
Laboratory of Computer Science Education

Notional machine

Alberto Montresor

Università di Trento

2021/05/19

This work is licensed under a Creative Commons
Attribution-ShareAlike 4.0 International License.

references

http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/


Notional machine

The term notional machine was introduced to Computing Education
Research by Benedict du Boulay, who used it to refer to "the general
properties of the machine that one is learning to control" as one
learns programming [du Boulay 1986].

A notional machine is an idealized computer "whose properties are
implied by the constructs in the programming language employed"
[du Boulay 1986], but which can also be made explicit in teaching
[du Boulay et al. 1981].

Alberto Montresor (UniTN) LCSE - Programmazione 2021/05/19 1 / 19



Notional machine

Abstractions are formed for a purpose; the purpose of a notional
machine is to explain program execution.

A notional machine is a characterization of the computer in its role
as executor of programs in a particolar language or a set of related
languages.

Abstract but sufficiently detailed...

Compare with Operational semantics:
https://en.wikipedia.org/wiki/Operational_semantics

Alberto Montresor (UniTN) LCSE - Programmazione 2021/05/19 2 / 19

https://en.wikipedia.org/wiki/Operational_semantics


Notional machine

The machine (or system) T we were programming (and which we
wanted the students to understand), was not really a computer, at least
in the classic, hardware, sense.

In the case of C++ and Java languages, T is an abstraction combining
aspects of the computer, the compiler and the memory management
scheme. Our T is not nearly as "knowable" [as some other systems].
That does not relieve us of the responsibility of at least trying to define
it.

Aggiungo io: nell’evolvere dell’esperienza nella programmazione, nella
macchina T bisogna aggiungere anche le librerie

Alberto Montresor (UniTN) LCSE - Programmazione 2021/05/19 3 / 19



Notional machine: Cosa è?

is an idealized abstraction of computer hardware and other aspects
of the runtime environment of programs;

serves the purpose of understanding what happens during program
execution;

is associated with one or more programming paradigms or
languages, and possibly with a particular programming
environment;

enables the semantics of program code written in those paradigms
or languages (or subsets thereof) to be described;

gives a particular perspective to the execution of programs; and

correctly reflects what programs do when executed.

Alberto Montresor (UniTN) LCSE - Programmazione 2021/05/19 4 / 19



Notional machine: Cosa non è?

A notional machine is not a mental representation that a student
has of the computer, that is, someone’s notion of the machine.
Students do form mental models of notional machines, however;

A notional machine is not a description or visualization of the
computer either, although descriptions and visualizations of a
notional machine can be created by teachers for students, for
instance;

Finally, a notional machine is often not a general, language- and
paradigm- independent abstraction of the computer

Alberto Montresor (UniTN) LCSE - Programmazione 2021/05/19 5 / 19



Discussione

Mental model

Alberto Montresor (UniTN) LCSE - Programmazione 2021/05/19 6 / 19



Mental model

A mental model is a mental structure that represents some aspect
of one’s environment

Norman [1983] suggested that people rely on their mental models to
develop behavior patterns that make them feel more secure about
how they interact with systems, even when they know what they
are doing is not necessary.

Mental models are often not the product of deliberate reasoning;
they can be formed intuitively and quite unconsciously

Alberto Montresor (UniTN) LCSE - Programmazione 2021/05/19 7 / 19



Mental model

reflect people’s beliefs about the systems they use and about their
own limitations and include statements about the degree of
uncertainty people feel about different aspects of their knowledge;

provide parsimonious, simplified explanations of complex
phenomena;

often contain only incomplete, partial descriptions of operations,
and may contain huge areas of uncertainty;

are "unscientific" and imprecise, and often based on guesswork and
naive assumptions and beliefs, as well as "superstitious" rules that
"seem to work" even if they make no sense;

are commonly deficient in a number of ways, perhaps including
contradictory, erroneous, and unnecessary concepts;

Alberto Montresor (UniTN) LCSE - Programmazione 2021/05/19 8 / 19



Mental model

lack firm boundaries so that it may be unclear to the person
exactly what aspects or parts of a system their model covers – even
in cases where the model is complete andcorrect;

evolve over time as people interact with systems and modify their
models to get workable results;

are liable to change at any time; and

can be "run" to mentally simulate and predict system behavior,
although people’s ability to run models is limited.

Alberto Montresor (UniTN) LCSE - Programmazione 2021/05/19 9 / 19



Mental models are required

A mental model of a notional machine allows a programmer to make
inferences about program behavior and to envision future changes
to programs they are writing.

It is widely accepted that programming requires having access to
some sort of ‘mental model’ of the system [Canas et al. 1994]

Alberto Montresor (UniTN) LCSE - Programmazione 2021/05/19 10 / 19



Most mental models are not adequate

attribute students’ fragile knowledge of programming in considera-
ble part to a lack of a mental model of the computer [Perkins et al.
1990]

[students’] mental model of how the computer works is inadequate"
[Smith and Webb 1995]

Alberto Montresor (UniTN) LCSE - Programmazione 2021/05/19 11 / 19



Mental models: intervention

A challenge of programming education is to facilitate the evolution
of students’ models so that they have these features [Stability, accu-
racy, generality]. Teaching about an explicit notional machine may
decrease the level of freedom that learners allow themselves as they
form mental models and may result in better models

Aiding mental model formation as early as possible is important,
as changing an ingrained but flawed mental model is more difficult
than helping a model to be constructed in the first place.

Alberto Montresor (UniTN) LCSE - Programmazione 2021/05/19 12 / 19



Mentals models and tracing

Tracing is a key programming skill that expert programmers routi-
nely use during both design and comprehension tasks [Adelson and
Soloway 1985; Soloway 1986; Detienne and Soloway 1990].

Perkins et al. [1986] found that many novices do not even try to
trace the programs they write, even when they need to in order to
progress. In their study, “students seldom tracked their programs
without prompting.”

Why?
a failure to realize the importance of tracing,
a lack of belief in one’s tracing ability,
a lack of understanding of the programming language,
or a focus on program output rather than on what goes on inside.

Alberto Montresor (UniTN) LCSE - Programmazione 2021/05/19 13 / 19



Status representation

A status representation of a complex program involves an amount
of information that often exceeds the capacity of working memo-
ry, which is why we use external aids such as scraps of paper and
debugging software.

Novices need concrete tracing often, but are not experienced at se-
lecting the right “moving parts” to keep track of in the status re-
presentation, causing them to fail as a result of excessive cognitive
load

Alberto Montresor (UniTN) LCSE - Programmazione 2021/05/19 14 / 19



Constructivism in the Notional Machine Debate

Greening: Multiple Perspectives

vs

Ben-Ari: Prior Knowledge of the Computer

Alberto Montresor (UniTN) LCSE - Programmazione 2021/05/19 15 / 19



Program Dynamics as a Threshold Concept

An argument has been presented that program dynamics constitutes
a major transformative threshold that beginner programmers must
cross.

The ability to view programs as dynamic is required to genuinely
understand a legion of other concepts and distinctions: variables and
values; function declarations versus function calls; classes, objects,
and instantiation; expressions and evaluation; static type declara-
tions versus execution-time types; scope versus lifetime; and so on.
The dynamic use of memory to keep track of program state is central
to much of this integrative power

Alberto Montresor (UniTN) LCSE - Programmazione 2021/05/19 16 / 19



Program Dynamics as a Threshold Concept

Irreversibility: However, at least the present author has never heard
of a programmer forgetting how to see programs as dynamic, tracea-
ble entities once they have made that concept their own, nor does
he expect to hear of one

Alberto Montresor (UniTN) LCSE - Programmazione 2021/05/19 17 / 19



The Notional Machine as a Learning Objective

The Notional Machine as a Learning Objective
Transforming learners’ perspective
Teaching about a machine model

Techniques for teaching
Pedagogy for Threshold concepts
Program visualization
The impact of learning activities
The impact of curricular ordering

Alberto Montresor (UniTN) LCSE - Programmazione 2021/05/19 18 / 19



Altri spunti interessanti

"To understand a program you must become both the machine and
the pro- gram" [Perlis 1982].

Where findings from different research traditions point in the same
direction, they strengthen each other. Where they point in different
directions, they give us food for thought and remind us that learning
is complex and multilayered.

Alberto Montresor (UniTN) LCSE - Programmazione 2021/05/19 19 / 19


