world graphs,” Proceedings of
the VLDB Endowment, vol. 7, no. 14, pp. 1981–1992, 2014.

[11] U. Brandes, “A faster algorithm for betweenness centrality,” Journal of
Mathematical Sociology, vol. 25, no. 2, pp. 163–177, 2001.

[12] M. Luby, “A simple parallel algorithm for the maximal independent set
problem,” SIAM journal on computing, vol. 15, no. 4, pp. 1036–1053,
1986.

[13] J. E. Gonzalez, Y. Low, H. Gu, D. Bickson, and C. Guestrin, “Pow-
ergraph: Distributed graph-parallel computation on natural graphs,” in
Proc. of the 10th USENIX Symposium on Operating Systems Design
and Implementation (OSDI), 2012, pp. 17–30.

[14] A. Guerrieri and A. Montresor, “DFEP: Distributed funding-based edge
partitioning,” in Proc. of the 21st Conference on Parallel Processing
(Euro-Par’15), ser. Lecture Notes in Computer Science. Springer,
2015.

[15] F. Rahimian, A. H. Payberah, S. Girdzijauskas, M. Jelasity, and
S. Haridi, “Ja-be-ja: A distributed algorithm for balanced graph par-
titioning,” in Proc. of 7th International Conference on Self-Adaptive
and Self-Organizing Systems (SASO’13). IEEE, 2013, pp. 51–60.

[16] “Akka,” http://www.akka.io.
[17] J. Leskovec, “Stanford large network dataset collection,” http://snap.

stanford.edu/data/index.html, 2011.
[18] P. Boldi, M. Rosa, M. Santini, and S. Vigna, “Layered label propaga-

tion: A multiresolution coordinate-free ordering for compressing social
networks,” in Proceedings of the 20th International World Wide Web
(WWW’11). ACM Press, 2011.

[19] P. Boldi and S. Vigna, “The WebGraph framework I: Compression tech-
niques,” in Proc. of the 13th International World Wide Web Conference
(WWW’04). Manhattan, USA: ACM Press, 2004, pp. 595–601.

http://lucene.apache.org/hadoop
http://www.akka.io
http://snap.stanford.edu/data/index.html
http://snap.stanford.edu/data/index.html

	Introduction
	Related work
	ETSCH
	Application examples
	Applicability of Etsch
	Partitioning schemes

	Implementation details
	Hadoop
	Spark
	Akka

	Results
	Datasets
	Hadoop
	Spark
	Akka
	Comparison with Blogel and GPS

	Future work
	References

