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Recently, distributed processing of large dynamic graphs has become very popular, especially in certain 
domains such as social network analysis, Web graph analysis and spatial network analysis. In this context, 
many distributed/parallel graph processing systems have been proposed, such as Pregel, PowerGraph, 
GraphLab, and Trinity. However, these systems deal only with static graphs and do not consider the issue 
of processing evolving and dynamic graphs. In this paper, we are considering the issues of scale and 
dynamism in the case of graph processing systems. We present bladyg, a graph processing framework 
that addresses the issue of dynamism in large-scale graphs. We present an implementation of bladyg

on top of akka framework. We experimentally evaluate the performance of the proposed framework 
by applying it to problems such as distributed k-core decomposition and partitioning of large dynamic 
graphs. The experimental results show that the performance and scalability of bladyg are satisfying for 
large-scale dynamic graphs.

© 2017 Elsevier Inc. All rights reserved.
1. Introduction

In the last decade, the field of distributed processing of large-
scale graphs has attracted considerable attention [5]. This attention 
has been motivated not only by the increasing size of graph data, 
but also by its huge number of applications, such as the analysis 
of social networks [8], web graphs [2] and spatial networks [18]. 
In this context, many distributed/parallel graph processing sys-
tems have been proposed, such as Pregel [16], GraphLab [15], 
and Trinity [23]. These systems can be divided into two cate-
gories: (1) vertex-centric and (2) block-centric approaches. Vertex-
centric approaches divide input graphs into partitions, and employ 
a “think like a vertex” programming model to support iterative 
graph computation [16,25]. Each vertex corresponds to a process, 
and message are exchanged among vertices. In block-centric ap-
proaches [29], the unit of computation is a block – a connected 
subgraph of the graph – and message exchanges occur among 
blocks. The vertex-centric approaches have been proved to be use-
ful for many graph algorithms. However, they do not always per-
form efficiently, because they ignore the vital information about 
graph partitions, which represent a real subgraph of the original 
input graph, instead of a collection of unrelated vertices. We no-
tice that the above presented systems deal only with static graphs 
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and do not consider the issue of processing evolving and dynamic 
graphs.

In our work, we are considering the issues of scale and dy-
namism in the case of block-centric approaches [4]. Particularly, 
we are considering big graphs known by their evolving and decen-
tralized nature. For example, the structure of a big social network 
(e.g., Twitter, Facebook) changes over time (e.g., users start new 
relationships and communicate with different friends).

We present bladyg, a block-centric framework that addresses 
the issue of dynamism in large-scale graphs. bladyg can be used 
not only to compute common properties of large graphs, but also 
to maintain the computed properties when new edges and nodes 
are added or removed. The key idea is to avoid the re-computation 
of graph properties from scratch when the graph is updated. bla-

dyg limits the re-computation to a small subgraph depending on 
the undertaken task. We present a set of abstractions for bladyg

that can be used to design algorithms for any distributed graph 
task.

More specifically, our contributions are:

• We introduce bladyg and its computational distributed model.
• We present an implementation of bladyg on top of akka [26], 

a framework for building highly concurrent, distributed, and 
resilient message-driven applications.

• We experimentally evaluate the performance of the proposed 
framework, by applying it to problems such as distributed 
k-core decomposition of large graphs and partitioning of large 
dynamic graphs.
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The rest of the paper is organized as follows. In Section 2, we 
highlight existing works on distributed graph processing on large 
and dynamic graphs. In Section 3, we present the system overview 
of bladyg. In Section 4, we present some research problems that 
can be solved using bladyg. Finally, we describe our experimental 
evaluation in Section 5.

2. Related works

In this section we highlight the relevant literature in the field 
of large graph processing. We consider two kinds of frameworks: 
(1) graph processing frameworks and (2) frameworks for the pro-
cessing of large and dynamic graphs.

Graph processing frameworks Pregel [16] is a computational model 
for large-scale graph processing problems. In Pregel, message ex-
changes occur among vertices of the input graph. As shown in 
Fig. 1, each vertex is associated to a state that controls its activ-
ity.

Each vertex can decide to halt its computation, but can be wo-
ken up at every point of the execution by an incoming message. 
At each superstep of the computation a user defined vertex pro-
gram is executed for each active vertex. The user defined function 
will take the vertex and its incoming messages as input, change 
the vertex value and eventually send messages to other vertices 
through the outgoing edges.

GraphLab [15] is a graph processing framework that share the 
same motivation with Pregel. While Pregel targets Google’s large 
distributed system, GraphLab addresses shared memory parallel 
systems which means that there is more focus on parallel access 
of memory than on the issue of efficient message passing and syn-
chronization. In the programming model of GraphLab, the users 
define an update function that can change all data associated to 
the scope of that node (its edges or its neighbors). Fig. 2 shows the 
scope of a vertex: an update function called on that vertex will be 
able to read and write all data in its scope. We notice that scopes 
can overlap, so simultaneously executing two update functions can 
result in a collision. In this context, GraphLab offers some consis-
tency models in order to allow its users to trade off performance 
and consistency as appropriate for their computation. As described 
in Fig. 2, GraphLab offers a fully consistent model, a vertex consis-
tent model or an edge consistent model.

Fig. 1. Vertex’s state machine in Pregel.
Powergraph [9] is an abstraction that exploits the structure 
of vertex-programs and explicitly factors computation over edges 
instead of vertices It uses a greedy approach, processing and as-
signing each edge before moving to the next. It keeps in memory 
the current sizes of each partition and, for each vertex, the set 
of partitions that contain at least one edge of that vertex. If both 
endpoints of the current edge are already inside one common par-
tition, the edge will be added to that partition. If they have no 
partition in common, the node with the most edges still to assign 
will choose one of its partitions. If only one node is already in a 
partition, the edge will be assigned to that partition. Otherwise, 
if both nodes are free, the edge will be assigned to the smallest 
partition.

GraphX [27] is a library provided by Spark [30], a framework for 
distributed and parallel programming. Spark introduces Resilient 
Distributed Datasets (RDD), that can be split in partitions and kept 
in memory by the machines of the cluster that is running the 
system. These RDD can be then passed to one of the predefined 
meta-functions such as map, reduce, filter or join, that will pro-
cess them and return a new RDD. In GraphX, graphs are defined 
as a pair of two specialized RDD. The first one contains data re-
lated to vertices and the second one contains data related to edges 
of the graph. New operations are then defined on these RDD, to al-
low to map vertices’s values via user defined functions, join them 
with the edge table or external RDDs, or also run iterative compu-
tation.

Processing of large and dynamic graphs Chronos [11] is an execu-
tion and storage engine designed for running in-memory iterative 
graph computation on evolving graphs. Locality is an important as-
pect of Chronos, where the in-memory layout of temporal graphs 
and the scheduling of the iterative computation on temporal and 
evolving graphs are carefully designed. The design of Chronos fur-
ther explores the interesting interplay among locality, parallelism, 
and incremental computation in supporting common mining tasks 
on temporal graphs. We notice that traditional graph processing 
frameworks arrange computation around each vertex/edge in a 
graph; while temporal graph engines, in addition, calculate the re-
sult across multiple snapshots. Chronos makes a decision to batch 
operations associated with each vertex (or each edge) across mul-
tiple snapshots, instead of batching operations for vertices/edges 
within a certain snapshot [11].

The problem of distributed processing of large dynamic graphs 
has attracted considerable attention. In this context, several tra-
ditional graph operations such as k-core decomposition and max-
imal clique computation have been extended to dynamic graphs 
[28] [1] [22] [14]. While this field of large dynamic graph analysis 
represent an emerging class of applications, it is not sufficiently 
addressed by the current graph processing frameworks and only 
specific graph operations have been studied in the context of dy-
namic graphs.
Fig. 2. View of the scope of a vertex in GraphLab.
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Fig. 3. bladyg system overview.
3. The BLADYG framework

In this section, we first describe bladyg and its main compo-
nents. Then, we give a running example that helps to understand 
the basic bladyg operations.

3.1. BLADYG system overview

Fig. 3 provides an architectural overview of the bladyg frame-
work. bladyg starts its computation by collecting the graph data 
from various data sources including local files, Hadoop Distributed 
File System (HDFS) and Amazon Simple Storage Service (Amazon 
S3). In bladyg, graph data collection can be done using exist-
ing open source collection tools including Flume [7] and Fluentd

[24]. After collecting the graph data, bladyg partitions the input 
graph into multiple partitions, each of them assigned to a differ-
ent worker. Each partition/block is a connected subgraph of the 
input graph. This partitioning step is performed by a partitioner 
worker that supports several types of predefined partitioning tech-
niques such as hash partitioning, random partitioning, edge-cut 
and vertex-cut.

• In hash partitioning, edges are distributed across machines ac-
cording to a user-defined hash function.

• In random partitioning, edges are distributed across machines 
randomly.

• In vertex-cut, edges are evenly distributed across machines 
with the goal of minimizing the number of replicated vertices.

• In edge-cut partitioning, the vertices of a graph are divided 
into disjoint clusters of nearly equal size, while the number of 
edges that span separated clusters is minimum.
In addition to the provided partitioning techniques, bladyg users 
may deploy existing graph partitioning techniques including Metis 
[12] and JaBeJa [19]. bladyg users may also implement their own 
partitioning methods. It is important to mention that bladyg al-
lows to process large graphs that already distributed among a set 
of machines. This is motivated by the fact that the majority of the 
existing large graphs are already stored in a distributed way, either 
because they cannot be stored on a single machine due to their 
sheer size, or because they get processed and analyzed with de-
centralized techniques that require them to be distributed among 
a collection of machines. Each worker loads its block and performs 
both local and remote computations, after which the status of the 
blocks is updated. The coordinator/master worker orchestrates the 
execution of bladyg in order to deal with incremental changes 
on the input data. Depending on the graph task, the coordinator 
builds an execution plan which consists of an ordered list of both 
local and distant computation to be executed by the workers.

Each worker performs two types of operations:

1. Intra-block computation: in this case, the worker do local 
computation on its associated block (partition) and modifies 
either the status of the block and/or the states of the nodes 
inside the block.

2. Inter-block computation: in this case, the worker asks distant 
workers to do computation and after receiving the results it 
updates the status of its associated block.

bladyg framework for large dynamic graph analysis operates in 
three computing modes: In M2W-mode/W2M-mode, message ex-
changes between the master and all workers are allowed. The 
master uses this mode to ask a distant worker to look for candidate 
nodes i.e., nodes that need to be updated depending on the under-
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Fig. 4. A graph example distributed into two partitions.

taken task. The worker uses this mode to send the set of computed 
candidate nodes to the master. In W2W-mode, message exchanges 
between workers are allowed. The workers use this mode in or-
der to propagate the search for candidate nodes to one or more 
distant workers. In Local-mode, only local computation is allowed. 
This mode is used by the worker/master to do local computation.

A typical bladyg computation consists of: (1) an input graph, 
(2) a set of incremental changes, (3) a sequence of worker/master 
operations and (4) an output.

1. The input of bladyg framework is an undirected graph. This 
graph is represented by a set of vertices and a set of edges. 
A vertex is defined by its unique ID and a value, whereas an 
edge is defined by its source ID, target ID, and value.

2. Incremental changes or graph updates consists of edge/node 
insertions and/or removals. Graph updates are continuously 
read from the data sources using one of the data collection 
tools provided by bladyg.

3. A worker operation is a user-defined function that is executed 
by one or many workers in parallel depending on the logic 
of the graph task. Within each worker operation, the state of 
the associated block is updated and all the computing modes 
of bladyg are activated. Within each master operation, a user 
defined function that defines the orchestration mechanism of 
the master is executed. During a master operation Local-mode
and M2W-mode are activated.

4. The output of a bladyg program consists of an updated list of 
vertices and an updated list of edges.

3.2. Illustrative example

Here, we provide an illustrative example to explain the princi-
ple of our approach.

Consider the graph G = (V , E) included in Fig. 4, and suppose 
that it is splitted in two partitions, each processed by a separate 
worker. We consider the task of computing the degree of all the 
nodes in G . The system is completed by the master node, as shown 
in Fig. 5.

A bladyg solution for computing the degree of all the nodes in 
a given graph consists of two steps. The first step consists in ex-
ecuting several worker operations in order to compute the degree 
of nodes in all subgraphs in parallel. As a result of this step, the 
degree values of all the nodes of G are computed. The degree val-
ues of the nodes of our graph example G are presented in Fig. 5. 
We assume that the incremental changes in our example consists 
of only one new edge that links node 4 and node 1. The second 
step of our bladyg solution consists in selecting the set of nodes 
that need to be updated after considering the graph updates (in-
sertion of the edge (4, 1)). In this example, only the nodes of the 
new edge need to be updated (nodes 1 and 4). The master sends a 
M2W message (MSG1) to worker 1 (respectively to worker 2) and 
asks the worker to increment the degree of node 4 (respectively 
node 1). The updated degree values of the nodes of our graph ex-
ample G are presented in Fig. 6.
Fig. 5. The sequence of messages exchanged among the coordinator and the worker 
nodes.

Fig. 6. The updated graph.

After updating the degree of the node 4 (respectively node 1), 
worker 1 (respectively worker 2) sends a notification message 
(MSG2) to the master. The master checks that all the graph updates 
were processed and stops the execution of the bladyg program.

In this example, we only considered an insertion of a new edge 
between two existing nodes. It is important to mention that in real 
world applications, graph updates consists of insertion/deletion of 
several nodes/edges. We also mention that the complexity of the 
task of selecting the nodes that need to be updated after consider-
ing graph updates depends on the considered graph operation.

4. Applications

In this section, we apply bladyg to solve some classic graph 
operations such as k-core decomposition [17] [3], clique computa-
tion [28] and graph partitioning [10] [20].



S. Aridhi et al. / Big Data Research 9 (2017) 9–17 13
4.1. Distributed k-core decomposition

Let G = (V , E) be an undirected graph with n = |V | nodes 
and m = |E| edges. G is partitioned into p disjoint partitions 
{V 1, . . . , V p}; in other words, V = ∪p

i=1 V i and V i ∩ V j = ∅ for each 
i, j such that 1 ≤ i, j ≤ p and i �= j. The task of k-core decomposi-
tion [6] is condensed in the following two definitions:

Definition 1. A subgraph G(C) induced by the set C ⊆ V is a k-core
if and only if ∀u ∈ C : dG(C)(u) ≥ k, and G(C) is maximal, i.e., for 
each C ⊃ C , there exists v ∈ C such that dG(C)(v) < k.

Definition 2. A node in G is said to have coreness k (kG(u) = k) if 
and only if it belongs to the k-core but not the (k + 1)-core.

A k-core of a graph G = (V , E) can be obtained by recursively 
removing all the vertices of degree less than k, until all vertices 
in the remaining graph have degree at least k. The issue of dis-
tributed k-core decomposition in dynamic graphs consists in updat-
ing the coreness of the nodes of G when new nodes/edges are 
added and/or removed.

bladyg solves the problem of distributed k-core decomposition
in two steps. The first step consists in executing a workerCompute()

operation that computes the coreness inside each of the blocks. In-
side a block, each vertex is associated with block(u), dG(u) and 
kG(u), denoting the block of u, the degree and the coreness of 
u in G , respectively. The second step consists in maintaining the 
coreness values after considering the incremental changes. When-
ever a new edge (u, v) is added to the graph, bladyg first acti-
vates the M2W-mode and computes the set of candidate nodes i.e., 
nodes whose coreness needs to be updated. This is done by two 
workerCompute() operations inside the workers that hold u and v . 
The workerCompute() operations exploit Theorem 1, first stated and 
demonstrated by Li, Yu and Mao [14], that identifies what are the 
candidate nodes that may need to be updated whenever we add an 
edge:

Theorem 1. Let G = (V , E) be a graph and (u, v) be an edge to be in-
serted in E, with u, v ∈ V . A node w ∈ V is said to be a candidate to be 
updated based on the following three cases:

• If k(u) > k(v), w is candidate if and only if w is k-reachable from v
in the original graph G and k = k(u);

• If k(u) < k(v), w is candidate if and only if w is k-reachable from u
in the original graph G and k = k(v);

• If k(u) = k(v), w is candidate if and only if w is k-reachable from 
either u and v in the original graph G and k = k(u).

A node w is k-reachable from u if w is reachable from u in the 
k-core of G; i.e., if there exists a path between u and w in the 
original graph such that all nodes in the path (including u and w) 
have coreness equal to k = k(u).

We notice that the executed workerCompute() operations may 
activate the W2W-mode since the set of nodes to be updated may 
span multiple blocks/partitions. The nodes identified as potential 
candidates are sent back to the coordinator node that orchestrates 
the execution and computes, by executing a masterCompute() op-
eration, the correct coreness values of the candidate nodes.

4.2. Distributed edge partitioning

Edge partitioning is a classical problem in graph processing in 
which edges of a given graph, rather than its vertices, are par-
titioned into disjoint subsets. Given a graph G = (V , E) and a 
parameter K , an edge partitioning of G subdivides all edges into 
a collection E1, · · · , E K of non-overlapping edge partitions, i.e. 
E = ⋃K

i=1 ∀i, j : i �= j ⇒ Ei ∩ E j = ∅. The ith partition is associated 
with a vertex set V i , composed of the end points of its edges: 
V i = {u : (u, v) ∈ Ei ∨ (v, u) ∈ Ei}.

A bladyg solution for edge partitioning in large dynamic graphs 
consists of two steps. The first step computes the initial parti-
tioning of the input graph. Each vertex of each block maintains 
block(u), which denote the block of the node u. The second step 
consists in updating the partitioning according to the incremental 
changes. Whenever a new edge (u, v) is added to G , bladyg first 
activates the M2W-mode and assigns the edge (u, v) to a selected 
block. Block assignment is done by a masterCompute() operation 
that decides the block of each new edge considering predefined 
objective functions such as balance, communication efficiency and 
connectedness [10]. The coordinator asks the worker that holds 
u (respectively v) to compute the predefined objective functions 
inside block(u) (respectively block(v)). The result of this compu-
tation is sent to the coordinator that decides the block that will 
holds the edge (u, v). Whenever an edge (u, v) is removed from G ,
bladyg asks all the workers to compute a repartitioning threshold
in order to decide if the partitioning of G needs to be recom-
puted. In each worker, the repartitioning threshold is computed by 
a workerCompute() operation and sent to the coordinator. The co-
ordinator decides, by executing a masterCompute() operation, if a 
repartitioning of G is needed or not.

4.3. Distributed maximal clique computation

Given an undirected graph G = (V , E), a clique is a subset of 
vertices C ⊆ V such that every vertex in C is connected to every 
other vertex in C by an edge in G . A clique C is called to be max-
imal if any proper superset of C is not a clique. The problem of 
maximal clique enumeration (MCE) is to compute the set M(G)

of maximal cliques in G . Considering the issue of dynamism, the 
problem of MCE in dynamic graphs [28] consists in incrementally 
update the set of maximal cliques for every graph update.

bladyg deals with the problem of MCE in dynamic graphs 
in the following way. Each edge of each block maintains I D(v), 
adj(u), Mu and Tu , which denote the identifier of u, the adjacent 
vertices of u, the set of maximal cliques of u and a prefix-tree 
such that the root of Tu is u and each root-to-leaf path repre-
sents a maximal clique in Mu , respectively. We assume that ad-
jacency list representation of the graph G , the set V of vertices 
are ordered in ascending order of their IDs. We further define 
adj<(u) = {v : v ∈ adj(u), I D(v) < I D(u)} and adj>(u) = {v : v ∈
adj(u), I D(v) > I D(u)}. When an edge (u, v) is inserted into G ,
bladyg coordinator asks workers containing u and v to update the 
set of maximal cliques. Each of the workers of u and v executes 
a workerCompute() operation in order to remove existing maximal 
cliques that become non-maximal and insert maximal cliques that 
should be inserted. An existing maximal clique C becomes non-
maximal if C contains either u or v , and verifies C ⊂ (adj(u) ∩
adj(v)) ∪ {u, v} [28]. Maximal cliques that need to be added to the 
existing ones consists of new maximal cliques that contain u, v, w , 
for each w ∈ ((adj<(u) ∩ adj<(v)) ∪ {u}) [28]. When an edge (u, v)

is deleted from G , bladyg coordinator notifies workers containing 
the nodes u and v by the edge deletion. Workers that hold u and 
v execute a workerCompute() operation that deletes all the existing 
maximal cliques that contain both u and v , where such maximal 
cliques appear in T w , where w ∈ ((adj<(u) ∩ adj<(v)) ∪ {u}) [28]. 
Then, we generate all new maximal cliques that contain only u or 
v , and insert them into T w , where w ∈ ((adj>(u) ∩ adj<(v)) ∪ {v})
or w ∈ ((adj<(u) ∩ adj<(v)) ∪ {u}). A notification is sent to bladyg

coordinator when all the workers finish the update process.
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Table 1
Experimental data.

Dataset Type � Nodes � Edges � Avg. CC Max(k)

DS1 Synthetic 50,000 365,883 4 0.3929 42
DS2 Synthetic 100,000 734,416 4 0.3908 46
ego-Facebook Real 4,039 88,234 8 0.6055 115
roadNet-CA Real 1,965,206 2,766,607 849 0.0464 3
com-LiveJournal Real 3,997,962 34,681,189 17 0.2843 296

Table 2
Experimental results.

Dataset AIT (ms) ADT (ms)

inter-partition intra-partition inter-partition intra-partition

DS1 42 10 32 8
DS2 30 10 25 8
ego-Facebook 38 15 32 10
roadNet-CA 30 12 26 10
com-LiveJournal 256 30 205 27
5. Experiments

We have applied bladyg framework to both the problem of dis-
tributed k-core decomposition in large dynamic graphs and the 
problem of partitioning of dynamic graphs. We have performed 
a set of experiments to evaluate the effectiveness and efficiency 
of bladyg framework on a number of different real and synthetic 
datasets. Implementation details of bladyg can be found in the fol-
lowing link: https :/ /members .loria .fr /SAridhi /files /software /bladyg/.

5.1. Experimental environment

We have implemented bladyg on top of the akka framework, 
a toolkit and runtime for building highly concurrent, distributed, 
resilient message-driven applications. In order to evaluate the per-
formance of bladyg, we used a cluster of 17 m3.medium instances 
on Amazon EC2 (1 virtual 64-bit CPU, 3.75GB of main memory, 
8GB local instance storage).

5.2. Experimental data

The characteristic properties of our datasets (shown in Table 1) 
are the number of nodes, edges, the diameter, the average clus-
tering coefficient and the maximum coreness. We have used two 
groups of datasets: (1) real-world ones and (2) synthetic datasets. 
The real-world datasets are made available by the Stanford Large 
Network Dataset collection [13] and consists of three datasets:

1. The ego-Facebook dataset consists of friends lists from Face-
book. We notice that Facebook data has been anonymized by 
replacing the internal identifiers of Facebook users with new 
values.

2. The roadNet-CA dataset is a road network of California. Inter-
sections and endpoints are represented by nodes and the roads 
connecting these intersections are represented by edges.

3. The com-LiveJournal dataset is a free on-line blogging commu-
nity where users declare friendship each other.

The synthetic datasets are created by a graph generator based on 
the Nearest Neighbor model [21]. The used graph generator builds 
undirected graphs with power-law degree distribution with expo-
nent between 1.5 and 1.75, matching that of online social net-
works. Varying the input data enabled us to avoid biased results 
specific to a single dataset and thus to have a better interpretation 
of the results.

5.3. Experimental results

5.3.1. k-core decomposition of large dynamic graphs
In order to simulate dynamism in each dataset, we consider 

two update scenarios. For each scenario, we measure the perfor-
mance of the system to update the core numbers of all the nodes 
in the considered graph after insertion/deletion of a constant num-
ber of edges:

• In the inter-partition scenario, we either delete or insert 1000
random edges connecting two nodes belonging to different par-
titions;

• In the intra-partition scenario, we either delete or insert 1000
random edges connecting two nodes belonging to the same
partition.

Table 2 illustrates the results obtained with both the real and 
the synthetic datasets. For each dataset, we record the average in-
sertion time (AIT) and the average deletion time (ADT) over the 
1000 insertions/deletions for both inter-partition and intra-partition
scenarios. To generate the results of Table 2, we randomly parti-
tion the graph dataset into 8 partitions. As shown in Table 2, we 
observe that in the intra-partition scenario, the values of the av-
erage insertion/deletion time are much smaller than those in the 
inter-partition scenario. This can be explained by the fact that the 
inserted/deleted edges in the intra-partition scenario are internal 
ones. Consequently, the amount of data to be exchanged between 
the distributed machines in the case of internal edges is smaller, 
in most cases, than the amount of exchanged data in the case 
of edges of the inter-partition scenario. During the k-core main-
tenance process after insertion/deletion of an internal edge, there 
is always the chance of not having to visit distributed workers/par-
titions other than the partition that holds the internal edge.

Fig. 7 presents a comparison of our bladyg solution with 
the HBase-based approach proposed by Aksu et al. [1] in terms 
of average insertion/deletion time. For our approach, we used 9
m3.medium instances on Amazon EC2 (1 acting as a master and 
8 acting as workers). For the HBase-based approach, we used 9
m3.medium instances on Amazon EC2 (1 master node and 8 
slave nodes). As stressed in Fig. 7, our approach allows much bet-
ter results compared to the HBase-based approach for almost all 
datasets. It is noteworthy to mention that the presented runtime 
values of the HBase-based approach correspond to the mainte-
nance time of only one fixed k value core (k = max(k) in our 
experimental study). This means that, for each dataset, the mainte-
nance process of the HBase-based approach needs to be repeated 
max(k) times in order to achieve the same results as our ap-
proach.

To study the scalability of bladyg and to show the impact of the 
number of used machines on the k-core decomposition task run-
time in the case of large-scale networks, we measured the average 
insertion/deletion time of our bladyg solution for each number of 
worker machines. We presents these results in Fig. 8.

https://members.loria.fr/SAridhi/files/software/bladyg/
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Fig. 7. Average insertion/deletion time. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

Fig. 8. Effect of the number of workers on the average insertion time (AIT) and the average deletion time (ADT) of the bladyg solution for the task of k-core decomposition.
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Table 3
Experimental results using hash partitioning on BLADYG.

Dataset Partitioning time (s) Update time (s)

IncrementalPart NaivePart

DS1 18 3 19
DS2 43 5 40
ego-Facebook 11 2 13
roadNet-CA 180 16 193
com-LiveJournal 209 25 227

Table 4
Experimental results using random partitioning on BLADYG.

Dataset Partitioning time (s) Update time (s)

IncrementalPart NaivePart

DS1 21 3 20
DS2 36 6 42
ego-Facebook 12 2 10
roadNet-CA 171 21 202
com-LiveJournal 211 27 232

As illustrated in Fig. 8, our bladyg solution scales up as the 
number of worker machines increases.

5.3.2. Partitioning of large dynamic graphs
The goal here is to evaluate the performance and the scalabil-

ity of bladyg solution for the partitioning of large and dynamic 
graphs. For our tests, we used the graph datasets described in Ta-
ble 1 and we considered three partitioning techniques (1) hash 
partitioning, (2) random partitioning and (3) DynamicDFEP, a pre-
viously published distributed partitioning algorithm [20]. Dynam-

icDFEP is based on two main phases. The first phase consists of 
four steps:

1. We randomly choose a single node for each of the desired par-
titions, and give it an initial amount of “funding” associated to 
that partition.

2. Each node will use its funding to the neighbors to try to “buy” 
additional edges. The partition will therefore buy the edges 
that are closer to the randomly chosen nodes and start getting 
bigger.

3. Since the initial amount of funding is insufficient for the parti-
tions to cover the entire graph, additional funding is assigned 
to the partitions, in a manner inversely proportional to their 
size. A small partition (which may have been started far from 
the center of the graph) will receive more funding and there-
fore be more likely to grow than a larger partition.

4. Steps 2–3 are repeated until all edges have been bought by a 
partition.

The second phase of DynamicDFEP deals with incremental changes 
by applying one of the supported update strategies. For our tests, 
we used the Unit-Based Update strategy (UB-Update) described in 
[20].

In order to simulate dynamism in each dataset, we use only 90%
of the graph in the partitioning step and we insert the remaining 
10% in the update step. Each experiment is repeated five times 
and the numeric results in the following sections consists of the 
average over all runs.

Tables 3 and 4 illustrate the results obtained with both the real 
and the synthetic datasets. For each dataset and for each partition-
ing method, we record the partitioning time (PT) and the update 
time (UT). The update time is computed for two different partition-
ing strategies: (1) IncrementalPart and (2) NaivePart. The first 
update strategy consists in applying the used partitioning tech-
nique only on the incremental changes. The second update strategy 
is a naive partitioning technique that consists in destroying the 
Table 5
Experimental results using DynamicDFEP on BLADYG.

Dataset Partitioning time (s) Update time (s)

UB-Update NaivePart

DS1 30 3 32
DS2 56 5 62
ego-Facebook 80 2 91
roadNet-CA 254 31 321
com-LiveJournal 509 34 572

old graph partitioning and all further information associated to the 
assignment and restarts from the scratch by running the used par-
titioning technique.

As shown in Tables 3, 4 and 5, we observe that, for all par-
titioning methods, bladyg results using IncrementalPart strategy 
are much better than those using NaivePart strategy. This can be 
explained by the fact that bladyg allows to process only incremen-
tal changes without restarting the partitioning from the scratch.

6. Conclusions

This paper deal with the problem of graph processing in large 
dynamic networks. We presented bladyg framework, a block-
centric framework that addresses the issue of dynamism in large 
scale graphs. The presented framework can be used not only to 
compute common properties of large graphs but also to maintain 
the computed properties when new edges and nodes are added or 
removed. We implemented bladyg on top of akka, a framework 
for building highly concurrent, distributed, and resilient message-
driven applications. We applied bladyg to two different problems: 
(1) distributed k-core decomposition in large dynamic graphs and 
(2) partitioning of large dynamic graphs. By running some exper-
iments on a variety of both real and synthetic datasets, we have 
shown that the performance and scalability of the proposed frame-
work are satisfying for large-scale dynamic graphs.

In the future work, we aim at studying data communications 
and networking of bladyg framework. Particularly, we will ex-
amine the amount of exchanged data/messages between the dis-
tributed machines during the execution of the associated graph 
task. We also aim to study the impact of the partitioning method 
and the number of graph partitions on the amount of exchanged 
data/messages between the master node and the worker nodes.

Conflict of interest

The authors confirm that there are no conflicts of interest to 
declare.

References

[1] H. Aksu, M. Canim, Y.-C. Chang, I. Korpeoglu, O. Ulusoy, Distributed k-core view 
materialization and maintenance for large dynamic graphs, IEEE Trans. Knowl. 
Data Eng. 26 (10) (Oct. 2014) 2439–2452.

[2] J.I. Alvarez-Hamelin, A. Barrat, A. Vespignani, et al., k-Core decomposition of in-
ternet graphs: hierarchies, self-similarity and measurement biases, Netw. Het-
erog. Media 3 (2) (2008) 371.

[3] S. Aridhi, M. Brugnara, A. Montresor, Y. Velegrakis, Distributed k-core decom-
position and maintenance in large dynamic graphs, in: Proceedings of the 
10th ACM International Conference on Distributed and Event-Based Systems, 
DEBS’16, ACM, New York, NY, USA, 2016, pp. 161–168.

[4] S. Aridhi, A. Montresor, Y. Velegrakis, BLADYG: a novel block-centric framework 
for the analysis of large dynamic graphs, in: Proceedings of the ACM Workshop 
on High Performance Graph Processing, HPGP’16, ACM, New York, NY, USA, 
2016, pp. 39–42.

[5] S. Aridhi, E.M. Nguifo, Big graph mining: frameworks and techniques, Big Data 
Res. 6 (2016) 1–10.

[6] V. Batagelj, M. Zaveršnik, Fast algorithms for determining (generalized) core 
groups in social networks, Adv. Data Anal. Classif. 5 (2) (2011) 129–145.

http://refhub.elsevier.com/S2214-5796(17)30004-7/bib36373032343836s1
http://refhub.elsevier.com/S2214-5796(17)30004-7/bib36373032343836s1
http://refhub.elsevier.com/S2214-5796(17)30004-7/bib36373032343836s1
http://refhub.elsevier.com/S2214-5796(17)30004-7/bib416C766172657As1
http://refhub.elsevier.com/S2214-5796(17)30004-7/bib416C766172657As1
http://refhub.elsevier.com/S2214-5796(17)30004-7/bib416C766172657As1
http://refhub.elsevier.com/S2214-5796(17)30004-7/bib646562733230313661s1
http://refhub.elsevier.com/S2214-5796(17)30004-7/bib646562733230313661s1
http://refhub.elsevier.com/S2214-5796(17)30004-7/bib646562733230313661s1
http://refhub.elsevier.com/S2214-5796(17)30004-7/bib646562733230313661s1
http://refhub.elsevier.com/S2214-5796(17)30004-7/bib626C61647967s1
http://refhub.elsevier.com/S2214-5796(17)30004-7/bib626C61647967s1
http://refhub.elsevier.com/S2214-5796(17)30004-7/bib626C61647967s1
http://refhub.elsevier.com/S2214-5796(17)30004-7/bib626C61647967s1
http://refhub.elsevier.com/S2214-5796(17)30004-7/bib626472s1
http://refhub.elsevier.com/S2214-5796(17)30004-7/bib626472s1
http://refhub.elsevier.com/S2214-5796(17)30004-7/bib6261746167656C793033s1
http://refhub.elsevier.com/S2214-5796(17)30004-7/bib6261746167656C793033s1


S. Aridhi et al. / Big Data Research 9 (2017) 9–17 17
[7] C. Chambers, A. Raniwala, F. Perry, S. Adams, R.R. Henry, R. Bradshaw, N. 
Weizenbaum, FlumeJava: easy, efficient data-parallel pipelines, in: Proceedings 
of the 31st ACM SIGPLAN Conference on Programming Language Design and 
Implementation, PLDI’10, ACM, New York, NY, USA, 2010, pp. 363–375.

[8] C. Giatsidis, D. Thilikos, M. Vazirgiannis, Evaluating cooperation in communi-
ties with the k-core structure, in: Proc. of the Int. Conf. on Advances in Social 
Networks Analysis and Mining, July 2011.

[9] J.E. Gonzalez, Y. Low, H. Gu, D. Bickson, C. Guestrin, Powergraph: distributed 
graph-parallel computation on natural graphs, in: Proceedings of the 10th 
USENIX Conference on Operating Systems Design and Implementation, OSDI’12, 
USENIX Association, Berkeley, CA, USA, 2012, pp. 17–30.

[10] A. Guerrieri, A. Montresor, DFEP: distributed funding-based edge partitioning, 
in: Proc. of the 21st Int. Conf. on Parallel and Distributed Computing, Eu-
ropar’15, 2015, pp. 346–358.

[11] W. Han, Y. Miao, K. Li, M. Wu, F. Yang, L. Zhou, V. Prabhakaran, W. Chen, E. 
Chen, Chronos: a graph engine for temporal graph analysis, in: Proceedings of 
the Ninth European Conference on Computer Systems, EuroSys’14, ACM, New 
York, NY, USA, 2014, pp. 1–14.

[12] G. Karypis, V. Kumar, A fast and high quality multilevel scheme for partitioning 
irregular graphs, SIAM J. Sci. Comput. 20 (1) (Dec. 1998) 359–392.

[13] J. Leskovec, A. Krevl, SNAP datasets: Stanford large network dataset collection, 
http://snap.stanford.edu/data, June 2014.

[14] R. Li, J.X. Yu, R. Mao, Efficient core maintenance in large dynamic graphs, IEEE 
Trans. Knowl. Data Eng. 26 (10) (2014) 2453–2465.

[15] Y. Low, D. Bickson, J. Gonzalez, et al., Distributed GraphLab: a framework for 
machine learning and data mining in the cloud, Proc. VLDB Endow. 5 (8) (Apr. 
2012) 716–727.

[16] G. Malewicz, M.H. Austern, A.J. Bik, et al., Pregel: a system for large-scale graph 
processing, in: Proc. of the 2010 ACM SIGMOD Int. Conf. on Management of 
Data, ACM, 2010, pp. 135–146.

[17] A. Montresor, F.D. Pellegrini, D. Miorandi, Distributed k-core decomposition, 
IEEE Trans. Parallel Distrib. Syst. 24 (2) (2013) 288–300.

[18] R. Patuelli, A. Reggiani, P. Nijkamp, F.-J. Bade, The evolution of the commut-
ing network in Germany: spatial and connectivity patterns, J. Transp. Land Use 
2 (3) (2010).
[19] F. Rahimian, A.H. Payberah, S. Girdzijauskas, M. Jelasity, S. Haridi, JA-BE-JA: 
a distributed algorithm for balanced graph partitioning, in: IEEE 7th Interna-
tional Conference on Self-Adaptive and Self-Organizing Systems, Sept. 2013, 
pp. 51–60.

[20] C. Sakouhi, S. Aridhi, A. Guerrieri, S. Sassi, A. Montresor, DynamicDFEP: a dis-
tributed edge partitioning approach for large dynamic graphs, in: Proceedings 
of the 20th International Database Engineering & Applications Symposium, 
IDEAS’16, ACM, New York, NY, USA, 2016, pp. 142–147.

[21] A. Sala, L. Cao, C. Wilson, R. Zablit, H. Zheng, B.Y. Zhao, Measurement-calibrated 
graph models for social network experiments, in: Proc. of the 19th Int. Conf. 
on World Wide Web, WWW’10, ACM, 2010.

[22] A.E. Saríyüce, B. Gedik, G. Jacques-Silva, K.-L. Wu, U.V. Çatalyürek, Stream-
ing algorithms for k-core decomposition, Proc. VLDB Endow. 6 (6) (Apr. 2013) 
433–444.

[23] B. Shao, H. Wang, Y. Li, Trinity: a distributed graph engine on a memory cloud, 
in: Proc. of the Int. Conf. on Management of Data, ACM, 2013.

[24] S. Singh, Cluster-level logging of containers with containers, Queue 14 (3) (May 
2016) 83–106.

[25] Y. Tian, A. Balmin, S.A. Corsten, et al., From “think like a vertex” to “think like 
a graph”, Proc. VLDB Endow. 7 (3) (2013) 193–204.

[26] D. Wyatt, Akka Concurrency, Artima Inc., 2013.
[27] R.S. Xin, J.E. Gonzalez, M.J. Franklin, I. Stoica, GraphX: a resilient distributed 

graph system on spark, in: First International Workshop on Graph Data Man-
agement Experiences and Systems, GRADES’13, ACM, New York, NY, USA, 2013, 
pp. 1–6.

[28] Y. Xu, J. Cheng, A.W. Fu, Y. Bu, Distributed maximal clique computation, in: 
Proc. of the IEEE Int. Congress on Big Data, 2014, pp. 160–167.

[29] D. Yan, J. Cheng, Y. Lu, W. Ng, Blogel: a block-centric framework for dis-
tributed computation on real-world graphs, Proc. VLDB Endow. 7 (14) (Oct. 
2014) 1981–1992.

[30] M. Zaharia, M. Chowdhury, T. Das, A. Dave, J. Ma, M. McCauley, M.J. Franklin, S. 
Shenker, I. Stoica, Resilient distributed datasets: a fault-tolerant abstraction for 
in-memory cluster computing, in: Proceedings of the 9th USENIX Conference 
on Networked Systems Design and Implementation, NSDI’12, USENIX Associa-
tion, Berkeley, CA, USA, 2012, p. 2.

http://refhub.elsevier.com/S2214-5796(17)30004-7/bib666C756D65s1
http://refhub.elsevier.com/S2214-5796(17)30004-7/bib666C756D65s1
http://refhub.elsevier.com/S2214-5796(17)30004-7/bib666C756D65s1
http://refhub.elsevier.com/S2214-5796(17)30004-7/bib666C756D65s1
http://refhub.elsevier.com/S2214-5796(17)30004-7/bib35393932353637s1
http://refhub.elsevier.com/S2214-5796(17)30004-7/bib35393932353637s1
http://refhub.elsevier.com/S2214-5796(17)30004-7/bib35393932353637s1
http://refhub.elsevier.com/S2214-5796(17)30004-7/bib476F6E7A616C657A3A323031323A5044473A323338373838302E32333837383833s1
http://refhub.elsevier.com/S2214-5796(17)30004-7/bib476F6E7A616C657A3A323031323A5044473A323338373838302E32333837383833s1
http://refhub.elsevier.com/S2214-5796(17)30004-7/bib476F6E7A616C657A3A323031323A5044473A323338373838302E32333837383833s1
http://refhub.elsevier.com/S2214-5796(17)30004-7/bib476F6E7A616C657A3A323031323A5044473A323338373838302E32333837383833s1
http://refhub.elsevier.com/S2214-5796(17)30004-7/bib44424C503A636F6E662F6575726F7061722F4775657272696572694D3135s1
http://refhub.elsevier.com/S2214-5796(17)30004-7/bib44424C503A636F6E662F6575726F7061722F4775657272696572694D3135s1
http://refhub.elsevier.com/S2214-5796(17)30004-7/bib44424C503A636F6E662F6575726F7061722F4775657272696572694D3135s1
http://refhub.elsevier.com/S2214-5796(17)30004-7/bib6368726F6E6F73s1
http://refhub.elsevier.com/S2214-5796(17)30004-7/bib6368726F6E6F73s1
http://refhub.elsevier.com/S2214-5796(17)30004-7/bib6368726F6E6F73s1
http://refhub.elsevier.com/S2214-5796(17)30004-7/bib6368726F6E6F73s1
http://refhub.elsevier.com/S2214-5796(17)30004-7/bib6D65746973s1
http://refhub.elsevier.com/S2214-5796(17)30004-7/bib6D65746973s1
http://snap.stanford.edu/data
http://refhub.elsevier.com/S2214-5796(17)30004-7/bib44424C503A6A6F75726E616C732F746B64652F4C69594D3134s1
http://refhub.elsevier.com/S2214-5796(17)30004-7/bib44424C503A6A6F75726E616C732F746B64652F4C69594D3134s1
http://refhub.elsevier.com/S2214-5796(17)30004-7/bib67726170686C6162s1
http://refhub.elsevier.com/S2214-5796(17)30004-7/bib67726170686C6162s1
http://refhub.elsevier.com/S2214-5796(17)30004-7/bib67726170686C6162s1
http://refhub.elsevier.com/S2214-5796(17)30004-7/bib70726567656Cs1
http://refhub.elsevier.com/S2214-5796(17)30004-7/bib70726567656Cs1
http://refhub.elsevier.com/S2214-5796(17)30004-7/bib70726567656Cs1
http://refhub.elsevier.com/S2214-5796(17)30004-7/bib4D6F6E747265736F72504D3133s1
http://refhub.elsevier.com/S2214-5796(17)30004-7/bib4D6F6E747265736F72504D3133s1
http://refhub.elsevier.com/S2214-5796(17)30004-7/bib4A544C553233s1
http://refhub.elsevier.com/S2214-5796(17)30004-7/bib4A544C553233s1
http://refhub.elsevier.com/S2214-5796(17)30004-7/bib4A544C553233s1
http://refhub.elsevier.com/S2214-5796(17)30004-7/bib6A6162656A61s1
http://refhub.elsevier.com/S2214-5796(17)30004-7/bib6A6162656A61s1
http://refhub.elsevier.com/S2214-5796(17)30004-7/bib6A6162656A61s1
http://refhub.elsevier.com/S2214-5796(17)30004-7/bib6A6162656A61s1
http://refhub.elsevier.com/S2214-5796(17)30004-7/bib69646561733230313661s1
http://refhub.elsevier.com/S2214-5796(17)30004-7/bib69646561733230313661s1
http://refhub.elsevier.com/S2214-5796(17)30004-7/bib69646561733230313661s1
http://refhub.elsevier.com/S2214-5796(17)30004-7/bib69646561733230313661s1
http://refhub.elsevier.com/S2214-5796(17)30004-7/bib53616C613A323031303A4D474D3A313737323639302E31373732373738s1
http://refhub.elsevier.com/S2214-5796(17)30004-7/bib53616C613A323031303A4D474D3A313737323639302E31373732373738s1
http://refhub.elsevier.com/S2214-5796(17)30004-7/bib53616C613A323031303A4D474D3A313737323639302E31373732373738s1
http://refhub.elsevier.com/S2214-5796(17)30004-7/bib53617269797563653A323031333A53414B3A323533363333362E32353336333434s1
http://refhub.elsevier.com/S2214-5796(17)30004-7/bib53617269797563653A323031333A53414B3A323533363333362E32353336333434s1
http://refhub.elsevier.com/S2214-5796(17)30004-7/bib53617269797563653A323031333A53414B3A323533363333362E32353336333434s1
http://refhub.elsevier.com/S2214-5796(17)30004-7/bib7472696E697479s1
http://refhub.elsevier.com/S2214-5796(17)30004-7/bib7472696E697479s1
http://refhub.elsevier.com/S2214-5796(17)30004-7/bib666C75656E7464s1
http://refhub.elsevier.com/S2214-5796(17)30004-7/bib666C75656E7464s1
http://refhub.elsevier.com/S2214-5796(17)30004-7/bib5469616E3A32303133s1
http://refhub.elsevier.com/S2214-5796(17)30004-7/bib5469616E3A32303133s1
http://refhub.elsevier.com/S2214-5796(17)30004-7/bib616B6B61s1
http://refhub.elsevier.com/S2214-5796(17)30004-7/bib58696E3A323031333A4752443A323438343432352E32343834343237s1
http://refhub.elsevier.com/S2214-5796(17)30004-7/bib58696E3A323031333A4752443A323438343432352E32343834343237s1
http://refhub.elsevier.com/S2214-5796(17)30004-7/bib58696E3A323031333A4752443A323438343432352E32343834343237s1
http://refhub.elsevier.com/S2214-5796(17)30004-7/bib58696E3A323031333A4752443A323438343432352E32343834343237s1
http://refhub.elsevier.com/S2214-5796(17)30004-7/bib44424C503A636F6E662F626967646174612F58754346423134s1
http://refhub.elsevier.com/S2214-5796(17)30004-7/bib44424C503A636F6E662F626967646174612F58754346423134s1
http://refhub.elsevier.com/S2214-5796(17)30004-7/bib626C6F67656Cs1
http://refhub.elsevier.com/S2214-5796(17)30004-7/bib626C6F67656Cs1
http://refhub.elsevier.com/S2214-5796(17)30004-7/bib626C6F67656Cs1
http://refhub.elsevier.com/S2214-5796(17)30004-7/bib5A6168617269613A323031323A5244443A323232383239382E32323238333031s1
http://refhub.elsevier.com/S2214-5796(17)30004-7/bib5A6168617269613A323031323A5244443A323232383239382E32323238333031s1
http://refhub.elsevier.com/S2214-5796(17)30004-7/bib5A6168617269613A323031323A5244443A323232383239382E32323238333031s1
http://refhub.elsevier.com/S2214-5796(17)30004-7/bib5A6168617269613A323031323A5244443A323232383239382E32323238333031s1
http://refhub.elsevier.com/S2214-5796(17)30004-7/bib5A6168617269613A323031323A5244443A323232383239382E32323238333031s1

	BLADYG: A Graph Processing Framework for Large Dynamic Graphs
	1 Introduction
	2 Related works
	3 The BLADYG framework
	3.1 BLADYG system overview
	3.2 Illustrative example

	4 Applications
	4.1 Distributed k-core decomposition
	4.2 Distributed edge partitioning
	4.3 Distributed maximal clique computation

	5 Experiments
	5.1 Experimental environment
	5.2 Experimental data
	5.3 Experimental results
	5.3.1 k-core decomposition of large dynamic graphs
	5.3.2 Partitioning of large dynamic graphs


	6 Conclusions
	Conﬂict of interest
	References


