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Abstract. In recent years, the educational landscape has been caught
off guard by the rapid rise of generative AI technologies, which students
are increasingly adopting on their own, often without formal guidance.
Educators, unprepared for these swift advancements, now face the chal-
lenge of navigating a spectrum between two extremes: from avoiding AI
altogether to thoughtfully integrating it into their pedagogical practices.
Educational research now has the crucial task of providing educators
with practical, discipline-specific strategies to use AI effectively, helping
them transform what might seem like a crisis into an opportunity for
enriched, innovative learning.
Computer science is particularly impacted by the integration of AI,
given the high-quality code generated by advanced models like Chat-
GPT and Codex. Now embedded directly within many software develop-
ment suites, these tools are transforming professional coding practices,
enhancing efficiency and quality. However, they also impact how students
learn to code, presenting both challenges and opportunities. While these
technologies have the potential to serve as tutors, providing immediate
feedback, there is also a risk that overreliance could hinder deep learning.
This shift calls for an adaptation in teaching practices with a dual focus:
preparing students to use AI tools thoughtfully and critically, while fos-
tering a strong foundation in core programming skills in the age of AI.
On both fronts, cultivating metacognitive skills is essential to ensure that
generative AI serves to enhance rather than replace fundamental coding
abilities. This balanced approach fosters a learning environment where
automation complements, rather than undermines, critical and hands-on
coding expertise.
This paper makes a twofold contribution. First, it proposes an educa-
tional intervention focused on helping advanced students understand
both the advantages and potential pitfalls of using AI in programming
tasks. This intervention emphasizes critical thinking, enabling students
to navigate AI tools with discernment. Second, we introduce a novel
comprehensive, multimodal data collection methodology to analyze how
students interact with generative AI in coding contexts. This approach
provides a robust foundation for evaluating student-AI interactions and
refining future pedagogical interventions. Preliminary findings from our
first pilot offer encouraging insights, setting the stage for more detailed
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analysis and contributing valuable information for educators seeking to
understand and improve the role of AI in computer science education.

1 Introduction

Context and Problem Statement The sudden emergence of accessible gen-
erative AI tools is significantly disrupted education, with students increasingly
using these resources independently, often without structured guidance from ed-
ucators. This trend places educators at a critical juncture, where they must navi-
gate a spectrum between two extremes: sidestepping AI entirely, relying solely on
traditional approaches, or thoughtfully integrating these tools into their teach-
ing practices [9]. To support this transition, educational researchers now face an
urgent task–to develop effective, discipline-specific strategies that responsibly
harness AI’s potential, transforming what might seem like a challenge into an
opportunity for more innovative, enriched learning experiences [21].

This is especially relevant for computer science (CS) education, particularly
in in the context of learning programming. General models like ChatGPT and
specialized programming models such as Codex, capable of generating high-
quality code, are now embedded in many Integrated Development Environments
(IDEs) used by professionals and students alike [10]. These tools offer increased
efficiency and enhanced code quality, yet they also present challenges for learn-
ing. On one hand, AI tools can serve as interactive tutors, providing immediate
feedback and guidance [19]. However, if students rely too heavily on these tools,
they may struggle to build a solid grasp of essential coding skills, which are cru-
cial for independent problem-solving and for fully understanding AI-generated
responses [9].

This scenario brings both promising opportunities and significant challenges
to CS educational researchers. AI opens the door to rethinking programming ed-
ucation, allowing educators to explore new pedagogical approaches, content, and
instructional methods [3]. However, the lack of a well-established research foun-
dation in this area makes it difficult to assess AI’s impact on student learning
or to create a research framework that thoroughly examines these effects. Pro-
gramming itself is a uniquely complex cognitive task, requiring not only technical
problem-solving but also elements of verbal reasoning, creativity, and iterative
thinking [16]. Current methods for studying learning in computer science are
not fully equipped to capture this complexity or to address the nuanced ways in
which generative AI impacts learning and metacognition.

Research Questions and Objectives This study addresses two primary ob-
jectives at the intersection of educational practice and research methodology.
On a practical level, the educational challenge lies in finding effective ways to
integrate AI into the learning process while ensuring that students continue to
build strong programming skills. This includes developing pedagogical strategies
that discourage overreliance on AI, prevent potential academic misconduct, and
provide fair assessments of student learning.



On a methodological level, our research aims to fill gaps in current approaches
to studying how students interact with AI, especially regarding metacognitive
processes in computer science education. Rather than relying solely on tradi-
tional task-based assessments, we employ a multimodal data collection frame-
work to capture a comprehensive view of student interactions with AI, including
the cognitive strategies they use.

This study addresses two core objectives:

– Implementing a practical intervention to help students critically evaluate AI-
generated code, fostering their ability to learn from and assess AI-supported
strategies;

– Developing a multimodal data collection framework to analyze student inter-
actions with AI, gaining insights into both learning processes and metacog-
nitive aspects.

By addressing these objectives, this study seeks to advance both pedagogical
practice and research methodologies related to AI in computer science education,
contributing to a deeper understanding of how students can learn effectively
within an AI-enhanced educational landscape.

Methods To address these concerns, we conducted a two-day intervention de-
signed as a learning experience for senior students, incorporating a structured
data collection procedure. Building on the work of Ojeda et al. [22], this activity
involved 39 students, organized into 13 groups of three, who were tasked with
solving programming and algorithmic exercises under specific conditions: only
AI-generated code could be used, the number of AI interactions was limited.
This approach encouraged learning by requiring students to explicitly outline
the steps in their solutions [16] and to apply critical thinking in evaluating the
AI-generated code [22].

For data collection, we aimed to gain a comprehensive understanding of the
learning processes involved in this experience by using a multimodal approach,
which included:

– Pre- and Post-Activity Survey: These surveys assessed students’ problem-
solving approaches, self-awareness, and metacognitive skills before and after
the activity [24], as well as their reflections on perceived learning outcomes.

– Log Analysis: Students engaged with various AI engines through a dedicated
platform designed to log all interactions with AI during the challenge. This
data allowed us to analyze the progression of their prompting strategies.

– Audio and Video Recording of Student Activity: We recorded sessions for two
groups, with one setup capturing screen and vocal interactions only (webcam
off), and the other capturing both screen and webcam-enabled interactions.
This multimodal data integration enabled us to link logged interactions with
AI to the intermediate steps students took during the learning process. We
followed the analytical methodology of Powell et al. [25] for video analysis.



Outcomes The initial pilot study using the proposed approach, apart from
testing technical equipment and identifying constraints, demonstrated a positive
impact on student understanding of the role of AI in programming and collected
comprehensive data to analyze their learning experience. This intervention en-
couraged students to engage deeply in the practice of explaining and discussing
their reasoning before moving to the final solution. It also provided researchers
with clearer insights into students’ problem-solving approaches. The combination
of exercise results, logs, and audio-video recordings offered a multimodal view of
the learning process, which was further contextualized by pre- and post-activity
surveys, enabling an in-depth study of students’ reasoning development.

This proposal, merging AI-powered programming sessions with a comprehen-
sive data collection procedure, provides a promising approach to support research
on the learning processes within this discipline. Framed within the concept of
AI as “Intelligence Augmentation” [14], this approach encourages a shift in focus
from mere code writing to the essence of problem-solving, thereby enhancing
students’ awareness and critical thinking.

By building on the results of the initial pilot, we plan to implement this pro-
cedure in laboratory classes for first-year undergraduate CS students during the
2024-25 academic year. This will allow for further validation of the methodology
and provide deeper insights into programming learning within this approach. Ad-
ditionally, the versatility of this data collection methodology suggests potential
applications in other fields, such as language teaching, where it could similarly
enhance our understanding of student learning dynamics.

2 Background and Literature Review

This section reviews the literature on the transformative impact of AI in com-
puter science education, focusing on both the opportunities and challenges it
introduces. It then examines methodological gaps in CS education research,
highlighting the interdisciplinary complexities and the need for more structured
approaches. Comparisons with math education provide additional insights into
potential research methodologies. Finally, the section discusses metacognition’s
role in learning, underscoring its importance for developing self-regulated, adap-
tive problem-solving skills in students.

2.1 AI’s Impact in Computer Science Education

Generative AI has the potential to transform nearly every discipline, and com-
puter science is among the most affected by the introduction of AI-generated
code. Since the inception of computer science, writing code has been central as a
core competency. The introduction of AI assistants specifically trained for coding
has sparked significant debate about the foundations of the profession.

AI is rapidly improving the quality of generated code, with tools like Chat-
GPT and Codex now capable of replicating the performance of top students in



programming tasks [12, 6]. This advancement is driving the integration of such
tools into IDEs to enhance efficiency.

AI-generated code has caught the educational system off guard, leading many
teachers to perceive these tools as a threat to learning quality [9]. This raises a
significant challenge in training future professionals: how can AI tools be inte-
grated while still maintaining adequate emphasis on core technical skills? This
challenge is also tied to the existing issue of balancing academic training with
job market demands [19, 7]. Compared to the past, there is now a greater need
for solutions that balance AI use with core skills while preparing students for AI
integration in the tech industry.

The initial proposals toward integrating AI in computer science education
focus on tutoring, using systems that employ chatbots to provide feedback and
suggestions on students’ code [10]. While formal education incorporates AI as
smart tutoring systems that emphasize AI-driven feedback [7], students primar-
ily use AI individually for typo correction, error message interpretation, and
additional support during debugging sessions.

2.2 Methodological Gap in Computer Science Education Research

Computer science education research emerged in the late 1980s and has been
characterized by a lack of its own specific methodologies, as well as rigor and con-
sensus on effective research strategies. The intersection of education, pedagogy,
psychology, technology, engineering, and computer science leads to high com-
plexity and reveals the need for solid methodological foundations. As Almeida
points out [1], CS education publications often lack empirical rigor, coherent
frameworks, and employ fragmented methodologies.

Reviews of CS education research have highlighted these issues, showing that
poorly designed studies, ill-defined hypotheses, and questionable data collection
and analysis practices are prevalent [26]. Furthermore, Lishinski et al. [20] re-
vealed the paradox that, despite growing interest in the learning processes of CS
education, overall methodological quality has not significantly improved.

While efforts are underway to develop more robust methodological guide-
lines [1], the field remains underexplored. CS education could benefit from and
established research practices from other disciplines, like mathematics educa-
tion, which has a longstanding tradition of using qualitative methods to analyze
learning processes.

In particular, mathematics education has used video recordings of student
activities for decades as a valuable data source for understanding learning dy-
namics. Reflecting on his research, Schoenfeld [27] describes how he began using
videotape in the late 1970s to study mathematical problem-solving:

“[...] there were aspects of problem-solving behavior that could not be
captured any other way. These included references to specific drawings
as students worked on them (“What if we draw the line from here to
here”), the evolution of those figures, signs of shared attention or inde-
pendent processing, and more. Perhaps most importantly, many aspects



of exchanges are fleeting and ephemeral; if I didn’t “capture” them on
tape, they would be lost forever, subject to faulty memory, and more. It
was not that videos would be my only source of data, but rather that
they offered data that were irreplaceable” (p. 416).

Schoenfeld’s reflections underscore the unique insights that video data provide–
insights that can also inform methodological choices in CS education research,
where understanding problem-solving activities is similarly crucial.

2.3 Metacognition: Theory, Practice and Research

Metacognition refers to higher-order processes involved in “thinking about think-
ing” [8]. It consists of two main components: reflection on one’s cognitive func-
tions (knowledge of one’s cognitive processes) and the processes for monitoring
such functions [24].

Metacognition, in brief, is the interplay between beliefs or knowledge about
the mind and regulation strategies. Although it may seem like a purely theo-
retical construct, metacognition has significant implications for academic per-
formance [17]. In the context of learning, key aspects of metacognition include
being aware of one’s reasoning while addressing tasks and attempting to ad-
just behavior accordingly. Over time, this helps build a system of heuristics and
approaches that allow for more efficient problem-solving [17].

Academic performance significantly benefits from actively using metacogni-
tive strategies, which can be promoted through specific activities [11]. For in-
stance, while recalling and generalizing previously used strategies is common,
stronger metacognitive skills enhance the ability to store, retrieve, compare, and
apply appropriate strategies. Fostering these processes not only improves learn-
ing quality but also supports key skills like self-directed learning.

Metacognition facilitates a shift from surface to deep learning, as evidenced
by correlations between metacognitive skills and learning approaches [13]. This
shift is not only about improving learning quality but also enhancing efficiency
and well-being: students who rely on surface approaches often report a higher
workload and increased pressure [13].

Like other higher-order thinking skills (HOTS) such as problem-solving and
critical thinking [29], metacognition presents several challenges for scientific in-
quiry. Due to its complexity, there is a lack of effective tools, especially for
assessing metacognition during the learning process. Assessing metacognition
in this context requires understanding how students reflect on their reasoning,
approaches, and strategies for tackling tasks. Although the scientific literature
offers assessment scales (e.g.,[4]) and commonly used methods, such as reflec-
tive practices and think-aloud protocols to monitor logical thinking[11], these
approaches often fail to capture the full depth of the metacognitive process.

In summary, while metacognition is valued as a skill for its impact on aca-
demic performance, its assessment and enhancement through effective practices
remain in early stages, with many pointing to the lack of standardized assess-
ments and validated practices. Building on these considerations, we aim to study



the activity of writing code within the context of problem-solving, where inter-
acting with AI according to a given protocol is structurally necessary. To this
end, we have developed a multimodal data collection methodology that provides
insights into metacognitive processes.

3 Methodological Proposal

To address specific methodological challenges in researching AI integration in
CS education, we developed a structured protocol that investigates two core
research questions:

– Validating AI integration in programming education: How can AI interven-
tions in programming education advance beyond tutoring and feedback?

– Validating a research methodology : Can an AI-driven activity provide an ef-
fective context for observing learning and metacognitive processes in action?

To this end, we propose an educational intervention alongside a multimodal data
collection procedure, both of which are detailed in the following sections.

3.1 Overview of the Intervention

The proposed intervention, called Hackaprompt, is a two-day coding challenge
in which students solve programming exercises using only AI-generated code on
a platform that provides access to various large language models (LLMs). Hack-
aprompt combines aspects of a traditional curricular lab with a challenge-based
activity format [18]. The exercises vary in difficulty, ranging from simple pro-
gramming tasks to complex algorithmic and parallel programming challenges. To
encourage precise and effective prompting, each exercise limits both the number
of queries and the amount of text allowed.

Setting and Platform Students participating in the challenge are divided into
small groups of three or four, working collaboratively on the assigned exercises
using a single computer connected to a custom-designed Hackaprompt platform
via a web interface (see Figure 1). Group work encourages peer learning and
allows students to discuss and refine their approach to each exercise collectively,
which enhances the problem-solving process by integrating multiple perspectives.
This setup not only mirrors real-world collaborative coding environments but
also provides a rich context for observing how students collectively navigate
challenges and leverage AI tools.

The platform offers direct access to multiple large language models (LLMs),
including various versions of ChatGPT and LLAMA, and logs each interaction
between the groups and the LLMs, capturing both prompts and responses. Each
group receives a PDF file with a set of problems and exercises to be solved using
the web interface.

For some groups, the setup is enhanced with webcams to capture video and
audio, documenting group interactions and collaborative dynamics. These groups



Fig. 1. Hackaprompt’s Platform User Interface (UI).

also join separate Zoom rooms with screen sharing enabled, allowing for simul-
taneous recording of both group conversations and on-screen activity. This mul-
timodal data collection enables us to link logged interactions with AI to the
intermediate steps students take during the learning process, providing a com-
prehensive view of the problem-solving dynamics and collaborative strategies
that unfold within the group setting.

The minimalist web interface (Figure 1) features a menu with options for “AI
Prompt” and “AI Logs” (a), a prompt input area (c) with a drop-down menu to
select the exercise and LLM model (b). Upon submitting a prompt, the response
appeared in a gray area on the right (g), and buttons are available to start a new
conversation for a different exercise (e) or clear the input area for a follow-up
query (f). Additionally, a turquoise box (d) displayed the remaining query count,
updated after each submission.

Problems and Rules The problems and exercises provided to students are
designed with a structured, progressive difficulty to guide skill development in
stages. The Hackaprompt challenge consist of five levels, each introducing in-
creasingly complex tasks:

– Warmup and programming fundamentals: These introductory tasks focus on
foundational programming skills, allowing students to familiarize themselves
with the platform and the use of large language models (LLMs) for generat-
ing code.

– Algorithms and data structures: At this level, students tackle problems that
involve standard algorithms and data structures, building on the fundamen-
tals and requiring a higher level of logical reasoning.

– Olympics-based challenges: Inspired by competitive programming, these ex-
ercises encourage students to develop efficient and optimized solutions.

– Parallel computing : This level introduces tasks involving parallel computing
concepts, which required the use of specialized libraries and concepts that
many students are unfamiliar with.



– Extreme difficulty : The final level may include a single, extremely challenging
problem, intended as a buffer to prevent students from completing all the
problems before the end of the event.

Each exercise imposes a strict limit on the number of queries and the text
length allowed per problem. These caps encourage students to formulate con-
cise, purposeful prompts, discouraging excessive or unreflective use of AI. This
approach also mirrors the current limitations in free-tier generative AI tools,
where interaction volume is often restricted within set timeframes. Students are
not permitted to modify the code manually unless they exhaust their query limit,
at which point they may make limited manual adjustments to refine their code.

To enhance the experience further, students are required to select one LLM
engine per challenge and rotate through all available engines over the course of
Hackaprompt. This rule ensures that students gain exposure to different models
and adapt to various AI capabilities.

A code of conduct was also established to maintain a collaborative and fo-
cused environment:

– Cooperation with instructors: Students are encouraged to seek guidance from
instructors while adhering to the rules.

– No cross-group spoilers: To preserve the integrity of the challenge, students
are asked to avoid sharing solutions or hints with other groups.

– No out-of-context prompting : Students are restricted from using any addi-
tional devices for prompting (e.g., laptops) to ensure that all interaction with
the LLMs occurr within the Hackaprompt platform.

This structured approach to problems and rules is designed to foster not only
technical skill development but also strategic prompting, collaboration, and ad-
herence to challenge parameters.

3.2 Multimodal Data Collection Procedure

The data collection utilizes a multimodal data collection procedure we developed,
which included:

– Surveys: Administered before and after the activity to assess problem-solving
skills, self-awareness, and perceived learning outcomes;

– Log analysis: Used to track interactions with AI tools and analyze prompting
strategies;

– Video recording : Employed to capture group activities and screen interac-
tions via webcam.

A comprehensive overview of the content, purpose, and analysis methods for
each data type is provided in Figure 2.



Fig. 2. Summary of the multimodal approach for data collection used in the study.
The methods are detailed by content, purpose, and type of analysis performed. The
activity chart also indicates the timing of each method’s application throughout the
Hackaprompt challenge.

Questionnaire’s Content In our methodological proposal, the questionnaires
serve multiple objectives: they collect demographic data, assess prior program-
ming knowledge and problem-solving style, establish a baseline for qualitative
and quantitative skill comparisons, and encourage reflection on the learning ex-
perience.

The pre-activity survey included the following items:

– self-reported AI literacy, measured on 5-point Likert scale;
– current use of AI for programming, measured on a 5-point Likert scale;
– current approach to problem-solving without AI, an open-ended question

where respondents describe their solution process for a programming prob-
lem;

– self-assessment of AI’s impact on key learning skills, such as critical thinking,
creativity, team collaboration, and adaptability for complex problem-solving,
measured on a 5-point Likert scale.

These items aim to define the sample’s characteristics, knowledge on the
topic, and self-rated confidence in key skills. Additionally, they establish a base-
line for subsequent comparisons in AI literacy and confidence in critical skills
(such as critical thinking, creativity, team collaboration, and adaptability in solv-



ing complex problems). Finally, they capture the students’ approach to problem-
solving without AI assistance.

The post-activity survey expands on the pre-activity survey items and in-
cludes additional questions:
– Problem-solving approach using AI : Respondents are presented with the

same problem from the previous survey and asked to describe their solu-
tion process, this time using AI.

– Perceived shift in attention and metacognitive reflection: A closed-ended
question using a 5-point Likert scale, with an open-ended prompt for further
elaboration.

– Discussion of problem-solving abilities: Assessment of skills such as problem
component identification, problem representation, solution planning, and
solution evaluation, both with and without AI, rated on a 5-point Likert
scale [28].

– Analysis of metacognitive processes: Evaluation of metacognition within the
group context using Biasutti et al.’s group metacognition scale [4].

The second survey aims to assess changes in AI literacy and knowledge,
as well as to compare how participants approach programming problems and
exercises with and without AI. Additionally, the items are designed to prompt
reflection on the learning experience and to gain insights into problem-solving
and metacognitive processes, both at the individual level and within the group
setting.

Logs and Video Recordings The platform systematically logs interactions
between users and the large language models (LLMs) during problem-solving
sessions. Each log entry includes:
– Timestamps: Each request and response is time-stamped, allowing a detailed

reconstruction of interaction sequences and enabling precise timeline analy-
sis.

– Request and response texts: Logs capture the full text of each prompt sub-
mitted by users as well as the corresponding response generated by the LLM.

– Token count and model data: The log records the number of tokens used in
each request and response, along with the total tokens for each exchange.
Information on the specific model (e.g., ChatGPT 3.5 Turbo or ChatGPT
4) is also logged.

– Session metadata: Each log entry includes metadata such as the team ID,
task ID, and whether the interaction began a new conversation. This data
allows tracking of group progress and specific task engagement.

These comprehensive logs enable full traceability of user interactions and provide
a foundation for in-depth analysis of user behavior and model performance.

Video data is collected using an external webcam and the Zoom video con-
ferencing platform (version 6.0.0). This setup captures both the participants
and screen activity, enabling a detailed view of user interactions with the inter-
face. Students join designated Zoom rooms, where screen sharing was enabled,
ensuring all on-screen actions during problem-solving activities are recorded.



Data Analysis The multimodal data collection supports differentiated analy-
sis for each type of data collected. The theoretical frameworks applied in data
analysis are as follows:

– Questionnaire data, composed of:
• Qualitative data, derived from open-ended questions, analyzed according

to the thematic analysis framework [5]. Responses to a specific item on
the problem-solving approach, where participants describe their steps,
are further examined using an“expert review”.

• Quantitative items using a 5-point Likert scale, analyzed for statistical
significance through a t-test with Wilcoxon ranks.

– Log analysis: Logs are analyzed with a qualitative approach in order to
reconstruct the key passages of the solving and writing strategies.

– Video data: For the video analysis we refer to Powell’s and colleagues’ frame-
work for identifying critical episodes and interactions [25]. This framework
comes from the mathematics education literature and proposes a video anal-
ysis model consisting of seven non-linear steps (p. 413): Attention to the
video data; Describe the video data; Identify critical events; Transcribe; En-
coding; Storyline construction; Composing the narrative. For the pilot study,
we limited ourselves to the first three phases, with the aim of identifying ob-
servables to enucleate the characteristics of critical events in this context
and in this type of activity. Such characteristics will allow us to better spec-
ify not only the setting design of future experiments but also the workload
management.

3.3 Rationale

Our multimodal approach is primarily guided by the principle of triangulation,
aimed at gaining insights into various levels of the learning experience, including
individual cognition, interaction with learning content, and group dynamics [15,
23]. This methodological interplay captures the learning process from three inter-
connected perspectives: individual cognitive changes, interactions with the AI,
and peer-based reflections within the group. The combination of these methods
seeks to provide a more representative and ecologically valid understanding of
the learner’s experience, both individually–by mapping cognitive and metacog-
nitive processes in relation to the topic–and socially, through interactions and
discussions within the group (Figure 3).

To achieve this goal, the methodology includes a pre-activity questionnaire to
establish a baseline of participants’ skills, prior knowledge, and initial problem-
solving approaches without AI support. This is complemented by a post-activity
questionnaire designed to measure changes and prompt participants to reflect
on their problem-solving strategies, particularly any attentional shifts observed
when using AI [17].

The activity’s log collection provides a detailed view of the steps and reason-
ing students used to solve the problem [28]. Unlike commented code, the logs



Fig. 3. Visual representation of the three levels of inquiry of the multimodal data
collection approach.

outline each step in fine detail to facilitate AI processing and minimize misun-
derstandings [22], serving as a rich source of content.

Video recordings capture critical moments of both individual and group
problem-solving activities, including contextual discussions and genuine reac-
tions to task requirements. Despite the complexity of analyzing video, its added
value lies in contextualizing the experience, providing a comprehensive and rep-
resentative view of students’ actions and their on-screen activities, enabling the
examination of different levels and their interrelations. In applied disciplines,
the learning process is deeply embedded in context; therefore, focusing solely on
competencies overlooks significant aspects of what is actually happening.

A guiding principle of this approach is to strive for ecological validity by
capturing the spontaneity of processes and interactions. Traditional methods,
particularly in metacognitive research, often rely on self-reports and think-aloud
protocols. While these can provide valuable insights, they may feel unnatural to
participants, potentially compromising the authenticity of the processes being
studied. In contrast, extended video recordings, the group setting, and the task of
explaining everything in detail to the AI provide a robust framework to mitigate
these effects, allowing participants to become immersed in the task and reducing
their awareness of being recorded. This combination creates an opportunity to
observe and collect rich data on evolving cognitive and metacognitive processes
in a naturalistic learning environment.

4 Pilot Study

To validate this methodological proposal, we conducted a pilot study by collect-
ing data using the procedure presented during the Hackaprompt challenge.



4.1 Participants

The sample consisted of 39 students recruited from the universities of Trento
(n = 20) and Innsbruck (n = 19), representing the Bachelor’s in Computer
Science, Master’s in Computer Science, and Master’s in Software Engineering
programs. Participation in the challenge and data collection was voluntary, with
no academic credit or additional benefits provided. Students were selected based
on a motivational letter and prior experience.

During the challenge, students were divided into groups of three, ensuring
a balance of expertise and a mix of spoken languages. Each group included
at least one student from each educational level, and no group spoke a single
common language. The groups were intentionally multilingual to better simu-
late real-world collaborative environments and minimize the impact of language
proficiency on group dynamics.

Participants were fully informed prior to the challenge and signed a privacy
statement, consenting to data recording. Additionally, two groups agreed to video
recording. All collected data were handled in compliance with GDPR regulations,
exclusively for research purposes, ensuring confidentiality.

4.2 Preliminary Results from the Pilot Study

The pilot study’s results revealed key insights into the impact of the educational
intervention on participants’ AI literacy and problem-solving processes. Partici-
pants reported having some prior knowledge and skills with AI in programming
(primarily error correction and fixing typos). On a scale from 1 (“none”) to 5
(“highly frequent user”), participants self-rated their AI programming experi-
ence, with an average score of 3.08 (SD = 1.09).

In more detail, participants demonstrated a significant improvement in AI
literacy following the experience (p < .05), suggesting that the intervention
effectively enhanced their understanding and proficiency in using AI tools.

The qualitative analysis of participants’ responses to the problem approach
question revealed a notable shift in focus–from an emphasis on implementation
and code syntax to a deeper understanding geared toward better problem re-
formulation. This transition indicates that such an intervention can encourage
participants to engage more critically with the given problems.

The use of AI significantly improved aspects of problem decomposition and
solution planning (p < .05). However, results showed that other aspects of
problem-solving, such as solution evaluation and implementation, were not sig-
nificantly affected by AI. This suggests that AI tools are more beneficial in the
early stages of problem-solving but become less impactful in later stages.

Metacognitive reflections, both individual and group-based, revealed a signif-
icant shift in participants’ attention toward verbal and written reasoning, which
facilitated self-reflection on their thought processes. Participants described the
learning experience as instrumental in enhancing their communication skills, un-
derstanding of their strategies, and ability to transfer knowledge to new contexts.



5 Discussion

Impact on Student’s Learning The proposed intervention demonstrated sig-
nificant effectiveness in fostering learning through critical reflection and valuable
discussions around individual strategies. By encouraging students to articulate
their reasoning in detail through specific prompts, the intervention shifted their
focus from simply writing code to more effectively planning the overall process.

This type of activity explicitly engages metacognitive processes, helping stu-
dents build the habit of investing time in a deeper understanding of the problem
before moving on to coding–an approach that can be transferred to individual
practice. Emphasizing explicit articulation of each step supports students in be-
coming more aware of their strategies when solving problems and optimizing
them, ultimately improving their academic performance.

The intervention was also successful in enhancing programming skills, partic-
ularly in the areas of code editing and critical evaluation. These skills are vital
in industry environments, both for established practices and AI tool integra-
tion. In this regard, the activity significantly benefited AI literacy by increasing
participants’ awareness.

Finally, from a cognitive perspective, the data analysis shows that this activ-
ity effectively navigated Bloom’s taxonomy [2] within a single setting, progressing
from lower-order to higher-order thinking skills.

Multimodal Data Insights The presented methodology offers a comprehen-
sive approach to investigating the individual learning process for programming
in computer science education.

The primary strength lies in the richness of the data and the holistic view
of the learning process achieved through triangulating surveys, logs, and video
recordings. This combination allows for insights into interactions, reactions, ver-
bal reasoning, and the explanation of reasoning processes and code choices during
prompt design and problem exploration.

This triangulation proves valuable for simultaneously addressing different
aspects of the learning process: individual internal learning, interaction with the
system, and interaction within the group. The employed approach effectively
provides insights into metacognitive and problem-solving processes within an
ecological context by merging self-report measures with observational data. The
contextualization of logs and exercises alongside self-report and observational
measures significantly enhances validity and the quality of insights obtained.

Although human analysis is valuable, the data collected through logs also
enable the use of advanced text analysis techniques.

Limitations The methodology and educational intervention proved to be pow-
erful, yet resource-intensive. Regarding the educational intervention, the primary
resource requirement involves the costs associated with using LLM API services.
In our study, we had only 40 students and around 10 workstations, and thanks



to the limited number of queries, the costs remained manageable. However, scal-
ing this activity to a curricular laboratory setting would significantly increase
costs, as the number of interactions with the LLM grows. Technical constraints
may also affect the feasibility of large-scale implementation and accessibility in
broader contexts. Additionally, exercises and training materials must be care-
fully adapted to both the students’ level and the capabilities of the LLMs to
provide appropriately challenging tasks.

The limitations of the methodology pertain to the complexity of the collected
data, resulting in a high workload for analysis. This requires not only substantial
time but also advanced expertise to draw meaningful conclusions. While the
methodology is certainly highly holistic and detailed, it comes at the cost of a
significant workload.

Regarding the pilot study, future efforts will further investigate the impact
of the language spoken and the role of training from different universities and
backgrounds.

Further Directions Despite the acknowledged limitations, the promising re-
sults encourage further efforts to validate and refine new versions of the inter-
vention, with the goal of integrating the activity into an elective laboratory for
introductory and advanced programming courses.

With refinements in the methodology–such as improved control over the phys-
ical setting, including providing additional screens for some students to enhance
collaboration and effectively capture their coding activities–we are confident in
advancing this approach as an innovative and holistic methodology for com-
puter science education and the investigation of learning processes. To further
enhance scalability and cost-efficiency in future iterations, we plan to adopt a
modular activity design adaptable to different class sizes and levels, while also
incorporating low-cost technological tools to improve feasibility.

6 Conclusions

In the information era, computer science education faces challenges and op-
portunities but often lacks readiness due to concerns about the impact of new
technologies on learning quality and insufficient research methodologies.

This study addresses these challenges with a structured intervention for pro-
gramming education and a comprehensive research methodology, providing both
a learning opportunity for students and valuable insights into the learning pro-
cess. The multimodal data collection offered a holistic view of learning, reveal-
ing insights into individual and collaborative problem-solving, AI literacy, and
metacognition in the context of AI interaction. While the proposed methodol-
ogy offers a rich framework for understanding student-AI interactions, it also
presents limitations, particularly regarding costs and scalability.

Overall, this work presents a model for effectively embedding AI in pro-
gramming education while investigating underlying learning processes. The pilot
study demonstrated AI’s positive impact on specific aspects of problem-solving,



critical thinking, and metacognitive skills. Future efforts will focus on scaling
the activity and refining the methodology to achieve a more sustainable integra-
tion of AI, enhancing both student learning and the collective knowledge of the
educational community.
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