
Laboratory of Computer Science Education

Ruolo delle variabili e pattern elementari

"I do not even know where to start"

Alberto Montresor

Università di Trento

2020/04/17

This work is licensed under a Creative Commons
Attribution-ShareAlike 4.0 International License.

references

http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/

Introduzione

Soloway and Ehrlich

What is that expert programmers know that novice programmers’
don’t? We would suggest that the former have at least two types of
knowledge that the letter typically do not:

Programming plan: Program fragments that represent
stereotypic action sequences in programming (e.g. item search
loop plan)

Rules of programming discourse: rules that specify the
conventions in programming

Alberto Montresor (UniTN) LCSE - Variabili e Pattern 2020/04/17 1 / 20

Introduzione

Two examples of research into new concepts that can be utilized in
teaching elementary programming

Software design patterns represent language and application inde-
pendent solutions to commonly occurring design problems.

The number of patterns is potentially unlimited;
There are sets of patterns

for various levels of programming expertise (e.g., elementary
patterns for novice programmers)
for application areas (e.g., data structures)

Roles of variables describe stereotypic uses of variables that occur
in programs over and over again

Alberto Montresor (UniTN) LCSE - Variabili e Pattern 2020/04/17 2 / 20

Ruolo delle variabili e tacit knowledge

Variable plans and roles are tacit knowledge that is not mentioned
explicitly in teaching programming to novices.

Expert programmers possess schemas, abstractions of concrete ex-
periences, which help them solve programming problems and lessen
the load on their working memory during problem solving.

Possession of schemas is a key difference between novices and ex-
perts, which is why instructors need to help students construct
them

Alberto Montresor (UniTN) LCSE - Variabili e Pattern 2020/04/17 3 / 20

Insegnamento "tradizionale"

Teachers tend to present programming language constructs and stu-
dents have to acquire higher-level program constructs from example
programs and program fractions.

While we claim that our overall goal is to teach problem solving
using a computer and a programming language, all too often lear-
ning gets bogged down into the minutiae of the syntax, semantics
and pragmatics of writing a program.

Alberto Montresor (UniTN) LCSE - Variabili e Pattern 2020/04/17 4 / 20

Cosa sono i ruoli

Our roles are based on the nature of the successive values a variable
obtains, and we pay no attention to the way the values are further
used.

Alberto Montresor (UniTN) LCSE - Variabili e Pattern 2020/04/17 5 / 20

Ruolio delle variabili

 Nikula, Sajaniemi, Tedre, & Wray

 203

Table 1: Eleven most common roles of variables

Role Informal description

Fixed-value A variable which is assigned a value only once and the value of
which does not change after that. (Sometimes known as a “sin-
gle assignment” variable.)

Stepper A variable stepping through a systematic, predictable succes-
sion of values.

Most-recent-holder A variable holding the latest value encountered in going
through a succession of unpredictable values, or simply the
latest value obtained as input.

Most-wanted-holder A variable holding the best or otherwise most appropriate
value encountered so far. (For example the biggest value so
far.)

Gatherer A variable accumulating the effect of a series of individual
values, for example a running-total. (Often known as an “ac-
cumulator”.)

Follower A variable that always takes its current value from the previous
value of some other variable.

One-way-flag A Boolean variable that is initialised to one value and may be
changed to the other value, but never reverts to its initial value
once it has been changed.

Temporary A variable holding some value for a very short time only. (For
example while values are rearranged between other variables.)

Organizer A data structure storing elements so that they can be rear-
ranged.

Container A data structure storing elements that can be added and re-
moved.

Walker A variable used to traverse a data structure, for example a
pointer running down a linked list.

These roles do not cover every possible pattern of variable use, but they cover the vast majority.
It has been observed that with these roles it is possible to cover 99% of variable usage in novice-
level programs (Sajaniemi, Ben-Ari, Byckling, Gerdt, & Kulikova, 2006), and that the roles fixed-
value, stepper and most-recent-holder cover 70% of variable usage.

In addition to procedural programming, roles have also been applied to object-oriented and func-
tional programming (Sajaniemi et al., 2006). In the object-oriented paradigm, roles are used for
attributes of objects as well as for variables; objects which represent one conceptual entity (for
example Java Strings) are considered unitary values rather than containers. In the functional pro-
gramming paradigm, roles apply to the recursive behavior of parameters and return values. Roles
can also be used when designing programs. For example, UML class and object diagrams are eas-
ier to understand when attributes are annotated with their roles. For a more comprehensive treat-
ment, see the Roles of Variables home page (Sajaniemi, 2006).

Alberto Montresor (UniTN) LCSE - Variabili e Pattern 2020/04/17 6 / 20

Ruolio delle variabili

 Nikula, Sajaniemi, Tedre, & Wray

 203

Table 1: Eleven most common roles of variables

Role Informal description

Fixed-value A variable which is assigned a value only once and the value of
which does not change after that. (Sometimes known as a “sin-
gle assignment” variable.)

Stepper A variable stepping through a systematic, predictable succes-
sion of values.

Most-recent-holder A variable holding the latest value encountered in going
through a succession of unpredictable values, or simply the
latest value obtained as input.

Most-wanted-holder A variable holding the best or otherwise most appropriate
value encountered so far. (For example the biggest value so
far.)

Gatherer A variable accumulating the effect of a series of individual
values, for example a running-total. (Often known as an “ac-
cumulator”.)

Follower A variable that always takes its current value from the previous
value of some other variable.

One-way-flag A Boolean variable that is initialised to one value and may be
changed to the other value, but never reverts to its initial value
once it has been changed.

Temporary A variable holding some value for a very short time only. (For
example while values are rearranged between other variables.)

Organizer A data structure storing elements so that they can be rear-
ranged.

Container A data structure storing elements that can be added and re-
moved.

Walker A variable used to traverse a data structure, for example a
pointer running down a linked list.

These roles do not cover every possible pattern of variable use, but they cover the vast majority.
It has been observed that with these roles it is possible to cover 99% of variable usage in novice-
level programs (Sajaniemi, Ben-Ari, Byckling, Gerdt, & Kulikova, 2006), and that the roles fixed-
value, stepper and most-recent-holder cover 70% of variable usage.

In addition to procedural programming, roles have also been applied to object-oriented and func-
tional programming (Sajaniemi et al., 2006). In the object-oriented paradigm, roles are used for
attributes of objects as well as for variables; objects which represent one conceptual entity (for
example Java Strings) are considered unitary values rather than containers. In the functional pro-
gramming paradigm, roles apply to the recursive behavior of parameters and return values. Roles
can also be used when designing programs. For example, UML class and object diagrams are eas-
ier to understand when attributes are annotated with their roles. For a more comprehensive treat-
ment, see the Roles of Variables home page (Sajaniemi, 2006).

Alberto Montresor (UniTN) LCSE - Variabili e Pattern 2020/04/17 6 / 20

Relazioni dei ruoli

Most−recentMost−recent
holderholder

FollowerFollower

TransformationTransformation

TemporaryTemporary

StepperStepper

checkingcheckingpickingpicking

calculatingcalculating

delayingdelaying

GathererGatherer

Most−wantedMost−wanted
holderholder

One−wayOne−way
flagflag

LiteralLiteral

ConstantConstant

Fixed valueFixed value OrganizerOrganizer

namingnaming

setting at run timesetting at run time

repetitionrepetition

collectingcollecting requiresrequires

countingcounting

accumulatingaccumulating

Figure 1: Relationships that can be used as a basis for incremental knowledge construction. Literal and constant are programming
language constructs; other nodes are the roles.

bound to a constant by explaining that the value for such a variable
can be set at run time, e.g. obtained as input, as opposed to giving
the value explicitly in the program text. The next role to be intro-
duced could be either organizer or most-recent holder but the only
reasonable choice is most-recent holder since in introducing an or-
ganizer the concept of an array is needed. Having introduced the
most-recent holder, “a repetitive fixed value”, any other role having
a relationship with the most-recent holder can be introduced.
The presentation of a role should consist of its informal defi-

nition (see Table 1) together with additional examples of its use.
Moreover, the teacher may mention special cases covered by the
exact definition of the role. It is essential that the distinctive fea-
tures of the new role (as compared to the already known roles) are
made clear.
In our lectures, we gave students a printed list describing all roles

in four pages. As an example, we used the following description
and short program accompanied by the role image in Figure 2(b) to
introduce the stepper in our lectures:

Stepper goes through a succession of values in some
systematic way. Below is an example of a loop struc-
ture where the variable multiplier is used as a step-
per. The program outputs a multiplication table while
the stepper goes through the values from one to ten.

(*1*) program Multiplication_table (output);
(*2*) var multiplier: integer;
(*3*) begin
(*4*) for multiplier := 1 to 10 do
(*5*) writeln(multiplier, ’ * 3 = ’, multiplier*3)
(*6*) end.

A stepper can also be used, for example, for counting
and traversing the indexes of an array.

With this technique, lectures can be based on existing materials
that need only a minor update to include the role descriptions.

3.2 Role Knowledge Consolidation
Memory elaboration involves embellishing a to-be-remembered

item with meaningful additional information ([1], p. 190). Mere
study of new material will not lead to better recall, but it is impor-
tant how one processes the material while studying it. More mean-
ingful processing of material results in better memories than repe-
tition of the original information or adding non-meaningful infor-
mation. For example, it is possible to repeat the informal definition
of a role whenever the role reappears in some example program but
this may have only a minor effect on recall. It is more important to

Figure 2: Visualizations of the same operation for different
roles: comparing whether a most-recent holder (a) or a stepper
(b) is positive.

explain how that specific variable expresses the role behavior since
this is a meaningful new example of the role.
To elaborate students’ memory, role names must reappear re-

peatedly in new meaningful contexts. For example, variable decla-
rations may be augmented with role information, e.g.:

var closest: integer; (* most-wanted holder,
closest point to the center *)

These comments provide not only repetition but meaningful new
examples of role behavior, e.g., a most-wanted holder may be a
maximum value or a minimum value etc.
Another example of memory elaboration is the possibility to dis-

cuss with students about alternative role assignments. Roles are
a cognitive concept which means that different people may assign
different roles to the same variable. Therefore, it is meaningful to
ponder how a certain variable fits the definition of a gatherer and at
the same time the definition of a stepper (see the example in Section
2). Such discussions may originate from students’ role assignments
in their own programs or from teachers’ suggestions.
Further, role images act as metaphors and provide new meaning-

ful visual representations of roles’ inherent properties. For exam-
ple, the role image for a stepper in Figure 2(b) proposes that future
values of the variable are known beforehand—an inherent property
of a stepper. We have utilized this principle in developing a pro-
gram animation system, PlanAni [17]. In addition to role images,
PlanAni utilizes role information for role-based animation of oper-
ations. For example, Figure 2 gives visualizations for two syntacti-
cally similar comparisons “some_variable > 0”. In case (a), the

59

Alberto Montresor (UniTN) LCSE - Variabili e Pattern 2020/04/17 7 / 20

Quando/come insegnarli

While teaching, each role can be introduced when it is encountered
for the first time in some example program during lectures.

Roles can be taught in introductory courses naturally alongside
other variable-related concepts, such as type and scope

Alberto Montresor (UniTN) LCSE - Variabili e Pattern 2020/04/17 8 / 20

Ruoli come concetti primitivi

Roles are a cognitive concept which means that different people may
assign different roles to the same variable.

Even in those cases where the assignment of a role is controversial,
the debate itself can be an excellent pedagogical tool for clarifying
the structure of programs in intro- ductory courses

It is important to emphasize that we do not regard roles as an end
in themselves and we do not think that students should be graded
on their ability to assign roles

Alberto Montresor (UniTN) LCSE - Variabili e Pattern 2020/04/17 9 / 20

Problemi

Misleading names

The name given to a variable can be very misleading if it is not
consistent with the way the variable is used

temp = 0;
for (i = 0; i < key_length; i++)

temp = ((32*temp) + value(k[i])) modulo N;

Alberto Montresor (UniTN) LCSE - Variabili e Pattern 2020/04/17 10 / 20

Problemi

Variables with dual responsibilities

As we looked through our CS2 teaching materials, it turned out that
some variables in our examples had ambiguous behavior

 Sorva, Karavirta, & Korhonen

 417

In Figure 4(a), a recursive implementation for mergesorting linked lists is presented. The local
variables first and last are both FIXED VALUEs; i is a STEPPER. The behavior of N over recur-
sive calls is that of a STEPPER. (It indicates the length of the linked list that is currently being
processed. The length decreases systematically as the recursion deepens.) The behavior of the
variable list is less easy to define. Locally within the function body, list is used as a WALKER,
and traverses through the linked list sequentially, searching for the middle point. Its recursive be-
havior as a parameter is also that of a WALKER as it keeps track of locations in the data structure.
However, the manner in which the variable ‘walks’ through the linked list during recursion is dif-
ferent from the sequential traversal that is used locally within a method activation. In recursion,
the value of the parameter list jumps to the beginning of a sublist at each recursive call. This
dual responsibility of the variable can be confusing for novice programmers – and experts – who
are trying to grasp the algorithm.

In Figure 4(b), the code has been changed in order to prevent the dual WALKER role of the variable
list, and the role of each variable is marked explicitly in the code. In the loop on lines 11 and
12, a non-parameter local variable curr is used for sequential list traversal. A separate parameter
variable first is used for the recursive WALKER behavior. (In the case of Figure 4, the number of
variables in the code did not increase. The change was effected by analyzing the responsibilities
of each variable and reassigning these responsibilities to the existing variables.)

Again, such clarification of source code is something that can be accomplished without using
roles of variables. Roles-based analysis of programs can and did, however, help in locating prob-
lematic examples.

Assessing impact on students
Table 1 shows the results of the multiple choice question in our CS2 feedback form. The number
of students who chose each answering option is indicated on the corresponding line in the table,
as is the relative popularity of each answer. We examined the reactions of CS majors and CS mi-

 1 node mergesort(node list; int N) { 1 node mergesort(node first; int N) {
 2 2 /* first: walker, N: stepper */
 3 node first, 3 node curr; /* curr: walker */
 4 last; 4 node mid; /* mid: temporary */
 5 int i; 5 int i; /* i: stepper */
 6 if (list->next == NULL) { 6 if (first->next == z) {
 7 return list; 7 return first;
 8 } else { 8 } else {
 9 first = list; 9 curr = first;
10 // locate middle point 10 // locate middle point
11 for (i = 2; i <= (N / 2); i++) 11 for (i = 2; i < (N / 2); i++)
12 list = list->next; 12 curr = curr->next;
13 last = list->next; 13 mid = curr->next;
14 list->next = NULL; 14 curr->next = NULL;
15 return merge(15 return merge(
16 mergesort(first, N / 2), 16 mergesort(first, N / 2),
17 mergesort(last, N-(N/2))); 17 mergesort(mid, N-(N/2)));
18 } 18 }
19 } 19 }

 (a) before (b) after

Figure 4: Implementations for the mergesort algorithm before and after the process of
role-based code clarification. Alberto Montresor (UniTN) LCSE - Variabili e Pattern 2020/04/17 11 / 20

Punti di attenzione

We can not discard out of hand the argument that learning
roles of variables adds to students’ cognitive load as they have
to struggle with even more variable-related terminology.

However, we would like to stress that when we used roles to
teach variable use, we did not teach our students to do
anything with variables that we would not otherwise have
taught. Roles just provided us with a vocabulary to better
discuss these topics.

We find it unlikely that any cognitive load inherent in learning
roles would not be compensated for by the way roles clarify
program behavior

Alberto Montresor (UniTN) LCSE - Variabili e Pattern 2020/04/17 12 / 20

Punti di attenzione

Some participants complained about “non-standard” terminology:
in object-oriented programming “iterator” is the common
name for many walkers

in functional programming “accumulator” is used for gatherer.
We hope that a common role terminology could unify terminology
in different paradigms.

Alberto Montresor (UniTN) LCSE - Variabili e Pattern 2020/04/17 13 / 20

Pattern

Name Use Patterns

Reading Data Pattern

Read-Process-Write

Cumulative Result Patterns

Conversion Patterns

Indirect Reference Patterns

Alberto Montresor (UniTN) LCSE - Variabili e Pattern 2020/04/17 14 / 20

Pattern

Selection Pattern

Repetition Patterns
counting - including increments other than one
conditioned repetition (usually a while loop)
polled loop (busy wait for external event - e.g. mouse click)
repetition with exits (usually via break or continue statement)

Traversal patterns
simple linear traversal (vectors, arrays, strings)
streamed traversal – ’end- of-input’ indicator
linked traversal - traversal of a linked structure
iterator based traversal

Alberto Montresor (UniTN) LCSE - Variabili e Pattern 2020/04/17 15 / 20

Index Process All Items

for(int k=0; k < v.size(); k++)
{

process v[k]
}

Alberto Montresor (UniTN) LCSE - Variabili e Pattern 2020/04/17 16 / 20

Iterator Process All Items

Hashtable table = new Hashtable();
// code to put values in table

Enumeration e = table.keys();
while (e.hasMoreElements())
{

process(table.get(e.nextElement()));
}

Alberto Montresor (UniTN) LCSE - Variabili e Pattern 2020/04/17 17 / 20

Guarded linear search

int i=0;
boolean found = false
while(i < students.size() && !found){

found = (student[i].grade() == 30);
}
if (found) {

// process student[i], who has got 30
} else {

// handle the exception
}

Alberto Montresor (UniTN) LCSE - Variabili e Pattern 2020/04/17 18 / 20

Loop and a Half

read value
while (value != sentinel) {

process value
read value

}

Alberto Montresor (UniTN) LCSE - Variabili e Pattern 2020/04/17 19 / 20

Polling Loop

cout << "Enter a grade between 0 and 100, inclusive: ";
cin >> grade;

while (grade < 0 || grade > 100) {
cout << "Sorry! That is an illegal value." << endl;
cout << "Enter a grade between 0 and 100, inclusive: ";
cin >> grade;

}

Alberto Montresor (UniTN) LCSE - Variabili e Pattern 2020/04/17 20 / 20

