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Abstract
The lack of affordable communication facilities to the shore remains a fundamental problem for fishermen engaged in deep-
sea fishing. The Offshore Communication Network (OCN) is a wireless network of fishing vessels, whose goal is to provide 
Internet over the ocean. However, the dynamic nature of OCNs characterized by extreme weather, the difficulty of deploying 
additional infrastructure, wave-induced vessel movements, and high mobility causes significant challenges for traditional rout-
ing protocols. This paper proposes OCN-AR, a Q-learning-based adaptive routing strategy for ocean networks. The quality 
of the learning process relies on the reward function, which has been carefully designed to incorporate the most important 
features, including real-time forecasts of connectivity quality, path probability, link availability duration, and distance to 
the destination. The routing performance is evaluated through extensive simulations conducted under diverse conditions, 
including varying mobility scenarios, transmission rates, vessel rocking intensities, and node densities, and is compared 
against traditional protocols. The results demonstrate that OCN-AR significantly outperforms existing routing approaches, 
making it a reliable solution for maritime communication.
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Introduction

The absence of adequate means to communicate with the 
shore is a fundamental impediment encountered by fish-
ermen in deep-sea fishing. Conventional communication 
technologies such as cellular networks and marine radio can 
only provide connectivity up to a distance of about 20 km 
from the coast. These systems cannot be exploited since 
fishing vessels travel more than 100 km into the deep sea. 
On the other hand, satellite phone services are too expen-
sive for fishermen. The Offshore Communication Network 
(OCN) proposed by Rao et al. aims at resolving this issue by 

building a wireless network of fishing vessels that provide 
internet over the ocean [1]. The goal is to enable fishermen 
to connect to the Internet using affordable, handheld devices 
such as mobile phones, allowing them to communicate with 
the shore and other vessels.

Although marine networks share some of the features 
of terrestrial mobile ad-hoc and vehicular networks, they 
present unique characteristics and research challenges [2]. 
Unlike terrestrial vehicular networks, which are limited by 
road infrastructure, OCN benefits from greater freedom of 
movement in the open ocean. However, OCNs face signifi-
cant communication challenges due to the inability to deploy 
additional infrastructure in the marine environment, the 
impact of extreme weather conditions on wireless signals, 
and the misalignment of directional links. The most critical 
challenge arises from the rough sea conditions, which can 
severely affect link quality. The topology of the network can 
change rapidly due to antenna orientation, the rocking move-
ment of vessels, and propagation effects that weaken signal 
strength. For all the above reasons, providing uninterrupted 
internet connectivity is a difficult problem in OCNs.

Given these challenges, an adaptive routing mechanism 
capable of responding to the dynamic and unpredictable 
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nature of OCNs is essential for maintaining operational 
efficiency. Reactive routing protocols face difficulties in 
establishing reliable end-to-end paths due to issues in route 
discovery, while proactive protocols are resource-intensive, 
as they precompute all source-destination routes, includ-
ing those that are not needed [3, 4]. Location-based routing 
protocols, which use predetermined parameters to select 
the next hop, fail to adapt quickly to the dynamic environ-
ment of OCNs. Integrating machine learning algorithms 
into the routing process continuously monitors the network 
conditions and adjusts the routing paths in real time. This 
adaptability is important in a marine environment where the 
links can change within short periods, making precomputed 
routes ineffective. Reinforcement learning (RL) techniques, 
in particular, have demonstrated potential, as agents interact 
with the wireless environment and make decisions based on 
feedback signals.

Although numerous routing protocols based on RL strate-
gies have been proposed in the literature for terrestrial net-
works, they must be adapted to meet the unique requirements 
and challenges of OCNs [5, 6]. A well-designed reward 
function is essential for learning the optimal next-hop to 
deliver packets effectively under dynamic conditions. The 
contribution of this paper goes exactly in this direction. 
An OCN-specific reward function is proposed, taking into 
account the real-time connectivity quality estimate, the link 
availability duration, the path probability, and the geographi-
cal distance to the destination of neighbor nodes. Based on a 
Q-learning strategy, the proposed protocol discovers adap-
tive routes in a completely distributed manner. We evalu-
ated the proposed protocol under various network conditions 
and compared its performance with other Q-learning-based 
routing schemes. In the simulation environment, the routing 
strategy achieved significantly higher packet delivery ratio.

The rest of the paper is organized as follows: Sec-
tion  Related Works reviews previous works related to 
routing protocols based on reinforcement learning. In Sec-
tion Network Architecture, we present the architecture of 
OCN. Section RL Based Routing Model for OCN describes 
the reinforcement learning model and the formulation of the 
reward function. Section Results presents simulation results, 
followed by the concluding remarks of Sect. Conclusion and 
Future Scope.

Related Works

The routing problem in wireless networks has been exten-
sively studied in the literature. In conventional proactive 
table-driven routing, algorithms predetermine all source-
destination paths. However, in OCNs, the control traffic 
required to update neighborhood information is excessive, 
and nodes cannot predict in advance whether these paths will 

be needed for routing. In reactive routing, traditional proto-
cols aim to discover a complete path between a source and 
target node, but gathering neighbor information in OCNs 
is challenging, often causing reactive protocols to fail in 
establishing a proper end-to-end path. Similarly, in location-
based routing, the selection of predefined parameters for the 
next hop cannot adapt quickly enough to the highly dynamic 
nature of the environment.

RL approaches have been successfully utilized to intro-
duce intelligence in routing solutions across various wireless 
applications [6–9]. Mammeri has presented a review of rout-
ing protocols based on reinforcement learning [10]. Boyan 
et al. introduced the first Q-learning algorithm for routing 
in a telephone network [11]. While Q-routing outperforms 
non-adaptive algorithms, it may struggle to find the optimal 
policy under low or fluctuating network load conditions. To 
address this issue and improve convergence, several vari-
ants of Q-routing have been proposed [12]. Further, Routing 
schemes based in RL have been applied to diverse networks 
such as mobile ad-hoc network (MANET) [13, 14], vehic-
ular adhoc networks (VANET) [15], wireless sensor net-
works (WSN) [16–18], wireless mesh networks (WMN) [19] 
and delay tolerant networks (DTN) [20] for performance 
improvement. RL-based routing has also been employed in 
other contexts, such as underwater sensor networks [21, 22], 
software-defined networks [23, 24], and information-centric 
networks [25].

Several model-free Q-learning based routing approaches 
have been proposed such as QLAODV  [31], MQ rout-
ing  [27], FROMS  [16], SMART  [32], QGrid  [15], and 
Q-Geo [30]. Q-learning based routing for flying ad-hoc 
networks was discussed in [33, 34]. Lahsen-Cherif et al. 
proposed a Q-routing approach designed for wireless mesh 
networks that utilize directional antennas [35]. Meanwhile, 
Lee et al. introduced a multi-agent Q-learning framework 
specifically for UAV networks [36]. Wu et al. took a differ-
ent approach by modifying the AODV protocol to develop 
QLAODV, a routing scheme for vehicular networks that 
considers vehicle movements and available channel band-
width [31]. Nonetheless, QLAODV can encounter delays 
in collecting link information on multi-hop routes, which 
extends the time required for route adaptation. In another 
study, Macone et al. discussed a proactive routing tech-
nique called MQ-routing, aimed at improving node life-
time in mobile ad-hoc networks used in disaster relief sce-
narios [27]. This technique combines path availability and 
energy parameters in its optimization process. However, the 
proactive nature of MQ-routing makes it difficult to update 
the neighborhood table in rapidly changing environments. 
Although MQ-routing accounts for mobility and link avail-
ability in updating Q-values, it does not adequately consider 
link connectivity quality, which may result in high Q-val-
ues for nodes with low mobility despite poor connectivity. 
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Forster et al. developed the FROMs protocol, a multicast 
routing solution for wireless sensor networks [16]. The pro-
tocol SMART, proposed by Saleem et al., applies Q-learning 
in a cluster-based framework to enhance stable route selec-
tion and optimize secondary user performance in cognitive 
radio networks [32].

The Q-Grid protocol [15], a geographic routing scheme 
for vehicular networks, uses Q-learning techniques. How-
ever, it does not guarantee effective routing performance 
in networks with intermittent links, as it fails to utilize 
information on link status or availability duration. Jung 
et al. proposed another geographic routing protocol called 
Q-Geo for robotic networks based on Q-learning [30]. To 
ensure reliable data transfer, Q-Geo’s reward function takes 
into account packet travel speeds, distance, link status, and 
location status. However, the protocol’s fixed learning rate 
results in a uniform Q-value update rate across all network 
conditions. This static learning rate may not be effective in 
networks with time-varying and context-dependent topol-
ogy changes. Table 1 summarizes the RL routing schemes 
applied in different types of networks along with the perfor-
mance metrics.

Conventional routing approaches such as static, proactive, 
reactive, and geographic routing protocols can not adapt to 
rapid network changes and discover reliable paths. Although 
many adaptive RL routing algorithms have been suggested, 
all protocols mentioned above have been developed based on 
the distinctive features of each network. The learning param-
eters and reward function must be customized to meet the 
specific requirements of each network. Since OCNs oper-
ate in harsh environments and communication to the shore 
remains an essential factor, an adaptive model is necessary 

to enhance network connectivity. In previous work, we 
focused on packet status and signal strength when design-
ing the reward function [37]. This paper revises the reward 
function by incorporating node-level connectivity quality, 
link availability, and distance to the destination, aiming to 
enhance the packet delivery ratio.

Network Architecture

The OCN is a fishing vessel network that provides Internet 
access well beyond 100 km from the shore. Its goal is to let 
fishermen access the internet through their mobile phones, 
using off-the-shelf apps such as WhatsApp for calls and 
messages. The fishing vessels forming the OCN act as edge 
nodes that locally analyze routing data and perform multiple 
network functions.

Based on the resources present in the fishing vessels, 
OCN nodes are classified into three types: access nodes, 
adaptive nodes, and supernodes.

• An access node is a fishing vessel that only provides a 
wireless access router (AR) and communicates using 
Wi-Fi omnidirectional antennas.

• An adaptive node is a vessel equipped with adaptive 
backhaul equipment (ABE) and one AR.

• A node equipped with two ABEs and one AR is catego-
rized as a supernode.

Adaptive nodes and supernodes use 120º sectored long-
range Wi-Fi links. These nodes are also termed long range 
(LR) nodes and are the ones forming the backbone network. 

Table 1  Summary of RL-based 
routing protocols and 
performance metrics: p

1
:delay, 

p
2
 : delivery ratio, p

3
 : packet 

error rate, p
4
 : Lifetime, p

5
 : 

overhead reduction, p
6
 : learning 

speed improvement, p
7
 : path 

length reduction

Sl No Routing Protocol Application Performance Parameters

p
1

p
2

p
3

p
4

p
5

p
6

p
7

1 Q-routing[11] Static Network x
2 PQ-routing [12] Static Network x x
3 DRQ [26] Static Network x x
4 CRL [13] MANET x x
5 MQ routing [27] MANET x x
6 ARBR [20] DTN x x
7 FROMs [16] WSN x x x
8 QELAR [28] Underwater WSN x
9 QoE routing [29] Multimedia Network x x
10 DMARL [21] Underwater WSN x x
11 QGrid [15] VANET x
12 Q-Geo [30] Robotic Networks x x
13 DCR  [19] WMN x
14 QL-AODV [31] MANET x x
15 SMART [32] Cognitive Radio Networks x x
16 OCN-AR Extreme Networks x x
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LR Wi-Fi link’s range is between 15 and 20 km. AR nodes 
with Wi-Fi links form a wireless mesh network.

The network architecture is shown in Fig. 1. A compre-
hensive description of the architecture and packet forward-
ing strategies is available in previous studies [1, 37–41]. The 
OCN architecture was validated in the Arabian Sea, starting 
from a coastal village in Kerala, India. For the sea trials, LR 
Wi-Fi equipment from Ubiquiti Networks and Cisco Linksys 
access routers were deployed. The onshore base station was 
positioned 56 ms above sea level, while the vessel’s ABE 
was placed at 9 ms above sea level. During these sea trials, 
the network achieved a range of over 40 km for the first hop 
and 20 km for each subsequent hop.

RL Based Routing Model for OCN

We consider an OCN routing scenario comprising LR nodes, 
access nodes, and onshore base stations, where all nodes 
except onshore base stations are mobile. LR nodes have a 
transmission range of 15–20 km, while access nodes provide 
connectivity within a radius of 150–250 ms. Multi-hop com-
munication is required to ensure messages reach their final 
destination. Each node is assumed to be equipped with GPS 
devices that provide real-time positional data. The nodes 
generate messages of varying priorities, including emer-
gency, audio, and video messages. Furthermore, all nodes 
periodically send beacons to neighboring nodes, containing 
location details and other routing-related information.

Routing in OCN is modeled as an RL problem. In this 
framework, the entire network, comprising access nodes, LR 
nodes, and base stations, represents the environment for the 
RL agent. Each packet within the network functions as an 
independent agent. The agent receives rewards or penalties 
based on the success or failure of transmissions, using these 
feedback signals to learn an optimal policy for selecting the 
most suitable next hop. Each node in the network maintains 
information about its neighbors’ connectivity features, 
such as connectivity quality, link availability duration, path 
probability, distance to the destination, and Q-value. These 
features are periodically updated through beacon messages 
exchanged between nodes. To determine the next hop for 
packet forwarding, we employ a temporal difference off-
policy Q-learning algorithm [42]. This algorithm uses an 
�-greedy policy, where � represents a small probability of 
introducing randomness into action selection, allowing the 
agent to explore new potential routing solutions. As wire-
less links fluctuate over time, this approach ensures that 
new links can be incorporated into the routing path, making 
it adaptable to the dynamically changing environment of 
OCNs.

Figure 2 depicts the routing scenario in OCN-AR. In this 
example, node S needs to establish communication with the 
base station and must choose an appropriate next-hop neigh-
bor. Node S has three possible options for backbone connec-
tions: n1 , n2 , and n3 . The actions of selecting these neighbors 
are denoted by an1 , an2 , and an3 , respectively. The node will 
choose the action with the highest Q-value with a probability 

Fig. 1  Architecture of Offshore Communication Network[1]
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of 1 − � , for instance, an1 . Upon executing this action, node 
S receives a reward that is calculated using both local and 
remote information. At node n1 , the process repeats, with the 
next hop being selected based on the highest Q-value. In this 
scenario, the base station has the highest Q-value, leading 
node n1 to choose that path. Each node maintains a Q-table 
that records the Q-values of its neighbors, which are updated 
after feedback is received. These updated Q-values are used 
in future packet forwarding decisions, enabling the selection 
of the most optimal route over time.

A Markov Decision Process with the following state, 
action, and reward function is used to model the routing 
process.

• States: Each packet in the network corresponds to an 
agent, and the agent’s environment is defined as the col-
lection of all nodes in the network. The state of an agent 
is represented by the node where the packet is currently 
located. Specifically, if a node i generates a new packet 
or receives one for forwarding, the agent’s state is rep-
resented as i . Accordingly, the state space consists of all 
nodes in the network, along with their respective features.

• Actions: Let Ni = {n1, n2, ..., nk} be the neighbors of node 
i. An action in node i at time t is the selection of one of 
the neighbors from Ni for forwarding packet. The action 
space comprises the set of possible actions that all nodes 
can take in an OCN.

• Reward function: The reward function is the most impor-
tant factor in determining the effectiveness of Q-routing. 
The environment returns a reward to the agent for indi-

cating the impact of the neighborhood selection. This 
reward comprises a function of local information com-
puted in the node and a component of remote information 
received as feedback from other nodes, obtained through 
the acknowledgment scheme. The parameters to be con-
sidered at the local (node) level include the connectivity 
quality of neighboring nodes, the link availability dura-
tion, the probability of the path to the destination, and the 
distance to the destination.

The subsequent subsections provide a detailed explana-
tion of the first three components of the proposed reward 
function, followed by the complete reward function and the 
description of the Q-learning algorithm.

Node Connectivity Quality

To analyze the characteristics of marine wireless links, we 
collected data on signal strength variations with distance 
during various sea trials [41]. This dataset is employed to 
examine the factors affecting connectivity within oceanic 
networks. Sea wave-induced movements and propagation 
effects significantly influence signal quality in OCN, caus-
ing frequent topological changes and posing challenges 
for packet routing. To address these issues, we developed 
a machine learning framework that utilizes both historical 
and real-time data to predict link connectivity probabilities.

A metric called dynamic connectivity index (DCI) has 
been defined to compute the level of node connectivity 
by employing this link prediction model  [43]. Assume 

Fig. 2  State-Action model in 
OCN routing: Node S have three 
possible actions: a

n1
 , a

n2
 , a

n3
 . It 

selects the best action a
n1

 and 
forwards the packet to node n

1
 . 

Node S will receive a reward 
for action a

n1
 and update its 

Q-value accordingly. Similarly, 
the best action will be selected 
from node n

1
 and this process 

will continue until the packet 
reaches its destination S

n1

A

n2

n4

n5
n6

n3n3

S

n1

n666

BS

Access node

LR node

n

an2

an3

an1
an6
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that connectivity is determined solely based on the local 
link quality. In this case, there is a possibility of selecting 
a neighbor with good link quality. However, if the chosen 
neighbor has poor overall connectivity, it is less likely to 
successfully deliver the message. DCI is a node-level meas-
ure of a node’s connectivity to clusters and base stations. 
DCI helps to decide the most suitable next-hop and mini-
mizes the possibility of node isolation. To define the DCI of 
a node, we compute the DCI of its next-hop neighbors and 
link probability to those neighbors as shown in Eq. 1.

where wi is the weight of next-hop i, pi is the link probability 
from node x to neighbor i, AN(x) is the list of neighbor nodes 
whose link probability is greater than a threshold value 0.25 
and DCI(i) is the dynamic connectivity index of neighbor i. 
A dynamic weighting scheme is used to prioritize the neigh-
bors of a node [43].

Link Availability Duration

Consider a communication scenario between two mobile LR 
nodes as shown in Fig. 3. Let nodes S and A be separated by 
a distance d� after time � . Let vs and va be the velocity vec-
tors of nodes S and A. The alignment of directional antennas 
between the LR nodes affects the communication radius. Let 
� represent the angle of misalignment among the transmitter 
and receiver antennas. An increase in � decreases the com-
munication distance between nodes and varies with the envi-
ronments’ dynamics. z�

eff
 represents the effective communi-

cation distance of S and A after time � as a function of �.

(1)DCI(x) =
∑

i∈AN(x)

wi ⋅ pi ⋅ DCI(i)

The displacement in x, y directions and the distance 
between nodes due to mobility can be computed as:

• Difference in x direction ��
x
 : 

• Difference in y direction ��
y
 : 

• Distance between nodes after time � : 

For effective communication, d𝜏 < z𝜏
eff

 . The maximum dura-
tion of link availability � can be obtained by rewriting this 
equation as:

where

Path Probability

Information regarding the possibility of an end-to-end path 
between the LR nodes or the base station helps to select 
next-hop neighbors. There may be multiple paths with dif-
ferent hops and various link properties between two nodes. 
The connectivity probabilities of these links can be predicted 
using the machine learning framework in OCN. Addition-
ally, the details of existing paths are available through the 
feedback mechanism of the routing algorithm. We consider 
all such paths and link probabilities to estimate the connec-
tivity probability between nodes.

Let r1, r2, ..., rq be the routing paths exist between two nodes 
a and b. Consider a path ri that consists of m links, whose 
availability is expressed by probabilities l1, l2, ..., lm . Assume 
that such probabilities are independent of each other. Then, 

(2)��
x
=
(
xs − xa

)
+
(
va cos �a − vs cos �s

)
�

(3)��
y
=
(
ys − ya

)
+
(
va sin �s − vs sin �s

)
�

d� =

√(
��
x

)2
+
(
��
y

)2

=
[(
(xs − xa) + (va cos �a − vs cos �s)�

)2

+
(
(ys − ya) + (va sin �a − vs sin �s)�

)2]1∕2

(4)

� =

−(ΔxVx� + ΔyVy�) ±
√

(V2
x�
+ V2

y�
)(z�

eff
)2 − (ΔyVx� − ΔxVy�)

2

V2
x�
+ V2

y�

Δx = (xa − xs),

Δy = (ya − ys),

Vx� = va cos(�a + �a) − vs cos(�s + �s),

Vy� = va sin(�a + �a) − vs sin(�s + �s)

S

A

S

A

Access node

LR node

va

vs

(xs, ys)

(xa, ya)
θa

θs

A

Fig. 3  Communication scenario between two mobile LR nodes with 
movement vectors v

s
 and v

a
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the probability of the existence of the path ri can be calculated 
by the product of its individual link probabilities as in Eq. 5.

If any one of the links in this path breaks, then Prb(ri) 
becomes zero. Thus, the probability that the path wi does 
not exist is represented by 1 − Prb(ri).

Assuming that the chances of multiple paths between two 
nodes are independent, and given q potential paths connecting 
nodes a and b, the probability of having at least one path is

If a neighboring node has a high probability of leading to 
the destination, it will attain a higher Q-value. However, in 
scenarios where many links experience failure, calculating 
this path probability becomes difficult. In such cases, the 
reward function excludes this factor.

Reward Function

The reward for forwarding a packet from node i to node j 
with action aj at time t is defined as:

where DCI(j) is the connectivity index of node j, � is the 
link availability time, P(j, dest) is the probability that a path 
exists from node j to the destination and Δd(i, j) is the dif-
ference in distance between i and j to the destination. �i s are 
the weights given to each of the node-level features. Since 
DCI(j) and � are the most important features, we used a 
normalized weight vector � = ⟨0.5, 0.25, 0.1, 0.15⟩ in simula-
tions. Rf  is defined as

The node will be given a positive or negative reward based 
on whether or not it successfully receives the packet. 

(5)Prb(ri) = l1 ⋅ l2 ⋅… ⋅ lm

(6)P(a, b) = 1 −

q∏
i=1

(
1 − Prb

(
ri
))

(7)

Rt = Rf + �1 ⋅ DCI(j) + �2 ⋅ � + �3 ⋅ P(j, dest) + �4 ⋅
Δd(i, j)

d(i, j)

(8)Rf =

⎧⎪⎨⎪⎩

+5, ACK received

−5, ACK not received

−10, next-hop is local maximum

Rmax, next-hop is destination

Furthermore, if the chosen neighbor lacks a viable connec-
tion for forwarding, a larger negative value is assigned. Also, 
the maximum reward will be given when the next hop from 
the chosen neighbor leads directly to the destination. We set 
Rmax to 100 in our simulation experiments.

OCN Adaptive Routing Algorithm

The OCN Adaptive Routing (OCN-AR) algorithm is 
shown in Algorithm 1. The algorithm initializes the net-
work’s state S and possible actions A. It uses an explo-
ration coefficient � = 0.01 to balance exploration and 
exploitation in decision-making. For each node s ∈ S , 
the Q-value is initialized using a function based on DCI 
and link probability P . Every node creates and updates a 
list of Q-values for its adjacent nodes. In cases where an 
entry is absent in the Q-table, the source node generates a 
new entry by utilizing details from both the target and the 
neighboring node. Nodes periodically broadcast beacons 
containing their Q-values, the current DCI(i), and loca-
tion information loc. When a node receives a beacon or 
acknowledgment message, it updates the reward Rt and the 
Q-value using the Eq. 9.

where Qold(st, at) is the old Q-value for the action at in state 
st . Rt denotes the reward for the action at in state st . The 
maximum Q-value in the next state st+1 with the best action 
a is denoted by maxa Q(st+1, a) . The learning rate and the 
discount factor are represented as � and � , respectively, with 
values in the range [0, 1]. After creating the Q-table, the 
nodes select a neighbor with the highest Q as the next-hop 
with probability 1 − � . This phase is the exploitation stage of 
Q-learning. For the exploration of the state space, the source 
node arbitrarily selects any of the neighbors as next-hop with 
probability � . LR nodes select the best neighbor only from 
the list of LR nodes as the transmission radius of these nodes 
is very large compared to access nodes. Access nodes can 
choose multiple hops to reach an LR node.

(9)
Qnew(st, at) = (1 − �)Qold(st, at) + �.[Rt + � . max

a
Q((st+1, a)]
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Algorithm 1  OCN Adaptive Routing

The hyperparameters used in this study are the learning 
rate, the discount factor and the exploration coefficient. The 
learning rate determines the weight assigned to new infor-
mation from the environment and existing learned informa-
tion. The degree of topology changes differs based on sea 
conditions and stages of fishing. In the roughest sea condi-
tions, the rocking motion is substantial, resulting in frequent 
topology changes. While an increased learning rate enables 
quick adaptation to these changes, a rate that is too high can 
cause instability in the learning process. To address this, the 
learning rate is initialized within the range of 0.5 to 0.7, and 
an adaptive approach is proposed to manage connectivity 
fluctuations caused by the rocking movements of vessels. 
Since the degree of mobility varies between different fishing 
stages, a context-sensitive selection of the learning rate is 
applied to optimize performance for each scenario.

The discount factor is another hyperparameter to balance 
immediate rewards with long-term rewards. A higher dis-
count factor makes the agent prioritize long-term routing 
strategies. However, in specific sea conditions, such as emer-
gency communications or sudden environmental disruptions, 
shorter-term paths are often required. The discount factor 
is selected on the basis of the situational requirements to 
address these challenges effectively. The exploration coef-
ficient in the �-greedy policy is used to balance exploring 

new actions and exploiting actions known to provide high 
rewards based on current Q-value estimates. In this study, 
a high exploration rate is used at the beginning to allow the 
agent to discover various experiences in a dynamic environ-
ment. Over time, this rate gradually reduces, allowing the 
agent to take advantage of the learned policies.

Results

The experimental setup to evaluate the OCN-AR protocol 
involved both simulations and real-world experiments to 
collect signal strength data under different vessel rocking 
conditions. A machine learning framework was then devel-
oped to predict the strength of the signal under varying sea 
conditions. This prediction model is used in the computation 
of the probability of link and DCI, which were the important 
components of the reward function in the OCN-AR protocol. 
In the simulation phase, NS-2 was used to model the net-
work, which included 50 mobile nodes, comprising 12 long-
range nodes and 38 access nodes, along with one onshore 
base station. Packet generation rates varied from 2 to 64 
packets per second, with a default packet size of 512 bytes, 
and traffic was generated using a fixed-rate UDP source. The 
protocol’s performance was assessed based on the packet 
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delivery ratio and compared with three state-of-the-art rout-
ing protocols: AODV, GPSR, and Q-Geo.

The signal strength data collected during marine experi-
ments from various vessel rocking stages are shown in 
Fig. 4a. Here, each state represents a different vessel rock-
ing stage. The sea condition is rough in higher-numbered 
states, and we can observe more signal deviation due to the 
increased impact of waves on node mobility. We developed 
a machine learning framework to predict the signal strength 

under different sea conditions using this data. Figure 4b 
shows a sample prediction of signal strength over a distance 
of 25 km. Employing this prediction model, link probability 
and DCI, which are components of the reward function, are 
computed.

Although the average speed of fishing vessels is 3–5 m/s, 
the rocking motion leads to more packet drops. This moving 
effect of the vessels is simulated by setting the node pause 
time. The shorter the pause time, the higher the degree of 
mobility. Figure 5 shows the packet delivery ratio for various 
pause times. Link failures often occur when mobility levels 
increase, causing AODV and GPSR performance to decline. 
OCN-AR shows significant improvement over Q-Geo and 
other protocols, taking into account link availability length, 
direction of movement from the destination, and neighbor-
hood connectivity level.

We varied the transmission rate at the source nodes from 
2 to 64 packets per second. The results, shown in Fig. 6a, 
reveal a significant drop in the packet delivery ratio when the 
transmission rate exceeds 16 packets per second across all 
protocols. Among the protocols, AODV experiences a faster 
degradation in performance compared to the other two adap-
tive protocols, primarily due to higher channel occupancy 
and increased packet loss from link failures. In contrast, 
OCN-AR performs better than Q-Geo as it considers the 
connectivity quality of the nodes.

One of the distinctive features of OCN is the rocking 
movement of the nodes, which often causes link break-
ages. We simulated this scenario using a random waypoint 

Fig. 4  a Data collected from sea-trial experiments on signal strength variation with distance in different vessel rocking stages. b Prediction of 
signal strength at distance 25 km and vessel rocking stage = 3

Fig. 5  Comparison of packet delivery ratio for varying mobility 
degree
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mobility model with varying velocities. We dropped a fixed 
percentage of packets from the source in each rocking stage 
to simulate the vessel movement factor. In this case, the 
packet delivery ratio of OCN-AR was compared to AODV 
and Q-Geo as shown in Fig. 6b. The performance of AODV 
decreases considerably with increasing rocking degrees 
because of the large number of link failures. OCN-AR per-
forms effectively in high rocking conditions compared to 
other protocols. This improvement is because it utilizes 

signal strength data and estimates of link availability. The 
simulation scenario includes both access and LR nodes.

We tested the impact of the density of LR nodes on the 
packet delivery ratio and the results demonstrated in Fig. 7a. 
The number of LR nodes varied from 2 to 16 and we noticed 
an improvement in packet delivery with increased density. 
The learning rate is one of the critical hyper-parameters in 
OCN-AR that controls the rate of adaptation to the dynamic 
topology. Different fishing stages experience varying 

Fig. 6  a Variation of packet delivery ratio with data transmission rate. b Variation of packet delivery ratio with rocking movement vessels due to 
sea waves. The rocking degree indicates the wave state of the sea

Fig. 7  a Variation of packet delivery ratio with the density of LR nodes. b Variation of packet delivery ratio with increase in learning rate
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mobility degrees, and hence a context-dependent learning 
rate is used. To tune the parameter, we varied it from 0.1 to 
0.9 and observed a better performance at value 0.7 in the fish 
searching context, as shown in Fig. 7b. The optimal learn-
ing rate computed in other fishing stages is slightly different 
from this context.

Since RL-based routing continuously learns and adapts 
to the environment, OCN-AR performs better than tradi-
tional routing approaches. RL agents effectively explore and 
exploit routing strategies, to maintain reliable communica-
tion despite changes in network topology. When compared to 
other RL-based approaches, OCN-AR improves the perfor-
mance in high-mobility scenarios due to its reward function, 
which incorporates metrics such as the connectivity index 
to assess node reliability, link availability time to prioritize 
stable links, path existence probability to evaluate the likeli-
hood of successful packet delivery, and distance difference 
to optimize route efficiency. These elements enable OCN-
AR to adapt to abrupt connectivity fluctuations caused by 
vessel mobility, ensuring robust and efficient routing deci-
sions in real-time. Frequent link failures in high-mobility 
conditions degrade the performance of traditional protocols 
like AODV and GPSR. AODV suffers from faster perfor-
mance degradation due to its dependence on higher channel 
occupancy and increased packet loss resulting from frequent 
disconnections. As the rocking degree increases, the perfor-
mance of AODV declines significantly due to the growing 
number of link failures. In contrast, OCN-AR demonstrates 
notable improvements over AODV and Q-Geo by utilizing 
metrics link stability, movement direction toward the desti-
nation, and neighbourhood connectivity levels. These fea-
tures enable OCN-AR to make better routing decisions. By 
prioritizing stable links and well-connected nodes, OCN-AR 
effectively minimizes packet loss.

Conclusion and Future Scope

In this paper, we addressed the routing challenges in an 
offshore communication network of fishing vessels and 
introduced OCN-AR, a Q-learning-based routing protocol 
designed for effective message dissemination. OCN-AR 
utilized a reward function that incorporates important fea-
tures- real-time connectivity quality forecasts, path prob-
ability, link availability duration, and distance to the des-
tination of OCN. The effectiveness of this routing strategy 
was validated through simulations using data from sea trials, 
which demonstrated that the reinforcement learning strategy 
enhances routing performance under the challenging condi-
tions of the ocean. The packet delivery ratio of OCN-AR 
was evaluated across various mobility scenarios, transmis-
sion rates, vessel rocking factors, and node densities, and 

compared with existing protocols. The results indicate that 
OCN-AR is well-suited for maritime networks of fishing 
vessels. However, the protocol faces challenges, particularly 
with the high computational overhead required for updating 
Q-values.

The scalability of RL-based protocols is a challenge in 
large-scale, real-world networks, particularly when it comes 
to resource-constrained deployments. Real-world offshore 
communication networks face limitations in onboard pro-
cessing power, energy availability, and network bandwidth. 
One of the key challenges of the current approach is the 
computational complexity associated with Q-value updates, 
especially in large-scale networks. To address this, future 
work could focus on developing lightweight algorithms and 
employing value function approximation techniques, such 
as deep Q-networks, to reduce the computational overhead. 
In the context of OCNs, RL agents in multiple vessels can 
not only learn from their individual experiences but also 
share their learned experiences with neighbouring vessels’ 
RL agents to improve routing decisions. In the future, we 
plan to incorporate collaborative learning techniques among 
different node types within the OCN to improve network 
performance.
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