
2327-4697 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TNSE.2018.2860600, IEEE
Transactions on Network Science and Engineering

IEEE TRANSACTIONS ON NETWORK SCIENCE AND ENGINEERING 1

Social Overlays Meet the Cloud:
A Hybrid Architecture for Profile Dissemination

in Decentralized Social Networks
Giuliano Mega, Alberto Montresor, Member, IEEE, and Gian Pietro Picco, Member, IEEE

Abstract—Decentralized online social networks (OSNs) have attracted the attention of researchers and practitioners as a viable
alternative to the current centralized OSNs, whose business model is based on the exploitation of the private data of their users. Yet,
pure decentralized models may either require significant investment on the user side in terms of hardware and bandwidth, or may fail to
provide the desired user experience. In this paper, we propose a middle-ground solution that mainly relies on a serverless social overlay
in which links represent friendship relations, but occasionally complements it with inexpensive storage rented from the cloud. The
experimental evaluation based on a real OSN dataset confirms that our solution provides the desired quality of service at a low cost.

Index Terms—Social Overlays, Decentralized Online Social Networks, Peer-to-Peer (P2P), Friend-to-Friend (F2F)

F

1 INTRODUCTION

ONLINE Social Networks (OSNs) attract billions of users
worldwide, and are today one of the most impor-

tant Internet-based communication media. Yet, mainstream
OSNs have been plagued by privacy issues from the start,
due to their business model requiring users to surrender
their private data to OSN providers. This model, albeit suc-
cessful, has led to a number of important privacy incidents
(e.g. [43]), motivating open, decentralized alternatives.

In this context, the key premise of decentralization is that
it returns to the users control over their data, e.g., where
to place it and with whom to share it. Initial, well-known
efforts (e.g., [9]) relied on user-maintained servers to store
and publish data. However, this requires users to either hire
online hosting, which can be expensive, or to run their own
servers at home, which can be cumbersome.

At the other end of the spectrum are serverless ap-
proaches (e.g. [4], [12], [22], [27]) that, inspired by peer-
to-peer (P2P) computing, only require a computing device,
installation of client software, and an Internet connection.
The clients build an overlay network among nodes and
collaboratively share their resources to maintain the system,
e.g., replicating each other’s data to increase availability, or
donating bandwidth to route messages. These architectures
free users from the burden of maintaining (and paying for) a
server, but have issues of their own. First, most P2P systems
are structured in a way that requires strangers to cooperate
(e.g., pairs of randomly selected participants), leading to
fundamental challenges in running these systems reliably
in the absence of cooperation. Second, availability patterns

• Giuliano Mega is with SpazioDati s.r.l., Trento, Italy.
E-mail: mega@spaziodati.eu

• Alberto Montresor and Gian Pietro Picco are with the Dept. of Information
Engineering and Computer Science, University of Trento, Italy.
E-mail: {name.surname}@unitn.it

• A very preliminary version of this paper appeared in [24].

in such systems are typically skewed [44], leading to further
reliability, performance and quality-of-service issues [23].

This paper reconciles these two opposing approaches
in Clops (Cloud-assisted profile dissemination over social
overlays), a hybrid architecture for decentralized OSNs that
neither requires costly centralized hosting services nor relies
solely on a decentralized serverless network. Clops relies on
two elements. First, a serverless fabric interconnects user
devices into a social overlay (SO) whose links are directly de-
termined by the friendship relationship: a social overlay link
connects two nodes if and only if their owners are friends.
The side effect of having an overlay network that mirrors
the underlying social network is that identities and links
become more difficult to forge. This, in turn, acts as a strong
deterrent to malicious nodes as they can no longer freely
penetrate the network, thus creating a more cooperative
and secure environment [21], [32]. Indeed, the most widely
used, censorship-resistant content sharing network today—
Freenet [41]—relies on an SO for these very reasons.

Second, in Clops this decentralized communication layer
works in conjunction with a cloud-based, centralized,
highly-available, online storage service (e.g., Amazon’s S3)
which can store and serve encrypted objects quickly and
reliably—and is significantly less expensive than full-fledged
hosting. Clops exploits the complementary nature of these
two elements via dedicated protocols that normally rely
on social overlays for fast, decentralized, friend-to-friend
communication, but occasionally resorts to cloud access to
avoid the high delays caused by the skewed availability
patterns of a purely decentralized solution.

Focus: Profile Dissemination over Social Overlays. Here-
after, we focus on the key goal of providing efficient
profile-based communication among direct friends, which is
the process through which users share content and post
comments to their friend’s profiles, viewing recent updates
from friends as a newsfeed. Studies show [3] that profile-

2327-4697 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TNSE.2018.2860600, IEEE
Transactions on Network Science and Engineering

IEEE TRANSACTIONS ON NETWORK SCIENCE AND ENGINEERING 2

based communication among direct friends constitutes up
to 80% of what users do on OSNs, making it the single most
relevant feature an implementation must provide.

Clops enables decentralized, fast profile browsing by
requiring nodes to keep local copies of their direct friends’
profiles. These are usually small objects (few kilobytes)
yielding an accrued size of only a few megabytes per friend.
We review this and other system assumptions in Sec. 2.

Whenever a profile object is changed by the user, the
update is proactively disseminated over the social overlay
to keep the local profile copy on the friends’ devices up-to-
date therefore providing them with the information required
to construct their newsfeeds locally.

Dissemination occurs only to direct friends over the
social overlay. In other words, the updates posted to the
profile of a user u are disseminated only over the ego network
of u, i.e., the sub-network composed of u, her friends, and
the interconnections among them. This choice brings two
important benefits: i) it improves security, since the nodes in
the ego network are friends with u, therefore less likely to
act uncooperatively or maliciously towards u; ii) it induces
a zero-spam dissemination strategy, as users that are not
supposed to receive the post do not have to forward it.
The Problem: Fast and Efficient Update Dissemination.
The main challenge in designing Clops is how to disseminate
profile updates quickly and efficiently over ego networks, to
approximate the performance of centralized OSNs in which
profile updates happen almost instantaneously.

The problem is complex for two reasons. First, ev-
ery serverless system must deal with churn—the process
through which nodes enter and leave the network out of
their own volition. We have shown in previous work [23]
that, irrespective of the specific dissemination protocol,
churn is a severe concern in social overlays. Unlike DHTs,
easily repaired by picking one of the many available nodes,
social overlays suffer from the limited set of links available
for reconfiguration (i.e., only those among friends). This
results in transient network partitions which incur large
delays in update dissemination (in excess of 3 hours for 1%
of the receivers)—unacceptable for a system of the scale of
today’s Facebook, and incompatible with our goals.

Second, social overlays inherit the peculiar structure
of the social networks they mirror. These include, among
others, the fact that the number of neighbors (node de-
gree) changes dramatically across the network; a few high-
degree nodes exhibit far more connections than average. In
principle, this can be exploited to speed up dissemination.
However, in practice bandwidth requirements must be taken
into account, to avoid solutions that unrealistically overload
nodes. We formally define the delay and bandwidth require-
ments of our dissemination problem in Sec. 3.
The Solution: A Hybrid Architecture. Since social overlays
cannot deliver, on their own, the predictable performance
we require, we must compromise w.r.t. decentralization. The
main idea of Clops is to use the social overlay to disseminate
updates quickly over the regions where it performs well,
while relying on an inexpensive, highly-available cloud
storage service (e.g., Amazon’s S3) as an out-of-band channel
to adaptively “patch” poorly-connected regions on-the-fly if
and when necessary. While this brings centralization back in
the loop, the key insight here is that services such as S3: i) are

much cheaper than services like EC2 or other full-fledged
hosting; ii) limit user exposure to the service provider via
license agreements that promise data confidentiality and
allow data to be encrypted—unlike centralized social net-
works, where information must be fully surrendered.

We describe our hybrid approach in Sec. 4. In a nutshell,
every node u is associated to an always-available profile store
in the cloud. Updates to u’s profile are always written to the
profile store, and then disseminated over the social overlay,
making the profile store an always-available, always-current
copy of u’s profile. When a friend v of u has not heard any
update from u for a predefined time interval, it assumes that
the update has been delayed, and verifies if this is the case
by polling the profile store. In principle, this naı̈ve solution
is enough to overcome the limitations above. However,
cloud access is not for free, and we show that this solution
has a poor performance/money tradeoff.

We improve over this baseline by disseminating the
outcome of polling the profile store back on the social
overlay. This has the beneficial effect of quenching cloud
access from other nodes (i.e., saving money) when it is
not required. On the other hand, this requires a careful
design of the serverless dissemination layer based on the social
overlay, to reconcile the need for fast propagation of update
and quench messages with the peculiar structure of social
networks and the overall system bandwidth requirements.
Clops uses gossip protocols as the main technique for both
cases; we discuss protocol design and rationale in Sec. 5.

The experiments in Sec. 6 show quantitatively that Clops
improves significantly over a purely serverless approach.
To retain the ability to model and analyze our solutions
we couple an availability model developed in the context
of P2P [44]—which we expect, as we argue in Sec. 2, to
be a good approximation of the real-world—with a real-
world OSN dataset. We then show that, unlike the serverless
approach, Clops is competitive with a centralized solution
in terms of delays, while remaining efficient in terms of
network usage and monetary costs, therefore confirming
that its hybrid architecture strikes the right design balance
for making decentralized OSNs an appealing reality.

Our design has significant elements of novelty w.r.t.
related work. As discussed in Sec. 7, before our concluding
remarks in Sec. 8, several works address profile availability
and/or update dissemination. However, Clops is set apart
by i) the choice of network topology (i.e., the social overlay)
which brings about unique potential benefits, and ii) the
combination of techniques we employ to overcome the
limitations and challenges this choice of highly irregular
network implies, specifically to promote high profile avail-
ability while enforcing, at low monetary cost, bounds on
both latency and bandwidth usage.

2 SYSTEM MODEL AND ASSUMPTIONS

Definitions and notation. We model a social network as an
undirected graph G = (V,E) where V contains users and E
is the friendship relation among them. For each user u ∈ V ,
the function f : V → 2V maps users to their set of friends,
i.e. f(u) = { v | (u, v) ∈ E }.

The ego network of a user u is the subgraph Gu =
(Vu, Eu), where Vu = {u} ∪ f(u) is given by u and her

2327-4697 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TNSE.2018.2860600, IEEE
Transactions on Network Science and Engineering

IEEE TRANSACTIONS ON NETWORK SCIENCE AND ENGINEERING 3

friends, while Eu = { (v, w) | (v, w) ∈ E ∧ v, w ∈ Vu }
contains the interconnections among them. For convenience,
we also define fv(u) as the set of neighbors node u has in
Gv ; i.e., fv(u) = Vv ∩ f(u). We assume a node u has full
knowledge of its ego network Gu, and is able to compute
fu(v) without full knowledge of f(v), as in centralized
OSNs. We assume that users log from one device at a
time, and thus we refer to users and nodes interchangeably.
Finally, the profile page of a user u is denoted by pp(u).
Availability model. The serverless part of Clops is a net-
work with |V | participants, where each user u can be either
logged in (online) or out (offline) at a given time instant.

In this context, we face two options for specifying
online/offline behavior. The first one is to use publicly-
available traces from measurement studies of P2P systems
(e.g., [40]). Although real datasets are appealing, their use is
challenging in our context, due to i) size: the social graphs
utilized in our experiments are much larger than the net-
works in these traces, and it is unclear how to use the latter
to simulate the former without biasing the results; ii) dura-
tion: even the longest traces are too short to accommodate
a sufficient number of de-correlated experiments; iii) noise:
most traces contain high rates of permanent departures (e.g.,
due to aliasing [40]), affecting statistical properties.

We therefore chose to use a well-known synthetic churn
model by Yao et al. [44] that, being derived from the statisti-
cal behavior of measurement studies of P2P systems, offers
a good approximation of real peer behavior while avoiding
the problems above with traces. The Yao model associates
an alternating renewal process to each node u ∈ V . In these
processes, both session lengths (online time between a login
and the next logout) and inter-session lengths (offline time
between a logout and the next login) of u are given by
random variables Xu

on and Xu
off , drawn from node-specific

distributions Fu
on and Fu

off . In this paper, we assume that
both Fu

on and Fu
off are exponential distributions exp[λ] with

parameter λ. We choose exponential distributions instead of
heavy-tailed ones to make our simulations tractable [39].

Let E(Xu
on) = `uon and E(Xu

off) = `uoff . To model hetero-
geneous, skewed user availabilities, we draw the `uon and
`uoff for each node u ∈ V from a pair of heavy-tailed, shifted
Pareto distributions, as in Yao et al. [44]. These distributions
are parameterized to yield global averages of 0.5/1 hours
for session/inter-session lengths, values taken from existing
literature [35]. We then set the session length distribution
for each node u as Fu

on = exp[1/`uon] and the inter-session
one as Fu

off = exp[1/`uoff]. By drawing the parameters from
heavy-tailed distributions, we can model skewed availabili-
ties without sacrificing simulation tractability.

Several works in the literature (e.g. [13], [15]) argue
in favor of using the distributions of (centralized) OSN
session lengths as the basis for node availability instead.
We disagree with such assessment as decentralized OSN
clients are likely to be run in the background rather than
turned on only when interacting with the OSN. Availability,
therefore, is better approximated by file sharing sessions—
the quintessential background program—than by OSN ones.
Local identities. We assume that each node u ∈ V assigns
local sequential identifiers to nodes in its ego network via a
bijective function lidu : Vu → {0, 1, · · · f(u)} and, similarly,

each v ∈ Vu computes lidu(w) for all w ∈ fu(v). This is
easily achieved if u recalculates local identifiers over Gu

whenever f(u) changes, and disseminates them as updates.
Realizing the social overlay. We assume that nodes are
able to discover the IP addresses of their friends currently
online to enable message exchange. The overlay manage-
ment problem is outside the scope of this paper and can
be addressed by leveraging existing decentralized server in-
frastructures such as Jabber/XMPP [34]. NATs and firewalls
are assumed to be dealt with by existing techniques [33].
Authentication, access control, and privacy. We assume
that each node u is identified by a pair of asymmetric
keys (Privu,Pubu). Most of the security advantages so-
cial overlays bear come from the fact that public keys
are assumed to be exchanged directly by users, out-of-
band. In this setting, forging identities is difficult, hence
Sybil attacks [10] are hard to mount. Further, the limited
knowledge of network structure implies that disrupting it
(e.g., with Eclipse attacks [38]) is hard too, as it requires
compromising a large number of private keys. Finally, once
keys are established, guaranteeing authenticity is a matter
of signing every update o generated by u with Privu. More
complex access control mechanisms are possible [12], but
outside of the scope of this paper.
Update frequency and size. Although users share content
of different nature, most of what is shared in the profiles of
modern OSNs are small objects under 150 kB. This is in line
with figures observed in other works in the literature [15].
Further, we assume updates to be sparse, i.e. most users
post from less than one to few updates a day [15], [30].
Therefore, concerns about latency take priority over bandwidth
when gauging the quality of a dissemination technique.

These profile objects include text snippets, messages, and
pictures. While users also share larger objects, e.g., videos
or high-resolution pictures, these are not necessarily part
of profile pages, as they are typically linked from third-
party services such as YouTube. This does not imply loss of
privacy, however, as the metadata on who shared the video
with whom, who liked it, and any comments made to it
remain safely confined to our system.
Cloud access. We assume the existence of a highly available,
cloud-based service which nodes can access to store and
retrieve data. This cloud service allows users to create
personal storage areas under their control, i.e, they can
selectively grant access to other users.

User profiles are small (around 10MB [15]) and likely
within the free quota currently allowed by cloud providers.
However, for the sake of generality and to better elucidate
the trade-off between delay and monetary cost, we adopt the
requester-pays billing scheme of Amazon S3 [2], where users
accessing data are charged for it. In other words, if a user v
decides to download the new updates from a friend directly
from u, it is up to v to pay for the download costs. This
establishes the basis for the fair cost model of our solution:
a user might opt to either go directly to the cloud and pay to
immediately download updates from his friends, or use the
free P2P network instead, possibly at a performance penalty.

In S3, costs can be broken down into two parts:
• Storage costs. Storing data on the cloud costs less than 3¢

per GB per month at time of writing. As profiles are at

2327-4697 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TNSE.2018.2860600, IEEE
Transactions on Network Science and Engineering

IEEE TRANSACTIONS ON NETWORK SCIENCE AND ENGINEERING 4

node online node offline node reached by update

time t = 0 t = 1 t = 2 t = 3

u u u uv v v v

a
b

d

e

f
g

h

a
b

d

e

f
g

h

a
b

d

e

f
g

h

a
b

d

e

f
g

h

Fig. 1. The interplay between node availability and dissemination delay.

most a few MBs, we do not consider their storage costs.
• Cost per request. In S3, a user pays 0.4¢ for every 10, 000

GETs and 0.5¢ every 1, 000 PUTs. We assume a similar
cost model where read requests are cheaper than writes.

3 PROBLEM: FAST AND EFFICIENT UPDATE DIS-
SEMINATION ON SOCIAL OVERLAYS

In an OSN, updates to a profile page pp(u) are generated
either by u (e.g., when posting a status update) or its friends
(e.g., when they add content or comments to u’s “timeline”).
In Clops, nodes keep local copies of their friends’ profile
pages; therefore, proper mechanisms are required to proac-
tively disseminate updates to u’s profile to all copy holders
(receivers), i.e., to all nodes v ∈ f(u).

This update dissemination problem is at the core of the
work presented here and, in general, it is fundamental
to any decentralized OSN design. In our case, the choice
of relying on the social overlay as the main vehicle for
dissemination brings advantages (as discussed in Sec. 1) but
also complicates the problem due two reasons, discussed
next: the presence of churn, which causes unpredictable
communication delays, and the structural hurdles posed by
the peculiar nature of social networks, which bears an
impact on bandwidth requirements.

3.1 Churn: Communication Delay Requirements

Friends who wish to communicate are often not online at the
same time. This means that updates may have to be relayed
across a chain of intermediate nodes before reaching their
destination, and this may lead to delays.

The dynamics through which such delays arise is de-
picted in Fig. 1 where, at time instant t = 0, node v
starts disseminating an update over an egonet Gu. Since
nodes a, u, and h are offline, the update initially cannot be
disseminated beyond v himself. At time t = 1, node a comes
online, allowing the update to flow over a path through a
towards node d. At time t = 2 node h comes online, and
the update flows to h, e and g. Finally, at time t = 3 node
u comes online, and the update can reach the remaining
nodes, completing dissemination.

In practice, social networks (and hence social overlays)
are rarely as regular as in Fig. 1; irregular clustering often
yields topologies as in Fig. 2. In the presence of churn,
these topologies may easily lead to partitions, as in the case
where node b in Fig. 2 is temporarily offline, preventing
communication from the sub-networks v and w belong to.
These situations occur quite frequently, and are the biggest
hurdle to the use of social overlays in decentralized OSNs.

node online

node offline

node reached
by update

wv

b

transient
partition

Fig. 2. Transient partitions in social overlays.

End-to-end vs. Receiver Delays. We consider two notions
of delay. The first one is network-centric, defined as the total
time elapsed from the time t0 at which an update is posted
by a source v to the time tw at which it is received by a node
w. We refer to this metric as the end-to-end delay from v to w
w.r.t. t0, or ed(v, w, t0) = tw − t0.

Being network-centric, ed is not representative of user
experience. We capture the latter by measuring how long
a user had to wait online before receiving an update. The
intuition is that a node that logs in infrequently does not care
if an update was posted long ago, provided it is received
shortly after login. We refer to this metric as the receiver
delay from v to w w.r.t. t0, or rd(v, w, t0).

We have demonstrated in [23] that, under any purely
P2P solution, both ed and rd can become very large, with
average receiver delays of hours for a significant fraction
(1%) of the nodes, and remaining above tens of minutes for
over 10% of the nodes—unacceptable for modern OSNs.
Putting a Bound on Delays. Given the requirement for fast
dissemination, our goal is to solve the update dissemination
problem while providing an acceptable user experience.
Formally, we can express this goal as a target delay bound
δ on update delivery:

rd(v, w, t0) ≤ δ (1)

for every source v, receiver w, and time instant t0.
Putting a cap on rd, however, is not enough, as it allows

for some undesirable situations to emerge. E.g., suppose we
set δ = 20 minutes and a receiver logs in 5 minutes per day.
From the point of view of Eq. (1), the bound is honored as
long as we deliver the update before the end of the 4th day.
But this is too long: a 4-day old update is not as useful as
a 1-day old one. Further, the receiver did log in repeatedly
during these 4 days, i.e., there were multiple windows of
opportunity to deliver the update.

This shows the main weakness of using a pure rd bound:
it allows end-to-end delays to become unnecessarily large.
We need a stronger bound based on ed. Yet, bounding ed
directly is not possible: if the receiver were offline at the
instant when the bound is crossed, it would be impossible
to deliver the update on time.

We reach a compromise by allowing a soft delay bound on
ed. The idea is that as soon as the target delay bound δ is
crossed, the system must deliver the update at the next login
of the receiver. We express this by adding some slack time to
the bound in case w is offline. This slack time represents the
residual offline time Roff of w until its next login. Formally:

ed(v, w, t0) ≤
{
δ if w online at t0 + δ
δ +Roff otherwise (2)

The slack time is a random variable, whose probability
distribution results directly from the availability model. The

2327-4697 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TNSE.2018.2860600, IEEE
Transactions on Network Science and Engineering

IEEE TRANSACTIONS ON NETWORK SCIENCE AND ENGINEERING 5

bound in Eq. (2), therefore, is no longer an exact, one-size-
fits-all bound, but a probabilistic one exhibiting different
statistical behavior for each receiver. This makes sense, since
a different availability leads to different guarantees. Finally,
note that since the slack is composed entirely of offline time,
it does not count as receiver delay. Therefore, by honoring
Eq. (2) we are also automatically honoring Eq. (1).

3.2 Structural Hurdles: Bandwidth Requirements

Social networks have peculiar structural properties, e.g.,
skewed degree distributions and irregular clustering [22].
In Clops, the social network is directly mirrored into the
social overlay used for dissemination, which therefore in-
herits these structural properties. Consequently, high-degree
nodes tend to sit on more dissemination paths than low-
degree ones [18], and in principle must perform more work.

Fig. 1 illustrates the issue: u is the highest-degree node in
the network, and we could disseminate any update over the
graph by simply asking u to do it. Yet, this means u must
provide enough bandwidth, which may be unreasonable
depending on how large u’s degree is and how often new
updates are generated. In general, we assume u has a limited
bandwidth budget that our protocols must respect; we discuss
and formalize this issue in Sec. 5.3, where we illustrate a
protocol capable of honoring this bandwidth requirement.

4 SOLUTION: CLOUD-ENHANCED
DISSEMINATION ON THE SOCIAL OVERLAY

Social overlays cannot meet by themselves the delay and
bandwidth requirements for all nodes, as discussed in the
previous section. Therefore, in this paper we propose a
hybrid solution that, by combining a decentralized social
overlay with occasional cloud access, is able to reconcile the
two seemingly opposing goals of respecting delay bounds
and bandwidth budgets in the face of skewed availability
patterns, while incurring modest monetary costs.

Once the leap to cloud access is made, it would seem
that simple solutions exist. For instance, a simple way to
“patch” partitions like those in Fig. 2 would be to associate
each node u to an alias ũ in the cloud, activated on-demand
to satisfy requests on behalf of u when u is offline. These
cloud aliases would effectively remove transient partitions
and their associated delays. This solution has, however, a
number of drawbacks. First, running an alias on the cloud
(e.g., EC2 [2]) for extended periods of time is too expensive.
Second, as Shakimov [36] points out, activating an alias
on-demand requires specialized (and hitherto non-existing)
support from the cloud provider, e.g., to constantly monitor
the state of the alias and take over should it crash. Finally
and most importantly, it provides the cloud provider with
full access to the state of the running software, potentially
allowing access to sensitive information such as private
keys, and violating our principle of minimum exposure.

4.1 Key Insight: Cloud-based Profile Stores

The problems above led us to an alternative solution where
ũ is not a full clone of u, rather a simple high-availability
profile store in which pp(u) is kept.

social overlay

quenched

unquenched

cloud

<< d

> d

<< d

w

setirw
group Agroup B

ũ

v

b

Fig. 3. Delay groups and HYBRID.

If v wants to post something to pp(u), it simply writes
this update directly to ũ. Cloud services such as S3 [2]
provide means to ensure that only authorized users are
allowed to write to ũ. By adopting the requester-pays model
of S3, we ensure that users have complete control over
costs. To minimize exposure of sensitive data to the cloud
provider, all data stored in ũ is encrypted before upload.
This is in stark contrast with OSNs such as Facebook, whose
business model effectively precludes storing encrypted data
from being acceptable practice.

However, differently from cloud aliases, profile stores
are passive in that they cannot initiate interactions with
other nodes. Therefore, to actively overcome the transient
partitions that cause delays, we resort to polling. We describe
two solutions, evaluated in Sec. 6, that strike different trade-
offs between complexity and performance.
A naı̈ve solution: PUREPOLL. Our baseline protocol, PURE-
POLL, works by having each node w ∈ f(u) independently
poll ũ every δ time units, retrieving any updates posted
in the meantime. If w happens to be offline after δ time
units have passed, then w accesses the cloud immediately
once it logs back in. This approach allows us to circumvent
the transient partitions of Fig. 2 through an out-of-band
channel, satisfying Eq. (2).
Exploiting the social overlay: HYBRID. While simple,
PUREPOLL is wasteful in that it disregards the existence of
low-delay paths in the social overlay which could be used to
our advantage. To understand how, note that if we were to
discard all paths in the social overlay that have delays above
or close to the delay bound δ we wish to maintain—such as
the paths that go through node b in Fig. 2—we would be left
with a set of disjoint groups for which the internal delays
are low, as illustrated in Fig. 3. We call these delay groups.
To disseminate a message over a set of delay groups while
respecting the delay bound δ, we need to ensure that at least
one node in each of these groups actually accesses the cloud
every δ time units. The other nodes can then get the update
from this node over the social overlay and avoid accessing
the cloud themselves.

Our second approach, named HYBRID, does just that.
Each node w ∈ f(u) keeps track of the last time it heard
from u. Whenever w goes for more than δ time instants
without hearing from u, it polls u’s profile store to check
for new updates. If there are any, w downloads them from
the cloud and disseminates them over the social overlay by
means of an appropriate dissemination protocol, described in
Sec. 5. Otherwise, w disseminates a special quench message
that contains the time t0 at which w accessed the cloud and
found nothing new. This message informs other nodes that
they can refrain themselves from accessing the cloud for an
extra δ time instants. We call this access quenching.

2327-4697 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TNSE.2018.2860600, IEEE
Transactions on Network Science and Engineering

IEEE TRANSACTIONS ON NETWORK SCIENCE AND ENGINEERING 6

Note that if two nodes belong to the same delay group
then one will likely hear from the access of the other,
resulting in access quenching. If two nodes do not belong to
the same delay group, instead, it is unlikely that they hear
each other in time to promote quenching, and two separate
cloud accesses will ensue. Therefore, the protocol adjusts
to the delay characteristics of the surrounding network, and
provides a self-organizing mechanism for bridging transient
partitions by polling. Further, note that delay groups are
exploited implicitly and do not have to be constructed nor
maintained—nodes that are part of different delay groups
will simply never be able to quench one another as messages
will take too long to propagate over the social overlay.
Randomizing cloud accesses. A side effect of the quench
mechanism is that it induces nodes belonging to the same
delay group to synchronize their accesses to the profile store,
as illustrated in Fig. 4a: node w1 initially accesses ũ at time
t0 and, having found no new updates, schedules its next
access to t0 + δ to respect the soft delay bound. At the same
time, w1 propagates this knowledge over the social overlay
through a quench message. Upon receiving such message,
node w2 schedules its next access to t0 + δ as well. At time
t0 + δ (Fig. 4a), both nodes access ũ. Having again found no
updates, they disseminate their quench messages, but to no
effect since the accesses are too close to one another.

We address the problem by scattering access times near
t0 + δ. When accessing the cloud or when receiving a
quench message, nodes set their access time to t0 + ψ + α,
where ψ is a fixed component large enough to make quench-
ing effective (Fig. 4b), and α a uniformly random value
between 0 and δ − ψ, satisfying the soft bound in Eq. (2).

4.2 Solution Details

In HYBRID, every node w ∈ f(u) keeps track of three
variables: i) the last seen timestamp last[u] representing the
last time at which w has heard any news from u ii) the
version number version[u], used to determine whether its
local version of pp(u) is up-to-date w.r.t. the profile store ũ
iii) its current, randomized target delay bound target[u].

Whenever the target delay bound is crossed without
hearing any news from u, w accesses the cloud, as shown
in Alg. 1. The first actions w takes, since it is about to get the
latest updates concerning u, is to suspend the dissemination

t + d0t0

t + d0t0

quench ineffective

Q
U
EN

C
H

w1

w2

w1

w2

 d

(a) Fixed.

t + d0t0

t + d0t0

access quenched

Q
U
EN

C
H

Q
U
EN

C
H

w1

w2

w1

w2

y
T

T

a

(b) Randomized.

Fig. 4. Access quenching.

Algorithm 1: OnTimeout
Trigger: Target delay bound is crossed

(clock()− last[u] > target[u]).

1 M ← SO.query(〈quench, u, ·〉)
2 foreach m′ ∈M do SO.remove(m′)
3 last[u]← clock()
4 U ← cloud.list(u, version[u])
5 if U 6= ∅ then
6 version[u]← max(U)
7 foreach id ∈ U − delivered do
8 upd← cloud.download(u, id)
9 deliver(upd)

10 delivered← delivered ∪ {id}
11 SO.disseminate(〈update, u, last[u], id, upd〉)
12 else
13 SO.disseminate(〈quench, u, last[u], version[u]〉)
14 target[u]← ψ + uniform(0, δ − ψ)

Algorithm 2: OnReceive
Trigger: Message m is received from the social overlay.

1 switch m.type do
2 case update
3 if m.id 6∈ delivered then
4 deliver(m.upd)
5 case quench
6 if m.t ≤ last[u] or clock()−m.t > δ or
7 m.version 6= version[u] then
8 SO.remove(m)

9 if m.t > last[u] and version[u] = m.version then
10 last[u]← m.t
11 M ← SO.query(〈quench, u, ·〉)
12 foreach m′ ∈M : m′.t < m.t do SO.remove(m′)
13 target[u]← ψ + uniform(0, δ − ψ)

of any quench messages over the social overlay (SO) and to
update last[u] (lines 1-3).

Then, w downloads into the list U all the identifiers of
u’s updates that are more recent than version[u] (line 4). If U
is non-empty (line 5), version[u] is set to the largest update
version number in U , and all the updates not yet received
are downloaded from the cloud. The precise nature of the
cloud operations depend on the API provided. For example,
in S3 [2] this could be obtained through the versioning
mechanism and the “GET bucket object versions” primitive.

After download, w delivers the updates to the applica-
tion layer (lines 9-10) and to the serverless dissemination
layer (line 11) described in Sec. 5, from where they are
spread over the ego network Gu. As shown in line 11, up-
date messages contain four fields besides the message type
descriptor: the identifier of the owner of the profile page to
which the update is addressed (u), the timestamp of when
the update was last downloaded (last[u]), the identifier of
the update (id), and the update itself (upd).

If instead no updates are found (line 12), w disseminates
a quench message with the identifier of the profile page
owner, the access timestamp, and the latest version of pp(u)
it knows, version[u] (lines 12-13). Including version[u] is
important as a quench message indicates the absence of
updates in reference to the latest version of pp(u) known
by w, and different nodes might be stuck with different ver-
sions. Finally, w randomizes its target delay bound target[u],

2327-4697 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TNSE.2018.2860600, IEEE
Transactions on Network Science and Engineering

IEEE TRANSACTIONS ON NETWORK SCIENCE AND ENGINEERING 7

as described in Sec. 4.1.
Upon receiving a messagem, a node w executes Alg. 2. If

m is an update message (line 2) whose content is unknown
to w, it is delivered to the application layer (line 4). This
will implicitly cause version[u] to be updated in case w has
delivered all updates that precede m (not shown). If m is
a quench message and its timestamp is older than last[u],
or the difference between the current local time and m’s
timestamp is larger than δ, then the message is too old and
w does not disseminate it (line 8). The same happens if the
version number in the message does not match version[u], as
this means that the quench is either too old (if m.version <
version[u]), or too new. The latter may happen when, e.g.,
w spends time offline and, upon coming back, receives a
quench from a node v who was online for the whole period
and, having accessed the cloud recently, found no updates.

Regardless of the message received, w updates last[u]
and its target delay bound—which will cause quenching
at w—whenever the timestamp of the message is more
recent than its own, and its version number is the same as
version[u]. The latter constraint prevents w from quenching
access in response to messages from nodes with newer
versions of the profile page pp(u). In case the constraints
hold,w also stops disseminating any quench messages with
timestamp smaller than that of m (lines 11-12), since the
knowledge contained in m is more recent.

Finally, it could happen that a node w joins the network
being already timed out w.r.t. target[u]. In this case w would
execute Alg. 1. Yet, there could be some neighbor of w in
the social overlay with recent updates on u, which would
make cloud access unnecessary. To reduce the chances of
such an event happening, we allow joining nodes a short
grace period on login (5 seconds, in our current implemen-
tation), thus giving neighbors enough time to send any new
information.

5 THE SERVERLESS DISSEMINATION LAYER

The serverless dissemination layer operating on the social
overlay is a critical component of HYBRID’s overall per-
formance. Its role is to disseminate update (or quench)
messages as quickly as possible to nodes within low-latency
paths from a sender. The intuition has already been given in
Fig. 3: once a member of a delay group accesses the cloud,
we want information to spread quickly to other members to
quench accesses or promote fast updating.

Since speed is the primary concern, we choose to build
our dissemination layer entirely on top of fast, push gossip
protocols [8]. Apart from being fast, these protocols are
known for their simplicity, scalability, and churn resilience.
Push gossip protocols share a common structure: they all
work in periodic “rounds” of length tr which are not syn-
chronized among participants. At each round, whenever
there is an update to be disseminated by a node v, the
protocol at v will:

1) randomly select a neighbor u;
2) push the update to u;
3) decide whether to run another round in tr time units or

instead halt, i.e., stop the protocol locally.
To disseminate multiple updates simultaneously, v can run
multiple instances of this simple base protocol in parallel.

2

3

4

6

1

5
0

region B

reached not reached

sender

halted

cross-region
edge

7

re
gi

on
 A

2

3

4

6

1

5
0

cross-region
edge

7

Fig. 5. Irregular clustering and Demers.

Since push protocols must be fast, the round length tr for a
push protocol is usually small; hereafter, we assume w.l.o.g.
tr = 1 second.

5.1 The Need for New Gossip Protocols
Ideally, we would like to reuse existing gossip protocols.
Unfortunately, we found [22] that these cannot be applied in
our context for the same reason most protocols fail in social
overlays—common assumptions on network structure fail
to hold. We shed more light into this aspect by examining
the issues faced when applying the classic Demers’ rumor
mongering protocol [8] to our problem. Demers instantiates
the generic gossip protocol template given above by select-
ing neighbors uniformly at random and by halting update
dissemination with probability p if the neighbor has already
received the update (feedback-coin [8]).
Clustering. If the network is clustered approximately uni-
formly, Demers guarantees that the update will spread to
most of the nodes before duplicates appear and nodes begin
to halt. In ego networks, however, nodes are clustered into
regions that are well-connected internally (Fig. 5) but not to
each other (i.e., forming local communities [17]). This biases
random selection, causing it to occur more often within
a region than outside it, leading to i) the fast spreading
of updates within regions, and ii) the early appearance of
duplicates, causing the process to halt prematurely (Fig. 5).
This effect is analyzed experimentally in [22], showing that
up to 20% of receivers do not get the update, even with a
low halting probability p and no churn.
Load and node degrees. In push gossip, the frequency with
which a node gets selected by its neighbors (and, therefore,
receives a message) depends on its in-degree: the higher
the degree, the larger amount of load the node will have
to endure. For update traffic, this is not such an important
issue, as it is rather sparse, with reported averages ranging
from less than one, to a few posts per day [30]. On the other
hand, quench messages must be disseminated frequently,
and can easily lead to problems.
Our Requirements. In a nutshell, we want to design ef-
ficient push gossip protocols that must: i) work efficiently
under non-uniform clustering conditions; ii) cope with two
distinct traffic classes—update and quench messages—
without sacrificing speed and without overloading high
degree nodes, as discussed in Sec. 3.

These requirements lead us to two push gossip protocols,
described next, which are an important contribution of
our work: QUICK and THRIFTY. QUICK is geared towards
sparse update traffic and ensures that updates get deliv-
ered quickly under widely varying clustering conditions.

2327-4697 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TNSE.2018.2860600, IEEE
Transactions on Network Science and Engineering

IEEE TRANSACTIONS ON NETWORK SCIENCE AND ENGINEERING 8

THRIFTY, instead, is geared towards quench messages and
ensures that these get delivered fast enough, while provid-
ing guarantees on the loads incurred in high degree nodes.

5.2 QUICK Updating
Recall that Demers assumption on uniform clustering causes
it to stop disseminating too quickly. One way to avoid the
problem would be by flooding instead—i.e. a node does not
stop disseminating an update until it sends it to each of its
neighbors at least once. But this generates too much traffic,
which we remedy with a modification to flooding that we
name QUICK. In a nutshell, QUICK nodes flood, but they
also piggyback with each message a history containing the
nodes in the ego network known to have already received
the update, and avoid selecting them again.
Message histories. Formally, let o be an update, and let
Kv,o ⊆ Vu contain the intended destinations of o known by
v to have received o. Let Ev,o = (Vu ∩Vv)−Kv,o denote the
common friends of v and u (including u) eligible for selection
at v when considering o. Then, at each round, node v:

1) selects w ∈ Ev,o uniformly at random;
2) sets Kv,o to Kv,o ∪ {w}
3) sends a message 〈o,Kv,o〉 to w, where the message

history of o known by v is piggybacked with o;
4) when v receives a message 〈o,Kz,o〉 from z, it sets Kv,o

to Kv,o ∪Kz,o;
5) if Ev,o = ∅, v stops disseminating. Otherwise v sched-

ules the next round.
Since the social network changes slowly and each node has
a unique local index into the ego network (the lidv function,
Sec. 2), we can implement message histories as simple bit
arrays. For example, in Fig. 5 we would piggyback with
each message an array with 10 bits. If bit k is set, node k
already received the message. For large ego networks, the
array can be compressed for bandwidth efficiency [14].

QUICK reduces traffic by avoiding duplicates. Less ob-
viously, it also boosts dissemination speed: nodes in a
clustered region typically enter histories early, causing links
pointing outside the region (e.g., the cross-region edge in
Fig. 5) to be activated earlier, thus rendering dissemination
more “parallel” and, thus, faster. These effects, as well as
QUICK’s message overhead, were studied in detail in [22].
Timeouts. Since we want QUICK to spread over delay
groups without causing too much overhead, dissemination
time is limited by a timeout parameter tout; if a node
v goes for more than tout time units without finding a
new neighbor to push to, then dissemination spontaneously
halts. Hereafter we assume tout = 2 minutes, which we
verified to be enough to ensure good coverage.

5.3 THRIFTY Quenching
Nodes in our system participate in several ego networks,
and may have to help disseminate over several of them
concurrently. Fig. 6 shows an example, where node u must
disseminate both over Gu (his own ego network) and Gv .
An immediate consequence is that running QUICK with a
round length of tr = 1 s as proposed earlier would only be
doable if we assume that u must not disseminate over too
many ego networks at the same time—i.e., if we assume that

Gv

Gu

d(v) = 12 d(u) = 7

uv

f (u)v
w1

w2

w3

w4

w5

Fig. 6. Two ego networks sharing nodes.

posts from friends are somewhat desynchronized in time.
This is a reasonable assumption for update traffic, as it is
sparse. What would happen, however, if all of u’s friends
(e.g., all thousand of them) decided to post an update at
exactly the same time? Node u would have to send as much
as a thousand messages per round, a hefty bandwidth tag.

But this is precisely the effect that the mechanism we
propose has on the network: new quench messages are
posted continuously and in a succession by members of de-
lay groups (who are normally neighbors), and cause higher
degree nodes to be overloaded. This problem is solved by
THRIFTY, a protocol that provides enough speed for quench
messages and is aware that all nodes—even high degree
ones—may be constrained by a bandwidth budget.

In a nutshell, THRIFTY is a gossip protocol that allows the
dissemination process to respect probabilistic bandwidth
budgets despite extreme differences in node degrees and the
fact that actual node degrees vary due to churn. It achieves
these goals by re-weighing selection probabilities taking into
account both i) the differences in degrees between selecting
and selected nodes, and ii) network dynamism, by means of
network parameters that can be easily estimated locally.

5.3.1 Modeling Bandwidth Requirements
Before describing our solution, we formalize the bandwidth
requirements we stated informally in Sec. 3.2.

For a given node v, we define its bandwidth budget as a
pair of mappings (ov, iv) such that, for each u ∈ f(v), ov(u)
and iv(u) represent the average number of messages-per-second
v is willing to send and receive, respectively, when helping
disseminate updates over Gu. In other words, ov(u) and
iv(u) represent how much v is willing to help disseminate
updates posted to pp(u) by u and her friends.

To simplify our analysis, we assume that the dissemina-
tion layer is always saturated, i.e., that the push protocols
never have an opportunity to terminate because nodes
“post” new quench information faster than the termination
condition can be met. This means that all nodes send at every
round. As discussed later, this is an accurate representation
of what happens with quenches under HYBRID.
Outbound bandwidth. Consider node v and the outbound
bandwidth ov(u) it budgets for u ∈ f(v). Let Ov(u) be the
random variable representing the number of messages that
v sends towards Gu at some gossip round. Recalling that
Vu = f(u)∪ {u} and a node sends at most one message per
round towards an ego network, at round r we have that:

Ov(u) =

{
1, if v sends a message to some w ∈ Vu;
0, otherwise.

2327-4697 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TNSE.2018.2860600, IEEE
Transactions on Network Science and Engineering

IEEE TRANSACTIONS ON NETWORK SCIENCE AND ENGINEERING 9

The requirement is that the actual outbound traffic respects
the budget, i.e., E(Ov(u)) = ov(u).
Inbound bandwidth. Consider node v and the inbound
bandwidth iv(u) budgets for the ego network Gu, u ∈ Vv .
For an arbitrary round of our gossip protocol, let Cw be a
random variable such that, at some round r:

Cw =

{
1, if v is contacted by w ∈ Vu;
0, otherwise.

(3)

Further, let Iv(u) be a random variable representing the
number of contacts v receives from nodes in Gu in a gossip
round. Clearly, the contacting nodes inGu have to be both in
f(v) and Vu; i.e. they have to be in fu(v) (defined in Sec. 2).
Iv(u) can then be expressed as:

Iv(u) =
∑

w∈fu(v)
Cw (4)

Iv(u) represents the actual inbound bandwidth v dedicates
to dissemination over Gu at any given round, and our
primary goal becomes ensuring that E(Iv(u)) ≤ iv(u)—i.e.,
that usage respects the budget.

5.3.2 Meeting Bandwidth Requirements

Outbound bandwidth. Building a protocol that respects the
outbound bandwidth budget is simple, as the number of
messages v sends depends only on local actions made by v
itself. To ensure that v sends, on average, ov(u) messages per
second towards Gu, v must skip a round with probability
1− ov(u). Since we are working with a gossip round length
tr = 1 s, we have that ov(u) ≤ 1, i.e., v sends at most
1 message/s per ego network it participates in; adapting to
other round lengths would be trivial. This leads to:

E(Ov(u)) = 1 · ov(u) + 0 · (1− ov(u)) = ov(u)

While we could have simply had v send a message every
1/ov(u) rounds towards Gu, our scheme ensures that sends
from different instances of the push protocol synchronize
with low probability. Indeed, the total output bandwidth
consumed by v over all ego networks it participates is, at a
given round, given by:

O =
∑

u∈f(v)
Ov(u)

which follows a Poisson binomial distribution [42] with param-
eters { ov(u) : u ∈ f(v) } and tends to have low variance.
Clearly, v might always opt to skip rounds if the actual
available bandwidth is not enough, but the protocol itself
ensures that usage remains acceptable and predictable.
Inbound bandwidth. Controlling the inbound bandwidth
needed by node v is more challenging, as it depends directly
on how frequently v is contacted by other nodes at each round.

The intuition for THRIFTY is that nodes can avoid overs-
electing high degree neighbors by “vetoing” selection with a
probability that is proportional to the neighbor’s degree and
bandwidth budget. We develop this intuition by looking at
the simple network in Fig. 6, and considering v’s budget
iv(v) towards its own ego network, which we assume to
be iv(v) = 1 for now; i.e., that v wants to be contacted, on
average, once per round by its neighbors in Gv .

For every node u ∈ f(v), denote their degree in Gv as
deg(u) = |fv(u)|. A way to achieve fairness while honoring

our average bandwidth constraint would be by making it so
that every neighbor of v selects it with probability 1/deg(v)
at every round—i.e., every neighbor gets the same chance.
Achieving this goal for nodes w1 . . . w5 in Fig. 6 is simple—
have them select v with probability 1/deg(v), or sit idle
with probability 1 − 1/deg(v). Clearly, we could achieve
our goal by having u follow the same strategy, but this is
suboptimal—u has other neighbors in Gv , and it should
select those when it cannot select v. Further, we also want
u to be fair in its neighbor selection—i.e., we want them to
be selected with equal probability. Finally, we want to deal
with cases in which iv(v) is an arbitrary number, not just 1.

To reconcile all these goals, we alter the selection proce-
dure at u as follows. At each round, node u:

1) selects a neighbor w ∈ fv(u) uniformly at random;
2) draws a sample α from uniform[0, 1] and:

a) if α < min(1, deg(u)/deg(w))× iw(v) selects w;
b) skips a round, otherwise.

We refer to the expression min(1, deg(u)/deg(w))× iw(v) as
the reweighing factor. The critical property of the reweighing
factor is that it is both directly proportional to u’s degree
(high-degree nodes are less likely to skip rounds) and in-
versely proportional to w’s degree (high-degree neighbors
are more likely to be skipped). More formally:

Theorem 1. THRIFTY respects the inbound bandwidth iw(v) for
all w ∈ Vv .

with a proof provided in the supplemental material [25].
THRIFTY relies on the assumption that u knows iw(v),

otherwise it cannot compute the right reweighing factor for
it. However, since w and u are friends, w can easily commu-
nicate its bandwidth budget iw(v) to u by piggybacking the
information on update traffic.

5.3.3 Dealing with Clustering and Churn
Clearly, we want THRIFTY to perform well under non-
uniform clustering conditions. We therefore adopt the same
mechanism we used for QUICK in Sec. 5.2—node u piggy-
backs a message history with every quench message o it
sends around. Since u is only allowed to select from Eu,o,
however, we have to change the reweighing factor from
deg(u)
deg(w) to |Eu,o|

deg(w) . We show in [25] that this does not affect
the ability to correctly meet the bandwidth budget.

Moreover, we have implicitly assumed thus far that
network degrees remain static over time. Churn, however,
implies that they change, often significantly. Fortunately, for
THRIFTY to work, all u needs to know about a neighbor w
is the average number of neighbors that w sees online over
Gv , referred to as adeg(w). adeg(w) can be estimated first-
hand by w, who keeps track of how many neighbors it sees
online. Node w can then disseminate its estimate of adeg(w)
over Gv a few times a day—every 6 hours, in our case.
Once a node disseminates its average, it resets its estimate
to deg(w) and starts counting again. Therefore, nodes that
do not spend enough time online, will have pessimistic es-
timates, which will cause their budgets to be underutilized
and therefore respected. Averages are disseminated using
THRIFTY together with quench traffic. As our evaluation
shows, using adeg(w) instead of deg(w) in the reweighing
factor is sufficient to respect the budget.

2327-4697 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TNSE.2018.2860600, IEEE
Transactions on Network Science and Engineering

IEEE TRANSACTIONS ON NETWORK SCIENCE AND ENGINEERING 10

Algorithm 3: THRIFTY

1 if U [0, 1] ≥ ou(v) then
2 return null; % Skips to respect ou(v)
3 w ← random(Eu,o)
4 if U [0, 1] < min(1, |Eu,o| /adeg(w))× iw(v) then
5 return w
6 return null; % Skips to respect iw(v)

In practice, such processes are cyclostationary due to
time-of-day effects [40]; a moving average disseminated
periodically would probably be a better fit. An analysis of
these issues is, however, outside the scope of this paper.

5.3.4 Protocol
The resulting protocol run by u to disseminate updates
over Gv is shown in Alg. 3. It starts by skipping a round
(returning null) with probability ou(v) (lines 1-2), to respect
the outbound bandwidth budget ou(v). Then, it selects
a neighbor from Eu,o uniformly at random (line 3) and
reweighs the selection probability according to the rules we
outlined (line 4). This causes either w to be selected or the
current round to be skipped.

6 EVALUATION

In this section we evaluate our solution towards two goals:
1) provide supporting evidence that it performs significantly
better than a pure serverless approach, while being com-
petitive with centralized approaches; 2) estimate what kind
of monetary and network costs one should expect from
running it. Additional details about the dataset we use, the
rationale for the experimental setup, and the chosen metrics,
are available in the supplemental material [25].

6.1 Baselines and Experimental Setting
We compare HYBRID against four baselines: i) PUREPOLL,
the naı̈ve protocol described in Sec. 4.1; ii) LAVISH, a vari-
ant of HYBRID that disseminates quench messages using
QUICK instead of THRIFTY and allows us to quantify the
benefits of the latter; iii) PUREP2P, which relies solely on
the social overlay and allows us to quantify the benefits
of our cloud-assisted strategy; and iv) SERVER, emulating
a centralized approach akin to Facebook.
Dataset. Protocols are evaluated over a sample of 100k
ego networks picked uniformly at random from the Orkut
crawl in the Stanford Large Network Dataset Collection
(SNAP) [19]. Being the largest (Facebook-like) OSN crawl
on SNAP, the dataset allows us to select a larger number of
non-overlapping ego networks, thus maximizing structural
variability and ensuring the relevance of our numbers.

The graph contains 3 million vertices (i.e., 3M ego net-
works), 117M edges, and has an average clustering coeffi-
cient of 0.171. Our sample covers 2.1M unique vertices, has
around 39M unique edges, and similar clustering coefficient.
Simulation approach. For each ego network Gu in our
sample, we pick one source node v ∈ Vu uniformly at
random. This leads to the set of 100 000 (source, ego network)
pairs we use for simulations. For each pair (v,Gu) in our
sample, we perform the following experiment. First, we set

all nodes in Gu to offline and, for PUREPOLL and HYBRID,
we also set all the values of last[u] (the last time instant at
which a node heard from u) to zero. Since this initial state
is not representative of the steady-state regime, we run the
simulation for a burn-in period γ in which no measurement
is taken: we simulate the churn model and, in the case of
PUREPOLL and HYBRID, we also simulate the polling of the
cloud and the quench messages.

The goal is to obtain a representative online/offline
network configuration before we start injecting updates, but
also a representative quench traffic, and a representative
“phase shift” for the last seen timestamps last[u] at the vari-
ous nodes. We have empirically established, with heuristics
similar to [1], that setting γ = 48 hours is enough to mitigate
our initial transient. To derive the estimators (e.g., sample
averages) we require, we run two types of simulations:
• Delay simulations where we simulate updates originat-

ing at v, and measure delays towards receivers in
Vu/{v}. The experiment progresses by waiting for the
first login of the source v, at which point we cause v to
post an update to pp(u). We assume w.l.o.g. that nodes
always post their updates at the start of one of their
sessions (since the system is assumed to be running in
stable state, it makes no difference at which point of the
session the node posts). We then wait for the update
to reach each of the nodes in Vu/{v}, and measure the
delays. Experiments are repeated 100 times.

• Cost simulations where no updates are simulated, but
nodes in Vu are continuously accessing the cloud and
disseminating quench messages, allowing us to es-
timate the stable-state costs of the protocol. We let
the experiment run for another 800 simulated hours
without any updates. During this period, we measure
both cloud access frequencies and network usage. This
experiment is only run once.

These simulations are performed separately because de-
lay simulations are irregular in duration, and introduce a
bias if cost metrics are calculated over them.

6.2 Metrics

This provides a high-level description of the metrics we
calculate; more details are available in [25].
Delay. With reference to Sec. 3.1, for each source destination
pair (u, v) we compute their average end-to-end and receiver
delays, which we refer to as aed(u, v) and ard(u, v).
Monetary costs. We estimate ycs(w, u), the yearly costs
incurred by node w for keeping up-to-date with the updates
of one profile page pp(u). This is obtained by computing, at
each nodew ∈ Vu, the average number of accesses acs(w, u)
that w incurs on the cloud per hour over the duration of the
cost experiment ran over Gu, aggregating them over the
period of one year, and multiplying by ρ, the cost of a GET
request. We then estimate the overall yearly spendings as

ĉs(w) ∼ ycs(w, u)× |f(w)|

by accounting for the ego networks w participates in, as-
suming costs increase linearly w.r.t. node degree.
Network costs. Network usage is assessed by measuring the
average bandwidth consumption at each node, in terms of

2327-4697 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TNSE.2018.2860600, IEEE
Transactions on Network Science and Engineering

IEEE TRANSACTIONS ON NETWORK SCIENCE AND ENGINEERING 11

message/s processed. Similarly to what we did for cloud ac-
cesses, let amsg(w, u) represent the number of messages we
estimate w to process per second during the cost simulation
ran over ego network Gu. As before, this gives us a rough
figure for the costs incurred by w while keeping up-to-date
with pp(u). We then adopt the same approximation model
as in ĉs when computing the total message processing rate
of m̂sg(v) at v, and multiply amsg by |f(w)|:

m̂sg(w) ∼ amsg(w, u)× |f(w)| (5)

Here, however, we can provide stronger guarantees, since:
i) network costs are dominated by quench messages, and
ii) these are disseminated by THRIFTY that has costs propor-
tional to |f(w)|, as discussed later.

6.3 Parameters
We use the notation HYBRID/ψ/α to refer to the HYBRID
variant with parameters ψ and α, expressed in minutes. We
use a similar notation, PUREPOLL/δ, to refer to the variant
with target delay bound δ.
HYBRID, PUREPOLL, and LAVISH. We simulate the vari-
ants HYBRID/40/20, HYBRID/30/14, and HYBRID/15/14.
These parameter settings, as we later show, provide good
coverage of tradeoffs in delay and cost, and we use them for
comparison against the baselines. However, as explained in
Sec. 4.1, the target delay bound of HYBRID is randomized,
and varies in [ψ, ψ + α] with average ψ + α/2. Since
PUREPOLL is not randomized, we consider three corre-
sponding variants: i) “fast”, PUREPOLL/ψ; ii) “intermediate”,
PUREPOLL/(ψ + α/2); iii) “slow”, PUREPOLL/(ψ + α).

This in principle would yield nine PUREPOLL variants,
δ ∈ {15, 22, 29, 30, 37, 40, 44, 50, 60}. However, the variants
{29, 37, 44} are dropped as they are covered by similar
values {30, 40} yielding nearly identical performance. We
also drop the variants with δ ≥ 44 because, as discussed
later, they are too slow to be practical. Finally, to determine
the point at which PUREPOLL overtakes HYBRID, we add
the setting δ = 5. Therefore, we consider the PUREPOLL
variants with δ ∈ {5, 15, 22, 30, 40}.

Finally, since LAVISH/ψ/α performs similar to
HYBRID/ψ/α w.r.t. latency and monetary costs, and the
other LAVISH variants perform closely for the values of ψ
and α we consider, we simulate only LAVISH/15/14.
Bandwidth. Let b(v) = bout(v) + bin(v) represent the total
bandwidth made available by v for dissemination across
all its friends, where bout(v) and bin(v) are the total in-
bound and outbound bandwidth. Our goal is to show that
THRIFTY scales for nodes with up to 1 000 friends, so that
we assign nodes with up to that many friends b(v) = 100
messages per second, split as bout(v) = 0.9 × b(v) = 90
and bin(v) = 0.1× b(v) = 10. To ensure our simulations are
meaningful, we constrain node v to allocate such bandwidth
evenly amongst friends, i.e. ov(u) = bout(v)/ |f(v)| and
iv(u) = bin(v)/ |f(v)| for all u ∈ f(v). Since THRIFTY
honors the bandwidth budget: i) the cost model we gave
in Sec. 6.2 accurately represents bandwidth consumption;
ii) the performance numbers we obtain are accurate.

For nodes with more than 1 000 friends we let bandwidth
budgets grow “gracefully” at a rate of 100/1 000 = 0.1 per
friend, i.e., we do not assume these nodes to be faster, per

Fig. 7. Empirical CDF for the average receiver delay, ard.

friend, than our worst-case scenario of 1 000 friends. To put
numbers in context, a quench message takes 20 B for a
UDP header, 64 bits for a timestamp plus identifier, and a
variable-length bitmap for the message history. Bitmaps are
sparse, since messages are confined to delay groups due to
tout, and those are small. With state-of-the-art compression
techniques [14], ratios of 50% or more are a realistic expecta-
tion, leading to around 500 bits to represent an egonet with
1 000 members, and a total message size of 90 B. bout(v), in
this case, would be 8.1 kB/s, and bin(v), 900 B/s.

6.4 Results

Delays. Fig. 7 shows cumulative distribution functions
(CDFs) for receiver delays of HYBRID and baselines, with
complementary statistics in Table 1. The data confirms that
PUREP2P suffers from significant performance issues, with
the ard distribution having a long tail, reaching values as
extreme as 49 days, and remaining nevertheless above 4.6h
at the 99th percentile. We repeat the observation of [23] that
this small 1% can translate into an unacceptable experience
for millions of users in a system of the scale of Facebook.
Instead, our cloud-based alternatives (HYBRID, PUREPOLL,
LAVISH) effectively solve the problem of the long delay tail by
putting a bound on rd, as seen from the much smaller
maximum and 99th percentile values w.r.t. PUREP2P.

Table 1 shows that HYBRID variants have maximum and
99th percentile ard values comparable to those of their
fast PUREPOLL counterparts (i.e., HYBRID/ψ/α achieves
performance similar to that of PUREPOLL/ψ), with HYBRID
being nevertheless faster. Indeed, HYBRID/30/14 and HY-
BRID/15/14 perform around 420% and 285% faster, on av-
erage, than PUREPOLL/30 and PUREPOLL/15, respectively.
While HYBRID outperforms its associated PUREPOLL vari-
ants, including the fast one, it provides a better experience
for a significant fraction of the users across all parameter
settings, even as we compare HYBRID/15/14 to PURE-
POLL/5. By combining both approaches, HYBRID effectively
reconciles the best of both worlds: the fast performance of
PUREP2P for the regions of the network that exhibit low
delay—which can be seen in Fig. 7 as the nearly vertical
shape of the CDF up until the 60th percentile—with the
ability of mitigating the long delay tails of PUREPOLL.
Monetary cost. Yearly costs are shown in Fig. 8, based on
Amazon S3 pricing [2]. Table 2 provides additional statistics.

The costs for HYBRID are generally lower than their as-
sociated PUREPOLL variants. Although these are attractive

2327-4697 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TNSE.2018.2860600, IEEE
Transactions on Network Science and Engineering

IEEE TRANSACTIONS ON NETWORK SCIENCE AND ENGINEERING 12

Fig. 8. Empirical CDF for yearly costs.

(even at higher percentiles), maximum values can get rather
high. A closer look at costs is provided in Fig. 9a, which
shows a scatterplot of the estimated yearly cost versus node
degree for HYBRID/15/14 (the other variants show a sim-
ilar pattern). We can see that high values originate mostly
from highly connected nodes, the most connected having
33 313 friends. For nodes with less than 1 000 friends, how-
ever, costs are no larger than 10$ a year for HYBRID/15/14,
and even lower for HYBRID/30/14 and HYBRID/40/20 at
6$ and 4$, respectively. Finally, even if some users do get a
large number of friends, users with huge ego networks are
likely to trim friends they do not want to keep in touch so
often, reducing costs considerably in practice.

As expected, LAVISH/15/14 incurs less costs than HY-
BRID/15/14 due to its faster (and unrealistic) quench dis-
semination. Cost improvements are again modest, however,
and in the order of 3.3$/year at the 99% percentile, with
statistically insignificant differences at the maximum value.
Network cost. Our last metric concerns the use of network
resources. We analyze the average number of message/s
processed at each node, using the cost models described
earlier. We focus on quench messages since our main inter-
est is on the base cost of the protocol. Indeed, the actual cost

TABLE 1
Statistics for the average receiver delay ard
(s = second, m = minute, h = hour, d = day)

avg. 50th 90th 99th max
PUREP2P 18m 18s 31.7m 4.6h 49.2d
HYBRID/15/14 42s 4s 2.3m 7.3m 13.1m
HYBRID/30/14 1m 5s 3.3m 11.4m 20.8m
HYBRID/40/20 1.3m 6s 4.2m 14.8m 28.1m
LAVISH/15/14 43s 4s 2.3m 7.4m 13.1m
PUREPOLL/5 56s 46s 2.1m 2.6m 4.3m
PUREPOLL/15 2.7m 2.2m 6.3m 7.9m 14.3m
PUREPOLL/22 4m 3.1m 9.3m 11.3m 16.3m
PUREPOLL/30 5.2m 4.1m 11.9m 14.3m 17.7m
PUREPOLL/40 7.7m 6.2m 17.5m 21.3m 26m

TABLE 2
Yearly costs in USD.

avg. 50th 90th 99th max
HYBRID/15/14 0.84 0.23 1.32 11.29 268.02
HYBRID/30/14 0.51 0.14 0.81 7.01 171.83
HYBRID/40/20 0.37 0.10 0.60 5.21 128.82
LAVISH/15/14 0.69 0.20 1.12 8.97 265.14
PUREPOLL/5 7.39 1.98 11.64 100.01 1035.92
PUREPOLL/15 2.91 0.85 4.56 39.30 378.78
PUREPOLL/22 2.13 0.64 3.34 29.16 271.83
PUREPOLL/30 1.71 0.52 2.67 23.57 213.47
PUREPOLL/40 1.23 0.38 1.92 17.31 146.64

(a) Monetary costs. (b) Network costs.

Fig. 9. Detailed cost plots for HYBRID/15/14.

incurred by QUICK depends on the user’s posting frequency
and habits—variables out of our control and for which no
model that correlates the required graph-structural prop-
erties and posting habits, without which numbers would
be meaningless, exist. Yet, we argue that evaluating only
quench overhead is still reasonable, since: 1) the bandwidth
available for updates is ultimately given by what is avail-
able, minus the overhead we measure here; 2) user posts
are so infrequent (see Sec. 2) when compared to quench
messages that the averages we measure here are not affected
by them. An analysis of the overhead of QUICK in the
absence of posting frequencies can be found in [22].

All HYBRID variants present similar statistics for net-
work costs (Table 3), supporting our claim (Sec. 5.3) that
the dissemination layer is saturated in all cases. It also
shows the importance of THRIFTY: network costs for LAVISH
quickly spiral out of control, making it impractical. Costs for
HYBRID are modest for most nodes (below 64 message/s)
though maximum values are still high. Looking at the
bandwidth/degree scatterplot for HYBRID/15/14 provided
in Fig. 9b, however, we see that THRIFTY is doing its job:
nodes with less than 1 000 friends are not going above
budget, and nodes with more friends are nevertheless not
allocating more than 0.1 message/s to the ego networks in
which they participate. The high costs, therefore, are because
some nodes simply have too many friends, and go beyond
the scalability point we target. Finally, we note that such
nodes are likely to be a problem to any OSN: even Facebook
currently caps users to a maximum of 5 000 friends.

7 RELATED WORK

Decentralized OSNs have been around for almost a decade
and carry an extensive body of published work [16], [28].
Hereafter, we focus on those approaches that best help the
reader understand where our work stands in the literature.
Social Overlays. A distinguishing characteristic of our so-
lution is its reliance on social overlays (SOs). SOs have
been noted for their organic privacy and security properties
which can either solve or otherwise mitigate fundamental
trust-related issues in P2P systems [21], [32]. The fact that
links and identities are hard to forge, and that nodes will
not spontaneously connect to unknown participants means
harmful exposure is drastically reduced, and that partici-
pants are more likely to cooperate. Indeed, the most widely
used censorship-resistant content sharing network today,
Freenet [41], relies on a SO for precisely these reasons.

2327-4697 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TNSE.2018.2860600, IEEE
Transactions on Network Science and Engineering

IEEE TRANSACTIONS ON NETWORK SCIENCE AND ENGINEERING 13

A few other works in the decentralized OSN literature
also adopt SOs. Safebook [6] leverages their trust proper-
ties along with source address rewriting to provide user
pseudonimity when exposing profiles to strangers. Though
not directly comparable to Clops, Safebook requires full 1-
hop replication but does not specify a protocol to keep
replicas in sync; Clops could provide this missing piece.

DiDuSoNet [13] employs a push gossip protocol for up-
date dissemination over ego networks. Their push protocol
differs from QUICK in that it biases selection towards central
nodes and does not employ message histories. Though this
may lead to local performance improvements, the fact that
partitioning delays dominate dissemination times [23] means
that DiDuSoNet will run into performance issues under
churn. Our work addresses these issues, and could present
a delay mitigation strategy to DiDuSoNet as well.

Profile Availability. One of the main concerns in P2P OSNs
is reliably keeping profiles online while dealing with un-
reliable resources, both in terms of availability and trust.
Works such as Lilliput [29], SOUP [15], and de Salve et al. [7]
propose mirror selection strategies which help participants
select and maintain a small (< 10) set of replicas so as to
ensure availability. After selection, replicas must be kept in
sync through a replica synchronization protocol.

Our work overlaps with these works in several ways.
It can be seen as complementary on the one hand, as none
of these works directly addresses actual dissemination of
updates to friends. Indeed, whereas replica synchronization
usually involves a handful of nodes, dissemination may in-
volve hundreds of recipients, with problems that step firmly
into the territory of P2P pub/sub. We could, therefore,
conjugate our approach with existing work by replacing our
use of S3 by, say, SOUP (or, equivalently, by complementing
SOUP with Clops for update dissemination).

If we look at our work as a replication strategy, on the
other hand, it trivially renders profiles always available
to 1-hop friends, 100% of the time, even if we disregard
copies residing in S3. We go one step further, however, and
note that having replicas around is not enough if these are
allowed to run stale; i.e., if u claims to have three replicas
online, but two of those are storing snapshots from one year
ago, then this really means u has only one useful replica
online. Surprisingly, this is not something that gets much
attention in related work—none of the solutions described
here provides objective measurements of replica synchro-
nization time, not even simple ones. Our work, therefore,
could also be seen as an improved, bounded-latency replica
synchronization protocol, even though it is not its main
intent; i.e., if our goal were just to guarantee availability,
we could do so with fewer replicas.

Pub/sub and Update Dissemination. Timely dissemina-
tion of updates can be seen as an instance of topic-based
publish/subscribe (pub/sub) where each profile defines a
topic to which both the profile owner and her friends are
subscribed. In particular, disseminating only through sub-
scribers requires a topic-connected overlay (TCO) [5], i.e., an
overlay in which all users subscribed to a given topic form
a connected subgraph. TCOs are useful to avoid spamming
nodes with messages of no interest to them; social overlays
are by construction TCOs for P2P OSNs.

TABLE 3
Average bandwidth usage, in message/s.

avg. 50th 90th 99th max
HYBRID/15/14 8.19 2.95 15.75 63.51 2314.13
HYBRID/30/14 8.19 2.96 15.79 63.34 2298.39
HYBRID/40/20 8.19 2.95 15.80 63.23 2327.18
LAVISH/15/14 329.61 33.65 365.87 3828.24 45707320

The literature abounds with both general-purpose
(e.g. [5], [31]) and OSN-specific solutions [27] to TCO
pub/sub. All these solutions rely on the ability to rewire the
overlay to optimize dissemination and/or robustness, and
on subscription clustering (i.e., group nodes with similar
subscriptions) to achieve approximate or deterministic topic
connectivity while limiting node degrees. Clops, instead,
must address pub/sub over an organic TCO—the social
overlay—that cannot be rewired. Hence, we must derive all
efficiency gains not from the overlay but from our protocols,
which must adapt to heterogeneous clustering, widely dif-
fering node degrees, and transient partitions. This is a key
difference of our work w.r.t. related ones.

Subscription clustering is also behind the efficiency gains
in Cachet’s pull protocol [26], which favors nodes with
whom a node shares the most friends when fetching recent
updates. Cachet’s protocol can be seen as a pull counterpart
to QUICK, though the former’s reliance on DHTs means
similarities with our work end there. Other works in the
decentralized OSN literature, particularly early ones [4],
[6], [12], either did not concern themselves with update
dissemination, or suggested the adoption of simple, direct-
mailing-like [8] protocols. These protocols, however, are
known to be slow, and to face issues under churn [22].
Cloud-assisted OSNs. The idea of hybridizing a cloud and
a serverless layer to reduce costs while ensuring QoS is not
new. Confidant [20] mixes a P2P layer for storage with active
aliases on the cloud that coordinate replicas and can be
deployed under services such as Google’s AppEngine. Vis-
à-Vis [37] replaces departed or failed peers with stand-by
nodes running in the cloud. Both approaches rely on active
aliases, whereas we rely only on passive storage services.
This represents a different type of exposure to the cloud
provider (it is easier to encrypt data than memory contents)
and tends to be costlier (storage costs less than servers).
Mantle [11] proposes that user profiles be placed in cloud-
based storage, as we do. Update dissemination is achieved
by directly polling of the cloud service, however, putting
Mantle in the same monetary cost/performance category as
our baseline solution, PUREPOLL.

8 CONCLUSIONS

Social overlays, whose network links mirror friendship re-
lationships, are an interesting option for building decentral-
ized OSNs; however, their irregular and inflexible structure
presents challenges to the implementation of key function-
ality such as fast dissemination of profile updates.

In this paper, we tackled these inefficiencies with Clops,
a hybrid architecture that leverages the highly-available
cloud infrastructure to adaptively support the social overlay,
without sacrificing its key property of allowing communica-
tion only among friends. Clops relies on a specially-crafted
dissemination layer that i) takes the social overlay structure

2327-4697 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TNSE.2018.2860600, IEEE
Transactions on Network Science and Engineering

IEEE TRANSACTIONS ON NETWORK SCIENCE AND ENGINEERING 14

into account, allowing quick update dissemination while
respecting clustering and degree heterogeneity; ii) resorts
to information stored in the cloud only when and where
required. Our results show that Clops dramatically improves
dissemination delays w.r.t. a pure serverless solution, and
that monetary costs and network utilization remain accept-
able for users with less than one thousand friends.

REFERENCES

[1] C. Alexopoulos and A. F. Seila. Implementing the Batch Means
Method in Simulation Experiments. In Proc. of WSC’96, 1996.

[2] Amazon.com, Inc. Amazon WebServices. https://aws.amazon.
com. Visited 2017/05.

[3] F. Benevenuto et al. Characterizing User Behavior in Online Social
Networks. In Proc. of IMC’09, 2009.

[4] S. Buchegger et al. PeerSoN: P2P social networking: early experi-
ences and insights. In Proc. of SNS’09, 2009.

[5] C. Chen, H.-A. Jacobsen, and R. Vitenberg. Algorithms based
on divide and conquer for topic-based publish/subscribe overlay
design. IEEE/ACM Trans. on Networking, 2016.

[6] L. A. Cutillo, R. Molva, and M. Önen. Safebook: A privacy-
preserving online social network leveraging on real-life trust. IEEE
Communications Magazine, 47(12), 2009.

[7] A. de Salve, P. Mori, L. Ricci, R. Al-Aaridhi, and K. Graffi.
Privacy-Preserving Data Allocation in Decentralized Online Social
Networks. In Proc. of DAIS’16, 2016.

[8] A. Demers et al. Epidemic algorithms for replicated database
maintenance. In Proc. of PODC’87, 1987.

[9] Diaspora. https://joindiaspora.com/. Visited 2017/05.
[10] J. Douceur. The Sybil Attack. In Proc. of IPTPS’01, 2001.
[11] A. Famulari and A. Hecker. Mantle: A novel DOSN leveraging

free storage and local software. In Proc. of the 5th Intl. Conf. Adv.
Infocomm Technology, 2013.

[12] K. Graffi et al. LifeSocial.KOM: A secure and P2P-based solution
for online social networks. In Proc. of CCNC’11, 2011.

[13] B. Guidi. A distributed Dunbar-based Framework for Online Social
Network. PhD thesis, University of Pisa, 2015.

[14] T. Johnson. Performance measurements of compressed bitmap
indices. In Proc. of VLDB, 1999.

[15] D. Koll, J. Li, and X. Fu. SOUP: An online social network by the
people, for the people. In Proc. of Middleware’14, 2014.

[16] D. Koll, J. Li, and X. Fu. The Good Left Undone: Advances and
Challenges in Decentralizing Online Social Networks. Computer
Communications, 108, 2017.

[17] A. Lancichinetti and S. Fortunato. Community detection algo-
rithms: A comparative analysis. Physical Review E, 80(5), 2009.

[18] C.-Y. Lee. Correlations among centrality measures in complex
networks. arXiv:physics/060522, 2006.

[19] J. Leskovec and A. Krevl. SNAP Datasets: Stanford large network
dataset collection. http://snap.stanford.edu/data, 2014.

[20] D. Liu, A. Shakimov, R. Cáceres, A. Varshavsky, and L. P. Cox.
Confidant: Protecting OSN Data without Locking it Up. In Proc. of
Middleware’11, 2011.

[21] P. Maymounkonv. Tonika: social routing with organic secu-
rity. http://pdos.csail.mit.edu/∼petar/5ttt.org/, 2013. Visited
2017/05.

[22] G. Mega, A. Montresor, and G. P. Picco. Efficient Dissemination in
Decentralized Social Networks. In Proc. of P2P’11, 2011.

[23] G. Mega, A. Montresor, and G. P. Picco. On Churn and Commu-
nication Delays in Social Overlays. In Proc. of P2P’12, 2012.

[24] G. Mega, A. Montresor, and G. P. Picco. Cloud-assisted Dissemi-
nation in Social Overlays. In Proc. of P2P’13, 2013.

[25] G. Mega, A. Montresor, and G. P. Picco. Social Overlays Meet
the Cloud: A Hybrid Architecture for Profile Dissemination in
Decentralized Social Networks: Supplemental material. 2017.

[26] S. Nilizadeh, S. Jahid, P. Mittal, N. Borisov, and A. Kapadia.
Cachet: A Decentralized Architecture for Privacy Preserving Social
Networking with Caching. In Proc. of CoNEXT’12, 2012.

[27] A. Olteanu and G. Pierre. Towards Robust and Scalable Peer-to-
Peer Social Networks. In Proc. of SNS’12, 2012.

[28] T. Paul, A. Famulari, and T. Strufe. A survey on decentralized
online social networks. ACM Comput. Netw., 75, 2014.

[29] T. Paul, N. Lochschmidt, H. Salah, A. Datta, and T. Strufe. Lil-
liput: A storage service for lightweight peer-to-peer online social
networks. In Proc. of ICCCN’17, 2017.

[30] T. Paul, D. Puscher, and T. Strufe. The user behavior in facebook
and its development from 2009 until 2014. CoRR, abs/1505.04943,
2015.

[31] F. Rahimian, S. Girdzijauskas, A. Hossein Payberah, and S. Haridi.
Vitis: A Gossip-based Hybrid Overlay for internet-scale Pub-
lish/Subscribe Enabling Rendezvous Routing in Unstructured
Overlay Networks. In Proc. Intl. Parallel & Distributed Processing
Symposium (IPDPS’11), 2011.

[32] J. M. Rogers. Private and Censorship-Resistant Communication over
Public Networks. PhD thesis, University College London, 2011.

[33] R. Roverso, S. El-Ansary, and S. Haridi. NATCracker: NAT
combinations matter. In Proc. of ICCN’09). IEEE, 2009.

[34] P. Saint-Andre. Extensible Messaging and Presence Protocol
(XMPP): Core. RFC 6120 (Proposed Standard), March 2011.

[35] S. Saroiu et al. A Measurement Study of Peer-to-Peer File Sharing
Systems. In Proc. of MMCN’02, 2002.

[36] A. Shakimov et al. Privacy, Cost and Availability Tradeoffs in
Decentralized OSNs. In Proc. of WOSN’09, 2009.

[37] A. Shakimov et al. Vis-á-Vis: Privacy-preserving online social net-
working via Virtual Individual Servers. In Proc. of COMSNETS’11,
2011.

[38] A. Singh, M. Castro, P. Druschel, and A. Rowstron. Defending
against eclipse attacks on overlay networks. In Proc. 11th ACM
SIGOPS European Workshop (EW 11), 2004.

[39] A. Singh et al. Robust Overlays for Privacy-preserving Data
Dissemination Over a Social Graph. In Proc. of ICDCS’12, 2012.

[40] M. Steiner, T. En-Jajjary, and E. W. Biersack. A Global View of
KAD. In Proc. of IMC’07, 2007.

[41] The Freenet Project. https://freenetproject.org/. Visited 2017/05.
[42] Y. H. Wang. On the number of successes in independent trials.

Statistica Sinica, 1993.
[43] Wikipedia contributors. Facebook-Cambridge Analytica

Data Scandal — Wikipedia, The Free Encyclopedia. https:
//en.wikipedia.org/wiki/Facebook%E2%80%93Cambridge
Analytica data scandal, 2018. Visited 2018/04.

[44] Z. Yao, D. Leonard, X. Wang, and D. Longuinov. Modeling
Heterogeneous User Churn and Local Resilience of Unstructured
P2P Networks. In Proc. of ICNP’06, 2006.

Giuliano Mega is a distributed systems special-
ist at SpazioDati s.r.l., an Italian startup spe-
cializing in the application of big data and se-
mantics to business intelligence. Before that, he
conducted his Ph.D. at the University of Trento
(2008-2013) on understanding how to apply so-
cial overlays to decentralized online social net-
works.

Alberto Montresor is Associate Professor at the
University of Trento since 2005. Before that, he
has been with the University of Bologna (2002-
2005). He has authored more than 80 papers
on large-scale distributed systems, cloud com-
puting and P2P networks. He is Associate Editor
of Springer Computing and he served as Steer-
ing Committee Chair of the IEEE Conference
on P2P Computing and as General Chair and
Program Chair for DOA, DAIS, SASO, P2P.

Gian Pietro Picco is a Professor at the De-
partment of Information Engineering and Com-
puter Science (DISI) at the University of Trento,
Italy. His research spans the fields of software
engineering, middleware, and networking, and
is oriented in particular towards wireless sen-
sor networks, mobile computing, and large-scale
distributed systems. He is an associate editor for
ACM Trans. on Sensor Networks (TOSN) and
IEEE Trans. on Software Engineering (TSE).

https://aws.amazon.com
https://aws.amazon.com
https://joindiaspora.com/
https://arxiv.org/abs/physics/0605220
http://snap.stanford.edu/data
http://pdos.csail.mit.edu/~petar/5ttt.org/
https://freenetproject.org/
https://en.wikipedia.org/wiki/Facebook%E2%80%93Cambridge_Analytica_data_scandal
https://en.wikipedia.org/wiki/Facebook%E2%80%93Cambridge_Analytica_data_scandal
https://en.wikipedia.org/wiki/Facebook%E2%80%93Cambridge_Analytica_data_scandal

