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Abstract—When Google first introduced the Map/Reduce
paradigm in 2004, no comparable system had been available
to the general public. The situation has changed since then.
The Map/Reduce paradigm has become increasingly popular
and there is no shortage of Map/Reduce implementations in
today’s computing world. The predominant solution is currently
Apache Hadoop, started by Yahoo. Besides employing custom
Map/Reduce installations, customers of cloud services can now
exploit ready-made made installations (e. g. the Elastic Map/Re-
duce System).

In the mean time, other, second generation frameworks have
started to appear. They either fine tune the Map/Reduce model
for specific scenarios, or change the paradigm altogether, such as
Google’s Pregel. In this paper, we present a comparison between
these second generation frameworks and the current de-facto
standard Hadoop, by focusing on a specific scenario: large-scale
graph analysis. We analyze the different means of fine-tuning
those systems by exploiting their unique features. We base our
analysis on the k-core decomposition problem, whose goal is to
compute the centrality of each node in a given graph; we tested
our implementation in a cluster of Amazon EC2 nodes with
realistic datasets made publicly available by the SNAP project.

I. INTRODUCTION

A key myth of American folklore is the garage as birthplace
of start-ups. Google is a famous example: the company scaled
from a garage in Menlo Park to a search provider indexing
more than 45 billion pages1. To minimize their initial hardware
costs, they exploited clusters of commodity hardware instead
of investing into large supercomputers. To develop novel
parallel algorithms, engineers at Google soon realized that they
needed both a convenient way of programming them and a
framework to orchestrate their execution. These requirements
resulted in the design of the Map/Reduce platform [7]. Used
everywhere inside Google [6], Map/Reduce received a lot
of attention from scientific and business computing since
its first publication in 2004. The Map/Reduce model was
later reimplemented in the open-source framework Apache
Hadoop [25].

The availability of Map/Reduce frameworks and the abun-
dance of cloud-provided resources (e. g. Amazon’s EC2 [1])
made the analysis of large quantities of data available to
everyone and started what is by now called the “big data”
movement. Today, everyone can start a business based on
the processing of large amounts of data, without being over-
whelmed by the initial investment. Using these techniques, it

1http://www.worldwidewebsize.com/

is now possible to analyze datasets so large that could have
never been processes without a supercomputer.

Initially, Map/Reduce has been proposed for very simple,
embarrassingly parallel tasks – like log analysis – applied to
very large and distributed datasets [7]. Later, an increasing
number of papers tried to apply Map/Reduce to a larger set
of problems, including machine learning [15], joining complex
dataflows [4], [27], and analyzing very large-scale graphs [11].

Linked data and graphs structures, in particular, have ac-
quired more and more importance in today’s data world.
In fact, graphs are omnipresent in the Internet and in our
lives: as examples, take the connections between friends,
the co-authorship relation originated from scientific papers,
the dependencies between providers and suppliers in today’s
complex business world. Each of them can easily be reduced
to a network of vertices and edges.

The usage of Map/Reduce beyond its original design
has generated a large amount of criticisms against such an
abuse [15]; this has inspired both the adoption of specific
programming patterns that optimize the analysis of large
linked data structures in Map/Reduce [13], and the creation
of entirely new frameworks based on alternative programming
models [17].

Contribution In this paper we present, to the best of
our knowledge, the first evaluation study of modern big
data frameworks (Map-Reduce [], Stratosphere [], Hama [],
Giraph [], Graphlab []) in terms of their applicability to graph
processing. We include their latest technological developments
and test them in a real world setting based on an EC2 cluster.
As a testing problem, we adopt the k-core decomposition of
large graphs, whose goal is to compute the centrality of each
node by identifying the maximal induced subgraphs including
that node. We ported a distributed k-core algorithm [19] to
each of the considered frameworks, optimizing it to exploit
the special benefits of each of them. Furthermore, we compare
the results obtained in a cluster with those obtained in a
single multicore machine based on shared memory. Finally,
we discuss the fault resilience of each framework. The rest of
this paper is organized as follows: Section II introduces the k-
core algorithm. Section III gives an overview of Map/Reduce
and graph-centric programming models. Section IV describes
current frameworks and their improvements over Map/Reduce.
Section V discusses the most interesting results from our
analysis. Section VI concludes with an outlook to future work.

http://www.worldwidewebsize.com/
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II. K-CORE

The test algorithm we choose to implement is a distributed
implementation the of k-core decomposition problem [19],
whose goal is to determine the relative importance of a
node by identifying the maximal induced subgraphs of a
graph. k-core decomposition has been applied to a number
of problems; for example it has been used to characterize
social networks [22], to help in the visualization of complex
graphs [2] or to determine the role of proteins in complex
proteinomic networks [3].

Informally, a k-core is obtained by recursively removing
all nodes with degree smaller than k, until the degree of
all remaining vertices is larger than or equal to k. Consider
Figure 1 as an example. Clearly, by definition, each k-core
includes the larger cores, i.e. the (k + 1)-core, the (k + 2)-
core, etc. In the figure, the 3-core is nested in the 2- and 1-
core. Apparently, larger values of k correspond to more central
positions in the network.

Coreness 3

Coreness 2

Coreness 1

1-Core2-Core

3-Core

Figure 1. k-core decomposition for a sample graph [19].

Algorithm 1 illustrates the distributed algorithm; refer
to [19] for an in-depth analysis. Initially, each node u sets
its own k-core value, stored in core to its degree and sends
it to all its neighbors (neighborsV (u)). Upon receipt of a
recent value k from node v, node u recomputes its own
value and broadcasts it to its neighbors if it has changed. The
computeIndex() method returns the largest value i, such that
there are at least i entries equal or larger than i in est.

Filtering To minimize the interprocess communication we
introduced an optimization to our k-core algorithm, referred
as filtering in the rest of the paper. Instead of sending the
changed value to every vertex in the neighborhood, we relax
this constraint: neighbor vertices that have a smaller k-core
value than the current computed one do not require an update.
This is because the computation of the value is monotonically
decreasing, starting at the degree(u) of node u and stopping
only when there is a fixed set of k nodes with the k-core value
equal to or larger than k. That computation does not depend
on the actual value of the neighbors coreness, as long as their
value is higher. Even if vertices only know the initial value
of a neighbor v, which is degree(v), they will still correctly
calculate their own value. As edge degree typically follows

Algorithm 1: Distributed algorithm to compute the k-core
decomposition; routine executed by node u.

on initialization do
changed← false;
core← d(u);
foreach v ∈ neighborV (u) do est[v]←∞;
send 〈u, core〉 to neighborV (u);

on receive 〈v, k〉 do
if k < est[v] then

est[v]← k;
t← computeIndex(est, u, core);
if t < core then

core← t;
changed← true;

repeat every δ time units (round duration)
if changed then

send 〈u, core〉 to neighborV (u);
changed← false;

a power-law distribution, reducing communication from these
nodes makes a huge difference (cf. section V-C4).

III. BACKGROUND

Map/Reduce is a data-parallel batch system, able to process
large volumes of data using a simple programming model.
The main features of the framework include the queuing,
distribution and parallelization of the computation across a
cluster of machines in a resilient way. It parallelizes the user-
provided implementations of the map, reducefunctions by
partitioning the input data and feeding it to these functions.
The framework also takes care of the shuffling and sorting
of partial solutions, as well as distribution issues and error
handling, such as restarting of jobs. Therefore, the programmer
is merely required to express her algorithm as a sequence of
these function calls. The mapfunction turns input data, which
is not required to have any specific structure or relation, into a
collection of key-value records. These records are aggregated
by keys into bins; each bin is processed by one instance of
the reducefunction. Initially proposed by Google [7], there are
now several alternative implementations, the most prominent
one being Apache Hadoop [25].

The algorithms proposed in the initial paper of Map/Reduce
do not focus on linked data; instead, problems requiring a large
amount of independent computations were discussed, such as
the distributed grep problem. However, the framework can be
applied to a variety of problems. For example, iterative graph
algorithms can be expressed as a series of Map/Reduce runs,
where each run produces an intermediate solution [5]. The
same steps can be applied repeatedly, by using intermediate
solutions as the input data, until the final solution is computed.
The problem is that each run must include the complete
information of the input graph as well, ignoring even basic
data persistence potential. An overview of these and other
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problems related to the processing of graphs in Map/Reduce
can be found in [16].

It is important to notice that by design, Map/Reduce is
optimized for reliability, not for execution time. Each node can
leave the cluster at any time, without job failures, which is due
to a very conservative approach to redundancy. For example,
after each computation step, such as map, the intermediate
result is written back to a distributed file systems, to be
easily recoverable. Furthermore, holding state on a node is
discouraged, which on the one hand eases the handling of node
failures, but on the other hand requires each computation to
provide all required data as input. Therefore, normally each
iteration is dominated by the data-transfer costs.

A. Mitigations

Typical graph analysis problems are characterized by small
outputs (a set of 〈vertex_id, result_type〉 tuples, or even a
single value) with respect to the size of the input (which is
normally a huge graph). Thus, repeatedly taking the graph
as input and storing large intermediate results has a dramatic
impact of a Map/Reduce job’s execution time. Therefore, pat-
terns applicable to graph algorithms have been proposed [13],
in order to reduce the total number of messages sent.

One frequently employed technique is grouping: instead of
sending data directly to a vertex, a grouping function merges
multiple vertices into a single “pool” vertex. In the subsequent
reduce, all pooled vertices will be computed together. In
contrast to standard Map/Reduce, the computation will be able
to access all already computed values from the pool, which
reduces the need of communication between nodes.

To mitigate the amount of graph structure information that
is sent across the network, the schimmy pattern has been
proposed. The idea is that the relevant structure information
is cached on each node in the cluster and accessed by the
user reducecode via shared memory. To cache only relevant
information, the framework function that maps vertex ids to
cluster nodes must be appropriately customized.

Both methods, among others, have been analyzed in [13].
While grouping did not yield a significant difference in run-
time, the authors found the schimmy pattern to reduce the
run-time significantly.

However, both methods have been criticized in [21] for
destroying the resilience that comes with Map/Reduce jobs.

B. A novel paradigm

Google’s success stems from their search product, which
relies on an iterative graph algorithm that ranks pages based
on their importance called PageRank. However, by design, the
Map/Reduce system is stateless, hence all information about
both nodes and their current rank, as well as their edges needs
to be transferred in the cluster over and over. Despite being
a suboptimal choice for graph computation, the programmer’s
focus on a single local action that is automatically scaled to a
large dataset by the framework was appealing.

Hence, Pregel [17] – a graph-parallel system based on the
Bulk Synchronous Parallel [26] (BSP) model – was proposed.

Pregel is a vertex-centric approach: a programmer implements
an iteration step (superstep) of a single stateful vertex in the
chosen algorithm. During each iteration, the vertex program
can change its state, send messages to its neighbors or change
its edges. Each iteration receives the previous iteration’s
messages as input. If a termination criterion is met, each
vertex can vote to halt the execution and suspend itself. By
suspending it basically yields its CPU time to the active nodes.
Upon consensus about termination, the framework stops the
execution.

By restricting indirect state changes to message exchanges,
the authors argue that the system is inherently free of deadlocks
and data races [17], while at the same time being simple and
well-performing.

IV. SECOND GENERATION FRAMEWORK

This section introduces frameworks that, while loosely
based on the Map/Reduce paradigm, significantly reduce the
communication overhead imposed by the original proposal.

A. Parallelization Contracts (PACT)

Map/Reduce systems are limited to execute a batch job de-
termined at compile time, as the data flow is fixed. In contrast,
existing, well-known technologies have featured sophisticated
query optimizers capable to dynamically adjust a data flow
since a long time. These components transform the user’s
input into an optimized execution plan. The optimization may
include rearranging the sequence of operators, based on their
algebraic semantics.

The same is applicable to a Map/Reduce job [10]; how-
ever, a more formal definition of the programming model’s
operators is required. In the Stratosphere framework, so-called
“parallelization contracts” define the semantics of an operator.
The optimizer that consumes this information is the PACT
compiler. A user implements the second order function of
an operator, which is encapsulated inside a well-defined first
order function. The encapsulation determines the input and
output of the function. For example, a match-join requires two
inputs and has one output. These encapsulations are referred as
input/output contracts, respectively. Based on these contracts,
the compiler is able to infer possible optimization strategies.
Furthermore, the developer may give hints to the compiler
via Java annotations. These hints include, for example, the
expected size of the input / output, the ratio of input to output
records or whether the input is sorted. Using that information,
the PACT compiler will do an initial optimization pass before
submitting the job to Nephele, the Stratosphere’s run-time
system.

1) Additional Operators: One criticism about Map/Reduce
is the lack of an efficient JOIN operator [4]. While it is possible
to implement that kind of operators on top of Map/Reduce,
Stratosphere takes another approach, by natively providing
such operation – in multiple forms. Stratosphere comes with
MATCH, CROSS and COGROUP operators; others can be sup-
plied by the programmer. These operators allow sophisticated
implementations of graphs algorithms.
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Both the left side and the right side of Figure 2 represent
a k-core computation. The main difference is that on the
right, we used a MATCH operator from the Stratosphere
framework to join a vertices neighbors (input A) with its k-
core value (input V ). One might argue that JOIN is a complex
operation; however, when joining sorted data, its cost is usually
negligible because big data algorithms are generally IO-bound
rather than CPU-bound. By providing the neighbor data as a
separate input, in each iteration only the 〈vid, core〉 tuple is
transferred from node O to node I , displacing the Schimmy
pattern. In contrast, the Map/Reduce implementation requires
a complete transfer the graph structure during each iteration.
We compared both approaches in Section V-C2 to identify
compelling differences.

Figure 2. k-core decomposition Left: Map/Reduce, Right: Match/Reduce.
Notation: I: Input, O: Output, T: Final Output, A: Graph Structure, V: Vertex
Data, Dashed Arrow: Iteration Body.

2) Incremental Iterations: One particular feature of the
Stratosphere framework is the built-in support for workset
algorithms. This technique requires to split the algorithm data
into a solution set S and a working set W with the goal
of adding dynamic programming features to Map/Reduce.
The working set contains only those nodes that need to
be recomputed in an iteration, and is supposedly smaller
than S, which contains all graph nodes. Graph algorithms
that work only on their neighbor nodes, such as PageRank
or Connected Components, exhibit such behavior. After an
iteration S is updated and a new working set is computed.
Therefore, fewer data is repeatedly sent across the network,
reducing the computation time significantly. However, support
for worksets has not yet surfaced in the current Stratosphere
implementation.

An even more efficient solution is to consider every single
computation as a "microstep" and update the solution set
immediately. In that case a partial solution reflects all latest
changes, which leads to finer-grained parallelism.

B. Pregel

There are two predominant distributed graph processing
frameworks, that implement Pregel: Hama [23] and Giraph
[24]. Both are built on top of Hadoop and are maintained by
the Apache project. Hama provides two distinct collections of
APIs: one pure BSP model for message passing and collective
communication, and one vertex-centric model. Giraph focuses
instead on the interoperability between other Apache projects,

such as direct I/O from HBase and is backed up by companies,
such as Yahoo and Facebook. The BSP APIs of both projects
let the developer implement the functions that are executed
by a single graph node. The node may send messages to
other nodes that will be consumed during the next superstep.
Furthermore, a node may vote to halt the execution.

Although both frameworks are implemented on top of
Hadoop, they are fundamentally different from the matrix
computation of Map/Reduce. At run-time the frameworks
build up state for every single node and provide methods
for sending messages to its neighbors. The programmer can
concentrate on the actual algorithm she implements in contrast
to implementing a map phase to perform the message sending,
and setting up a reduce phase that needs to transfer the graph
structure as input for the next map.

C. GraphLab

GraphLab evolved from its first iteration, a framework
for CPU-rich shared-memory systems [15], to a distributed
version, applicable to clusters of machines [14]. Just like
the Pregel proposal, the system is graph-parallel; however,
it employs different concepts related to dynamic program-
ming techniques, synchronization constraints and vertex-to-
node mapping.

While Pregel uses message passing as communication prim-
itive, in GraphLab each vertex can access the state of adjacent
vertices. GraphLab also lacks synchronized supersteps: vertex
programs are executed asynchronously, while the sync task
runs continuously in the background. One gain of direct access
and asynchrony is that nodes always access the most recent
state of their neighbors. Another gain of this asynchronous
execution is that a single slow running vertex program can
no longer stall the system. In Pregel, the interval between
two supersteps is defined by the run time of the vertex with
the largest neighborhood. As the number of edges is usually
power-law distributed, there will be few but spacious vertices
in the graph. This is why GraphLab goes a step further,
by splitting vertices with enormous neighborhoods across
different machines and synchronizing them.

The functionality of GraphLab is encapsulated in the gather-
apply-scatter (GAS) pattern, which must be implemented by
the programmer. In the first phase, executed in parallel on the
edges of each node, information from neighbors (e.g., their
k-core values) is gathered. Access to vertices is read-only, as
required by the parallel execution of that phase. The second
phase, called apply, is executed atomically, allowing changes
to the data structures, for example the computation and update
of a node’s new k-core value. The final scatter phase, that is
again executed in parallel on the node’s edges, can be used
for signaling neighbor nodes or updating edge data.

V. COMPARISON OF DISTRIBUTED FRAMEWORKS

Fine tuning both our implementations and the compared
frameworks is critical for the execution time. We therefore
start this section by discuss the details of both issues, before
presenting the most important results from our study.



5

G
ra

ph
La

b

H
am

a

S
tr

at
os

ph
er

e

G
ira

ph

H
ad

oo
p

ca.AstroPh.txt

5

10

20

50

100

200

500

1000

tim
e 

[s
]

G
ra

ph
La

b

H
am

a

S
tr

at
os

ph
er

e

G
ira

ph

H
ad

oo
p

amazon0601.txt

50

100

200

500

1000

2000

tim
e 

[s
]

H
am

a

G
ra

ph
La

b

S
tr

at
os

ph
er

e

G
ira

ph

H
ad

oo
p

web.BerkStan.txt

100

200

500

1000

2000

tim
e 

[s
]

H
am

a

G
ra

ph
La

b

G
ira

ph

H
ad

oo
p

S
tr

at
os

ph
er

e

wiki.Talk.adj.txt

1

2

5

10

20

50

tim
e 

[m
]

Figure 3. The minimum runtimes of all frameworks for different graphs.

A. Implementation

Hadoop: In order to define a baseline, we implemented
a standard Map/Reduce k-core algorithm and applied the
schimmy and grouping patterns. We employed the built-in
support for iterations, which executes map and reduce in a loop
until convergence is reached. The mapfunction reads unsorted
tuples of vertex id, k-core value and a list of neighbors.
Using the id as key, it sends the k-core value to both every
neighbor and the vertex itself. Binned by each vertices key, the
reducefunction receives a list of k-core values and computes a
new score. It sends that value back into the mapfunction until
the iterations stop. When applying the grouping optimization,
the key for the reducefunction is computed by a hash function.
Therefore, a single reducer instance computes the k-core of
multiple vertices and outputs one message for each vertex.
Using the schimmy pattern, only the vertex id and the k-core
value is sent from the reducer to the mapper, the remaining
operation is the same as previously described.

Stratosphere: We did a straight port of the Hadoop code
to Stratosphere. However, as the PACT implementation of
iterations has yet to surface, we implemented it at the Nephele
Data Flow engine level. Furthermore we employed the match
operator, as illustrated in Figure 2. This way, we can split the
graph data and structure information into two inputs and cache
the latter, which achieves a similar effect to the Schimmy
pattern.

Recently Stratosphere gained Nephele support for workset
iterations [8]. Its goal is to recompute only the nodes whose
input values have changed. Based on that functionality we
implemented two solutions. The first is to emit just enough
nodes, to successfully recompute nodes, that have at least one
recently changed neighbor. The second is a emulation of a
Pregel implementation, that saves a node’s state information
in the solution set and passes messages along the working set
(cf. Figure) 4. Because of the stateless nature of the underlying
framework, all state needs to be passed among the Nephele
execution nodes, hence both solutions represent a trade off. In
the first case, this means increased complexity in the data flow
and a slightly higher message exchange compared to Pregel.
In the second case, the whole node state is passed around,
leading to increased message size. While we implemented

both solutions, the Pregel solution yield better results and is
introduced in the following.

Figure 4. Dynamic programming inspired k-core decomposition in Strato-
sphere. Left: Map/Reduce using worksets. Right: Using a Pregel emulation

Giraph, Hama: Our Pregel implementations closely re-
semble the pseudo-code in Algorithm 1. Initially a vertex sets
its k-core value to its degree on startup. When a vertex receives
a message, it recomputes its value. The process repeats upon
computation of a changed value, otherwise the framework
suspends the execution of that node. As an optimization, we
implemented a shared hash table, that serves the most recent
computation results to processes on the same node. In this
way, we emulate the "microstep" functionality of Stratosphere.
Furthermore we worked with combiners to reduce the number
of messages sent across the network and added filtering to our
the code. The API differences between Hama and Giraph are
marginal, hence both implementations are nearly identical.

GraphLab: Just like the Pregel implementation, we closely
implemented our proposed pseudo-code using the GAS pat-
tern: In the gather function, we collect the vertex id of
each neighbor, along with its k-core value. To collect that
data in a list, we reimplemented the operator+= function,
as GraphLab assumes commutative associative operations of
primitive data types as default. The new k-core value is
computed in the apply function, while neighbors were notified
in the scatter function. We were able to run this code both with
the lowest consistency guarantees, thus the high parallelism.

Despite GraphLab’s preference for the GAS pattern, we
implemented also a message based version using GraphLab’s
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Dataset Nodes Edges
ca.AstroPh 18,772 396,160
ca.CondMat 23,133 186,936
Amazon0601 403,399 2,443,412
web-BerkStan 685,235 6,649,474
com.Youtube 1,134,890 2,987,624
wiki-Talk 2,394,390 4,659,569
com.Orkut 3,072,441 117,185,083

Table I
DATASETS USED IN THIS STUDY

built-in messaging framework. We also added the filtering
technique to both versions of the code.

B. Testbed

To test our implementations, we set up an AWS cluster,
running the 1.0.3 release of Apache Hadoop and HDFS to-
gether with the 0.6.0 release of Apache Hama and the recently
released Giraph 1.0. We installed GraphLab 2.1.4414 and the
latest Stratosphere checkin from the Stratosphere-iterations git
branch, which is fd4f at the time of writing. Experiments
were performed using up to 32 Amazon’s M1 MEDIUM nodes
with 2 EC2 Compute Units and 3.75 GB of RAM each. The
cluster size was scaled from 2 nodes up to 32, each framework
was configured to distribute computation evenly.

We carried out comparison measurements on a recent 16
CPU machine with 10 GB of RAM and Sata-SSDs. The
software was similar to the EC2 cluster setup.

The data sets were taken from the public available collec-
tions of the SNAP [9] project. Table V-B summarizes them.

C. Results

For the sake of brevity, we introduce only the most in-
teresting results. We cite the individual publications where
appropriate. Unless explicitly noted, the cluster size was set
to 12.

1) A five-way baseline: Overall we found the performance
of Map/Reduce based approaches inferior to graph-centric
ones (cf. Figure 3). Hadoop marks the bottom of the table
in each of our comparisons. The results are from 2 times up
to 66 times slower. We did not find significant improvements
by using the group or schimmy patterns [12]. On the other
hand, GraphLab was – by far – the fastest of all evaluated
frameworks. Under all circumstances, the performance of
at least one graph-centric framework superseded the other
approaches. Therefore, from an execution time point of view,
we clearly recommend relying on a graph-centric framework.

A closer analysis of Figure 3 reveals that data sets with
less than a hundred thousand nodes play in the hands of
Stratosphere. Its lack of a wiring phase, as in Hama, where
nodes have to be connected to their neighbors, and the lack
of Hadoop’s serialization makes it the fastest of the Java-
based frameworks for smaller data sets. However, for larger
data sets such as the Amazon0601 or Youtube ones, the
picture is different. Here GraphLab and Hama exhibit faster
performance. In these cases, our Pregel Stratosphere code was
able to yield comparable results. In contrast, the Map/Reduce

and MATCH-based Stratosphere implementations, which are
not shown here, were far off by a factor of at least 4. Therefore,
in that scenario, while vertex centric frameworks take the lead,
Stratosphere is at least comparable.

Applying the grouping or schimmy patterns to Hama did not
yield any improvement (cf. [20]). The inferior performance
of Stratosphere might be explained by the same insights: the
density of the network might have hit a suboptimal code path.

2) To Map or to Match or to Pregel: The comparison of
the more traditional approach of sending all data via a single
input (map) versus having two inputs, one for the graph data
and another for the computation data (MATCH), results in favor
for the latter, for all tested graph data (cf. Table II). Going one
step further and recomputing only the necessary nodes reveals
even more gains.

Type File time [m]
ca.CondMat.txt Match/Reduce 0.23
ca.CondMat.txt Pregel 0.23
ca.CondMat.txt Map/Reduce 0.25
com.youtube.ungraph.txt Pregel 9.98
com.youtube.ungraph.txt Match/Reduce 16.78
com.youtube.ungraph.txt Map/Reduce 34.40
web.BerkStan.txt Pregel 14.12
web.BerkStan.txt Match/Reduce 24.70
web.BerkStan.txt Map/Reduce 298.35

Table II
MAP VS. MATCH VS. PREGEL BASED KCORE IN STRATOSPHERE

For small datasets, matching does not yield a noticeable
improvement. At the same time, the performance does not get
worse due to the joining of both tables. For the Youtube dataset
with ∼ 1 million nodes and the Orkut data with ∼ 3 million
nodes, the benefit is between 1/3 and 1/2 of the computation
time in a cluster of size 12. As previously mentioned, the
Berkeley networks are associated with particularly bad per-
formance in Stratosphere. One cause might be the join over
nodes with a maximum degree of 84 230. However, the results
still confirm our finding: Even in this scenario, matching is
three times as fast. These results show that the addition of a
match operator was indeed a valuable contribution, which both
speeds up the computation and obsoletes the various proposals
for join implementations for Map/Reduce.

Time [s]

amazon0601

ca−AstroPh

ca−CondMat

web−BerkStan

wiki−Talk

0 50 100 150

Distributed

0 50 100 150

Multicore

GraphLab
Hama

Figure 5. Hama and GraphLab in both a distributed and multicore setting.

3) Multicore and Shared Memory: To reconfirm our find-
ings from the distributed scenario, we reproduced our mea-
surements on a multicore machine. In Figure 5 we compare
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both scenarios using the analyzed vertex centric frameworks.
The results for the Map/Reduce frameworks did not match
the speed of their counterparts and have been left out. The
first thing to notice is that GraphLab apparently comes from
a multicore background and is still optimized for that. In that
scenario, Hama performs worse than GraphLab by at least
20% for every tested data set. The gain shows up especially
using large data sets in the multicore scenario, which is an
important benefit.

In the distributed scenario, the gain is negligible for a huge
data set like Wiki-talk, and even reversed for the Berkeley
data. As previously mentioned, dense data set seems to exploit
a shortcoming in the implementation of distributed GraphLab.
For a complete analysis of GraphLab on a multicore machine
see [18].

Time [s]
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Figure 6. Evaluation of the filtering proposal using GraphLab and Hama.
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4) Filtering: Another contribution of this study is an im-
proved algorithm for the k-core decomposition. It minimizes
the message transfer among nodes, and thus the number
of active nodes per iteration. This dynamic programming
technique should have a measurable impact. Figure 6 analyzes
the proposal on the multicore machine using a variety of
data sets and both vertex centric frameworks. The impact is
apparently stronger for GraphLab; however, it is measurable
also for Hama. This might be related to implementation-
specific differences in the frameworks.

For the huge Wiki-talk dataset, the filter cuts the execution
time nearly by half. The plot showing the active nodes in
Figure 7 explains such difference. Instead of the high number
of active nodes, which only slowly fade into a stable state

after around 30 iterations, the activity rapidly diminishes in
less than 5 iterations. This effect, even if not as strong, is the
same for all data sets.

5) Fault Resilience: A frequently cited reason for Hadoop’s
inferior performance is the built-in checkpointing after each
step, which eases recovery, but hampers performance [5].
However, with the relative youth of its successors, it is cur-
rently the only framework that can actually recover from faults.
Both distributed GraphLab and Stratosphere detect lost nodes
quickly, however cannot recover from errors. Both display an
error code on the console. Only Stratosphere has a built-in
recovery mechanism, which is at the time of writing unable to
handle iterations properly. Hence that situation might change
soon. Hama’s BSPMaster, on the other hand, waits for all
processes to finish but does not appear to have timely heartbeat
notification built-in.

These findings lead us to the recommendation that under the
assumption of high probability of node failure and extreme
long running jobs, a conservative choice of frameworks is
suitable.

VI. CONCLUSION

In this paper we presented a thorough study of modern big
data frameworks and their application to graph algorithms.
We selected the k-core algorithm and adapted it to each
platform. We executed the algorithm both in a distributed
cloud settings as well as on CPU rich multicore machines. Our
findings confirm the validity of these improved frameworks.
Each of them improves over Hadoop in terms of execution
time. However, from a programming paradigm point of view,
a vertex centric framework is the better fit for graph related
problems. Not only is the ease of programming an important
point, as the focus can be close to the sketched algorithm. The
performance of vertex-centric frameworks is not matched by
Map/Reduce-based frameworks, even by improved ones, such
as Stratosphere. Therefore, we clearly recommend one of the
Pregel-inspired frameworks for graph processing, although the
resilience of those frameworks has room for improvements.

Compared to Hadoop, Stratosphere enhanced the situation
enormously, thanks to their flexible programming contracts
concept. For graph algorithms, the MATCH operator as a
mean to split input into worksets and graph input yields clear
performance gains. An important announced, but still missing
feature of Stratosphere will be the PACT compiler support
for worksets. With that feature available, Stratosphere might
be able to catch up to vertex centric frameworks, using highly
optimized dataflows; however, the ease of programming might
still be an issue. We therefore recommend a re-evaluation at
that point.

Another outcome of this work is an improved dynamic
programming algorithm, which greatly improves the runtime
of k-core. Future work on graph algorithms might consider
the filtering concept as a possible source for improvements.
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