
Big Data Research 9 (2017) 9–17
Contents lists available at ScienceDirect

Big Data Research

www.elsevier.com/locate/bdr

BLADYG: A Graph Processing Framework for Large Dynamic Graphs

Sabeur Aridhi a,∗, Alberto Montresor b, Yannis Velegrakis b

a University of Lorraine, LORIA, Campus Scientifique, BP 239, 54506 Vandoeuvre-lès-Nancy, France
b University of Trento, Italy

a r t i c l e i n f o a b s t r a c t

Article history:
Received 3 January 2017
Received in revised form 5 May 2017
Accepted 27 May 2017
Available online 23 August 2017

Keywords:
Distributed graph processing
Dynamic graphs
akka framework
Graph partitioning
k-Core decomposition

Recently, distributed processing of large dynamic graphs has become very popular, especially in certain
domains such as social network analysis, Web graph analysis and spatial network analysis. In this context,
many distributed/parallel graph processing systems have been proposed, such as Pregel, PowerGraph,
GraphLab, and Trinity. However, these systems deal only with static graphs and do not consider the issue
of processing evolving and dynamic graphs. In this paper, we are considering the issues of scale and
dynamism in the case of graph processing systems. We present bladyg, a graph processing framework
that addresses the issue of dynamism in large-scale graphs. We present an implementation of bladyg

on top of akka framework. We experimentally evaluate the performance of the proposed framework
by applying it to problems such as distributed k-core decomposition and partitioning of large dynamic
graphs. The experimental results show that the performance and scalability of bladyg are satisfying for
large-scale dynamic graphs.

© 2017 Elsevier Inc. All rights reserved.
1. Introduction

In the last decade, the field of distributed processing of large-
scale graphs has attracted considerable attention [5]. This attention
has been motivated not only by the increasing size of graph data,
but also by its huge number of applications, such as the analysis
of social networks [8], web graphs [2] and spatial networks [18].
In this context, many distributed/parallel graph processing sys-
tems have been proposed, such as Pregel [16], GraphLab [15],
and Trinity [23]. These systems can be divided into two cate-
gories: (1) vertex-centric and (2) block-centric approaches. Vertex-
centric approaches divide input graphs into partitions, and employ
a “think like a vertex” programming model to support iterative
graph computation [16,25]. Each vertex corresponds to a process,
and message are exchanged among vertices. In block-centric ap-
proaches [29], the unit of computation is a block – a connected
subgraph of the graph – and message exchanges occur among
blocks. The vertex-centric approaches have been proved to be use-
ful for many graph algorithms. However, they do not always per-
form efficiently, because they ignore the vital information about
graph partitions, which represent a real subgraph of the original
input graph, instead of a collection of unrelated vertices. We no-
tice that the above presented systems deal only with static graphs

* Corresponding author.
E-mail addresses: sabeur.aridhi@loria.fr (S. Aridhi), alberto.montresor@unitn.it

(A. Montresor), velgias@disi.unitn.eu (Y. Velegrakis).
http://dx.doi.org/10.1016/j.bdr.2017.05.003
2214-5796/© 2017 Elsevier Inc. All rights reserved.
and do not consider the issue of processing evolving and dynamic
graphs.

In our work, we are considering the issues of scale and dy-
namism in the case of block-centric approaches [4]. Particularly,
we are considering big graphs known by their evolving and decen-
tralized nature. For example, the structure of a big social network
(e.g., Twitter, Facebook) changes over time (e.g., users start new
relationships and communicate with different friends).

We present bladyg, a block-centric framework that addresses
the issue of dynamism in large-scale graphs. bladyg can be used
not only to compute common properties of large graphs, but also
to maintain the computed properties when new edges and nodes
are added or removed. The key idea is to avoid the re-computation
of graph properties from scratch when the graph is updated. bla-

dyg limits the re-computation to a small subgraph depending on
the undertaken task. We present a set of abstractions for bladyg

that can be used to design algorithms for any distributed graph
task.

More specifically, our contributions are:

• We introduce bladyg and its computational distributed model.
• We present an implementation of bladyg on top of akka [26],

a framework for building highly concurrent, distributed, and
resilient message-driven applications.

• We experimentally evaluate the performance of the proposed
framework, by applying it to problems such as distributed
k-core decomposition of large graphs and partitioning of large
dynamic graphs.

http://dx.doi.org/10.1016/j.bdr.2017.05.003
http://www.ScienceDirect.com/
http://www.elsevier.com/locate/bdr
mailto:sabeur.aridhi@loria.fr
mailto:alberto.montresor@unitn.it
mailto:velgias@disi.unitn.eu
http://dx.doi.org/10.1016/j.bdr.2017.05.003
http://crossmark.crossref.org/dialog/?doi=10.1016/j.bdr.2017.05.003&domain=pdf

10 S. Aridhi et al. / Big Data Research 9 (2017) 9–17
The rest of the paper is organized as follows. In Section 2, we
highlight existing works on distributed graph processing on large
and dynamic graphs. In Section 3, we present the system overview
of bladyg. In Section 4, we present some research problems that
can be solved using bladyg. Finally, we describe our experimental
evaluation in Section 5.

2. Related works

In this section we highlight the relevant literature in the field
of large graph processing. We consider two kinds of frameworks:
(1) graph processing frameworks and (2) frameworks for the pro-
cessing of large and dynamic graphs.

Graph processing frameworks Pregel [16] is a computational model
for large-scale graph processing problems. In Pregel, message ex-
changes occur among vertices of the input graph. As shown in
Fig. 1, each vertex is associated to a state that controls its activ-
ity.

Each vertex can decide to halt its computation, but can be wo-
ken up at every point of the execution by an incoming message.
At each superstep of the computation a user defined vertex pro-
gram is executed for each active vertex. The user defined function
will take the vertex and its incoming messages as input, change
the vertex value and eventually send messages to other vertices
through the outgoing edges.

GraphLab [15] is a graph processing framework that share the
same motivation with Pregel. While Pregel targets Google’s large
distributed system, GraphLab addresses shared memory parallel
systems which means that there is more focus on parallel access
of memory than on the issue of efficient message passing and syn-
chronization. In the programming model of GraphLab, the users
define an update function that can change all data associated to
the scope of that node (its edges or its neighbors). Fig. 2 shows the
scope of a vertex: an update function called on that vertex will be
able to read and write all data in its scope. We notice that scopes
can overlap, so simultaneously executing two update functions can
result in a collision. In this context, GraphLab offers some consis-
tency models in order to allow its users to trade off performance
and consistency as appropriate for their computation. As described
in Fig. 2, GraphLab offers a fully consistent model, a vertex consis-
tent model or an edge consistent model.

Fig. 1. Vertex’s state machine in Pregel.
Powergraph [9] is an abstraction that exploits the structure
of vertex-programs and explicitly factors computation over edges
instead of vertices It uses a greedy approach, processing and as-
signing each edge before moving to the next. It keeps in memory
the current sizes of each partition and, for each vertex, the set
of partitions that contain at least one edge of that vertex. If both
endpoints of the current edge are already inside one common par-
tition, the edge will be added to that partition. If they have no
partition in common, the node with the most edges still to assign
will choose one of its partitions. If only one node is already in a
partition, the edge will be assigned to that partition. Otherwise,
if both nodes are free, the edge will be assigned to the smallest
partition.

GraphX [27] is a library provided by Spark [30], a framework for
distributed and parallel programming. Spark introduces Resilient
Distributed Datasets (RDD), that can be split in partitions and kept
in memory by the machines of the cluster that is running the
system. These RDD can be then passed to one of the predefined
meta-functions such as map, reduce, filter or join, that will pro-
cess them and return a new RDD. In GraphX, graphs are defined
as a pair of two specialized RDD. The first one contains data re-
lated to vertices and the second one contains data related to edges
of the graph. New operations are then defined on these RDD, to al-
low to map vertices’s values via user defined functions, join them
with the edge table or external RDDs, or also run iterative compu-
tation.

Processing of large and dynamic graphs Chronos [11] is an execu-
tion and storage engine designed for running in-memory iterative
graph computation on evolving graphs. Locality is an important as-
pect of Chronos, where the in-memory layout of temporal graphs
and the scheduling of the iterative computation on temporal and
evolving graphs are carefully designed. The design of Chronos fur-
ther explores the interesting interplay among locality, parallelism,
and incremental computation in supporting common mining tasks
on temporal graphs. We notice that traditional graph processing
frameworks arrange computation around each vertex/edge in a
graph; while temporal graph engines, in addition, calculate the re-
sult across multiple snapshots. Chronos makes a decision to batch
operations associated with each vertex (or each edge) across mul-
tiple snapshots, instead of batching operations for vertices/edges
within a certain snapshot [11].

The problem of distributed processing of large dynamic graphs
has attracted considerable attention. In this context, several tra-
ditional graph operations such as k-core decomposition and max-
imal clique computation have been extended to dynamic graphs
[28] [1] [22] [14]. While this field of large dynamic graph analysis
represent an emerging class of applications, it is not sufficiently
addressed by the current graph processing frameworks and only
specific graph operations have been studied in the context of dy-
namic graphs.
Fig. 2. View of the scope of a vertex in GraphLab.

S. Aridhi et al. / Big Data Research 9 (2017) 9–17 11
Fig. 3. bladyg system overview.
3. The BLADYG framework

In this section, we first describe bladyg and its main compo-
nents. Then, we give a running example that helps to understand
the basic bladyg operations.

3.1. BLADYG system overview

Fig. 3 provides an architectural overview of the bladyg frame-
work. bladyg starts its computation by collecting the graph data
from various data sources including local files, Hadoop Distributed
File System (HDFS) and Amazon Simple Storage Service (Amazon
S3). In bladyg, graph data collection can be done using exist-
ing open source collection tools including Flume [7] and Fluentd

[24]. After collecting the graph data, bladyg partitions the input
graph into multiple partitions, each of them assigned to a differ-
ent worker. Each partition/block is a connected subgraph of the
input graph. This partitioning step is performed by a partitioner
worker that supports several types of predefined partitioning tech-
niques such as hash partitioning, random partitioning, edge-cut
and vertex-cut.

• In hash partitioning, edges are distributed across machines ac-
cording to a user-defined hash function.

• In random partitioning, edges are distributed across machines
randomly.

• In vertex-cut, edges are evenly distributed across machines
with the goal of minimizing the number of replicated vertices.

• In edge-cut partitioning, the vertices of a graph are divided
into disjoint clusters of nearly equal size, while the number of
edges that span separated clusters is minimum.
In addition to the provided partitioning techniques, bladyg users
may deploy existing graph partitioning techniques including Metis
[12] and JaBeJa [19]. bladyg users may also implement their own
partitioning methods. It is important to mention that bladyg al-
lows to process large graphs that already distributed among a set
of machines. This is motivated by the fact that the majority of the
existing large graphs are already stored in a distributed way, either
because they cannot be stored on a single machine due to their
sheer size, or because they get processed and analyzed with de-
centralized techniques that require them to be distributed among
a collection of machines. Each worker loads its block and performs
both local and remote computations, after which the status of the
blocks is updated. The coordinator/master worker orchestrates the
execution of bladyg in order to deal with incremental changes
on the input data. Depending on the graph task, the coordinator
builds an execution plan which consists of an ordered list of both
local and distant computation to be executed by the workers.

Each worker performs two types of operations:

1. Intra-block computation: in this case, the worker do local
computation on its associated block (partition) and modifies
either the status of the block and/or the states of the nodes
inside the block.

2. Inter-block computation: in this case, the worker asks distant
workers to do computation and after receiving the results it
updates the status of its associated block.

bladyg framework for large dynamic graph analysis operates in
three computing modes: In M2W-mode/W2M-mode, message ex-
changes between the master and all workers are allowed. The
master uses this mode to ask a distant worker to look for candidate
nodes i.e., nodes that need to be updated depending on the under-

12 S. Aridhi et al. / Big Data Research 9 (2017) 9–17
Fig. 4. A graph example distributed into two partitions.

taken task. The worker uses this mode to send the set of computed
candidate nodes to the master. In W2W-mode, message exchanges
between workers are allowed. The workers use this mode in or-
der to propagate the search for candidate nodes to one or more
distant workers. In Local-mode, only local computation is allowed.
This mode is used by the worker/master to do local computation.

A typical bladyg computation consists of: (1) an input graph,
(2) a set of incremental changes, (3) a sequence of worker/master
operations and (4) an output.

1. The input of bladyg framework is an undirected graph. This
graph is represented by a set of vertices and a set of edges.
A vertex is defined by its unique ID and a value, whereas an
edge is defined by its source ID, target ID, and value.

2. Incremental changes or graph updates consists of edge/node
insertions and/or removals. Graph updates are continuously
read from the data sources using one of the data collection
tools provided by bladyg.

3. A worker operation is a user-defined function that is executed
by one or many workers in parallel depending on the logic
of the graph task. Within each worker operation, the state of
the associated block is updated and all the computing modes
of bladyg are activated. Within each master operation, a user
defined function that defines the orchestration mechanism of
the master is executed. During a master operation Local-mode
and M2W-mode are activated.

4. The output of a bladyg program consists of an updated list of
vertices and an updated list of edges.

3.2. Illustrative example

Here, we provide an illustrative example to explain the princi-
ple of our approach.

Consider the graph G = (V , E) included in Fig. 4, and suppose
that it is splitted in two partitions, each processed by a separate
worker. We consider the task of computing the degree of all the
nodes in G . The system is completed by the master node, as shown
in Fig. 5.

A bladyg solution for computing the degree of all the nodes in
a given graph consists of two steps. The first step consists in ex-
ecuting several worker operations in order to compute the degree
of nodes in all subgraphs in parallel. As a result of this step, the
degree values of all the nodes of G are computed. The degree val-
ues of the nodes of our graph example G are presented in Fig. 5.
We assume that the incremental changes in our example consists
of only one new edge that links node 4 and node 1. The second
step of our bladyg solution consists in selecting the set of nodes
that need to be updated after considering the graph updates (in-
sertion of the edge (4, 1)). In this example, only the nodes of the
new edge need to be updated (nodes 1 and 4). The master sends a
M2W message (MSG1) to worker 1 (respectively to worker 2) and
asks the worker to increment the degree of node 4 (respectively
node 1). The updated degree values of the nodes of our graph ex-
ample G are presented in Fig. 6.
Fig. 5. The sequence of messages exchanged among the coordinator and the worker
nodes.

Fig. 6. The updated graph.

After updating the degree of the node 4 (respectively node 1),
worker 1 (respectively worker 2) sends a notification message
(MSG2) to the master. The master checks that all the graph updates
were processed and stops the execution of the bladyg program.

In this example, we only considered an insertion of a new edge
between two existing nodes. It is important to mention that in real
world applications, graph updates consists of insertion/deletion of
several nodes/edges. We also mention that the complexity of the
task of selecting the nodes that need to be updated after consider-
ing graph updates depends on the considered graph operation.

4. Applications

In this section, we apply bladyg to solve some classic graph
operations such as k-core decomposition [17] [3], clique computa-
tion [28] and graph partitioning [10] [20].

S. Aridhi et al. / Big Data Research 9 (2017) 9–17 13
4.1. Distributed k-core decomposition

Let G = (V , E) be an undirected graph with n = |V | nodes
and m = |E| edges. G is partitioned into p disjoint partitions
{V 1, . . . , V p}; in other words, V = ∪p

i=1 V i and V i ∩ V j = ∅ for each
i, j such that 1 ≤ i, j ≤ p and i �= j. The task of k-core decomposi-
tion [6] is condensed in the following two definitions:

Definition 1. A subgraph G(C) induced by the set C ⊆ V is a k-core
if and only if ∀u ∈ C : dG(C)(u) ≥ k, and G(C) is maximal, i.e., for
each C ⊃ C , there exists v ∈ C such that dG(C)(v) < k.

Definition 2. A node in G is said to have coreness k (kG(u) = k) if
and only if it belongs to the k-core but not the (k + 1)-core.

A k-core of a graph G = (V , E) can be obtained by recursively
removing all the vertices of degree less than k, until all vertices
in the remaining graph have degree at least k. The issue of dis-
tributed k-core decomposition in dynamic graphs consists in updat-
ing the coreness of the nodes of G when new nodes/edges are
added and/or removed.

bladyg solves the problem of distributed k-core decomposition
in two steps. The first step consists in executing a workerCompute()

operation that computes the coreness inside each of the blocks. In-
side a block, each vertex is associated with block(u), dG(u) and
kG(u), denoting the block of u, the degree and the coreness of
u in G , respectively. The second step consists in maintaining the
coreness values after considering the incremental changes. When-
ever a new edge (u, v) is added to the graph, bladyg first acti-
vates the M2W-mode and computes the set of candidate nodes i.e.,
nodes whose coreness needs to be updated. This is done by two
workerCompute() operations inside the workers that hold u and v .
The workerCompute() operations exploit Theorem 1, first stated and
demonstrated by Li, Yu and Mao [14], that identifies what are the
candidate nodes that may need to be updated whenever we add an
edge:

Theorem 1. Let G = (V , E) be a graph and (u, v) be an edge to be in-
serted in E, with u, v ∈ V . A node w ∈ V is said to be a candidate to be
updated based on the following three cases:

• If k(u) > k(v), w is candidate if and only if w is k-reachable from v
in the original graph G and k = k(u);

• If k(u) < k(v), w is candidate if and only if w is k-reachable from u
in the original graph G and k = k(v);

• If k(u) = k(v), w is candidate if and only if w is k-reachable from
either u and v in the original graph G and k = k(u).

A node w is k-reachable from u if w is reachable from u in the
k-core of G; i.e., if there exists a path between u and w in the
original graph such that all nodes in the path (including u and w)
have coreness equal to k = k(u).

We notice that the executed workerCompute() operations may
activate the W2W-mode since the set of nodes to be updated may
span multiple blocks/partitions. The nodes identified as potential
candidates are sent back to the coordinator node that orchestrates
the execution and computes, by executing a masterCompute() op-
eration, the correct coreness values of the candidate nodes.

4.2. Distributed edge partitioning

Edge partitioning is a classical problem in graph processing in
which edges of a given graph, rather than its vertices, are par-
titioned into disjoint subsets. Given a graph G = (V , E) and a
parameter K , an edge partitioning of G subdivides all edges into
a collection E1, · · · , E K of non-overlapping edge partitions, i.e.
E = ⋃K

i=1 ∀i, j : i �= j ⇒ Ei ∩ E j = ∅. The ith partition is associated
with a vertex set V i , composed of the end points of its edges:
V i = {u : (u, v) ∈ Ei ∨ (v, u) ∈ Ei}.

A bladyg solution for edge partitioning in large dynamic graphs
consists of two steps. The first step computes the initial parti-
tioning of the input graph. Each vertex of each block maintains
block(u), which denote the block of the node u. The second step
consists in updating the partitioning according to the incremental
changes. Whenever a new edge (u, v) is added to G , bladyg first
activates the M2W-mode and assigns the edge (u, v) to a selected
block. Block assignment is done by a masterCompute() operation
that decides the block of each new edge considering predefined
objective functions such as balance, communication efficiency and
connectedness [10]. The coordinator asks the worker that holds
u (respectively v) to compute the predefined objective functions
inside block(u) (respectively block(v)). The result of this compu-
tation is sent to the coordinator that decides the block that will
holds the edge (u, v). Whenever an edge (u, v) is removed from G ,
bladyg asks all the workers to compute a repartitioning threshold
in order to decide if the partitioning of G needs to be recom-
puted. In each worker, the repartitioning threshold is computed by
a workerCompute() operation and sent to the coordinator. The co-
ordinator decides, by executing a masterCompute() operation, if a
repartitioning of G is needed or not.

4.3. Distributed maximal clique computation

Given an undirected graph G = (V , E), a clique is a subset of
vertices C ⊆ V such that every vertex in C is connected to every
other vertex in C by an edge in G . A clique C is called to be max-
imal if any proper superset of C is not a clique. The problem of
maximal clique enumeration (MCE) is to compute the set M(G)

of maximal cliques in G . Considering the issue of dynamism, the
problem of MCE in dynamic graphs [28] consists in incrementally
update the set of maximal cliques for every graph update.

bladyg deals with the problem of MCE in dynamic graphs
in the following way. Each edge of each block maintains I D(v),
adj(u), Mu and Tu , which denote the identifier of u, the adjacent
vertices of u, the set of maximal cliques of u and a prefix-tree
such that the root of Tu is u and each root-to-leaf path repre-
sents a maximal clique in Mu , respectively. We assume that ad-
jacency list representation of the graph G , the set V of vertices
are ordered in ascending order of their IDs. We further define
adj<(u) = {v : v ∈ adj(u), I D(v) < I D(u)} and adj>(u) = {v : v ∈
adj(u), I D(v) > I D(u)}. When an edge (u, v) is inserted into G ,
bladyg coordinator asks workers containing u and v to update the
set of maximal cliques. Each of the workers of u and v executes
a workerCompute() operation in order to remove existing maximal
cliques that become non-maximal and insert maximal cliques that
should be inserted. An existing maximal clique C becomes non-
maximal if C contains either u or v , and verifies C ⊂ (adj(u) ∩
adj(v)) ∪ {u, v} [28]. Maximal cliques that need to be added to the
existing ones consists of new maximal cliques that contain u, v, w ,
for each w ∈ ((adj<(u) ∩ adj<(v)) ∪ {u}) [28]. When an edge (u, v)

is deleted from G , bladyg coordinator notifies workers containing
the nodes u and v by the edge deletion. Workers that hold u and
v execute a workerCompute() operation that deletes all the existing
maximal cliques that contain both u and v , where such maximal
cliques appear in T w , where w ∈ ((adj<(u) ∩ adj<(v)) ∪ {u}) [28].
Then, we generate all new maximal cliques that contain only u or
v , and insert them into T w , where w ∈ ((adj>(u) ∩ adj<(v)) ∪ {v})
or w ∈ ((adj<(u) ∩ adj<(v)) ∪ {u}). A notification is sent to bladyg

coordinator when all the workers finish the update process.

14 S. Aridhi et al. / Big Data Research 9 (2017) 9–17
Table 1
Experimental data.

Dataset Type � Nodes � Edges � Avg. CC Max(k)

DS1 Synthetic 50,000 365,883 4 0.3929 42
DS2 Synthetic 100,000 734,416 4 0.3908 46
ego-Facebook Real 4,039 88,234 8 0.6055 115
roadNet-CA Real 1,965,206 2,766,607 849 0.0464 3
com-LiveJournal Real 3,997,962 34,681,189 17 0.2843 296

Table 2
Experimental results.

Dataset AIT (ms) ADT (ms)

inter-partition intra-partition inter-partition intra-partition

DS1 42 10 32 8
DS2 30 10 25 8
ego-Facebook 38 15 32 10
roadNet-CA 30 12 26 10
com-LiveJournal 256 30 205 27
5. Experiments

We have applied bladyg framework to both the problem of dis-
tributed k-core decomposition in large dynamic graphs and the
problem of partitioning of dynamic graphs. We have performed
a set of experiments to evaluate the effectiveness and efficiency
of bladyg framework on a number of different real and synthetic
datasets. Implementation details of bladyg can be found in the fol-
lowing link: https :/ /members .loria .fr /SAridhi /files /software /bladyg/.

5.1. Experimental environment

We have implemented bladyg on top of the akka framework,
a toolkit and runtime for building highly concurrent, distributed,
resilient message-driven applications. In order to evaluate the per-
formance of bladyg, we used a cluster of 17 m3.medium instances
on Amazon EC2 (1 virtual 64-bit CPU, 3.75GB of main memory,
8GB local instance storage).

5.2. Experimental data

The characteristic properties of our datasets (shown in Table 1)
are the number of nodes, edges, the diameter, the average clus-
tering coefficient and the maximum coreness. We have used two
groups of datasets: (1) real-world ones and (2) synthetic datasets.
The real-world datasets are made available by the Stanford Large
Network Dataset collection [13] and consists of three datasets:

1. The ego-Facebook dataset consists of friends lists from Face-
book. We notice that Facebook data has been anonymized by
replacing the internal identifiers of Facebook users with new
values.

2. The roadNet-CA dataset is a road network of California. Inter-
sections and endpoints are represented by nodes and the roads
connecting these intersections are represented by edges.

3. The com-LiveJournal dataset is a free on-line blogging commu-
nity where users declare friendship each other.

The synthetic datasets are created by a graph generator based on
the Nearest Neighbor model [21]. The used graph generator builds
undirected graphs with power-law degree distribution with expo-
nent between 1.5 and 1.75, matching that of online social net-
works. Varying the input data enabled us to avoid biased results
specific to a single dataset and thus to have a better interpretation
of the results.

5.3. Experimental results

5.3.1. k-core decomposition of large dynamic graphs
In order to simulate dynamism in each dataset, we consider

two update scenarios. For each scenario, we measure the perfor-
mance of the system to update the core numbers of all the nodes
in the considered graph after insertion/deletion of a constant num-
ber of edges:

• In the inter-partition scenario, we either delete or insert 1000
random edges connecting two nodes belonging to different par-
titions;

• In the intra-partition scenario, we either delete or insert 1000
random edges connecting two nodes belonging to the same
partition.

Table 2 illustrates the results obtained with both the real and
the synthetic datasets. For each dataset, we record the average in-
sertion time (AIT) and the average deletion time (ADT) over the
1000 insertions/deletions for both inter-partition and intra-partition
scenarios. To generate the results of Table 2, we randomly parti-
tion the graph dataset into 8 partitions. As shown in Table 2, we
observe that in the intra-partition scenario, the values of the av-
erage insertion/deletion time are much smaller than those in the
inter-partition scenario. This can be explained by the fact that the
inserted/deleted edges in the intra-partition scenario are internal
ones. Consequently, the amount of data to be exchanged between
the distributed machines in the case of internal edges is smaller,
in most cases, than the amount of exchanged data in the case
of edges of the inter-partition scenario. During the k-core main-
tenance process after insertion/deletion of an internal edge, there
is always the chance of not having to visit distributed workers/par-
titions other than the partition that holds the internal edge.

Fig. 7 presents a comparison of our bladyg solution with
the HBase-based approach proposed by Aksu et al. [1] in terms
of average insertion/deletion time. For our approach, we used 9
m3.medium instances on Amazon EC2 (1 acting as a master and
8 acting as workers). For the HBase-based approach, we used 9
m3.medium instances on Amazon EC2 (1 master node and 8
slave nodes). As stressed in Fig. 7, our approach allows much bet-
ter results compared to the HBase-based approach for almost all
datasets. It is noteworthy to mention that the presented runtime
values of the HBase-based approach correspond to the mainte-
nance time of only one fixed k value core (k = max(k) in our
experimental study). This means that, for each dataset, the mainte-
nance process of the HBase-based approach needs to be repeated
max(k) times in order to achieve the same results as our ap-
proach.

To study the scalability of bladyg and to show the impact of the
number of used machines on the k-core decomposition task run-
time in the case of large-scale networks, we measured the average
insertion/deletion time of our bladyg solution for each number of
worker machines. We presents these results in Fig. 8.

https://members.loria.fr/SAridhi/files/software/bladyg/

S. Aridhi et al. / Big Data Research 9 (2017) 9–17 15
Fig. 7. Average insertion/deletion time. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

Fig. 8. Effect of the number of workers on the average insertion time (AIT) and the average deletion time (ADT) of the bladyg solution for the task of k-core decomposition.

16 S. Aridhi et al. / Big Data Research 9 (2017) 9–17
Table 3
Experimental results using hash partitioning on BLADYG.

Dataset Partitioning time (s) Update time (s)

IncrementalPart NaivePart

DS1 18 3 19
DS2 43 5 40
ego-Facebook 11 2 13
roadNet-CA 180 16 193
com-LiveJournal 209 25 227

Table 4
Experimental results using random partitioning on BLADYG.

Dataset Partitioning time (s) Update time (s)

IncrementalPart NaivePart

DS1 21 3 20
DS2 36 6 42
ego-Facebook 12 2 10
roadNet-CA 171 21 202
com-LiveJournal 211 27 232

As illustrated in Fig. 8, our bladyg solution scales up as the
number of worker machines increases.

5.3.2. Partitioning of large dynamic graphs
The goal here is to evaluate the performance and the scalabil-

ity of bladyg solution for the partitioning of large and dynamic
graphs. For our tests, we used the graph datasets described in Ta-
ble 1 and we considered three partitioning techniques (1) hash
partitioning, (2) random partitioning and (3) DynamicDFEP, a pre-
viously published distributed partitioning algorithm [20]. Dynam-

icDFEP is based on two main phases. The first phase consists of
four steps:

1. We randomly choose a single node for each of the desired par-
titions, and give it an initial amount of “funding” associated to
that partition.

2. Each node will use its funding to the neighbors to try to “buy”
additional edges. The partition will therefore buy the edges
that are closer to the randomly chosen nodes and start getting
bigger.

3. Since the initial amount of funding is insufficient for the parti-
tions to cover the entire graph, additional funding is assigned
to the partitions, in a manner inversely proportional to their
size. A small partition (which may have been started far from
the center of the graph) will receive more funding and there-
fore be more likely to grow than a larger partition.

4. Steps 2–3 are repeated until all edges have been bought by a
partition.

The second phase of DynamicDFEP deals with incremental changes
by applying one of the supported update strategies. For our tests,
we used the Unit-Based Update strategy (UB-Update) described in
[20].

In order to simulate dynamism in each dataset, we use only 90%
of the graph in the partitioning step and we insert the remaining
10% in the update step. Each experiment is repeated five times
and the numeric results in the following sections consists of the
average over all runs.

Tables 3 and 4 illustrate the results obtained with both the real
and the synthetic datasets. For each dataset and for each partition-
ing method, we record the partitioning time (PT) and the update
time (UT). The update time is computed for two different partition-
ing strategies: (1) IncrementalPart and (2) NaivePart. The first
update strategy consists in applying the used partitioning tech-
nique only on the incremental changes. The second update strategy
is a naive partitioning technique that consists in destroying the
Table 5
Experimental results using DynamicDFEP on BLADYG.

Dataset Partitioning time (s) Update time (s)

UB-Update NaivePart

DS1 30 3 32
DS2 56 5 62
ego-Facebook 80 2 91
roadNet-CA 254 31 321
com-LiveJournal 509 34 572

old graph partitioning and all further information associated to the
assignment and restarts from the scratch by running the used par-
titioning technique.

As shown in Tables 3, 4 and 5, we observe that, for all par-
titioning methods, bladyg results using IncrementalPart strategy
are much better than those using NaivePart strategy. This can be
explained by the fact that bladyg allows to process only incremen-
tal changes without restarting the partitioning from the scratch.

6. Conclusions

This paper deal with the problem of graph processing in large
dynamic networks. We presented bladyg framework, a block-
centric framework that addresses the issue of dynamism in large
scale graphs. The presented framework can be used not only to
compute common properties of large graphs but also to maintain
the computed properties when new edges and nodes are added or
removed. We implemented bladyg on top of akka, a framework
for building highly concurrent, distributed, and resilient message-
driven applications. We applied bladyg to two different problems:
(1) distributed k-core decomposition in large dynamic graphs and
(2) partitioning of large dynamic graphs. By running some exper-
iments on a variety of both real and synthetic datasets, we have
shown that the performance and scalability of the proposed frame-
work are satisfying for large-scale dynamic graphs.

In the future work, we aim at studying data communications
and networking of bladyg framework. Particularly, we will ex-
amine the amount of exchanged data/messages between the dis-
tributed machines during the execution of the associated graph
task. We also aim to study the impact of the partitioning method
and the number of graph partitions on the amount of exchanged
data/messages between the master node and the worker nodes.

Conflict of interest

The authors confirm that there are no conflicts of interest to
declare.

References

[1] H. Aksu, M. Canim, Y.-C. Chang, I. Korpeoglu, O. Ulusoy, Distributed k-core view
materialization and maintenance for large dynamic graphs, IEEE Trans. Knowl.
Data Eng. 26 (10) (Oct. 2014) 2439–2452.

[2] J.I. Alvarez-Hamelin, A. Barrat, A. Vespignani, et al., k-Core decomposition of in-
ternet graphs: hierarchies, self-similarity and measurement biases, Netw. Het-
erog. Media 3 (2) (2008) 371.

[3] S. Aridhi, M. Brugnara, A. Montresor, Y. Velegrakis, Distributed k-core decom-
position and maintenance in large dynamic graphs, in: Proceedings of the
10th ACM International Conference on Distributed and Event-Based Systems,
DEBS’16, ACM, New York, NY, USA, 2016, pp. 161–168.

[4] S. Aridhi, A. Montresor, Y. Velegrakis, BLADYG: a novel block-centric framework
for the analysis of large dynamic graphs, in: Proceedings of the ACM Workshop
on High Performance Graph Processing, HPGP’16, ACM, New York, NY, USA,
2016, pp. 39–42.

[5] S. Aridhi, E.M. Nguifo, Big graph mining: frameworks and techniques, Big Data
Res. 6 (2016) 1–10.

[6] V. Batagelj, M. Zaveršnik, Fast algorithms for determining (generalized) core
groups in social networks, Adv. Data Anal. Classif. 5 (2) (2011) 129–145.

http://refhub.elsevier.com/S2214-5796(17)30004-7/bib36373032343836s1
http://refhub.elsevier.com/S2214-5796(17)30004-7/bib36373032343836s1
http://refhub.elsevier.com/S2214-5796(17)30004-7/bib36373032343836s1
http://refhub.elsevier.com/S2214-5796(17)30004-7/bib416C766172657As1
http://refhub.elsevier.com/S2214-5796(17)30004-7/bib416C766172657As1
http://refhub.elsevier.com/S2214-5796(17)30004-7/bib416C766172657As1
http://refhub.elsevier.com/S2214-5796(17)30004-7/bib646562733230313661s1
http://refhub.elsevier.com/S2214-5796(17)30004-7/bib646562733230313661s1
http://refhub.elsevier.com/S2214-5796(17)30004-7/bib646562733230313661s1
http://refhub.elsevier.com/S2214-5796(17)30004-7/bib646562733230313661s1
http://refhub.elsevier.com/S2214-5796(17)30004-7/bib626C61647967s1
http://refhub.elsevier.com/S2214-5796(17)30004-7/bib626C61647967s1
http://refhub.elsevier.com/S2214-5796(17)30004-7/bib626C61647967s1
http://refhub.elsevier.com/S2214-5796(17)30004-7/bib626C61647967s1
http://refhub.elsevier.com/S2214-5796(17)30004-7/bib626472s1
http://refhub.elsevier.com/S2214-5796(17)30004-7/bib626472s1
http://refhub.elsevier.com/S2214-5796(17)30004-7/bib6261746167656C793033s1
http://refhub.elsevier.com/S2214-5796(17)30004-7/bib6261746167656C793033s1

S. Aridhi et al. / Big Data Research 9 (2017) 9–17 17
[7] C. Chambers, A. Raniwala, F. Perry, S. Adams, R.R. Henry, R. Bradshaw, N.
Weizenbaum, FlumeJava: easy, efficient data-parallel pipelines, in: Proceedings
of the 31st ACM SIGPLAN Conference on Programming Language Design and
Implementation, PLDI’10, ACM, New York, NY, USA, 2010, pp. 363–375.

[8] C. Giatsidis, D. Thilikos, M. Vazirgiannis, Evaluating cooperation in communi-
ties with the k-core structure, in: Proc. of the Int. Conf. on Advances in Social
Networks Analysis and Mining, July 2011.

[9] J.E. Gonzalez, Y. Low, H. Gu, D. Bickson, C. Guestrin, Powergraph: distributed
graph-parallel computation on natural graphs, in: Proceedings of the 10th
USENIX Conference on Operating Systems Design and Implementation, OSDI’12,
USENIX Association, Berkeley, CA, USA, 2012, pp. 17–30.

[10] A. Guerrieri, A. Montresor, DFEP: distributed funding-based edge partitioning,
in: Proc. of the 21st Int. Conf. on Parallel and Distributed Computing, Eu-
ropar’15, 2015, pp. 346–358.

[11] W. Han, Y. Miao, K. Li, M. Wu, F. Yang, L. Zhou, V. Prabhakaran, W. Chen, E.
Chen, Chronos: a graph engine for temporal graph analysis, in: Proceedings of
the Ninth European Conference on Computer Systems, EuroSys’14, ACM, New
York, NY, USA, 2014, pp. 1–14.

[12] G. Karypis, V. Kumar, A fast and high quality multilevel scheme for partitioning
irregular graphs, SIAM J. Sci. Comput. 20 (1) (Dec. 1998) 359–392.

[13] J. Leskovec, A. Krevl, SNAP datasets: Stanford large network dataset collection,
http://snap.stanford.edu/data, June 2014.

[14] R. Li, J.X. Yu, R. Mao, Efficient core maintenance in large dynamic graphs, IEEE
Trans. Knowl. Data Eng. 26 (10) (2014) 2453–2465.

[15] Y. Low, D. Bickson, J. Gonzalez, et al., Distributed GraphLab: a framework for
machine learning and data mining in the cloud, Proc. VLDB Endow. 5 (8) (Apr.
2012) 716–727.

[16] G. Malewicz, M.H. Austern, A.J. Bik, et al., Pregel: a system for large-scale graph
processing, in: Proc. of the 2010 ACM SIGMOD Int. Conf. on Management of
Data, ACM, 2010, pp. 135–146.

[17] A. Montresor, F.D. Pellegrini, D. Miorandi, Distributed k-core decomposition,
IEEE Trans. Parallel Distrib. Syst. 24 (2) (2013) 288–300.

[18] R. Patuelli, A. Reggiani, P. Nijkamp, F.-J. Bade, The evolution of the commut-
ing network in Germany: spatial and connectivity patterns, J. Transp. Land Use
2 (3) (2010).
[19] F. Rahimian, A.H. Payberah, S. Girdzijauskas, M. Jelasity, S. Haridi, JA-BE-JA:
a distributed algorithm for balanced graph partitioning, in: IEEE 7th Interna-
tional Conference on Self-Adaptive and Self-Organizing Systems, Sept. 2013,
pp. 51–60.

[20] C. Sakouhi, S. Aridhi, A. Guerrieri, S. Sassi, A. Montresor, DynamicDFEP: a dis-
tributed edge partitioning approach for large dynamic graphs, in: Proceedings
of the 20th International Database Engineering & Applications Symposium,
IDEAS’16, ACM, New York, NY, USA, 2016, pp. 142–147.

[21] A. Sala, L. Cao, C. Wilson, R. Zablit, H. Zheng, B.Y. Zhao, Measurement-calibrated
graph models for social network experiments, in: Proc. of the 19th Int. Conf.
on World Wide Web, WWW’10, ACM, 2010.

[22] A.E. Saríyüce, B. Gedik, G. Jacques-Silva, K.-L. Wu, U.V. Çatalyürek, Stream-
ing algorithms for k-core decomposition, Proc. VLDB Endow. 6 (6) (Apr. 2013)
433–444.

[23] B. Shao, H. Wang, Y. Li, Trinity: a distributed graph engine on a memory cloud,
in: Proc. of the Int. Conf. on Management of Data, ACM, 2013.

[24] S. Singh, Cluster-level logging of containers with containers, Queue 14 (3) (May
2016) 83–106.

[25] Y. Tian, A. Balmin, S.A. Corsten, et al., From “think like a vertex” to “think like
a graph”, Proc. VLDB Endow. 7 (3) (2013) 193–204.

[26] D. Wyatt, Akka Concurrency, Artima Inc., 2013.
[27] R.S. Xin, J.E. Gonzalez, M.J. Franklin, I. Stoica, GraphX: a resilient distributed

graph system on spark, in: First International Workshop on Graph Data Man-
agement Experiences and Systems, GRADES’13, ACM, New York, NY, USA, 2013,
pp. 1–6.

[28] Y. Xu, J. Cheng, A.W. Fu, Y. Bu, Distributed maximal clique computation, in:
Proc. of the IEEE Int. Congress on Big Data, 2014, pp. 160–167.

[29] D. Yan, J. Cheng, Y. Lu, W. Ng, Blogel: a block-centric framework for dis-
tributed computation on real-world graphs, Proc. VLDB Endow. 7 (14) (Oct.
2014) 1981–1992.

[30] M. Zaharia, M. Chowdhury, T. Das, A. Dave, J. Ma, M. McCauley, M.J. Franklin, S.
Shenker, I. Stoica, Resilient distributed datasets: a fault-tolerant abstraction for
in-memory cluster computing, in: Proceedings of the 9th USENIX Conference
on Networked Systems Design and Implementation, NSDI’12, USENIX Associa-
tion, Berkeley, CA, USA, 2012, p. 2.

http://refhub.elsevier.com/S2214-5796(17)30004-7/bib666C756D65s1
http://refhub.elsevier.com/S2214-5796(17)30004-7/bib666C756D65s1
http://refhub.elsevier.com/S2214-5796(17)30004-7/bib666C756D65s1
http://refhub.elsevier.com/S2214-5796(17)30004-7/bib666C756D65s1
http://refhub.elsevier.com/S2214-5796(17)30004-7/bib35393932353637s1
http://refhub.elsevier.com/S2214-5796(17)30004-7/bib35393932353637s1
http://refhub.elsevier.com/S2214-5796(17)30004-7/bib35393932353637s1
http://refhub.elsevier.com/S2214-5796(17)30004-7/bib476F6E7A616C657A3A323031323A5044473A323338373838302E32333837383833s1
http://refhub.elsevier.com/S2214-5796(17)30004-7/bib476F6E7A616C657A3A323031323A5044473A323338373838302E32333837383833s1
http://refhub.elsevier.com/S2214-5796(17)30004-7/bib476F6E7A616C657A3A323031323A5044473A323338373838302E32333837383833s1
http://refhub.elsevier.com/S2214-5796(17)30004-7/bib476F6E7A616C657A3A323031323A5044473A323338373838302E32333837383833s1
http://refhub.elsevier.com/S2214-5796(17)30004-7/bib44424C503A636F6E662F6575726F7061722F4775657272696572694D3135s1
http://refhub.elsevier.com/S2214-5796(17)30004-7/bib44424C503A636F6E662F6575726F7061722F4775657272696572694D3135s1
http://refhub.elsevier.com/S2214-5796(17)30004-7/bib44424C503A636F6E662F6575726F7061722F4775657272696572694D3135s1
http://refhub.elsevier.com/S2214-5796(17)30004-7/bib6368726F6E6F73s1
http://refhub.elsevier.com/S2214-5796(17)30004-7/bib6368726F6E6F73s1
http://refhub.elsevier.com/S2214-5796(17)30004-7/bib6368726F6E6F73s1
http://refhub.elsevier.com/S2214-5796(17)30004-7/bib6368726F6E6F73s1
http://refhub.elsevier.com/S2214-5796(17)30004-7/bib6D65746973s1
http://refhub.elsevier.com/S2214-5796(17)30004-7/bib6D65746973s1
http://snap.stanford.edu/data
http://refhub.elsevier.com/S2214-5796(17)30004-7/bib44424C503A6A6F75726E616C732F746B64652F4C69594D3134s1
http://refhub.elsevier.com/S2214-5796(17)30004-7/bib44424C503A6A6F75726E616C732F746B64652F4C69594D3134s1
http://refhub.elsevier.com/S2214-5796(17)30004-7/bib67726170686C6162s1
http://refhub.elsevier.com/S2214-5796(17)30004-7/bib67726170686C6162s1
http://refhub.elsevier.com/S2214-5796(17)30004-7/bib67726170686C6162s1
http://refhub.elsevier.com/S2214-5796(17)30004-7/bib70726567656Cs1
http://refhub.elsevier.com/S2214-5796(17)30004-7/bib70726567656Cs1
http://refhub.elsevier.com/S2214-5796(17)30004-7/bib70726567656Cs1
http://refhub.elsevier.com/S2214-5796(17)30004-7/bib4D6F6E747265736F72504D3133s1
http://refhub.elsevier.com/S2214-5796(17)30004-7/bib4D6F6E747265736F72504D3133s1
http://refhub.elsevier.com/S2214-5796(17)30004-7/bib4A544C553233s1
http://refhub.elsevier.com/S2214-5796(17)30004-7/bib4A544C553233s1
http://refhub.elsevier.com/S2214-5796(17)30004-7/bib4A544C553233s1
http://refhub.elsevier.com/S2214-5796(17)30004-7/bib6A6162656A61s1
http://refhub.elsevier.com/S2214-5796(17)30004-7/bib6A6162656A61s1
http://refhub.elsevier.com/S2214-5796(17)30004-7/bib6A6162656A61s1
http://refhub.elsevier.com/S2214-5796(17)30004-7/bib6A6162656A61s1
http://refhub.elsevier.com/S2214-5796(17)30004-7/bib69646561733230313661s1
http://refhub.elsevier.com/S2214-5796(17)30004-7/bib69646561733230313661s1
http://refhub.elsevier.com/S2214-5796(17)30004-7/bib69646561733230313661s1
http://refhub.elsevier.com/S2214-5796(17)30004-7/bib69646561733230313661s1
http://refhub.elsevier.com/S2214-5796(17)30004-7/bib53616C613A323031303A4D474D3A313737323639302E31373732373738s1
http://refhub.elsevier.com/S2214-5796(17)30004-7/bib53616C613A323031303A4D474D3A313737323639302E31373732373738s1
http://refhub.elsevier.com/S2214-5796(17)30004-7/bib53616C613A323031303A4D474D3A313737323639302E31373732373738s1
http://refhub.elsevier.com/S2214-5796(17)30004-7/bib53617269797563653A323031333A53414B3A323533363333362E32353336333434s1
http://refhub.elsevier.com/S2214-5796(17)30004-7/bib53617269797563653A323031333A53414B3A323533363333362E32353336333434s1
http://refhub.elsevier.com/S2214-5796(17)30004-7/bib53617269797563653A323031333A53414B3A323533363333362E32353336333434s1
http://refhub.elsevier.com/S2214-5796(17)30004-7/bib7472696E697479s1
http://refhub.elsevier.com/S2214-5796(17)30004-7/bib7472696E697479s1
http://refhub.elsevier.com/S2214-5796(17)30004-7/bib666C75656E7464s1
http://refhub.elsevier.com/S2214-5796(17)30004-7/bib666C75656E7464s1
http://refhub.elsevier.com/S2214-5796(17)30004-7/bib5469616E3A32303133s1
http://refhub.elsevier.com/S2214-5796(17)30004-7/bib5469616E3A32303133s1
http://refhub.elsevier.com/S2214-5796(17)30004-7/bib616B6B61s1
http://refhub.elsevier.com/S2214-5796(17)30004-7/bib58696E3A323031333A4752443A323438343432352E32343834343237s1
http://refhub.elsevier.com/S2214-5796(17)30004-7/bib58696E3A323031333A4752443A323438343432352E32343834343237s1
http://refhub.elsevier.com/S2214-5796(17)30004-7/bib58696E3A323031333A4752443A323438343432352E32343834343237s1
http://refhub.elsevier.com/S2214-5796(17)30004-7/bib58696E3A323031333A4752443A323438343432352E32343834343237s1
http://refhub.elsevier.com/S2214-5796(17)30004-7/bib44424C503A636F6E662F626967646174612F58754346423134s1
http://refhub.elsevier.com/S2214-5796(17)30004-7/bib44424C503A636F6E662F626967646174612F58754346423134s1
http://refhub.elsevier.com/S2214-5796(17)30004-7/bib626C6F67656Cs1
http://refhub.elsevier.com/S2214-5796(17)30004-7/bib626C6F67656Cs1
http://refhub.elsevier.com/S2214-5796(17)30004-7/bib626C6F67656Cs1
http://refhub.elsevier.com/S2214-5796(17)30004-7/bib5A6168617269613A323031323A5244443A323232383239382E32323238333031s1
http://refhub.elsevier.com/S2214-5796(17)30004-7/bib5A6168617269613A323031323A5244443A323232383239382E32323238333031s1
http://refhub.elsevier.com/S2214-5796(17)30004-7/bib5A6168617269613A323031323A5244443A323232383239382E32323238333031s1
http://refhub.elsevier.com/S2214-5796(17)30004-7/bib5A6168617269613A323031323A5244443A323232383239382E32323238333031s1
http://refhub.elsevier.com/S2214-5796(17)30004-7/bib5A6168617269613A323031323A5244443A323232383239382E32323238333031s1

	BLADYG: A Graph Processing Framework for Large Dynamic Graphs
	1 Introduction
	2 Related works
	3 The BLADYG framework
	3.1 BLADYG system overview
	3.2 Illustrative example

	4 Applications
	4.1 Distributed k-core decomposition
	4.2 Distributed edge partitioning
	4.3 Distributed maximal clique computation

	5 Experiments
	5.1 Experimental environment
	5.2 Experimental data
	5.3 Experimental results
	5.3.1 k-core decomposition of large dynamic graphs
	5.3.2 Partitioning of large dynamic graphs

	6 Conclusions
	Conﬂict of interest
	References

