
A Simple Approach to Attributed Graph
Embedding via Enhanced Autoencoder

Nasrullah Sheikh1, Zekarias T. Kefato2, and Alberto Montresor1

1 University of Trento, Italy
{nasrullah.sheikh, alberto.montresor}@unitn.it
2 Royal Institute of Technology, Stockholm, Sweden,

zekarias@kth.se

Abstract. Network Representation Learning (NRL) aims at learning a
low-dimensional representation of nodes in a graph such that its proper-
ties are preserved in the learned embedding. NRL methods may exploit
different sources of information such as the structural or attribute infor-
mation of the graph. Recent efforts have shown that jointly using both
structure and attributes helps in learning a better representation. Most
of these methods rely on highly complex procedures, such as sampling,
which makes them non-scalable to large graphs. In this paper, we propose
a simple and scalable deep neural network model that learns an embed-
ding by jointly incorporating the network structure and the attribute
information. Specifically, the model employs an enhanced decoder that
preserves global network structure and also handles the non-linearities
of both the network structure and network attributes. We discuss node
classification, link prediction, and network reconstruction experiments
on four real-world datasets, demonstrating that our approach achieves
better performance against the state-of-the-art baselines.

Keywords: Attributed Graphs, Network Embedding, Unsupervised Lear-
ning

1 Introduction

Graphs are ubiquitous. Artificial systems like the World Wide Web, Online Social
Networks, power grids and communication networks, as well as natural phenom-
ena such as protein-protein interaction networks and food chains: they all can
be modeled as a collection of entities and their relationships.

Graphs play a critical role in various machine learning applications such as
node classification [19], link prediction [12, 14] and recommendation [1, 3]. The
performance of these applications depend on the capability of effectively extract-
ing features from the input graphs. Computing traditional features such as graph
statistics or local neighborhood structures is expensive and inflexible. Network
Representation Learning [10,18,22,25,28] has emerged as an alternative approach
to encode the information contained in the graph into a low-dimensional vec-
tor space such that the various relationships among nodes – such as high-order
proximities – are preserved in the learned representation.

2 Nasrullah Sheikh et al.

Early methods proposed for NRL were largely based on matrix factoriza-
tion [2, 24]. Unfortunately, these models do not scale to large graphs due to the
high computational complexity of factorization. Thanks to recent advances in the
field of deep learning, neural NRL approaches have been proposed [10, 18, 25].
Most of these methods use only information about the network structure to
learn a representation. Networks, however, are often provided with other useful
information, such as attributes associated with each of the nodes.

Recent works have shown that exploiting this additional information im-
proves the performance of the aforementioned machine learning tasks [4, 10, 20,
26, 28]. This is because nodes tend to have homophilic relationships, i.e. they
tend to connect to nodes that are similar to themselves in terms of attributes.
By learning from both the network structure and the attributes at the same
time, better representations can be obtained. But this comes at a cost, due to
the increasing computation complexity needed to model the various relation-
ships, structural and attribute, between nodes.

For example, recent papers such as Deep Attributed Network Embedding
(dane) [4] employ a deep autoencoder model of the network structure and at-
tributes. This method preserves semantic proximities between nodes by sampling
nodes that have high similarity in attributes and optimizing their representation
together with the first- and higher-order proximities. Unfortunately, the cost of
this sampling procedure is quadratic in the number of nodes, thus not scalable
to large graphs. Moreover, for some graphs the number of attributes may be very
large (in order of millions), that will increase the overall model complexity. An-
other approach called Attributed Network Representation Learning (anrl) [28]
uses a neighbor enhancement autoencoder which optimizes the learning on at-
tributes and the neighborhood context. The complexity of the generating neigh-
borhood context is too high for large graphs, both in terms of time and space.

It is important to note that, similar to the network structure, attributes
are also highly-nonlinear and sparse [13, 25]. dane and anrl handle such non-
linearity by employing a deep model on attributes, at the expense of high sam-
pling complexity, as mentioned above. Handling attributes in conjunction with
structure is even more challenging as it involves capturing non-linearity and spar-
sity, while at the same time preserving the structural properties of the graph.

To address these problems, we propose Sage2Vec (Simple Attributed Graph
Embedding), a model that preserves the second-order proximities in the struc-
ture, handles the structure and attribute non-linearity and sparsity, and has
linear complexity w.r.t to the number of nodes. The motivation behind this
work is to build a simple model in terms of number of parameters and to show
that a very simple approach can achieve better results than complex state-of-
the-art baselines in a large percentage of scenarios. We employ an autoencoder
model with an enhanced decoder that takes only structural information as input
but optimizes on both structure and attribute information. By using attribute
information for optimization reduces the overall model complexity and thus, the
model can be scaled to larger graphs.

Sage2Vec 3

2 Related Work

NRL methods are classified in two groups: plain methods that use the structural
information only and attributed-based methods that use attributes as well.

Plain NRL Methods Various approaches have suggested to use the topolog-
ical information of networks to learn their representation [5, 18, 23, 25]. Earlier
methods focused on matrix-factorization approaches [2, 23]. These methods in-
volve eigen decomposition to generate an embedding; e.g., Tang et al. use the
top-d eigenvectors of the modularity matrix as embedding [23]. These methods
are not scalable to large graphs due the computational costs of factorization.

Alternative approaches have taken inspiration from Natural Language Pro-
cessing (NLP), opportunely adapted to graph embeddings. Perozzi et al. pro-
posed DeepWalk, an unbiased random walk based approach to learn an embed-
ding based on SkipGram [16] that preserves the second-order proximity [18]. An-
other approach called Node2Vec is based on biased random walks and uses two
hyper-parameters p and q to interpolate between breadth-first search and depth-
first search [5]. line learns a representation that preserves first- and second-order
proximity [22]. Wang et al. proposed sdne that captures the high non-linearity
of the network structure by using a deep autoencoder capable to capture both
first- and second-order proximities [25].

Attributed NRL Methods Graphs are often enriched with additional infor-
mation such as attributes which, if exploited, enable to learn better representa-
tions. Yang et al. proposed tadw, a matrix factorization method that uses both
the network structure and the text features of nodes [26]. It is computation-
ally expensive as it applies SVD on the text matrix. The graph Laplacian-based
approach proposed by Huang et al. uses structure and text matrix to learn
an unified embedding in a distributed manner by dividing the complex opti-
mizations into many sub-problems [7]. Sheikh et al. proposed Gat2Vec, that
creates a bipartite graph on attributes and then jointly learns a representation
from network structure and bipartite attributed network [20]. Some approaches
use partial labels–if available–for learning [9,17,21,27]. TriDNR learns two sep-
arated embeddings on network structure and attributed using DeepWalk and
Doc2Vec [11]. A semi-supervised method by Kipf and Welling uses graph con-
volutional neural networks (GCN) [9]. Variational Graph Auto-encoder (vgae)
is a unsupervised architecture that uses the GCN encoder and an inner product
decoder to learn a representation using network structure and attributes [10].

Various deep neural network models have been proposed, based on autoen-
coders that capture the non-linearity of structure/attributes and preserve the
various proximities [4, 15, 28]. dane uses a deep autoencoder on structure and
attributes; its embeddings are optimized based on various proximities [4]. anrl
uses a neighbor enhancement decoder model that takes node features as input,
while reconstructing the target neighbors [28]. Meng et al. proposed can, that
learns an embedding of both the nodes and the attributes in the same space us-
ing a variational graph autoencoder such that the affinities between the network
structure and the attributes are properly preserved and measured [15].

4 Nasrullah Sheikh et al.

3 Preliminaries and Problem Definition

Before proceeding to the definition of the problem, we introduce the notation
used throughout the paper. Matrices and vectors are denoted by uppercase and
lowercase boldface letters, respectively; a boldface letter with a single subscript
denotes a row vector of the respective matrix, while a boldface letter with two
subscripts represents the scalar element of the matrix.

Let G = (V,A,Z) be an attributed graph where V is a set containing N
vertices, A ∈ RN×N is the adjacency matrix describing the edges and Z ∈ RN×F

is the matrix representing F features potentially associated to the N nodes.
Let Ai be the ith row vector of A and let Aij > 0 if there is an edge between

vertexes i and j. Let Zi be the feature vector of vertex i, where Ziu > 0 specifies
whether vertex i is associated to attribute u.

Problem Given an attributed graph G = (V,A,Z), we aim at learning a low-
dimensional network representation Φ : V → Rd, where d� |V | is the dimension
of the learned representation, such that the mapping function Φ preserves the
structural and attribute information.

The quality of this mapping will be evaluated against several tasks such as
node classification on various real-world datasets, as described in Section 5.

4 Model

We describe now Sage2Vec, a novel model that learns an embedding using
both the network structure and the attributes. It is essential that the learning
occurs on both elements at the same time–and not as a combination of two
learned models–so that the two modalities complement each other. In this way,
the learned representation preserves the structural proximity and encodes the
attribute information in it.

We propose an autoencoder with an enhanced decoder model that jointly
learns a representation using the network structure and the attributes. Our
model preserves the global network structure, captures the non-linearity and
addresses the sparsity of both the network structure and the node attributes.

For the sake of completeness, we briefly describe the autoencoder model. It
is an unsupervised model consisting of two parts: encoder and decoder. Both
of them consist of multiple non-linear functions which map the input data to
the representation space (encoder) and from the representation space to the
reconstruction space (decoder). Since, the degree distribution of A varies, we

use the normalization trick introduced by Kipf et al. [9] as: M = D̂− 1
2 ÂD̂− 1

2 ,
where Â = A + I, I is the identity matrix and D̂ is the diagonal degree matrix
of Â. Specifically, given a vector Mi of the ith vertex as input, the encoder is
described as follows:

Y
(1)
i = σ(W(1)Mi + b(1))

Y
(l)
i = σ(W(l)Y

(l−1)
i + b(l)), l = 2, · · · , L

(1)

Sage2Vec 5

Yl
i is the latent representation of Mi at the lth layer; σ(.) is a non-linear function

such as tanh, relu; L is the number of layers; W(l) is the weight matrix and b(l)

is the bias at the lth layer. The decoder is the reverse of the encoder; thus, it

takes Y
(l)
i as input and produces the reconstruction M̃i. The objective of the

autoencoder is to minimize the reconstruction error, defined as:

L =
∑N
i=1 ||Mi − M̃i||22 (2)

�✁✂✄☎✆✝✞✟✂✝✠✄☎ ✡✄✆✆

.

J

.

ú`

J

;

ú`

J

.

J

;

J

:

J

�

:

J

M

☛☞✌✁✍✍✠☎✎

✏
✑
✒
✓
✔
✕✑
✖

✗
✘
✒
✓
✔
✕✑
✖

:

ú`

J

�

Fig. 1. The architecture of our pro-
posed model

Enhanced Autoencoder Our enhanced au-
toencoder model considers the non-linearity
of network attributes in conjunction with the
network structure and jointly learns a rep-
resentation from these two different modali-
ties. Its architecture is shown in Fig. 1. The
encoder part is similar to Equation 1. Our
model only input is the network information.
For a given vertex i, our model takes its local
neighborhood information Mi as input, and
aims to reconstruct its neighbors M̃i along
with its respective attributes Z̃i by incorpo-
rating prior knowledge of attributes i.e, Zi.
To accommodate the reconstruction of at-
tributes, Equation 2 is modified as follows:

Lea =

N∑
i=1

‖(Mi−M̃i)‖22 +

N∑
i=1

‖(Zi− Z̃i)‖22 (3)

Since both the network and the attributes are sparse, the autoencoder tends
to reconstruct zeros. Similar to Wang et al., we impose a higher penalty to
the reconstruction error of the non-zero elements than zero elements [25]. To
incorporate the penalties, Equation 3 is revised as:

Lea =

N∑
i=1

‖(Mi − M̃i)�Cs
i‖22 +

N∑
i=1

‖(Zi − Z̃i)�Ca
i ‖22

= ‖(M− M̃)�Cs‖2F + ‖(Z− Z̃)�Ca‖2F

(4)

where� is the Hadamard product, Cs
i = [Cs

i1, · · · ,Cs
iN] and Ca

i = [Ca
i1, · · · ,Ca

iF]
are the penalties for network and attribute zero reconstructions, respectively. The
penalty for zero reconstruction when the dealing with the network structure is
given as:

Csij =

{
1, if Mij = 0

β, otherwise
(5)

where β > 1. Likewise, the penalties for zero reconstructions in attributes are
similar to Equation 5.

6 Nasrullah Sheikh et al.

To prevent overfitting, we add an l2 regularizer. Thus, the overall objective
is to minimize the following loss function:

Lo = Lea + γLreg

= ‖(M− M̃)�Cs‖2F + ‖(Z− Z̃)�Ca‖2F + γ

L∑
l=1

(‖W(l)‖2F + ‖W̃(l)‖2F)
(6)

where W(l) and W̃(l) are the weight matrices at l-th layer encoder and decoder,
respectively, while γ is the regularization coefficient.

We use stochastic gradient descent to minimize the objective function Lo by
using back-propagation on the model parameters θ = {W(i),W̃(i),B(i)}.

5 Experiments

In this section, we describe the datasets and machine learning tasks used to
evaluate our proposed approach against the state-of-the-art baselines.

5.1 Datasets

Table 1. Dataset statistics

Datasets |V | |E| F #Labels
citeseer 3,312 4,660 3,703 6
cora 2,708 5,278 1,433 7
pubmed 19,717 44,338 500 3
wiki 2,405 12,761 4,973 17

We conducted our experiments on four
benchmark datasets (Table 1). cite-
seer, cora and pubmed3 are citation
networks. cora contains papers about
machine learning, grouped in seven
categories. citeseer contains papers
from six categories corresponding to
computer science fields. In both cite-
seer and cora, the attributes are 0/1 valued vectors for each node. The pubmed
dataset is a citation network related to diabetes. wiki is a web graph of hyper-
links [4]. The attribute vector of pubmed and wiki is a TF/IDF word vector.

5.2 Baselines

We evaluate Sage2Vec with several state-of-the-art baseline methods. Deep-
Walk and Node2Vec use only the structure of the network, while the rest use
both the structure and the attributes to learn an embedding.

– DeepWalk (Dw) [18] employs short random walks to generate a corpus of
vertex sequences, and then uses SkipGram to learn a representation.

– Node2Vec (N2v) [5] uses biased short random walks to explore the diverse
neighborhood to interpolate between breadth-first and depth-first sampling.

– vgae [10] is based on variational graph encoders using graph convolutional
network (GCN) and exploit both structure and attributes.

– gae [10] is an non-probabilistic variant of vgae.

3 https://linqs.soe.ucsc.edu/data

Sage2Vec 7

– dane [4] uses a deep network on both structural and attribute information,
while maintaining the consistent and complimentary information between
the two modalities of informations.

– anrl [28] uses an attribute-aware SkipGram model to incorporate attribute
information and a neighbor-enhanced autoencoder to reconstruct the target
neighbors. The best-performing variant anrl-wan of anrl is used here.

– can [15] uses a variational autoencoder to learn an embedding of vertices
and attributes in the same semantic space. For evaluation, we use only the
learned representations of nodes.

Table 2. The Network Layer Structure for
Enhanced Autoencoder

Dataset #neurons in each layer
citeseer 3312 - 128 - 7015
cora 2708 - 128 - 4141

pubmed 19717 - 128 - 19217
wiki 2405 - 128 - 7378

We used the code of the baselines
released by the authors. The param-
eters used are the reported optimal
parameters, otherwise we performed a
random search to obtain an optimal
performance of the baseline for a given
dataset. For our model, the number of
layers and their sizes for four datasets
is given in Table 2, the activation func-
tion is tanh, the Adam Optimizer [8] is employed, and the embedding size d is
128. Our model requires very less trainable parameters as can be seen in Table 2,
thus can be trained quickly.

5.3 Vertex Classification

We evaluate the learned representations of our approach against baselines through
multi-class classification. We use one-vs-rest l2 regularized logistic regression
classifier. We randomly selected Tr ∈ {10%, 30%, 50%} vertices as training set
and the rest as test set. We repeated the process 10 times for each Tr, and report
the average Micro-F1 (Mi-F1) and Macro-F1 (Ma-F1).

The classification results of all datasets are shown in Table 3. The best val-
ues are highlighted in bold. Sage2Vec achieves the best performance against
all baselines in the cora, pubmed, wiki datasets and has competitive perfor-
mance with anrl for the citeseer dataset. Specifically, our model achieves
an improvement around 11% in Macro-F1 for the wiki dataset against the
second-best performing baseline (dane). The results show that a well-designed
model leveraging both structure and attributes can learn a better representation
without requiring complex and computationally-intensive optimizations.

5.4 Link Prediction

Following [5,10], we generate a residual network by removing 10% of edges from
the network, retaining all features and ensuring that the network remains con-
nected. These removed edges are called true edges. We sample an equal percent-
age of missing edges (non-edges), called false edges. True edges and false edges
form a test set. We train the NRL models on the residual network.

8 Nasrullah Sheikh et al.

Table 3. Micro-F1 and Macro-F1 scores for Vertex Classification

Tr. citeseer
Ratio Metric Dw N2v gae vgae dane anrl can Sage2Vec

10%
Mi-F1 49.48 53.92 57.84 59.43 66.22 72.24 68.30 71.81
Ma-F1 42.84 46.48 50.34 52.40 56.60 63.60 59.82 62.75

30%
Mi-F1 53.85 56.07 58.50 61.55 69.92 73.46 70.63 73.74
Ma-F1 46.64 48.60 50.88 54.67 61.48 67.15 62.30 67.30

50%
Mi-F1 55.36 57.37 58.75 61.87 71.92 73.28 71.50 74.89
Ma-F1 48.60 50.00 51.50 55.19 64.87 68.32 63.44 69.42

Tr. cora
Ratio Metric Dw N2v gae vgae dane anrl can Sage2Vec

10%
Mi-F1 70.89 74.00 73.54 76.45 77.80 73.55 78.68 79.97
Ma-F1 67.55 70.66 70.00 74.06 73.75 69.51 75.55 77.05

30%
Mi-F1 76.30 78.15 76.39 78.54 81.97 76.55 82.22 84.45
Ma-F1 74.62 77.17 72.75 77.72 80.45 73.85 79.48 83.15

50%
Mi-F1 78.00 79.32 76.54 78.84 82.97 78.24 82.57 85.67
Ma-F1 76.60 78.60 73.31 77.45 81.42 74.50 80.77 84.0

Tr. pubmed
Ratio Metric Dw N2v gae vgae dane anrl can Sage2Vec

10%
Mi-F1 74.65 80.27 81.53 80.21 84.90 84.55 78.52 85.60
Ma-F1 72.90 78.77 80.97 79.52 84.22 84.69 78.20 85.28

30%
Mi-F1 75.72 80.90 81.84 80.50 85.27 85.11 79.05 86.21
Ma-F1 74.28 79.52 81.32 79.83 85.24 85.25 78.65 85.89

50%
Mi-F1 76.13 81.20 82.01 80.70 86.76 86.32 79.38 86.55
Ma-F1 74.76 79.85 81.50 80.05 86.42 86.46 78.97 86.22

Tr. wiki
Ratio Metric Dw N2v gae vgae dane anrl can Sage2Vec

10%
Mi-F1 54.78 54.22 57.04 60.77 65.13 59.15 56.73 68.79
Ma-F1 35.86 34.08 39.22 40.51 44.25 39.41 36.97 48.15

30%
Mi-F1 61.25 61.06 64.74 64.13 73.85 67.80 64.89 77.01
Ma-F1 41.80 40.54 46.88 45.04 54.0 49.03 44.99 57.80

50%
Mi-F1 62.54 62.47 67.11 65.16 75.95 70.05 67.48 79.42
Ma-F1 44.25 42.50 49.97 46.47 56.82 52.98 48.85 63.15

The models are evaluated based on their ability to correctly classify true edges
and false edges. Similar to [28], we classify the true and false edges according to a
ranking based on cosine similarity. We employ area under ROC curve (AUC) and
average precision (AP) to evaluate the NRL models on the test set. We perform
link prediction on all four datasets, showing the results in Table 4. Once again,
the results show the advantages of using structure and attribute information
jointly. These two modalities complement each other and the network can show
structure homophily, attribute homophily or both. Our model performs better in
AUC and AP for the citeseer, pubmed datasets and is comparable for cora
and wiki against all the baselines. In particular, our method achieves 2% gains
in AUC and AP against the state-of-the-art baseline for the pubmed dataset.

Sage2Vec 9

Table 4. AUC & AP scores for Link Prediction

Method
citeseer cora pubmed wiki

AUC AP AUC AP AUC AP AUC AP
DeepWalk 0.83 0.87 0.86 0.89 0.84 0.86 0.90 0.92
Node2Vec 0.85 0.87 0.89 0.91 0.93 0.93 0.87 0.90
gae 0.90 0.89 0.92 0.92 0.94 0.94 0.91 0.93
vgae 0.93 0.94 0.92 0.93 0.92 0.92 0.92 0.94
dane 0.85 0.88 0.78 0.81 0.84 0.86 0.86 0.87
anrl 0.95 0.94 0.87 0.86 0.92 0.92 0.94 0.94
can 0.96 0.96 0.92 0.93 0.94 0.93 0.96 0.97
Sage2Vec 0.97 0.97 0.92 0.93 0.96 0.96 0.95 0.96

5.5 Network Reconstruction

The purpose of network reconstruction is to test the preservation of the network
structure in the learned embeddings. For each dataset, we learned an embed-
ding using the baseline methods to predict the edges. Then we compute the
probability of an edge p(i, j) for each pair of node i, j given as:

p(i, j) =
1

1 + exp−(Φ(i).Φ(j)T)
(7)

where T is the transpose operation. We rank these edges from high to low proba-
bilities. The edges from the original network serve as ground truth. We evaluate
the performance of network reconstruction by correctly predicting the edges us-
ing precision-at-K (P@K) metric against the ground truth. K represents the
number of predicted edges selected for evaluation. The results of Table 5 show
that our method performs better over the citeseer, cora and wiki datasets.
In all these datasets, when K increases, P@K is consistently higher than all
baselines. In case of pubmed, since the dataset is sparse, the Node2Vec is able
to explore properly the diverse neighborhood.

5.6 Algorithmic and Scalability Analysis

In this section, we provide an analysis of the computational complexity of the
baselines and our approach. The algorithmic computational complexity of the
state-of-the-art models is provided in Table 6. In case of dane, authors have
used some simple sampling strategy but the algorithm is still dominated by
a quadratic time complexity. Given that real-world large graphs have nodes
and edges in the order of millions, the state-of-the-art methods require huge
computational resources, thus limiting their usability. Our model Sage2Vec
has the smallest algorithmic computational complexity.

To perform the scalability analysis we used the larger graph dataset available,
reddit4. It has 232K nodes, 11M edges and 602 attribute vector. The reddit
is constructed from the reddit posts where a node is a post, and two posts

4 http://snap.stanford.edu/graphsage/#datasets

10 Nasrullah Sheikh et al.

Table 5. Network Reconstruction Precision at K (P@K)

Dataset K Dw N2v gae vgae dane anrl can Sage2Vec

citeseer
100 0.11 0.3 0.44 0.51 0.04 0.17 0.57 0.58
1000 0.14 0.5 0.3 0.39 0.03 0.08 0.46 0.58
3000 0.13 0.34 0.25 0.3 0.04 0.07 0.39 0.53
5000 0.14 0.31 0.21 0.26 0.19 0.06 0.37 0.49
10000 0.14 0.23 0.16 0.22 0.22 0.05 0.33 0.42

cora
100 0.1 0.52 0.49 0.54 0.0 0.08 0.52 0.43
1000 0.16 0.36 0.47 0.46 0.0 0.1 0.51 0.55
3000 0.15 0.18 0.37 0.39 0.05 0.07 0.45 0.52
5000 0.15 0.14 0.33 0.35 0.17 0.06 0.42 0.47
10000 0.14 0.12 0.27 0.28 0.19 0.05 0.36 0.36

pubmed
100 0.01 0.36 0.31 0.28 0.0 0.04 0.32 0.26
1000 0.03 0.51 0.24 0.18 0.0 0.03 0.18 0.14
3000 0.03 0.43 0.2 0.14 0.0 0.03 0.15 0.14
5000 0.03 0.40 0.18 0.13 0.0 0.03 0.14 0.13
10000 0.03 0.33 0.16 0.11 0.0 0.02 0.12 0.12

wiki

100 0.43 0.23 0.06 0.92 0.5 0.08 0.51 0.87
1000 0.33 0.04 0.04 0.88 0.47 0.16 0.23 0.88
3000 0.32 0.09 0.04 0.78 0.55 0.19 0.2 0.83
5000 0.3 0.1 0.04 0.72 0.66 0.18 0.19 0.77
10000 0.28 0.1 0.05 0.58 0.58 0.19 0.15 0.66

are connected if the same user comments on both posts. The attributes are a
concatenation of average word vectors of post’s title and post’s comment; post’s
score and the number of comments on the post [6].

We conducted the experiments on a 48-core machine based on the Intel(R)
Xeon(R) CPU E5-2680 v3 @ 2.50GHz processor, with 128 GB of RAM. The
experiment was conducted on CPU due to constraints in GPU memory size. We
report the asymptotic computational complexity of the algorithms and the wall-
clock time in the Table 6. Though anrl has lowest complexity, but as mentioned
previously it has high preprocessing cost for neighborhood context generation.
Though, gae has linear a linear time complexity, but it does not scale because
in large graphs the number of edges are far greater than the number of nodes.
For running time analysis, all baseline methods ran out of memory; dane and
anrl during the data preprocessing phase, while gae and can during the model
computation. We run Sage2Vec5 for 5 epochs to show that the model uses less
parameters and thus can be used for large graphs.

6 Conclusion

In this work, we proposed an enhanced autoencoder model that jointly exploits
both the network structure and the attribute information, with the aim of learn-
ing an embedding of the graph. We designed an enhanced decoder which pre-

5 neuron in layers: 232,965 - 1000 - 64 - 1000 - 233,567

Sage2Vec 11

Table 6. Computational Complexity and Scalability Analysis on reddit dataset
(NA:out of memory)

Dataset Algorithmic
Computational
Complexity

Training
Time

gae O(|E|) NA
dane O(N2) NA
anrl O(N logN) NA
can O(|E|) NA

Sage2Vec O(N) ≈10 hours

serves global network structure and at the same time handles the non-linearity
and sparsity of both network structure and attributes. Furthermore, our model
requires a smaller number of trainable parameters as compared to the state-of-
the-art baselines and therefore can be easily trained for large datasets. The qual-
ity of learned representation is verified through extensive experiments on four
real-world datasets and our proposed approach outperforms the state-of-the-art
baselines in most of the cases. Thus, our approach shows that a well-designed
but simple model can achieve a very good performance.

References

1. L. Backstrom and J. Leskovec. Supervised random walks: predicting and recom-
mending links in social networks. In Proc. of the 4th ACM Int. Conf. on Web
search and data mining, pages 635–644. ACM, 2011.

2. M. Belkin and P. Niyogi. Laplacian eigenmaps and spectral techniques for em-
bedding and clustering. In Proc. of the 14th Int. Conf. on Neural Information
Processing Systems, NIPS’01, pages 585–591. MIT Press, 2001.

3. F. Fouss, A. Pirotte, J.-M. Renders, and M. Saerens. Random-walk computation
of similarities between nodes of a graph with application to collaborative recom-
mendation. IEEE Trans. on Knowl. and Data Eng., 19(3):355–369, 2007.

4. H. Gao and H. Huang. Deep attributed network embedding. In Proc. of the 27th

Int. Conf. on Artificial Intelligence, IJCAI-18, pages 3364–3370, 7 2018.
5. A. Grover and J. Leskovec. Node2vec: Scalable feature learning for networks. In

Proc. of the 22nd ACM SIGKDD Int. Conf. on Knowledge Discovery and Data
Mining, KDD ’16, pages 855–864. ACM, 2016.

6. W. Hamilton, R. Ying, and J. Leskovec. Inductive representation learning on large
graphs. CoRR, abs/1706.02216, 2017.

7. X. Huang, J. Li, and X. Hu. Accelerated attributed network embedding. In SIAM
Int. Conf. on Data Mining, pages 633–641, 2017.

8. D. P. Kingma and J. Ba. Adam: A method for stochastic optimization. CoRR,
abs/1412.6980, 2014.

9. T. N. Kipf and M. Welling. Semi-supervised classification with graph convolutional
networks. CoRR, abs/1609.02907, 2016.

10. T. N. Kipf and M. Welling. Variational graph auto-encoders. NIPS Workshop on
Bayesian Deep Learning, 2016.

12 Nasrullah Sheikh et al.

11. Q. V. Le and T. Mikolov. Distributed representations of sentences and documents.
CoRR, 2014.

12. D. Liben-Nowell and J. Kleinberg. The link-prediction problem for social networks.
J. Am. Soc. Inf. Sci. Technol., 58(7):1019–1031, 2007.

13. D. Luo, C. H. Q. Ding, F. Nie, and H. Huang. Cauchy graph embedding. In Proc.
of the 28th Int. Conf. on Machine Learning, ICML’11, pages 553–560, 2011.

14. L. Lü and T. Zhou. Link prediction in complex networks: A survey. Physica A,
390(6):11501170, 2011.

15. Z. Meng, S. Liang, H. Bao, and X. Zhang. Co-embedding attributed networks. In
Proc. of the 12th ACM Int. Conf. on Web Search and Data Mining, WSDM ’19.
ACM, 2019.

16. T. Mikolov, K. Chen, G. Corrado, and J. Dean. Efficient estimation of word
representations in vector space. CoRR, abs/1301.3781, 2013.

17. S. Pan, J. Wu, X. Zhu, C. Zhang, and Y. Wang. Tri-party deep network represen-
tation. In Proc. of the 25th Int. Conf. on Artificial Intelligence, IJCAI’16, pages
1895–1901. AAAI Press, 2016.

18. B. Perozzi, R. Al-Rfou, and S. Skiena. Deepwalk: Online learning of social repre-
sentations. In Proc. of the 20th ACM SIGKDD Int. Conf. on Knowledge Discovery
and Data Mining, KDD ’14, pages 701–710. ACM, 2014.

19. P. Sen, G. Namata, M. Bilgic, L. Getoor, B. Gallagher, and T. Eliassi-Rad. Col-
lective classification in network data. AI Magazine, 29(3):93–106, 2008.

20. N. Sheikh, Z. Kefato, and A. Montresor. GAT2VEC: Representation learning for
attributed graphs. Computing, Apr 2018.

21. J. Tang, M. Qu, and Q. Mei. Pte: Predictive text embedding through large-scale
heterogeneous text networks. In Proc. of the 21th ACM SIGKDD Int. Conf. on
Knowledge Discovery and Data Mining, KDD’15, pages 1165–1174. ACM, 2015.

22. J. Tang, M. Qu, M. Wang, M. Zhang, J. Yan, and Q. Mei. LINE: Large-scale
information network embedding. In Proc. of the 24th Int. Conf. on World Wide
Web, WWW ’15, pages 1067–1077, 2015.

23. L. Tang and H. Liu. Relational learning via latent social dimensions. In Proc.
of the 15th ACM SIGKDD Int. Conf. on Knowledge Discovery and Data Mining,
KDD ’09, pages 817–826. ACM, 2009.

24. J. B. Tenenbaum, V. de Silva, and J. C. Langford. A global geometric framework
for nonlinear dimensionality reduction. Science, 290(5500):2319, 2000.

25. D. Wang, P. Cui, and W. Zhu. Structural deep network embedding. In Proc. of the
22nd ACM SIGKDD Int. Conf. on Knowledge Discovery and Data Mining, KDD
’16, pages 1225–1234. ACM, 2016.

26. C. Yang, Z. Liu, D. Zhao, M. Sun, and E. Chang. Network representation learning
with rich text information. In Proc. of the 24th Int. Conf. on Artificial Intelligence,
IJCAI’15, pages 2111–2117. AAAI Press, 2015.

27. Z. Yang, W. Cohen, and W. Salakhutdinov. Revisiting semi-supervised learning
with graph embeddings. CoRR, abs/1603.08861, 2016.

28. Z. Zhang, H. Yang, J. Bu, S. Zhou, P. Yu, J. Zhang, M. Ester, and C. Wang. Anrl:
Attributed network representation learning via deep neural networks. In Proc. of
the 27th Int. Conf. on Artificial Intelligence, IJCAI-18, pages 3155–3161, 7 2018.

