PeerSpaces: Data-driven Coordination
in Peer-to-Peer Networks

Nadia Busi Cristian Manfredini

Alberto Montresor

Gianluigi Zavattaro

Department of Computer Science
University of Bologna
Mura Anteo Zamboni, 7
40127 Bologna - Italy

{busi, manfredi, nontresor, zavattar }@s. uni bo.it

ABSTRACT

Shared dataspaces a la Linda, and the underlying data-driven co-
ordination model, have been successfully exploited in the develop-
ment of a huge variety of applications, going from parallel com-
puting to web-based collaborative work. In this paper we consider
a novel class of applications, namely those developed for peer-to-
peer networks a la Gnutella or FreeNet. We discuss the problems
which arise when trying to exploit the original Linda coordination
model in this new scenario. In order to address these problems,
we introduce PeerSpaces, a new coordination model particularly
suited for the realm of peer-to-peer network applications, and we
present a prototypical implementation of this coordination model
based on the JXTA peer-to-peer technology.

1. INTRODUCTION

The rapid evolution of computers and networks is calling for the
development of middleware platforms responsible for the manage-
ment of dynamically reconfigurable federations of devices, where
processes cooperate and compete for the use of shared resources.
In this scenario one of the most challenging topics is concerned
with the coordination of the activities performed by the federated
components.

Generative communication, realized by means of the insertion
and withdrawal of elements from a shared multiset, is the pecu-
liar feature of a family of coordination languages, of which Linda
[4] is the most prominent representative. Generative communica-
tion is based on the following principles: a sender communicates
with a receiver through a shared data space (called tuple space, TS
for short), where emitted messages are collected; the receiver can
consume the message from TS; a message generated by a process
has an independent existence in the tuple space until it is explicitly
withdrawn by a receiver; in fact, after its insertion in TS, a message
becomes equally accessible to all processes, but it is bound to none.

In the last decades, the shared dataspace approach has been suc-
cessfully adopted in a huge variety of systems and applications,
going from parallel computing to Web-based collaboration sys-

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.

SAC 2003 Melbourne, Florida, USA

Copyright 2003 ACM 1-58113-624-2/03/03 ...$5.00.

tem. Recently, this communication mechanism has been adopted
also by several proposals of coordination platforms (see, e.g., Sun
Microsystems JavaSpaces [16] or the IBM T Spaces [17]) for the
management of dynamically reconfigurable federations of devices,
where processes cooperate and compete for the use of shared re-
sources.

In this paper we investigate the problem of exploiting this coordi-
nation approach to the realm of peer-to-peer networks. Informally,
peer-to-peer (P2P) networks are distributed systems based on the
concept of resource sharing by direct exchange between peer nodes
(i.e., nodes having the same role and responsibility). Exchanged re-
sources include content, as in popular P2P file sharing applications
[14, 7, 8], and storage capacity or CPU cycles, as, for example, in
computational and storage grid systems [1, 12, 6].

Modern P2P networks and traditional distributed systems differ
in several important aspects. First, P2P applications reach out to
harness the outer edges of the Internet and consequently involve
scales that were previously unimaginable. Second, P2P by defini-
tion, excludes any form of centralized structure; control is required
to be completely decentralized, and peers cooperate together by ex-
ploiting the locality of their interactions. Finally, the environments
in which P2P applications are deployed exhibit extreme dynamism
in structure, content and load. The topology of the system typically
changes rapidly due to nodes voluntarily coming and going or due
to involuntary events such as crashes and partitions. The load in the
system may also shift rapidly from one region to another, for exam-
ple, as certain files become “hot” in a file sharing system. For these
reasons, modern P2P systems are required to show a large degree
of self-configuration and self-management properties.

Existing distributed implementations of Linda-like coordination
infrastructures are based on a client-server architecture, where the
dataspace metaphor is intended as a (centralized) repository ser-
vice. The main proposal breaking the client-server bias is repre-
sented by the transiently shared dataspace metaphor introduced in
Lime [10].

Lime [10] (Linda in a Mobile Environment) is a coordination
middleware supporting both logical and physical mobility. The
main entities in Lime are agents and hosts; each agent resides on
a host, and may migrate to a different host exploiting logical mo-
bility. Each host may communicate with other hosts, provided that
they are connected. A host may phisically move, thus changing its
relative connections. The whole set of host is partitioned in con-
federations of connected hosts.

In Lime, the agents coordinate by exchanging tuples as in Linda.
Each agent has its own multiset of tuples which moves with the
agent. The tuples owned by the agents which are currently in ex-

ecution in the same confederation of hosts are merged in a tran-
siently shared dataspace, which represents the medium the agents
exploit to coordinate themselves.

The Lime coordination model follows the peer-to-peer philoso-
phy in the sense that it does not assume any client-server relation-
ship. However, peer-to-peer networks like Gnutella [7] or Freenet [8]
embody features which are different with respect to those consid-
ered in Lime.

In a peer-to-peer scenario, the involved entities (peers) are dy-
namic, i.e., they can frequently connect and disconnect, but they
are not necessarily mobile. Mobility is not a peer-to-peer require-
ment in general. Moreover, a peer usually incorporates a level of
autonomy which is different from that of an agent as in Lime. For
instance, consider two peers in execution on the same device, each
one having different connections to other peers. For this reason, it
is not possible to reasonably partition the peers in distinct confed-
erations as assumed in Lime.

In light of this observation, we can see that an adequate data-
driven coordination model for peer-to-peer networks is still lack-
ing. In order to cover this gap, we introduce a new coordination
model named PeerSpaces, as well as a prototypical implemen-
tation of this coordination model based on the JXTA peer-to-peer
technology [5].

The paper is structured as follows. Section 2 reports the ra-
tionale behind the guidelines we have followed in the design of
PeerSpaces; Section 3 presents the formal definition of the co-
ordination model; Section 4 discusses the implementation of the
JXTA technology; and finally Section 5 draws some conclusive re-
marks.

2. TOWARDSPEERSPACES

In this section we present some guidelines we followed in the de-
sign of PeerSpaces. To be as general as possible, in our analysis
we abstract away from the internal structure of the shared data. In
this way, the proposed model can be instantiated to deal with any
form of data, such as, e.g., Linda-like tuples, XML documents or
JavaSpaces-like entries.

Following the peer-to-peer philosophy we do not assume any
centralized storage for the shared data, but we assume that each
datum resides on a specific peer. Any datum can be accessed by
any other peer, provided that there is a direct connection, or a path
of adjacent connections, between the peer reading the datum and
the peer on which the datum resides.

The guidelines we report can be classified into two groups: those
concerned with the production of data and those related to data re-
trieval.

2.1 Data production

According to the P2P philosophy, we expect that PeerSpaces
supports both context-aware and context-transparent data produc-
tion. Context aware applications are those which access both the
system configuration context and the data context explicitly. For
example, consider a file which is stored on a specific node of a peer-
to-peer network and requires, in order to be accessed, the knowl-
edge of its current location. On the other hand, context transparent
applications can be developed without explicit knowledge of the
current context. Consider, e.g., a retrieval operation in a file shar-
ing application which does not take into account where the file is
stored, but the only need is that the file is available in some reach-
able node.

In order to support context-awareness, it may be useful to lo-
cate a new datum on a specified peer. This feature could be used
to model resources or information which are strictly connected to
an entity of the system, hence they must disappear when the en-

tity becomes disconnected. As an example, consider data which
represent resources or services provided by a peer. In this case data
production is context aware, in the sense that the programmer of the
application explicitly indicates where the new datum should reside.

As far as context independence is concerned, we devise two pos-
sible ways for supporting it. The first one is represented by generic
data. In the spirit of the generative communication approach, a da-
tum belonging to this class has an existence which is completely
independent from its producer. Hence, the coordination infrastruc-
ture may decide to locate this datum in any of the available stor-
ages, as well as to move the datum according to some system or
application specific needs. As an example, consider load balancing
or accessibility improvement. An interesting aspect related to this
form of datum is the so called time- and space-uncoupling: data are
accessed independently of both the time when they are produced
and the peer which created them. This kind of datum can be useful,
e.g., to achieve a form of disconnected master-worker interaction,
in which the involved entities connect to the P2P system only when
they need to produce or consume job requests, which are processed
while disconnected.

The second form of context transparency we consider can be ex-
ploited in the case the datum represents an information, or a re-
source, that cannot be consumed; in other words, data that can
never be explicitly removed from the repository. In these cases, the
data can be transparently replicated without introducing any consis-
tency problem which typically arises when a withdrawal operation
requires to atomically remove all the replicas of a datum. Thus,
in these cases, the coordination infrastructure can exploit a trans-
parent replication of the datum in order to improve its availability
to the peer community, as well as fault tolerance. We refer to this
class as replicable data. A typical application which surely benefits
from this kind of data is represented by file sharing systems.

2.2 Dataretrieval

Concerning data retrieval mechanisms, we observe that it is use-
ful to provide the peers the possibility to define their own visibility
horizon of the system, instead of forcing a predefined scope, as it
happens, e.g., in Linda and in Lime. In fact, in the first case the
scope coincides with the whole dataspace, while in the second one
the scope is formed by the union of the contents of the reposito-
ries of the currently federated hosts. This idea may be realized by
equipping each retrieval operation with an extra parameter, speci-
fying the actual scope to be used. A reasonable metric for scope
definition is the Time To Live (TTL), corresponding to the relative
distance between the peer hosting the datum and the peer perform-
ing the operation in the current topology. This feature adds both
inter- and intra-peer flexibility. More precisely: two different peers
may have different visions of the global dataspace and the same
peer may change its own scope in different retrieval operations.

3. THE PEERSPACES COORDINATION
MODEL

Following the approach of [3], we describe the PeerSpaces co-
ordination model providing a formal way to represent the possible
configurations of the system, plus a transition system indicating
how these configurations may evolve according to the execution of
the coordination operations.

Let Data, ranged over by d, e, ..., be the set of the data that
can be exchanged by the peers. For each datum d, we denote with
dg (resp. d,) a generic (resp. replicable) instance of datum d. As
described in the previous section, by generic instance of a datum we
consider a datum which can transparently migrate from one peer
to another one, while by replicable instance we consider a datum

(1) (p[write(d,Here).P,DS] & Ps, <, MD) — (p[P, DS & d] @ Ps, >, MD)
(2) (p[write(d,Gen).P, DS] ® Ps, =1, MD) —s (p[P, DS @ dg] @ Ps, <, MD)
(3) (p[write(d,Rep).P, DS] ® Ps, =1, MD) —s (p[P, DS @ d,] @ Ps, =1, MD)
(4) (plwrite(d,p').P, DS| & Ps, i, MD) — (p[P, DS] & Ps, i, MD & (d)®)

(5) (P'[P,DS]&® Ps, =, MD & (d)}') — (p'[P, DS & d] & Ps, >, MD)

if Route(p,p’)

Table 1: Data production.

(p|P, DS @ d'] & Ps, <, MD)

(r[P,DS| @ p'[P',DS" ©d'] ® Ps, 1, MD)

(p[P, DS] & Ps, 1, MD)

(p|P,DS] & p'[P', DS’ & Ps, =, MD)

(6) (p[read(d,h).P,DS&d']|® Ps, <, MD) —»

(7) (p[read(d,h).P,DS|®p'[P',DS & d'|& Ps, =, MD) —

(8) (p[take(d,h).P,DS@d'|® Ps, =, MD) —

(9) (p[take(d,h).P,DS| @ p'[P',DS &d'| & Ps, <, MD) —»

ifd € {d,dy,d,}

ifd € {d,dgy,d.} A p' € Hor(p,h)

ifd € {d,dy}

ifd € {d,dy} A p' € Hor(p,h)

Table2: Dataretrieval.

that can be transparently replicated in different peers. Formally, let
Datag = {dy | d € Data} and Data, = {d. | d € Data}
denote the set of generic and replicable data, respectively.

A peer is atriple, denoted by p[P, DS], where p is the peer iden-
tifier, P is the program the peer is executing, and DS is the datas-
pace local to the peer.

Formally, we denote by Pid the set of the peer identifiers ranged
overbyp,q,....

We consider four possible out operations: local, remote, generic,
and replicable (informally described in the previous section). In
order to distinguish among these four possibilities, we add to the
output operation a parameter which is taken from the set Target =
PidU{Here, Gen,Rep}. The peer identifiers in Pid can be used to
denote the target of a remote, while the keywords Here, Gen, Rep
denote local, generic, and replicable output, respectively. Let ¢, ¢',

. range over Target.

As far as the data retrieval operations are concerned, we have to
provide a way to denote the actual horizon to be used. One may
consider different notions of horizon, e.g., all the peers that can be
reached in a certain amount of time or within a close region of the
network. As discussed in the previous section, in P2P networks a
typical metric that is used to denote the proximity of peers is the so
called time-to-live (TTL for short). Thus, we denote horizons using
h, B, ... which range over natural numbers. These natural num-
bers represent the maximal relative distance (expressed in terms of
number of peer connections) between the peer performing the data

retrieval operation, and the peer where the datum is retrieved.

We are now ready to introduce the grammar describing the peer
programs. Let Prog, ranged over by P, @, ..., be the set of terms
defined by the following grammar:

P:= 0| pP| K
pu= write(d,t) | take(d,h) | read(d,h)

where the term 0 denotes the empty program, u.P is a program
prefixed by a coordination operation, and K, which is taken from a
generic set of program constants Const, is equipped with a defini-
tion K = P. Program constants can be used, e.g., for recursive def-
inition of programs. For instance, Prod = write(a,Here).Prod
is a program able to introduce an unbounded amount of instances
of datum a in the local dataspace.
Formally, we define the set of peers as follows:

Peer = {p[P,DS] | p € Pid,P € Proyg,
DS € M(Data U Datag U Datar)}

where we use M (S) to denote the set of multisets over S. To
lighten the notation, we will sometime omit the parenthesis in the
case of singletons (i.e., we denote {a} simply with a).

A network of peers (see the formal definition of Net below) con-
sists of a triple composed of a set of peers, a connection relation
which indicates whether two peers are currently connected, and
a multiset of misplaced data, representing data which have been
emitted towards a remote peer and have not reached their destina-

D > b
(10)
(Ps,<, MD) —» (Ps,><', MD)
(1) (p[P,DS])® Ps, <, MD) —» Ps’ K- P
] =
(p[K,DS] @ Ps, <, MD) — Ps'
(12) (p[P,DS @ dg] @ p'[P',DS'|® Ps, <, MD) —»
(p[P,DS] @ p'[P', DS’ @ dg] ® Ps, <, MD) if LoadBal(p,p’, dg)
(13) (p[P,DS®d.] ®p'[P',DS']|® Ps, <, MD) —»
(p[P,DS @ d.] @ p'[P', DS’ @ dv] @ Ps, <, MD) if LoadBal(p,p', d-)

Table 3: Constant and context rules.

tion yet. More precisely, a misplaced datum is represented by a
triple, denoted with (d)ﬁl, indicating a datum d emitted from the
peer p towards p’.
The connection relation is denoted with <; by p > p’ we mean
that the peer p’ is in the set of the peers at distance 1 from p.
Formally, we define the set of the peer-to-peer networks Net,
ranged over by Ps, Ps', ..., as follows:

Net = {(Ps, >, MD) | Ps C Peer, x1C Pid x Pid,
MD € M(Data x Pid x Pid)}

In order to avoid two peers to have the same peer identifier, we
assume that, for each Ps € Net, the following condition holds:

(p[P,DS] € Ps A p'[P',DS' € Ps A p=p') =
(P=P A DS = DS

In the following we use & to denote set union as well as multiset
union, the actual meaning is made clear by the context.

The connection topology of a peer-to-peer network may evolve,
during the lifetime of the system, due to peer disconnections, peer
mobility, failure of connections, etc. We model this dynamic aspect
of the system by assuming the existence of a relation —: (Pid x
Pid) x (Pid x Pid). More precisely, we use b — <’ to denote
the fact that the connection relation o< evolves into ><’.

We are now ready to introduce the operational semantics of our
coordination model as the transition system (Net, —) where —
is the least relation satisfying the axioms and rules reported in Ta-
bles 1, 2, and 3.

In Table 1 the semantics for data production is defined. Axioms
(1-3) define the execution of a local, generic, and replicable output
operation, respectively. In all the three cases, the effect is the intro-
duction of the corresponding new datum in the local dataspace. We
impose that the new datum is introduced in the local dataspace also
in the case of generic and replicable data. This is useful in order
to be sure that an instance of the datum is available (at least in the
dataspace of the source peer) immediately after the execution of the
output operation. The datum will be moved/replicated in other peer
dataspaces according to the load balancing policy (see rules (12)
and (13)).

As far as the remote output operation is concerned, different in-
terpretations may be considered. For example, one could follow a
synchronous approach, according to which a remote output opera-
tion can be executed only if the target peer is currently connected

with the source peer. On the other hand, according to an asyn-
chronous approach the operation may be divided in two distinct
phases, the emission of the datum and the subsequent introduction
of the datum inside the destination peer.

The main difference between the two interpretations is that, un-
der the synchronous one, an output operation may block (in the case
the target peer is not connected). Another difference is that, under
the asynchronous interpretation, it is not possible to make any as-
sumption on the time needed for a datum to reach its destination.

Due to the asynchronous nature of communication in peer-to-
peer networks, we adopt the second approach. More precisely, we
use the axioms (4) and (5), the former to indicate that a remote out-
put operation simply produces a misplaced datum, and the latter
to indicate that, subsequently, the misplaced datum may reach its
destination. The message can be delivered if there exists a route
from the sender to the receiver. To be as general as possible, in
the definition of our coordination model we abstract away from the
adopted routing protocol that will be defined by the implementors
of the model. In the formal definition we simply assume the exis-
tence of a predicate Route(p, p') which indicates the existence of
aroute fromp to p’.

It is interesting to note that the routing mechanism, formally rep-
resented with the Route(p, p") predicate, could be completely in-
dependent of the connection relation < indicating the topology of
the peer-to-peer network. A P2P network, indeed, is usually imple-
mented over an underling infrastructure, e.g., the Internet. In this
case it could be the case that two nodes are connected in the under-
ling infrastructure (thus supporting a routing path between them)
even if not explicitly connected in the P2P network.

The axioms concerning the data retrieval operations are reported
in Table 2. The main novelties w.r.t. traditional Linda-like opera-
tions is the ability for a reader to specify the horizon of interest. We
use the function Hor(p, h) to denote the actual horizon of peer p
under a time-to-live h.

A typical way for P2P protocols to visit the horizon is to initially
broadcast queries to the peers at distance 1, which subsequently
send queries to the peers at distance 2, and so on, until distance h.
This is clearly a distributed protocol during which the topology of
the network may change.

Different P2P infrastructures usually exploit different protocols
to visit a specified horizon. For this reason, we do not consider
any specific protocol, but we present an abstract illustrative defini-
tion of Hor(p, h) which assumes that the topology of the network

N
Neighbour Storage Local Dataspace N N
158 o3 .
\
I \
—/4
Connection Pool aCcC—/)
24 /
/
/
7
e

Figure 1. An example of JPS network

is b4, and that it does not change during the visit of the horizon.
Formally:

Hor(p,h) = {p'|3po,... ,pnst.-po=pApn=p A
(pi—ixpiforl <i<n)An<h}

Axioms (6) and (7) define the semantics of the non-consuming
data retrieval operations executed locally or remotely, respectively.
Similarly, the axioms (8) and (9) define the semantics for the con-
suming operations. Following the design choices discussed in the
previous section, in the case of non-consuming operations, also
generic and replicable instances of the datum of interest can be
read. On the other hand, in the case of consuming operations, repli-
cable instances are not taken into account.

In Table 3, the remaining axioms and rules are reported. Ax-
iom (10) indicates that the topology of the network may change
according to the relation —. Rule (11) simply states that a pro-
gram constant has the ability to execute the same operations as the
corresponding definition. The last two axioms, (12) and (13), in-
dicate the way generic and replicable data may move inside the
network, according to some load balancing rules. To be as general
as possible, we do not fix any load balancing rule but we assume
defined a predicate LoadBal(p,p’,d) which indicates whether it
is appropriate to introduce in the dataspace of the peer p’ the datum
d currently available in the dataspace of the peer p. Observe that,
in the case of a generic datum, the original datum is removed; on
the other hand, in the case of a replicable datum, a new instance is
produced and the original one is kept.

4. A JXTA SERVICE BASED ON
PEERSPACES

In order to show the feasibility of the PeerSpaces model, we
have developed a prototype implementation of the specification il-
lustrated in Section 3. This implementation, called JPS, is written
in Java and is based on the JXTA project [5]. JXTA is an open-
source project promoted by Sun Microsystems, whose aim is to es-
tablish a network programming platform for P2P systems by iden-
tifying a small set of basic facilities necessary to support P2P ap-
plications and providing them as building blocks for higher-level
functions. JXTA is completely platform-independent; communica-
tion among peers is based on a set of XML-based protocols, and
implementations in different languages exist.

The JXTA middleware is composed of three layers. At the bot-

tom is the JXTA core, that deals with low-level functions such as
peer establishment, peer discovery, communication management,
routing and basic security facilities. The JXTA services are built
on top of the core and deal with higher-level concepts, such as in-
dexing, searching, and file sharing. These services, although useful
by themselves, are used by JXTA applications to build high-level
applications like chat, auction and persistent storage.

In order to join a JXTA network, a peer must implement a subset
of the JXTA core protocols. First of all, the discovery protocol is
used by peers in a network to discover each other and acquire in-
formation about the services they offer. The discovery protocol is
based on the concept of advertisements, that are XML-based doc-
uments describing the main characteristics of a peer or a service.
The membership protocol and the access protocol enable multiple
peers implementing the same set of services to be grouped together
to form a peer group, i.e., communities of peers having common
interests. The resolver protocol is used to establish mono- and bi-
directional communication channels, called pipes.

The benefits of basing our implementation on JXTA are several.
For example, JXTA provides the possibility of using different trans-
port layers for communication, including TCP/IP and HTTP, and
is capable of handling firewall- and NAT-related problems. The
discovery protocol can be used to establish complex PeerSpaces
networks, by letting peers to discover each other. This spares our
implementation from these low-level details. Furthermore, we also
plan to exploit the complex security architecture that is being de-
veloped for JXTA.

Figure 1 shows a JPS network composed of a collection of peers
connected together. In the current implementation of JPS each
peer in the system maintains three main data structures, as illus-
trated in the magnified node on the right of the figure. The first data
structure is the local data space, whose task is to maintain the mul-
tiset of tuples controlled by the local node. The neighbour storage
maintains information about the set of JPS peers that are known to
the local node. This set is dynamic, as new peers may be discovered
and existing peers may crash. In the figure, peers included in the
neighbour storage of a peer p are represented as dashed lines con-
necting p with those peers. Finally, the connection pool maintained
at each peer contains the set of peers with which the local node
is currently connected. The reason for having a connection pool
distinct from the neighbour storage is that the neighbour storage
may grow to become a very large set, and it would be unfeasible
to maintain a connection with each of these neighbours. Together

Application (Chat, ...) L
Application
Layer
write take read
JPS Application Interface
Module
Local Remote ;
Operations‘ Operations Service
.. - Layer
Bootstrap TupleSpace Communication Connection
Module Module Module Mng. Module

Discovery
Service

Pipe
Service

J

Core
Layer

Figure 2: Thearchitecture of a JPS node

with the information needed to establish a connection with the se-

lected peers, the connection pool maintains additional information
about peers, such as several statistics about the responsiveness of
neighbours to previous distributed queries.

Figure 2 shows the architecture of a JPS peer and its relation

with the other components of the JXTA platform. JPS has been

designed as a JXTA service, and thus is conveniently located be-
tween the JXTA core layer and the JXTA application layer. JPS
exploits the discovery and communication facilities provided by
the discovery and pipe protocols included in JXTA. On the other
hand, JPS may provide its tuple-space facility to the other services
residing in its layer, or to JXTA-based applications residing in the

application layer.

The architecture of JPS is subdivided in the following modules:

e The Bootstrap Module is responsible for bootstrapping the
JPS service. First of all, the other modules are located.
Then, a set of advertisements are created and subsequentially
published through the discovery protocol, in order to adver-
tise the presence of the JPS service to other peers. The JPS
peer group is created and joined, in order to establish a com-
munity of nodes willing to participate in the JPS network.

e The Application Interface Module provides PeerSpaces in-
terface to JXTA applications and services. Coordination op-
erations are appropriately dispatched by this module to the
local data space or to the communication module, depending
on the target parameter of write operations and the horizon
parameter of the read and write operations.

e The TupleSpace Module contains the local (non-distributed)
data space where local tuples are stored. This module is
based on an open-source project called LighTS [9]. LighTS
has been developed as the local core for the implementation
of the distributed Lime coordination infastructure [10].

e The Communication Module is responsible for communica-
tion between peers; in particular, it implements remote co-
ordination operations like remote write and read, take opera-
tions with horizon parameter greater than 1. Details of how
these operations are implemented are described in the fol-
lowing.

e The Connection Management Module is responsible for the
management of the neighbor storage and the connection pool;
it collects information about past connectivity and respon-
siveness of remote peers, and may occasionally decide to
drop an active connection in favor of a connection with a
more reliable and responsive peer.

Remote write operations are implemented by creating a direct
channel with the remote peer, and by performing a tuple exchange
protocol with it. The current implementation of this protocol does
not take into consideration problems related to communication fail-
ures occurring in the middle of the protocol, meaning that tuples
may be occasionally lost. Future version of JPS will be extended
with a recovery protocol to guarantee that temporary lost tuples are
later recovered.

Remote read and take operations are implemented by perform-
ing Gnutella-like [7] broadcast searches with the specified time-to-
live parameters. The reason for using broadcast-based searches is
motivated by the fact that peers have control on their own datas-
paces, and may select the tuples that have to be stored locally. This
means that searches must reach as many peers as possible, in order
to enlarge the horizon of peers as requested.

In order to guarantee fault-tolerance, searches are leased: this
means that every peer reached by a search will store the request
associated to the search until the lease for the request expires. If
a local data space of a peer contains the desired tuple, or the tuple
is inserted in the data space before the lease expiration, the peer
will send a response to the local nodes containing a description of
the peer. Peers waiting for the completion of read and take op-
erations will periodically renew lease, until one or more responses
are received. In the case of read operation, the first response is
delivered to the requesting peer and the operation completes. In the
case of take operations, the requesting peer executes a peer trans-
fer protocol with the first responding peer; in case of failure (due
to the tuple already taken by another peer, or to a communication
problem), the next responding peers are contacted, until the transfer
succeeds.

It is interesting to observe that during the above protocol, used
to search the remote data to be retrieved, the topology of the P2P
network may change according to peer connections and disconnec-

tions. This does not contrast with the formal semantics of the read
and write operations (see Table 2) because the Hor(p, h) func-
tion, used to indicate the current horizon to be considered, is not
evaluated at the beginning of the execution of the protocol, but at
the instant in which the required datum is retrieved.

5. CONCLUSION AND FUTURE WORK

In this paper we have introduced PeerSpaces, a data-driven co-
ordination infrastructure suitable for P2P systems.

As future work, we plan we intend to extend the coordination
model with other features such as a support for reactive program-
ming or transaction operations. In the first case, we plan to adapt
to our setting coordination primitives such as the not: fy of JavaS-
paces [16] or the monitor of WCL [11]. In the second case, we
will investigate either global operations such as copy-collect [13]
or a more general support for transaction, such as in JavaSpaces,
which permits to group a sequence of coordination operations in
such a way that they should be atomically executed.

Another interesting extension concerns the possibility to asso-
ciate an expiration time to the produced data. This could be par-
ticularly useful in order to support a garbage collection mechanism
for replicable data which, according to the PeerSpaces model,
cannot be explicitly removed.

6. REFERENCES

[1] D. Anderson. SETI@home. In A. Oram, editor,
Peer-to-Peer: Harnessing the Benefits of a Disruptive
Technology, chapter 5. O’Reilly, Mar. 2001.

[2] N.Busi and G. Zavattaro. Some Thoughts on Transiently
Shared Dataspaces. In Proc. on the Workshop on Software
Engineering and Mobility (at ICSE 2001), 2001.

[3] N.Busi, P. Ciancarini, R. Gorrieri, and G. Zavattaro. Models
for Coordinating Agents: a Guided Tour. In Coordination for
Internet Agents: Models, Technologies, and Applications,
pages 6-24, Springer-Verlag, 2001.

[4] D. Gelernter. Generative Communication in Linda. ACM
Transactions on Programming Languages and Systems,
7(1):80-112, 1985.

[5] Project IXTA. http://www.jxta.org.

[6] J. Kubiatowicz et al. OceanStore: An Architecture for
Global-Scale Persistent Storage. In 9th International
Conference on Architectural support for Programming
Languages and Operating Systems, Cambridge, MA,
November 2000.

[7] G. Kan. Gnutella. In A. Oram, editor, Peer-to-Peer:
Harnessing the Benefits of a Disruptive Technology,
chapter 8. O’Reilly, Mar. 2001.

[8] A. Langley. Freenet. In A. Oram, editor, Peer-to-Peer:
Harnessing the Benefits of a Disruptive Technology,
chapter 9. O’Reilly, Mar. 2001. March 2001.

[9] Project LighTsS.
http://lights.sourceforge.net/docs/info/intro.html.

[10] G.P.Picco, A. Murphy, and G.C. Roman. Lime: Linda Meets
Mobility. In Proc. 21th IEEE Int. Conf. on Software
Engineering (ICSE), pages 368-377, 1999.

[11] A. Rowstron. WCL: A web co-ordination language. World
Wide Web Journal, 1(3):167-179, 1998.

[12] A. Rowstron and P. Druschel. Storage Management and
Caching in PAST, a Large-Scale, Persistent Peer-to-Peer
Storage Utility. In 18th Symposium on Operating Systems
Principles, Canada, November 2001.

[13] A. Rowstron and A. Wood. Solving the Linda multiple r d
problem using the copy- col | ect primitive. Science of
Computer Programming, 31(2-3):335-358, 1998.

[14] C. Shirky. Listening to Napster. In A. Oram, editor,
Peer-to-Peer: Harnessing the Benefits of a Disruptive
Technology, chapter 2. O’Reilly, Mar. 2001.

[15] M. T. Valente, B. Carbunar and J. Vitek. Lime Revisited.
Reverse Engneering an Agent Communication Model. In
Proc. of MA’01, Lectures Notes in Computer Science.
Springer-Verlag, Berlin, 2001.

[16] J. Waldo et al. Javaspace specification - 1.0. Technical report,
Sun Microsystems, March 1998.

[17] P. Wyckoff, S. McLaughry, T. Lehman, and D. Ford.

T spaces. IBM Systems Journal, 37(3):454-474, 1998.

