
Distributed Algorithms
Practical Byzantine Fault Tolerance – Part 2

Alberto Montresor

Università di Trento

2021/11/29

Acknowledgments: Lorenzo Alvisi

This work is licensed under a Creative Commons
Attribution-ShareAlike 4.0 International License.

references

M. Abd-El-Malek, G. Ganger, G. Goodson, M. Retier, and
J. Wylie.
Fault-scalable Byzantine fault-tolerant services.
In Proc. of the ACM Symposium on Operating Systems Principles,
SOSP’05, Oct. 2005.

M. Castro and B. Liskov.
Practical Byzantine fault tolerance.
In Proc. of the 3rd Symposium on Operating systems design and
implementation, OSDI’99, pages 173–186, New Orleans, Louisiana,
USA, 1999. USENIX Association.
http:
//www.disi.unitn.it/~montreso/ds/papers/PbftOsdi.pdf.

A. Clement, M. Kapritsos, S. Lee, Y. Wang, L. Alvisi, M. Dahlin,
and T. Riche.
UpRight cluster services.
In Proc. of the ACM Symposium on Operating Systems Principles,
SOSP’09, Oct. 2009.
http://www.disi.unitn.it/~montreso/ds/papers/UpRight.pdf.

A. Clement, E. Wong, L. Alvisi, M. Dahlin, and M. Marchetti.
Making Byzantine fault tolerant systems tolerate Byzantine faults.
In Proc. of the 6th USENIX symposium on Networked systems
design and implementation, NSDI’09, pages 153–168. USENIX
Association, 2009.
http:
//www.disi.unitn.it/~montreso/ds/papers/Aardvark.pdf.

J. Cowling, D. Myers, B. Liskov, R. Rodrigues, and L. Shrira.
HQ replication: A hybrid quorum protocol for Byzantine fault
tolerance.
In Proc. of the Symposium on Operating systems design and
implementation, OSDI’06, Oct. 2005.

S. Gaertner, M. Bourennane, C. Kurtsiefer, A. Cabello, and
H. Weinfurter.
Experimental demonstration of a quantum protocol for byzantine
agreement and liar detection.
Physical Review Letters, 100(7), Feb. 2008.

R. Kotla, A. Clement, E. Wong, L. Alvisi, and M. Dahlin.
Zyzzyva: Speculative byzantine fault tolerance.
In Proc. of the ACM Symposium on Operating Systems Principles,
(SOSP’07), Stevenson, WA, Oct. 2007. ACM.
http://www.disi.unitn.it/~montreso/ds/papers/Zyzzyva.pdf.

http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
http://www.disi.unitn.it/~montreso/ds/papers/PbftOsdi.pdf
http://www.disi.unitn.it/~montreso/ds/papers/PbftOsdi.pdf
http://www.disi.unitn.it/~montreso/ds/papers/UpRight.pdf
http://www.disi.unitn.it/~montreso/ds/papers/Aardvark.pdf
http://www.disi.unitn.it/~montreso/ds/papers/Aardvark.pdf
http://www.disi.unitn.it/~montreso/ds/papers/Zyzzyva.pdf

Table of contents

1 Beyond PBFT
Overview

2 Zyzzyva
Introduction
Three cases
The case of the missing phase
View changes

3 Aardvark
4 UpRight

Beyond PBFT Overview

Overview

After PBFT, several others papers started to appear:
HQ: J. Cowling, D. Myers, B. Liskov, R. Rodrigues, and L. Shrira.

HQ replication: A hybrid quorum protocol for Byzantine fault
tolerance.
In Proc. of the Symposium on Operating systems design and
implementation, OSDI’06, Oct. 2005

Q/U: M. Abd-El-Malek, G. Ganger, G. Goodson, M. Retier, and

J. Wylie. Fault-scalable Byzantine fault-tolerant services.
In Proc. of the ACM Symposium on Operating Systems Principles,
SOSP’05, Oct. 2005

The end results has been to complicate the adoption of Byzantine
solutions.

Alberto Montresor (UniTN) DS - BFT 2021/11/29 1 / 42

Beyond PBFT Overview

Overview

“In the regions we studied (up to f = 5), if contention is low and
low latency is the main issue, then if it is acceptable to use 5f + 1
replicas, Q/U is the best choice, else HQ is the best since it
outperforms PBFT with a batch size of 1.”

“Otherwise, PBFT is the best choice in this region: It can handle
high contention workloads, and it can beat the throughput of both
HQ and Q/U through its use of batching.”

“Outside of this region, we expect HQ will scale best: HQ’s
throughput decreases more slowly than Q/U’s (because of the
latter’s larger message and processing costs) and PBFT’s (where
eventually batching cannot compen- sate for the quadratic number
of messages).”

Alberto Montresor (UniTN) DS - BFT 2021/11/29 2 / 42

Table of contents

1 Beyond PBFT
Overview

2 Zyzzyva
Introduction
Three cases
The case of the missing phase
View changes

3 Aardvark
4 UpRight

Zyzzyva Introduction

Zyzzyva1

OSDI’06

R. Kotla, A. Clement, E. Wong, L. Alvisi, and M. Dahlin. Zyzzyva: Spec-
ulative byzantine fault tolerance.
In Proc. of the ACM Symposium on Operating Systems Principles, (SOSP’07),
Stevenson, WA, Oct. 2007. ACM.
http://www.disi.unitn.it/~montreso/ds/papers/Zyzzyva.pdf

One protocol to rule
them all!

Zyzzyva is the last word
on BFT!

(Is it?)

http://www.flickr.com/photos/matthewfch/2478230533/

1Zyzzyva is the last word of the English dictionary – Apart from Zyzzyzus
Alberto Montresor (UniTN) DS - BFT 2021/11/29 3 / 42

http://www.disi.unitn.it/~montreso/ds/papers/Zyzzyva.pdf
http://www.flickr.com/photos/matthewfch/2478230533/

Zyzzyva Introduction

Replica coordination

All correct replicas execute the same sequence of commands

For each received command c, correct replicas:
Agree on c’s position in the sequence
Execute c in the agreed upon order
Reply to the client

Alberto Montresor (UniTN) DS - BFT 2021/11/29 4 / 42

Zyzzyva Introduction

How it is done now

Primary

Backup 1

Backup 2

Backup 3

Request

Pre-prepare Prepare Commit Reply

Alberto Montresor (UniTN) DS - BFT 2021/11/29 5 / 42

Zyzzyva Introduction

The engineer’s Rule of thumb

Citation

Handle normal and worst case separately as a rule, because
the requirements for the two are quite different: the normal
case must be fast; the worst case must make some progress

Butler Lampson, “Hints for Computer System Design”

Alberto Montresor (UniTN) DS - BFT 2021/11/29 6 / 42

Zyzzyva Introduction

How Zyzzyva does it

Primary

Replica 1

Replica 2

Replica 3

Request

Alberto Montresor (UniTN) DS - BFT 2021/11/29 7 / 42

Zyzzyva Introduction

Specification for State Machine Replication (SMR)

Stability

A command is stable at a replica once its position in the sequence
cannot change

Safety

Correct clients only process replies to stable commands

Liveness

All commands issued by correct clients eventually become stable
and elicit a reply

Alberto Montresor (UniTN) DS - BFT 2021/11/29 8 / 42

Zyzzyva Introduction

Enforncing safety

Safety requires:
Correct clients only process replies to stable commands

...but SMR implementations enforce instead:
Correct replicas only execute and reply to commands that are stable

Service performs an output commit with each reply

Alberto Montresor (UniTN) DS - BFT 2021/11/29 9 / 42

Zyzzyva Introduction

Speculative BFT (Trust, but verify)

Replicas execute and reply to a command without knowing
whether it is stable

trust order provided by primary
no explicit replica agreement!

Correct client, before processing reply, verifies that it corresponds
to stable command

if not, client takes action to ensure liveness

Alberto Montresor (UniTN) DS - BFT 2021/11/29 10 / 42

Zyzzyva Introduction

Verifying stability

Necessary condition for stability in Zyzzyva:
A command c can become stable only if a majority of correct
replicas agree on its position in the sequence

Client can process a response for c iff:
a majority of correct replicas agrees on c’s position
the set of replies is incompatible, for all possible future executions,
with a majority of correct replicas agreeing on a different command
holding c’s current position

Alberto Montresor (UniTN) DS - BFT 2021/11/29 11 / 42

Zyzzyva Introduction

History

History Hi,k is the sequence of the first k commands executed by
replica i

On receipt of a command c from the primary, replica appends c to
its command history

Replica reply for c includes:
the application-level response
the corresponding command history

Additional details:
Can be hashed through incremental hashing

Alberto Montresor (UniTN) DS - BFT 2021/11/29 12 / 42

Zyzzyva Three cases

Case 1: Unanimity

Primary

Replica 1

Replica 2

Replica 3

c

<c,k>

<c,k>

<c,k>

< r
1
,H

1,k
>

< r
2
,H

2,k
>

< r
3
,H

3,k
>

< r
4
,H

4,k
>

Client processes response if all replies match:
r1 = . . . = r4 ∧H1,k = . . . = H4,k

Alberto Montresor (UniTN) DS - BFT 2021/11/29 13 / 42

Zyzzyva Three cases

Case 1: Unanimity

Some comments:
Note that although a client has a proof that the request position in
the command history is irremediately set, no server has such a
proof
Comparison of histories may be based on incremental hash
Three message hops to complete the request in the good case

Is it safe to accept the reply in this case?

All processes have agreed on ordering
Correct processes cannot change their mind later
New primary can ask n− f replicas for their histories

Alberto Montresor (UniTN) DS - BFT 2021/11/29 14 / 42

Zyzzyva Three cases

Case 1: Unanimity

Some comments:
Note that although a client has a proof that the request position in
the command history is irremediately set, no server has such a
proof
Comparison of histories may be based on incremental hash
Three message hops to complete the request in the good case

Is it safe to accept the reply in this case?
All processes have agreed on ordering

Correct processes cannot change their mind later
New primary can ask n− f replicas for their histories

Alberto Montresor (UniTN) DS - BFT 2021/11/29 14 / 42

Zyzzyva Three cases

Case 1: Unanimity

Some comments:
Note that although a client has a proof that the request position in
the command history is irremediately set, no server has such a
proof
Comparison of histories may be based on incremental hash
Three message hops to complete the request in the good case

Is it safe to accept the reply in this case?
All processes have agreed on ordering
Correct processes cannot change their mind later

New primary can ask n− f replicas for their histories

Alberto Montresor (UniTN) DS - BFT 2021/11/29 14 / 42

Zyzzyva Three cases

Case 1: Unanimity

Some comments:
Note that although a client has a proof that the request position in
the command history is irremediately set, no server has such a
proof
Comparison of histories may be based on incremental hash
Three message hops to complete the request in the good case

Is it safe to accept the reply in this case?
All processes have agreed on ordering
Correct processes cannot change their mind later
New primary can ask n− f replicas for their histories

Alberto Montresor (UniTN) DS - BFT 2021/11/29 14 / 42

Zyzzyva Three cases

Case 2: A majority of correct replicas agree

Primary

Replica 1

Replica 2

Replica 3

c

<c,k>

<c,k>

<c,k>

< r
1
,H

1,k
>

< r
2
,H

2,k
>

< r
3
,H

3,k
>

Is it safe to accept such a message?

Alberto Montresor (UniTN) DS - BFT 2021/11/29 15 / 42

Zyzzyva Three cases

Case 2: A majority of correct replicas agree

Primary

Replica 1

Replica 2

Replica 3

c

<c,k>

<c,k>

< r
1
,H

1,k
>

< r
2
,H

2,k
>

< r
3
,H

3,k
>

Consider this case...

Alberto Montresor (UniTN) DS - BFT 2021/11/29 16 / 42

Zyzzyva Three cases

Case 2: A majority of correct replicas agree

Primary

Replica 1

Replica 2

Replica 3

c

<c,k>

<c,k>

<c,k>

< r
i
,H

i,k
>

CC=<H
1,k

, H
2,k

, H
3,k>

Client sends to all a commit certificate containing 2f + 1 matching
histories

Alberto Montresor (UniTN) DS - BFT 2021/11/29 17 / 42

Zyzzyva Three cases

Case 2: A majority of correct replicas agree

Primary

Replica 1

Replica 2

Replica 3

c

<c,k>

<c,k>

< r
i
,H

i,k
>

CC=<H
1,k

, H
2,k

, H
3,k>

ack

<c,k>

Client processes response if it receives at least 2f + 1 acks

Alberto Montresor (UniTN) DS - BFT 2021/11/29 18 / 42

Zyzzyva Three cases

Case 2: A majority of correct replicas agree

Safe?
Certificate proves that a majority of correct processes agree on its
position in the sequence

Incompatible with a majority backing a different command for that
position

Stability
Stability depends on matching command histories

Stability is prefix-closed:
If a command with sequence number k is stable, then so is every
command with sequence number k′ < k

Alberto Montresor (UniTN) DS - BFT 2021/11/29 19 / 42

Zyzzyva Three cases

Case 3: None of the above

Primary

Replica 1

Replica 2

Replica 3

c

<c,k>

< r
1
,H

1,k
>

< r
2
,H

2,k
>

Fewer than 2f + 1 replies match

Clients retransmits c to all replicas – hinting primary may be faulty

Alberto Montresor (UniTN) DS - BFT 2021/11/29 20 / 42

Zyzzyva The case of the missing phase

The case of the missing phase

Primary

Backup 1

Backup 2

Backup 3

Request

Pre-prepare Prepare Commit Reply

Primary

Replica 1

Replica 2

Replica 3

c

<c,k>

<c,k>

< r
i
,H

i,k
>

CC=<H
1,k

, H
2,k

, H
3,k>

ack

<c,k>

Where did the third
phase go?

Why was it there to
begin with?

Alberto Montresor (UniTN) DS - BFT 2021/11/29 21 / 42

Zyzzyva The case of the missing phase

The missing phase – commit

Consider this scenario:
f malicious replicas, including the primary
The primary stops communicating with f correct replicas
They go on strike – they stop accepting messages in this view, ask
a view change
f + f replicas stops accepting messages, f +1 replicas keep working
The remaining f + 1 replicas are not enough to conclude the
pre-prepare and prepare phases
The f correct processes that are asking a view change are not
enough to conclude one, so there is no opportunity to regain
liveness by electing a new primary

Alberto Montresor (UniTN) DS - BFT 2021/11/29 22 / 42

Zyzzyva The case of the missing phase

The missing phase – commit

The third phase of PBFT breaks this stalemate:
The remaining f + 1 replicas

either gather the evidence necessary to complete the request,
or determine that a view change is necessary

Commit phase needed for liveness

Alberto Montresor (UniTN) DS - BFT 2021/11/29 23 / 42

Zyzzyva View changes

Where the third phase go?

In PBFT

What compromises liveness in the previous scenario is that
the PBFT view change protocol lets correct replicas commit
to a view change and become silent in a view without any
guarantee that their action will lead to the view change

In Zyzzyva

A correct replica does not abandon view v unless it is guar-
anteed that every other correct replica will do the same,
forcing a new view and a new primary

Alberto Montresor (UniTN) DS - BFT 2021/11/29 24 / 42

Zyzzyva View changes

View change

Two phases:
Processes unsatisfied with the current primary sent a message
〈i-hate-the-primary, v〉 to all
If a process collect f + 1 i-hate-the-primary messages, sends a
message to all containing such messages and starts a new view
change (similar to the traditional one)

Extra phase of agreement protocol is moved to the view change
protocol

Alberto Montresor (UniTN) DS - BFT 2021/11/29 25 / 42

Zyzzyva View changes

Optimizations

Checkpoint protocol to garbage collect histories

Replacing digital signatures with MAC

Replicating application state at only 2f + 1 replicas

Batching

Alberto Montresor (UniTN) DS - BFT 2021/11/29 26 / 42

Zyzzyva View changes

Performance
7:28 • R. Kotla et al.

 0

 20

 40

 60

 80

 100

 120

 140

 0 20 40 60 80 100

T
hr

ou
gh

pu
t (

K
op

s/
se

c)

Number of clients

Unreplicated

Zyzzyva (B=10)

Zyzzyva5 (B=10)

PBFT (B=10)

Zyzzyva5

PBFT

HQ

Q/U max throughput

Zyzzyva

Fig. 4. Realized throughput for the 0/0 benchmark as the number of client varies for systems
configured to tolerate f = 1 faults.

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 0 20 40 60 80 100

La
te

nc
y

pe
r

re
qu

es
t (

m
s)

Throughput (Kops/sec)

Z
yz

zy
va

(B
=1

)

Zyzzyva(B=10)
Zyzzyva(B=20)

Zyzzyva(B=40)

P
B

F
T

(B
=1

)

P
B

F
T

(B
=1

0)

P
B

FT
(B

=2
0)

P
B

FT
(B

=4
0)

Fig. 5. Latency vs. throughput for systems with increasing batch sizes.

compared to Zyzzyva. However, as Figure 5 shows, further increases in batch
size do not significantly improve Zyzzyva’s performance. Conversely, PBFT’s
performance peaks with a batch size of 20, where Zyzzyva’s throughput advan-
tage reduces to 23%.

ACM Transactions on Computer Systems, Vol. 27, No. 4, Article 7, Publication date: December 2009.

Alberto Montresor (UniTN) DS - BFT 2021/11/29 27 / 42

Zyzzyva View changes

Discussion

What have you learned?

Do you agree on the principles?

Alberto Montresor (UniTN) DS - BFT 2021/11/29 28 / 42

Table of contents

1 Beyond PBFT
Overview

2 Zyzzyva
Introduction
Three cases
The case of the missing phase
View changes

3 Aardvark
4 UpRight

Aardvark

Aardvark2

NSDI’09

A. Clement, E. Wong, L. Alvisi, M. Dahlin, and M. Marchetti. Making
Byzantine fault tolerant systems tolerate Byzantine faults.
In Proc. of the 6th USENIX symposium on Networked systems design and
implementation, NSDI’09, pages 153–168. USENIX Association, 2009.
http://www.disi.unitn.it/~montreso/ds/papers/Aardvark.pdf

A new beginning!

http://en.wikipedia.org/wiki/File:

Porc_formiguer.JPG

2Aardvark is the first word of the English dictionary – Oritteropo in Italian
Alberto Montresor (UniTN) DS - BFT 2021/11/29 29 / 42

http://www.disi.unitn.it/~montreso/ds/papers/Aardvark.pdf
http://en.wikipedia.org/wiki/File:Porc_formiguer.JPG
http://en.wikipedia.org/wiki/File:Porc_formiguer.JPG

Aardvark

From the article

Surviving vs tolerating

Although current BFT systems can survive Byzantine
faults without compromising safety, we contend that a sys-
tem that can be made completely unavailable by a simple
Byzantine failure can hardly be said to tolerate Byzantine
faults.

Alberto Montresor (UniTN) DS - BFT 2021/11/29 30 / 42

Aardvark

Conventional wisdom

Handle normal and worst case separately
remain safe in worst case
make progress in normal case

Maximize performance when
the network is synchronous
all clients and servers behave correctly

Futile
it yields diminishing return on common case

Alberto Montresor (UniTN) DS - BFT 2021/11/29 31 / 42

Aardvark

Conventional wisdom

Misguided
encourages systems that fail to deliver BFT

Maximize performance when
the network is synchronous
all clients and servers behave correctly

Futile
it yields diminishing return on common case

Alberto Montresor (UniTN) DS - BFT 2021/11/29 31 / 42

Aardvark

Conventional wisdom

Misguided
encourages systems that fail to deliver BFT

Dangerous
it encourages fragile optimizations

Futile
it yields diminishing return on common case

Alberto Montresor (UniTN) DS - BFT 2021/11/29 31 / 42

Aardvark

Conventional wisdom

Misguided
encourages systems that fail to deliver BFT

Dangerous
it encourages fragile optimizations

Futile
it yields diminishing return on common case

Alberto Montresor (UniTN) DS - BFT 2021/11/29 31 / 42

Aardvark

Blueprint

Build the system around execution path that:
provides acceptable performance across the broadest set of
executions
it is easy to implement
it is robust against Byzantine attempts to push the system away
from it

Alberto Montresor (UniTN) DS - BFT 2021/11/29 32 / 42

Aardvark

Revisiting conventional wisdom

Signatures are expensive – use MACs
Faulty clients can use MACs to generate ambiguity
(One node validating a MAC authenticator does not guarantee that
any other nodes will validate that same authenticator)
Aardvark requires clients to sign requests

View changes are to be avoided
Aardvark uses regular view changes to maintain high throughput
despite faulty primaries

Hardware multicast is a boon
Aardvark uses separate work queues for clients and individual
replicas
Aardvark uses fully connected topology among replicas (separate
NICs)

Alberto Montresor (UniTN) DS - BFT 2021/11/29 33 / 42

Aardvark

MAC Attack

Primary

Replica 1

Replica 2

Replica 3

c

<c,k>

<c,k>

<c,k>

✔

✔

✔

✔

Alberto Montresor (UniTN) DS - BFT 2021/11/29 34 / 42

Aardvark

MAC Attack

Primary

Replica 1

Replica 2

Replica 3

c

<c,k>

<c,k>

<c,k>

✔

✗

✗

✗

Alberto Montresor (UniTN) DS - BFT 2021/11/29 35 / 42

Aardvark

Throughput

Best Faulty Client Faulty Faulty
case client flood primary replica

PBFT 62K 0 crash 1k 250
QU 24K 0 crash NA 19k
HQ 15K NA 4.5K NA crash
Zyzzyva 80K 0 crash crash 0
Aardvark 39K 39K 7.8K 37K 11K

Alberto Montresor (UniTN) DS - BFT 2021/11/29 36 / 42

Table of contents

1 Beyond PBFT
Overview

2 Zyzzyva
Introduction
Three cases
The case of the missing phase
View changes

3 Aardvark
4 UpRight

UpRight

UpRight

Bibliography

A. Clement, M. Kapritsos, S. Lee, Y. Wang, L. Alvisi, M. Dahlin, and T. Riche.

UpRight cluster services.
In Proc. of the ACM Symposium on Operating Systems Principles, SOSP’09,
Oct. 2009.
http://www.disi.unitn.it/~montreso/ds/papers/UpRight.pdf

A new (B)FT replication library

Minimal intrusiveness for existing apps

Adequate performance

Goal:
ease BFT deployment
make explicit incremental cost of BFT
switching to BFT: simple change in a config file

Alberto Montresor (UniTN) DS - BFT 2021/11/29 37 / 42

http://www.disi.unitn.it/~montreso/ds/papers/UpRight.pdf

UpRight

UpRight

u= max number of failures to ensure liveness

r = max number of commission failures to preserve safety

Crash

Omission Commission

Byzantine
r = u = f : BFT

r = 0 : CFT

Alberto Montresor (UniTN) DS - BFT 2021/11/29 38 / 42

UpRight

UpRight

Exposes incremental cost of BFT
Byzantine agreement
if r << u, BFT ≈ CFT in replication cost

Allows richer design options
Byzantine faults are rare: u > r
Safety more critical than liveness: r > u

Alberto Montresor (UniTN) DS - BFT 2021/11/29 39 / 42

UpRight

Reality Check

Bft-SMaRt3(Java; still maintained)
Used in Hyperledger Fabric (Blockchain)

3http://bft-smart.github.io/library/
Alberto Montresor (UniTN) DS - BFT 2021/11/29 40 / 42

http://bft-smart.github.io/library/

UpRight

For (far in the) future lectures

S. Gaertner, M. Bourennane, C. Kurtsiefer, A. Cabello, and

H. Weinfurter. Experimental demonstration of a quantum protocol
for byzantine agreement and liar detection.
Physical Review Letters, 100(7), Feb. 2008

Alberto Montresor (UniTN) DS - BFT 2021/11/29 41 / 42

UpRight

Reading material

M. Castro and B. Liskov. Practical Byzantine fault tolerance.
In Proc. of the 3rd Symposium on Operating systems design and
implementation, OSDI’99, pages 173–186, New Orleans, Louisiana, USA, 1999.
USENIX Association.
http://www.disi.unitn.it/~montreso/ds/papers/PbftOsdi.pdf

R. Kotla, A. Clement, E. Wong, L. Alvisi, and M. Dahlin. Zyzzyva: Speculative
byzantine fault tolerance.
In Proc. of the ACM Symposium on Operating Systems Principles, (SOSP’07),
Stevenson, WA, Oct. 2007. ACM.
http://www.disi.unitn.it/~montreso/ds/papers/Zyzzyva.pdf

A. Clement, E. Wong, L. Alvisi, M. Dahlin, and M. Marchetti. Making
Byzantine fault tolerant systems tolerate Byzantine faults.
In Proc. of the 6th USENIX symposium on Networked systems design and
implementation, NSDI’09, pages 153–168. USENIX Association, 2009.
http://www.disi.unitn.it/~montreso/ds/papers/Aardvark.pdf

Alberto Montresor (UniTN) DS - BFT 2021/11/29 42 / 42

http://www.disi.unitn.it/~montreso/ds/papers/PbftOsdi.pdf
http://www.disi.unitn.it/~montreso/ds/papers/Zyzzyva.pdf
http://www.disi.unitn.it/~montreso/ds/papers/Aardvark.pdf

	Beyond PBFT
	Overview

	Zyzzyva
	Introduction
	Three cases
	The case of the missing phase
	View changes

	Aardvark
	UpRight

