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Abstract

The lack of low-cost communication facilities to the coast remains a fundamental
problem for fishermen engaged in deep-sea fishing. The Offshore Communication
Network (OCN) is a wireless network of fishing vessels, whose goal is to provide
internet over the ocean. However, extreme weather conditions, the challenge of
deploying additional infrastructure, vessel movements caused by waves, and the
increased mobility at sea hinder the performance of traditional routing protocols
in OCNs. This paper proposes a Q-learning-based routing strategy for OCNs. As
the quality of the learning process depends on the reward function, the latter has
been designed to account for the most important features, including real-time
forecasts of connectivity quality, path probability, link availability duration, and
distance to the destination. The performance of the proposed routing strategy
OCN-AR is evaluated through simulations under various conditions, including
different mobility scenarios, transmission rates, vessel rocking factors, and node
densities, and is compared against existing protocols. The results indicate that
OCN-AR is well-suited for maritime networks of fishing vessels.

Keywords: Marine communication network, Fishing vessel network, Routing protocol,
Reinforcement learning
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1 Introduction

The absence of adequate means to communicate with the shore is a fundamental
impediment encountered by fishermen in deep-sea fishing. Conventional communi-
cation technologies such as cellular networks and marine radio can only provide
connectivity up to a distance of about 20 km from the coast. These systems cannot be
exploited since fishing vessels travel more than 100 km into the deep sea. On the other
hand, satellite phone services are too expensive for fishermen. The Offshore Communi-
cation Network (OCN) proposed by Rao et al. aims at resolving this issue by building
a wireless network of fishing vessels that provide internet over the ocean [1]. The goal is
to enable fishermen to connect to the internet using affordable, handheld devices such
as mobile phones, allowing them to communicate with the shore and other vessels.

Although marine networks share some of the features of terrestrial mobile ad-hoc
and vehicular networks, they present unique characteristics and research challenges [2].
Unlike terrestrial vehicular networks, which are limited by road infrastructure, OCN
benefits from greater freedom of movement in the open ocean. However, OCNs face
significant communication challenges due to the inability to deploy additional infras-
tructure in the marine environment, the impact of extreme weather conditions on
wireless signals, and the misalignment of directional links. The most critical chal-
lenge arises from the rough sea conditions, which can severely affect link quality. The
topology of the network can change rapidly due to antenna orientation, the rocking
movement of vessels, and propagation effects that weaken signal strength. For all the
above reasons, providing uninterrupted internet connectivity is a difficult problem in
OCNs.

Given these challenges, an adaptive routing mechanism capable of responding to
the dynamic and unpredictable nature of OCNs is essential for maintaining oper-
ational efficiency. Reactive routing protocols face difficulties in establishing reliable
end-to-end paths due to issues in route discovery, while proactive protocols are
resource-intensive, as they precompute all source-destination routes, including those
that are not needed [3, 4]. Location-based routing protocols, which use predetermined
parameters to select the next hop, fail to adapt quickly to the dynamic environment
of OCNs. Integrating machine learning algorithms into the routing process contin-
uously monitors the network conditions and adjusts the routing paths in real time.
This adaptability is important in a marine environment where the links can change
within short periods, making precomputed routes ineffective. Reinforcement learning
(RL) techniques, in particular, have demonstrated potential, as agents interact with
the wireless environment and make decisions based on feedback signals.

Although numerous routing protocols based on RL strategies have been proposed
in the literature for terrestrial networks, they must be adapted to meet the unique
requirements and challenges of OCNs [5, 6]. A well-designed reward function is essen-
tial for learning the optimal next-hop to deliver packets effectively under dynamic
conditions. The contribution of this paper goes exactly in this direction. An OCN-
specific reward function is proposed, taking into account the real-time connectivity
quality estimate, the link availability duration, the path probability, and the geograph-
ical distance to the destination of neighbor nodes. Based on a Q-learning strategy,
the proposed protocol discovers adaptive routes in a completely distributed manner.
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We evaluated the proposed protocol under various network conditions and com-
pared its performance with other Q-learning-based routing schemes. In the simulation
environment, the routing strategy achieved significantly higher packet delivery ratio.

The rest of the paper is organized as follows: Section 2 reviews previous works
related to routing protocols based on reinforcement learning. In Section 3, we present
the architecture of OCN. Section 4 describes the reinforcement learning model and
the formulation of the reward function. Section 5 presents simulation results, followed
by the concluding remarks of Section 6.

2 Related Works

The routing problem in wireless networks has been extensively studied in the lit-
erature. In conventional proactive table-driven routing, algorithms predetermine all
source-destination paths. However, in OCNs, the control traffic required to update
neighborhood information is excessive, and nodes cannot predict in advance whether
these paths will be needed for routing. In reactive routing, traditional protocols aim
to discover a complete path between a source and target node, but gathering neighbor
information in OCNs is challenging, often causing reactive protocols to fail in estab-
lishing a proper end-to-end path. Similarly, in location-based routing, the selection of
predefined parameters for the next hop cannot adapt quickly enough to the highly
dynamic nature of the environment.

RL approaches have been successfully utilized to introduce intelligence in rout-
ing solutions across various wireless applications [6–9]. A comprehensive survey of
RL-based routing protocols has been presented by Mammeri [10]. Boyan et al. intro-
duced the first Q-learning-based routing algorithm in a telephone network [11]. While
Q-routing outperforms non-adaptive algorithms, it may struggle to find the opti-
mal policy under low or fluctuating network load conditions. To address this issue
and improve convergence, several variants of Q-routing have been proposed [12]. Fur-
ther, RL routing schemes have been applied to different wireless networks such as
mobile ad-hoc network (MANET) [13, 14], vehicular adhoc networks (VANET) [15],
wireless sensor networks (WSN) [16–18], wireless mesh networks (WMN) [19] and
delay tolerant networks (DTN) [20] for performance optimization. Some other con-
texts like underwater sensor networks [21, 22], software-defined networks [23, 24], and
information-centric networks [25] has also been employed RL-based routing.

Several model-free Q-learning based routing approaches have been proposed such
as QLAODV [31], MQ routing [27], FROMS [16], SMART [32], QGrid [15], and Q-
Geo [30]. Q-learning based routing for flying ad-hoc networks was discussed in [33]
and [34]. Lahsen-Cherif et al. proposed a Q-routing approach designed for wireless
mesh networks that utilize directional antennas [35]. Meanwhile, Lee et al. introduced
a multi-agent Q-learning framework specifically for UAV networks [36]. Wu et al.
took a different approach by modifying the AODV protocol to develop QLAODV, a
routing scheme for vehicular networks that considers vehicle movements and available
channel bandwidth [31]. Nonetheless, QLAODV can encounter delays in collecting link
information on multi-hop routes, which extends the time required for route adaptation.
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Sl No Routing Protocol Application
Performance Parameters

p1 p2 p3 p4 p5 p6 p7

1 Q-routing[11] Static Network x

2 PQ-routing [12] Static Network x x

3 DRQ [26] Static Network x x

4 CRL [13] MANET x x

5 MQ routing [27] MANET x x

6 ARBR [20] DTN x x

7 FROMs [16] WSN x x x

8 QELAR [28] Underwater WSN x

9 QoE routing [29] Multimedia Network x x

10 DMARL [21] Underwater WSN x x

11 QGrid [15] VANET x

12 Q-Geo [30] Robotic Networks x x

13 DCR [19] WMN x

14 QL-AODV [31] MANET x x

15 SMART [32] Cognitive Radio Networks x x

Table 1: Summary of RL-based routing protocols and performance metrics:
p1:delay, p2 : delivery ratio, p3: packet error rate, p4: Lifetime, p5: overhead reduc-
tion, p6: learning speed improvement, p7: path length reduction

In another study, Macone et al. discussed a proactive routing technique called MQ-
routing, aimed at improving node lifetime in mobile ad-hoc networks used in disaster
relief scenarios [27]. This technique combines path availability and energy parameters
in its optimization process. However, the proactive nature of MQ-routing makes it
difficult to update the neighborhood table in rapidly changing environments. Although
MQ-routing accounts for mobility and link availability in updating Q-values, it does
not adequately consider link connectivity quality, which may result in high Q-values
for nodes with low mobility despite poor connectivity. Forster et al. developed the
FROMs protocol, a multicast routing solution for wireless sensor networks [16]. The
protocol SMART, proposed by Saleem et al., applies Q-learning in a cluster-based
framework to enhance stable route selection and optimize secondary user performance
in cognitive radio networks [32].

The Q-Grid protocol [15], a geographic routing scheme for vehicular networks, uses
Q-learning techniques. However, it does not guarantee effective routing performance
in networks with intermittent links, as it fails to utilize information on link status or
availability duration. Jung et al. proposed another geographic routing protocol called
Q-Geo for robotic networks based on Q-learning [30]. To ensure reliable data transfer,
Q-Geo’s reward function takes into account packet travel speeds, distance, link status,
and location status. However, the protocol’s fixed learning rate results in a uniform
Q-value update rate across all network conditions. This static learning rate may not
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Fig. 1: Architecture of Offshore Communication Network[1]

be effective in networks with time-varying and context-dependent topology changes.
Table 1 summarizes the RL routing schemes applied in different types of networks
along with the performance metrics.

Conventional routing approaches such as static, proactive, reactive, and geographic
routing protocols can not adapt to rapid network changes and discover reliable paths.
Although many adaptive RL routing algorithms have been suggested, all protocols
mentioned above have been developed based on the distinctive features of each net-
work. The learning parameters and reward function must be customized to meet the
specific requirements of each network. Since OCNs operate in harsh environments and
communication to the shore remains an essential factor, an adaptive model is neces-
sary to enhance network connectivity. In previous work, we focused on packet status
and signal strength when designing the reward function [37]. This paper revises the
reward function by incorporating node-level connectivity quality, link availability, and
distance to the destination, aiming to enhance the packet delivery ratio.

3 Network Architecture

The OCN is a fishing vessel network that provides Internet access well beyond 100 km
from the shore. Its goal is to let fishermen access the internet through their mobile
phones, using off-the-shelf apps such as WhatsApp for calls and messages. The fishing
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vessels forming the OCN act as edge nodes that locally analyze routing data and
perform multiple network functions.

Based on the resources present in the fishing vessels, OCN nodes are classified into
three types: access nodes, adaptive nodes, and supernodes.

• An access node is a fishing vessel that only provides a wireless access router (AR)
and communicates using Wi-Fi omnidirectional antennas.

• An adaptive node is a vessel equipped with adaptive backhaul equipment (ABE)
and one AR.

• A node equipped with two ABEs and one AR is categorized as a supernode.

Adaptive nodes and supernodes use 120º sectored long-range Wi-Fi links. These nodes
are also termed long range (LR) nodes and are the ones forming the backbone network.
LR Wi-Fi link’s range is between 15 and 20 km. AR nodes with Wi-Fi links form a
wireless mesh network.

The network architecture is shown in Figure 1. A detailed description of the archi-
tecture and packet forwarding strategies can be found in previous papers [1, 38, 39],
[37, 40, 41]. The validation of the OCN architecture has been carried out over the
Arabian Sea from a coastal village in Kerala, India. LR Wi-Fi equipment from Ubiq-
uiti Networks and Cisco Linksys access routers were deployed for sea trials. A single
onshore base station is located 56 m above sea level, and the vessel’s ABE is placed
at 9 m above sea level. In these sea trial experiments, the network provided a 40+ km
range in the first hop and 20 km in every succeeding hop.

4 RL Based Routing Model for OCN

We consider an OCN routing scenario consisting of LR nodes, access nodes, and
onshore base stations. All nodes, except the onshore base stations, are mobile. The
transmission range of LR nodes spans 15-20 km, whereas access nodes offer connec-
tivity within a radius of 150-250 meters. To reach the final destination, multi-hop
communication is necessary. We assume that all nodes are equipped with GPS devices
that provide their current positions. Each node generates messages with varying
priorities, such as emergency, audio, and video messages. Additionally, all nodes peri-
odically transmit beacons to their neighboring nodes, containing location data and
other routing-related information.

Routing in OCN is formulated as an RL problem. In this scenario, the entire
network, including access nodes, LR nodes, and base stations—constitutes the envi-
ronment for the agent. Each packet within the network acts as an individual agent.
The agent receives rewards or penalties based on the success or failure of each trans-
mission, and it uses these feedback signals to learn the optimal policy for selecting
the best next hop. Each node in the network maintains information about its neigh-
bors’ connectivity features, such as connectivity quality, link availability duration,
path probability, distance to the destination, and Q-value. These features are peri-
odically updated through beacon messages exchanged between nodes. To determine
the next hop for packet forwarding, we employ a temporal difference off-policy Q-
learning algorithm [42]. This algorithm uses an ϵ-greedy policy, where ϵ represents a
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Fig. 2: State-Action model in OCN routing: Node S have three possible actions: an1
, an2

, an3
. It selects

the best action an1
and forwards the packet to node n1. Node S will receive a reward for action an1

and
update its Q-value accordingly. Similarly, the best action will be selected from node n1 and this process
will continue until the packet reaches its destination.

small probability of introducing randomness into action selection, allowing the agent
to explore new potential routing solutions. As wireless links fluctuate over time, this
approach ensures that new links can be incorporated into the routing path, making it
adaptable to the dynamically changing environment of OCNs.

Figure 2 illustrates the routing scenario in OCN-AR. Consider a situation where
node S needs to communicate with the base station and must select a next-hop neigh-
bor. Node S has three possible options for backbone connections: n1, n2, and n3. The
actions of selecting these neighbors are denoted by an1 , an2 , and an3 , respectively.
Node S will choose the action with the highest Q-value with a probability of 1− ϵ, for
instance, an1 . Upon executing this action, node S receives a reward that is calculated
using both local and remote information. At node n1, the process repeats, with the
next-hop being selected based on the highest Q-value. In this scenario, the base station
has the highest Q-value, leading node n1 to choose that path. Each node maintains a
Q-table that records the Q-values of its neighbors, which are updated after feedback
is received. These updated Q-values are used in future packet forwarding decisions,
enabling the selection of the most optimal route over time.

A Markov Decision Process with the following state, action, and reward function
is used to model the routing process.
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• States: Each packet in the network corresponds to an agent, and the agent’s envi-
ronment is defined as the collection of all nodes in the network. The state of an
agent is represented by the node where the packet is currently located. In other
words, if a node i receives a packet for forwarding or generates a new packet, the
agent’s state is identified as i. Consequently, the state space is defined as the set of
all nodes in the network, along with their associated features.

• Actions: Let Ni = {n1, n2, ..., nk} be the neighbors of node i. An action in node i
at time t is the selection of one of the neighbors from Ni for forwarding packet. The
action space comprises the set of possible actions that all nodes can take in an OCN.

• Reward function: The reward function is the most important factor in determin-
ing the effectiveness of Q-routing. The environment returns a reward to the agent
for indicating the impact of the neighborhood selection. This reward comprises a
function of local information computed in the node and a component of remote
information received as feedback from other nodes, obtained through the acknowl-
edgment scheme. The parameters to be considered at the local (node) level include
the connectivity quality of neighboring nodes, the link availability duration, the
probability of the path to the destination, and the distance to the destination.

The following subsections detail the first three components of the proposed reward
function, followed by the reward function itself and a description of the Q-Learning
algorithm.

4.1 Node Connectivity Quality

To study the characteristics of marine wireless links, we collected data on how signal
strength varies with distance in different sea trials[41]. This data was used to examine
the factors affecting connectivity. Sea wave-induced movement and propagation effects
directly impact the quality of signals in OCN. These parameters change the topology
from time to time and create a severe challenge in routing packets. Hence, we developed
a machine learning framework using historical and online data to predict the link
connectivity probability.

A metric called dynamic connectivity index (DCI) has been defined to compute
the level of node connectivity by employing this link prediction model [43]. Assume
that connectivity is determined solely based on the local link quality. In this case,
there is a possibility of selecting a neighbor with good link quality. However, if the
chosen neighbor has poor overall connectivity, it is less likely to successfully deliver
the message. DCI is a node-level measure of a node’s connectivity to clusters and base
stations. DCI helps to decide the most suitable next-hop and minimizes the possibility
of node isolation. To define the DCI of a node, we compute the DCI of its next-hop
neighbors and link probability to those neighbors as shown in equation 1.

DCI(x) =
∑

i∈AN(x)

wi · pi ·DCI(i) (1)

where wi is the weight of next-hop i, pi is the link probability from node x to neighbor
i, AN(x) is the list of neighbor nodes whose link probability is greater than a threshold
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Fig. 3: Communication scenario between two mobile LR nodes with movement vectors vs and va.

value 0.25 and DCI(i) is the dynamic connectivity index of neighbor i. A dynamic
weighting scheme is used to prioritize the neighbors of a node [43].

4.2 Link Availability Duration

Consider a communication scenario between two mobile LR nodes as shown in
Figure 3. Let nodes S and A be separated by a distance dτ after time τ . Let vs and
va be the velocity vectors of nodes S and A. The alignment of directional antennas
between the LR nodes affects the communication radius. Let ϕ represent the angle of
misalignment among the transmitter and receiver antennas. An increase in ϕ decreases
the communication distance between nodes and varies with the environments’ dynam-
ics. zτeff represents the effective communication distance of S and A after time τ as
a function of ϕ. The displacement over the x, y directions and the distance between
nodes due to the mobility can be computed as:

• Difference in x direction δτx :

δτx = (xs − xa) + (va cos θa − vs cos θs)τ (2)

• Difference in y direction δτy :

δτy = (ys − ya) + (va sin θs − vs sin θs)τ (3)
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• Distance between nodes after time τ :

dτ =
√

(δτx)
2 + (δτy )

2

=
[
((xs − xa) + (va cos θa − vs cos θs)τ)

2

+ ((ys − ya) + (va sin θa − vs sin θs)τ)
2
]1/2

For effective communication, dτ < zτeff . The maximum duration of link availability τ
can be obtained by rewriting this equation as:

τ =
−(∆xVxδ +∆yVyδ)±

√
(V 2

xδ + V 2
yδ)(z

τ
eff )2 − (∆yVxδ −∆xVyδ)2

V 2
xδ + V 2

yδ

(4)

where

∆x = (xa − xs),

∆y = (ya − ys),

Vxδ = va cos(θa + ϕa)− vs cos(θs + ϕs),

Vyδ = va sin(θa + ϕa)− vs sin(θs + ϕs)

4.3 Path Probability

Information regarding the possibility of an end-to-end path between the LR nodes
or the base station helps to select next-hop neighbors. There may be multiple paths
with different hops and various link properties between two nodes. The connectivity
probabilities of these links can be predicted using the machine learning framework in
OCN. Additionally, the details of existing paths are available through the feedback
mechanism of the routing algorithm. We consider all such paths and link probabilities
to estimate the connectivity probability between nodes.

Let r1, r2, ..., rq be the routing paths exist between two nodes a and b. Consider
a path ri that consists of m links, whose availability is expressed by probabilities
l1, l2, ..., lm. Assume that such probabilities are independent of each other. Then, the
probability of the existence of the path ri can be calculated by the product of its
individual link probabilities as in Equation 5.

Prb(ri) = l1 · l2 · . . . · lm (5)

If any one of the links in this path breaks, then Prb(ri) becomes zero. Then the
probability for path wi to not exist is equal to 1− Prb(ri).

Assume that the probabilities of multiple paths existing between two nodes are
independent. Considering q possible paths between nodes a and b, the probability for
the existence of at least one path is equal to

P(a, b) = 1−
q∏

i=1

(1− Prb(ri)) (6)
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When the path probability of a neighbor node to the destination is high, the node will
earn a larger Q-value. Under certain network conditions, such as when a significant
number of links fail, computing path probability can be challenging. In these situations,
the reward function will not take this factor into account.

4.4 Reward Function

The reward for forwarding a packet from node i to node j with action aj at time t is
defined as:

Rt = Rf + β1 ·DCI(j) + β2 · τ + β3 · P(j, dest) + β4 ·
∆d(i, j)

d(i, j)
(7)

where DCI(j) is the connectivity index of node j, τ is the link availability time,
P(j, dest) is the probability that a path exists from node j to the destination and
∆d(i, j) is the difference in distance between i and j to the destination. βis are the
weights given to each of the node level features. Since DCI(j) and τ are the most
important features, we used a normalized weight vector β = ⟨0.5, 0.25, 0.1, 0.15⟩ in
simulations. Rf is defined as

Rf =


+5, ACK received
−5, ACK not received
−10, next-hop is local maximum
Rmax, next-hop is destination

(8)

The node will receive a positive or negative reward, depending whether the packet
has been received or not. In addition, a higher negative value will be assigned when
the selected neighbor does not have a potential connection for forwarding; the maxi-
mum reward will be provided if the subsequent hop from the selected neighbor is the
destination. In the simulation experiments we used Rmax as 100.

4.5 OCN Adaptive Routing Algorithm

The OCN Adaptive Routing (OCN-AR) algorithm is shown in Algorithm 1. Since the
state of the agent includes connectivity features of its neighbors j, it can be represented
as ⟨DCI(j), τ,P(j, dest),∆D⟩ where ∆D is the difference in distance of current node
and neighbor j to the destination. In Figure 2, the state of the agent for neighbor n1

at node S is ⟨0.65, 0.69, 0.82, 0.6⟩. Each node develops and maintains a Q-value list of
its neighbor nodes. If an entry is not present in the Q-table, the source node creates
a new record using information from the target and the neighbor node. We initialize
the Q-value of all state-action pairs Q(st, at) using a function based on DCI and link
probability LP. Each node i periodically sends beacon messages to update the Q-
table. This includes Q-values, the current DCI(i), and location information loc. When
a node receives a beacon or acknowledgment message, it updates the reward Rt and
the Q-value using the Equation 9.

Qnew(st, at) = (1− α)Qold(st, at) + α.[Rt + γ.max
a

Q((st+1, a)] (9)
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where Qold(st, at) is the old Q-value for the action at in state st.Rt denotes the reward
for the action at in state st. maxa Q((st+1, a) is the maximum Q-value in the next
state st+1 with best action a. The learning rate and the discount factor are represented
as α and γ, respectively, with values in the range [0, 1].

The extent of topology changes varies in different sea states and fishing stages. In
the roughest sea states, rocking movement will be extremely large and cause frequent
topology changes. In such conditions, a higher learning rate is required to prioritize the
current data. Moreover, we keep a small discount factor as the future expectations are
not accurate. In more calm sea states and during resting or fishing phases, topology
changes are smaller compared to other scenarios. In this case, a low learning rate is
favored. We apply a context-dependent parameter selection instead of using a constant
learning rate and discount factor.

After creating the Q-table, the nodes select a neighbor with the highest Q as next-
hop with probability 1− ϵ. This phase is the exploitation stage of Q-learning. For the
exploration of the state space, the source node arbitrarily selects any of the neighbors
as next-hop with probability ϵ. LR nodes select the best neighbor only from the list of
LR nodes as the transmission radius of these nodes is very large compared to access
nodes. Access nodes can choose multiple hops to reach an LR node.

Algorithm 1: OCN Adaptive Routing

State S = Set of all nodes in the network;
Action A = Neighbor nodes ;
Exploration coefficient ϵ = 0.01;
for every s ∈ S do

for every a ∈ A do
N = neighbors of node s ;
Q(st, at) = DCI(Nat) * P;

while true do
if beacon timer expires in each node x then

Send beacon < Q− value, DCI(x), loc >

if receive a beacon/ack message then
Update reward function Rt and Q-value Q(st, at) as in Eq. 7, 8 and 9

if Node x has a packet to send then
Generate a random number p ∈ [0, 1];
if ϵ ≤ p then

next-hop = random(N )
else

if node type(x) = access then
next-hop = argmaxa∈N { a : Q(s, a))}

if node type(x) = LR then
next-hop = argmaxa∈N (LR) { a : Q(s, a))}

12



(a) (b)

Fig. 4: (a) Data collected from sea-trial experiments on signal strength variation with
distance in different vessel rocking stages (b) Prediction of signal strength at distance
25 km and vessel rocking stage = 3.

5 Results

The experimental setup for evaluating the OCN-AR protocol involved both simula-
tions and real-world experiments to collect signal strength data under different vessel
rocking conditions. A machine learning framework was then developed to predict signal
strength under varying sea conditions. This prediction model is used in the computa-
tion of link probability and DCI, which were the important components of the reward
function in the OCN-AR protocol. In the simulation phase, NS-2 was used to model
the network, which included 50 mobile nodes—comprising 12 Long-Range nodes and
38 access nodes—along with one onshore base station. Packet generation rates varied
from 2 to 64 packets per second, with a default packet size of 512 bytes, and traffic
was generated using a fixed-rate UDP source. The protocol’s performance was assessed
based on the packet delivery ratio and compared with three state-of-the-art routing
protocols: AODV, GPSR, and Q-Geo.

The signal strength data collected during marine experiments from various vessel
rocking stages are shown in Figure 4a. Here, each state represents a different vessel
rocking stage. The sea condition is rough in higher-numbered states, and we can
observe more signal deviation due to the increased impact of waves on node mobility.
We developed a machine learning framework to predict the signal strength under
different sea conditions using this data. Figure 4b shows a sample prediction of signal
strength over a distance of 25km. Employing this prediction model, link probability
and DCI, which are components of the reward function, are computed.

Although the average speed of fishing vessels is 3-5 m/s, the rocking motion leads
to more packet drops. This moving effect of the vessels is simulated by setting the node
pause time. The shorter the pause time, the higher the degree of mobility. Figure 5
shows the packet delivery ratio for various pause times. Link failures often occur when
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Fig. 5: Comparison of packet delivery ratio for varying mobility degree.

(a) (b)

Fig. 6: (a) Variation of packet delivery ratio with data transmission rate. (b) Variation
of packet delivery ratio with rocking movement vessels due to sea waves. The rocking
degree indicates the wave state of the sea.

mobility levels increase, causing AODV and GPSR performance to decline. OCN-AR
shows significant improvement over Q-Geo and other protocols, taking into account
link availability length, direction of movement from the destination, and neighborhood
connectivity level.

We varied the transmission rate at the source nodes from 2 to 64 packets per second.
The results, shown in Figure 6a, reveal a significant drop in the packet delivery ratio
when the transmission rate exceeds 16 packets per second across all protocols. Among
the protocols, AODV experiences a faster degradation in performance compared to the
other two adaptive protocols, primarily due to higher channel occupancy and increased
packet loss from link failures. In contrast, OCN-AR performs better than Q-Geo as it
considers the connectivity quality of the nodes.
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(a) (b)

Fig. 7: (a) Variation of packet delivery ratio with the density of LR nodes (b) Variation
of packet delivery ratio with increase in learning rate.

One of the distinctive features of OCN is the rocking movement of the nodes, which
often causes link breakages. We simulated this scenario using a random waypoint
mobility model with varying velocities. We dropped a fixed percentage of packets from
the source in each rocking stage to simulate the vessel movement factor. In this case,
the packet delivery ratio of OCN-AR was compared to AODV and Q-Geo as shown in
Figure 6b. The performance of AODV decreases considerably with increasing rocking
degrees because of the large number of link failures. OCN-AR performs effectively in
high rocking conditions compared to other protocols. This improvement is because it
utilizes signal strength data and estimates of link availability. The simulation scenario
includes both access and LR nodes.

We tested the impact of the density of LR nodes on the packet delivery ratio
and the results demonstrated in Figure 7a. The number of LR nodes varied from 2
to 16 and we noticed an improvement in packet delivery with increased density. The
learning rate is one of the critical hyper-parameters in OCN-AR that controls the
rate of adaptation to the dynamic topology. Different fishing stages experience varying
mobility degrees, and hence a context-dependent learning rate is used. To tune the
parameter, we varied it from 0.1 to 0.9 and observed a better performance at value
0.7 in the fish searching context, as shown in Figure 7b. The optimal learning rate
computed in other fishing stages is slightly different from this context.

6 Conclusion and Future Work

In this paper, we addressed the routing challenges in an offshore communication net-
work of fishing vessels and introduced OCN-AR, a Q-learning-based routing protocol
designed for effective message dissemination. OCN-AR utilized a reward function
that incorporates important features- real-time connectivity quality forecasts, path
probability, link availability duration, and distance to the destination of OCN. The
effectiveness of this routing strategy was validated through simulations using data from
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sea trials, which demonstrated that the reinforcement learning strategy enhances rout-
ing performance under the challenging conditions of the ocean. The packet delivery
ratio of OCN-AR was evaluated across various mobility scenarios, transmission rates,
vessel rocking factors, and node densities, and compared with existing protocols. The
results indicate that OCN-AR is well-suited for maritime networks of fishing vessels.
However, the protocol faces challenges, particularly with the high computational over-
head required for updating Q-values. In future, we plan to focus on exploring value
function approximation techniques to address the computational efficiency.
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