
Distributed Algorithms
Practical Byzantine Fault Tolerance

Alberto Montresor

Università di Trento

2020/12/03

This work is licensed under a Creative Commons
Attribution-ShareAlike 4.0 International License.

references

M. Castro and B. Liskov.
Practical Byzantine fault tolerance and proactive recovery.
ACM Trans. Comput. Syst., 20:398–461, Nov. 2002.
http:
//www.disi.unitn.it/~montreso/ds/papers/PbftTocs.pdf.

L. Lamport, R. Shostak, and M. Pease.
The Byzantine generals problem.
ACM Transactions on Programming Languages and Systems
(TOPLAS), 4(3):382–401, 1982.
http://www.disi.unitn.it/~montreso/ds/papers/
ByzantineGenerals.pdf.

http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
http://www.disi.unitn.it/~montreso/ds/papers/PbftTocs.pdf
http://www.disi.unitn.it/~montreso/ds/papers/PbftTocs.pdf
http://www.disi.unitn.it/~montreso/ds/papers/ByzantineGenerals.pdf
http://www.disi.unitn.it/~montreso/ds/papers/ByzantineGenerals.pdf

Table of contents

1 Introduction
2 Byzantine generals
3 Practical Byzantine Fault Tolerance

Introduction

Motivation

Processes may exhibit arbitrary (Byzantine) behavior
Malicious attacks

They lie
They collude

Software error
Arbitrary states, messages

Examples

Amazon outage (2008), “Root cause was a single bit flip in
internal state messages”1

Shuttle Mission STS-124 (2008), 3-1 disagreement on sensors
during fuel loading (on Earth!)2

2http://status.aws.amazon.com/s3-20080720.html
2https://c3.nasa.gov/dashlink/resources/624/

Alberto Montresor (UniTN) DS - BFT 2020/12/03 1 / 46

http://status.aws.amazon.com/s3-20080720.html
https://c3.nasa.gov/dashlink/resources/624/

Introduction

History

State-of-the-art at the end of the 90’s
Theoretically feasible algorithms to tolerate Byzantine failures, but
inefficient in practice
Assume synchrony – known bounds for message delays and
processing speed
Most importantly: synchrony assumption needed for correctness –
what about DoS?

Bibliography

L. Lamport, R. Shostak, and M. Pease. The Byzantine generals problem.
ACM Transactions on Programming Languages and Systems (TOPLAS), 4(3):382–
401, 1982.
http://www.disi.unitn.it/~montreso/ds/papers/ByzantineGenerals.pdf

Alberto Montresor (UniTN) DS - BFT 2020/12/03 2 / 46

http://www.disi.unitn.it/~montreso/ds/papers/ByzantineGenerals.pdf

Table of contents

1 Introduction
2 Byzantine generals
3 Practical Byzantine Fault Tolerance

Byzantine generals

Byzantine generals

Attack!

Wait…

Attack!

Attack!
No, wait!
Surrender!

Wait…

From cs4410 fall 08 lecture
Alberto Montresor (UniTN) DS - BFT 2020/12/03 3 / 46

Byzantine generals

Specification

A commanding general must send an order to his n− 1 lieutenant
generals such that:

IC1: All loyal lieutenants obey the same order

IC2: If the commanding general is loyal, then every loyal
lieutenant obeys the order he sends

Alberto Montresor (UniTN) DS - BFT 2020/12/03 4 / 46

Byzantine generals

Assumption - "Oral" messages

Every message that is sent is received correctly

The receiver of a message knows who sent it

The absence of a message can be detected

Alberto Montresor (UniTN) DS - BFT 2020/12/03 5 / 46

Byzantine generals

Assumption - "Oral" messages

Every message that is sent is received correctly
Reliability

The receiver of a message knows who sent it
Symmetric encryption

The absence of a message can be detected
Synchrony

Alberto Montresor (UniTN) DS - BFT 2020/12/03 5 / 46

Byzantine generals

Impossibility results

Under the “Oral” messages assumption, no solution with three generals
can handle even a single traitor

Comm.
Gen.

Liut.
1

Liut.
2

Attack!Attack!

He said “Retreat”!

Comm.
Gen.

Liut.
1

Liut.
2

Retreat!Attack!

He said “Retreat”!

Alberto Montresor (UniTN) DS - BFT 2020/12/03 6 / 46

Byzantine generals

“Oral Message” algorithm OM(m)

Algorithm OM(0)
1 The commander sends its value to every lieutenant
2 Each lieutenant uses the value he received from commander, or uses

retreat if he received no value

Algorithm OM(m)
1 The commander sends its value to every lieutenant
2 ∀i, let vi be the value lieutenant i receives from the commander, or

retreat if it has received no value. Lieutenant i acts as the
commander of algorithm OM(m− 1) to send the value vi to each of
the other n− 2 other lieutenants

3 ∀j 6= i, let vj be the value received by i from j in Step 2 of
algorithm OM(m− 1) or retreat if no value. Lieutenant i uses the
value majority(v1, ..., vn−1) (deterministic function)

Alberto Montresor (UniTN) DS - BFT 2020/12/03 7 / 46

Byzantine generals

“Oral Message” Algorithm Examples – OM(1)

A

A

A

AA A

A A

AA

A

R

C

L1

L2

L3

Alberto Montresor (UniTN) DS - BFT 2020/12/03 8 / 46

Byzantine generals

“Oral Message” Algorithm Examples – OM(1)

A

A

R

AA A

A A

AA

R

R

C

L1

L2

L3

Alberto Montresor (UniTN) DS - BFT 2020/12/03 8 / 46

Byzantine generals

“Oral Message” Algorithm Examples – OM(1)

A

R

R

AA R

R A

AA

R

R

C

L1

L2

L3

Alberto Montresor (UniTN) DS - BFT 2020/12/03 8 / 46

Byzantine generals

“Oral Message” Algorithm Examples – OM(1)

A

R

AA R

R A

AA

R

R

C

L1

L2

L3

Alberto Montresor (UniTN) DS - BFT 2020/12/03 8 / 46

Byzantine generals

“Oral Message” Algorithm Examples – OM(1)

A

A

AA R

R A

AA

A

A

C

L1

L2

L3

Alberto Montresor (UniTN) DS - BFT 2020/12/03 8 / 46

Byzantine generals

Formal proof

Theorem: Necessary Condition

For any m > 1, no solution with fewer than 3m + 1 generals can
cope with m traitors.

Theorem: Correctness

For any m, Algorithm OM(m) satisfies conditions IC1 and IC2 if
there are 3m+ 1 generals or more and at most m traitors

Alberto Montresor (UniTN) DS - BFT 2020/12/03 9 / 46

Byzantine generals

Necessary Condition – Proof by contradiction

Theorem: Necessary Condition

For any m > 1, no solution with fewer than 3m + 1 generals can
cope with m traitors.

Let’s assume that such solution exists.

We can transform it in a solution for m = 1 and 3 machines, which
cannot exist (see above)

Transformation:
three machines "simulate" m generals each; so we have 3m generals
since one machine can be traitorous, at most m generals are
traitorous
we use the solution to obtain a decision
we use this decision to solve the problem with 3 machines, m = 1

Alberto Montresor (UniTN) DS - BFT 2020/12/03 10 / 46

Byzantine generals

Lemma - By induction on m

Lemma 1

For any m and k, Algorithm OM(m) satisfies condition IC2 if there
are more than 2k +m generals and at most k traitors

Base case m = 0, with k = m = 0 traitors
Due to oral messages, OM (0) trivially satisfies IC2

Induction hypothesis: OM (m− 1) is correct
Each OM (m− 1) protocol involves n− 1 generals
OM (m− 1) is correct if at most k generals are traitorous, and there
are more than 2k + (m− 1) generals:

n− 1 > 2k + (m− 1)

Alberto Montresor (UniTN) DS - BFT 2020/12/03 11 / 46

Byzantine generals

Lemma - By induction on m

Lemma 1

For any m and k, Algorithm OM(m) satisfies condition IC2 if there
are more than 2k +m generals and at most k traitors

Induction m > 0, with max k traitors
The loyal commander sends v to all n− 1 liutenents
All loyal liutenents send v using OM (m− 1)
Since n > 2k +m, we have

n− 1 > 2k +m− 1 = 2k + (m− 1)

We can thus apply the induction hypothesis: every loyal liutenent i
gets vj = v for each loyal liutenent j
In OM (m− 1), traitorous generals ≤ k, loyal generals ≥ n− 1− k
There is a majority of loyal generals if

n− 1− k > k ⇔ n− 1 > 2k

which is true because n− 1 > 2k + (m− 1) ≥ 2k for m ≥ 1

Alberto Montresor (UniTN) DS - BFT 2020/12/03 12 / 46

Byzantine generals

Correctness

Theorem: Correctness

For any m, Algorithm OM(m) satisfies conditions IC1 and IC2 if
there are 3m+ 1 generals or more and at most m traitors

IC2:
Since we have at most k = m traitors, by Lemma 1 we have IC2 is
satisfied if n > 2k +m = 3m

IC1 - Loyal commander:
By IC2 all loyal liutenents follow the order sent by the commander,
so IC1 is satisfied

Alberto Montresor (UniTN) DS - BFT 2020/12/03 13 / 46

Byzantine generals

Correctness

Theorem: Correctness

For any m, Algorithm OM(m) satisfies conditions IC1 and IC2 if
there are 3m+ 1 generals or more and at most m traitors

IC1 - Traitorous commander – we prove it by induction on m
Base case m = 0: OM(0) satisfies both IC1 and IC2

Induction hypothesis:
O(m− 1) is correct with > 3(m− 1) generals and ≤ m− 1 traitors

Induction:
There are more than 3m− 1 liutenents
At most m− 1 liutenents are traitors
So, we can apply induction and O(m− 1) is correct
Every loyal liutenent will receive the same values from the loyal
liutenents and will decide the same majority

Alberto Montresor (UniTN) DS - BFT 2020/12/03 14 / 46

Byzantine generals

Problems with this approach

Message paths of length up to m+ 1 (expensive)

Absence of messages must be detected via time-out
(vulnerable to DoS)

An attacker may compromise the safety of a service by delaying
non-faulty nodes or the communication between them until they
are tagged as faulty and excluded from the replica group. Such a
denial-of-service attack is generally easier than gaining control over
a non-faulty node.

Alberto Montresor (UniTN) DS - BFT 2020/12/03 15 / 46

Byzantine generals

Signed messages

A loyal general’s signature cannot be forged, and any alteration of
the contents of his signed messages can be detected

Anyone can verify the authenticity of a general’s signature

Algorithm SM (m)

For any m, Algorithm SM (m) solves the Byzantine Generals Prob-
lem if there are at most m traitors.

Alberto Montresor (UniTN) DS - BFT 2020/12/03 16 / 46

Table of contents

1 Introduction
2 Byzantine generals
3 Practical Byzantine Fault Tolerance

Practical Byzantine Fault Tolerance

A Byzantine “renaissance”

Bibliography

M. Castro and B. Liskov. Practical Byzantine fault tolerance and proactive
recovery.
ACM Trans. Comput. Syst., 20:398–461, Nov. 2002.
http://www.disi.unitn.it/~montreso/ds/papers/PbftTocs.pdf

Contributions
First state machine replication protocol that survives Byzantine
faults in asynchronous networks

Live under weak Byzantine assumptions – Byzantine Paxos/Raft!

Implementation of a Byzantine, fault tolerant distributed FS

Experiments measuring cost of replication technique

Alberto Montresor (UniTN) DS - BFT 2020/12/03 17 / 46

http://www.disi.unitn.it/~montreso/ds/papers/PbftTocs.pdf

Practical Byzantine Fault Tolerance

Assumptions

System model
Asynchronous distributed system with N processes
Unreliable channels

Unbreakable cryptography
Message m is signed by its sender i, and we write 〈m〉σ(i), through:

Public/private key pairs
Message authentication codes (MAC)

A digest d(m) of message m is produced through collision-resistant
hash functions

Alberto Montresor (UniTN) DS - BFT 2020/12/03 18 / 46

Practical Byzantine Fault Tolerance

Assumptions

Failure model
Up to f Byzantine servers
N > 3f total servers
(Potentially Byzantine clients)

Independent failures
Different implementations of the service
Different operating systems
Different root passwords, different administrator

Alberto Montresor (UniTN) DS - BFT 2020/12/03 19 / 46

Practical Byzantine Fault Tolerance

Specification

State machine replication
Replicated service with a state and deterministic operations
operating on it
Clients issue a request and block waiting for reply

Safety
The system satisfies linearizability, provided that N > 3f + 1
Regardless of “faulty clients”...

all operations performed by faulty clients are observed in a
consistent way by non-faulty clients

The algorithm does not rely on synchrony to provide safety...

Liveness
It relies on synchrony to provide liveness
Assumes delay(t) does not grow faster than t indefinitely
Weak assumption – if network faults are eventually repaired
Circumvent the impossibility results of FLP

Alberto Montresor (UniTN) DS - BFT 2020/12/03 20 / 46

Practical Byzantine Fault Tolerance

Optimality

Theorem

To tolerate up to f malicious nodes, N must be equal to 3f + 1

Proof

It must be possible to proceed after communicating with
N − f replicas, because the faulty replicas may not respond

But the f replicas not responding may be just slow, so f of
those that responded might be faulty

The correct replicas who responded (N − 2f) must outnumber
the faulty replicas, so

N − 2f > f ⇒ N > 3f

Alberto Montresor (UniTN) DS - BFT 2020/12/03 21 / 46

Practical Byzantine Fault Tolerance

Optimality

Theorem

To tolerate up to f malicious nodes, N must be equal to 3f + 1

Proof

It must be possible to proceed after communicating with
N − f replicas, because the faulty replicas may not respond

But the f replicas not responding may be just slow, so f of
those that responded might be faulty

The correct replicas who responded (N − 2f) must outnumber
the faulty replicas, so

N − 2f > f ⇒ N > 3f

Alberto Montresor (UniTN) DS - BFT 2020/12/03 21 / 46

Practical Byzantine Fault Tolerance

Optimality

Theorem

To tolerate up to f malicious nodes, N must be equal to 3f + 1

Proof

It must be possible to proceed after communicating with
N − f replicas, because the faulty replicas may not respond

But the f replicas not responding may be just slow, so f of
those that responded might be faulty

The correct replicas who responded (N − 2f) must outnumber
the faulty replicas, so

N − 2f > f ⇒ N > 3f

Alberto Montresor (UniTN) DS - BFT 2020/12/03 21 / 46

Practical Byzantine Fault Tolerance

Optimality

Theorem

To tolerate up to f malicious nodes, N must be equal to 3f + 1

Proof

It must be possible to proceed after communicating with
N − f replicas, because the faulty replicas may not respond

But the f replicas not responding may be just slow, so f of
those that responded might be faulty

The correct replicas who responded (N − 2f) must outnumber
the faulty replicas, so

N − 2f > f ⇒ N > 3f

Alberto Montresor (UniTN) DS - BFT 2020/12/03 21 / 46

Practical Byzantine Fault Tolerance

Optimality

So, N > 3f to ensure that at least a correct replica is present in
the reply set

N = 3f + 1; more is useless
more and larger messages
without improving resiliency

Alberto Montresor (UniTN) DS - BFT 2020/12/03 22 / 46

Practical Byzantine Fault Tolerance

Processes and views

Replicas IDs: 0 . . . N − 1

Replicas move through a sequence of configurations called views

During view v:
Primary replica is i: i = v mod N
The other are backups

View changes are carried out when the primary appears to have
failed

Alberto Montresor (UniTN) DS - BFT 2020/12/03 23 / 46

Practical Byzantine Fault Tolerance

The algorithm

To invoke an operation, the client
sends a request to the primary
The primary multicasts the request to
the backups
Quorums are employed to guarantee
ordering on operations
When an order has been agreed,
replicas execute the request and send
a reply to the client
When the client receives at least f + 1
identical replies, it is satisfied

Client

Backup 1 Backup 2 Backup 3

Primary

Alberto Montresor (UniTN) DS - BFT 2020/12/03 24 / 46

Practical Byzantine Fault Tolerance

Problems

The primary could be faulty!
could ignore commands; assign same sequence number to different
requests; skip sequence numbers; etc
backups monitor primary’s behavior and trigger view changes to
replace faulty primary

Backups could be faulty!
could incorrectly store commands forwarded by a correct primary
use dissemination Byzantine quorum systems

Faulty replicas could incorrectly respond to the client!
Client waits for f + 1 matching replies before accepting response

Alberto Montresor (UniTN) DS - BFT 2020/12/03 25 / 46

Practical Byzantine Fault Tolerance

The general idea

Algorithm steps are justified by certificates
Sets (quorums) of signed messages from distinct replicas proving
that a property of interest holds

With quorums of size at least 2f + 1
Any two quorums intersect in at least one correct replica
There is always one quorum that contains only non-faulty replicas

1. State: …A
2. State: …A

3. State: …A
4. State: …

Servers

Clients
writ

e A

write A
X

w
ri

te
 Aw

rite A

Alberto Montresor (UniTN) DS - BFT 2020/12/03 26 / 46

Practical Byzantine Fault Tolerance

The general idea

Algorithm steps are justified by certificates
Sets (quorums) of signed messages from distinct replicas proving
that a property of interest holds

With quorums of size at least 2f + 1
Any two quorums intersect in at least one correct replica
There is always one quorum that contains only non-faulty replicas

…A …A B …B …B

write B

w
rit

e
B

X
w

ri
te

 B

write B

Servers

Clients

1. State: 2. State: 3. State: 4. State:

Alberto Montresor (UniTN) DS - BFT 2020/12/03 26 / 46

Practical Byzantine Fault Tolerance

Protocol schema

Normal operation
How the protocol works in the absence of failures
hopefully, the common case

View changes
How to depose a faulty primary and elect a new one

Garbage collection
How to reclaim the storage used to keep certificates

Recovery
How to make a faulty replica behave correctly again (not here)

Alberto Montresor (UniTN) DS - BFT 2020/12/03 27 / 46

Practical Byzantine Fault Tolerance

State

The internal state of each of the replicas include:
the state of the actual service
a message log containing all the messages the replica has accepted
an integer denoting the replica current view

Alberto Montresor (UniTN) DS - BFT 2020/12/03 28 / 46

Practical Byzantine Fault Tolerance

Client request

Primary

Backup 1

Backup 2

Backup 3

Request

〈request, o, t, c〉σ(c)
o: state machine operation
t: timestamp (used to ensure exactly-once semantics)
c: client id
σ(c): client signature

Alberto Montresor (UniTN) DS - BFT 2020/12/03 29 / 46

Practical Byzantine Fault Tolerance

Pre-prepare phase

Primary

Backup 1

Backup 2

Backup 3

Request

Pre-prepare

〈〈pre-prepare, v, n, d(m)〉σ(p),m〉

v: current view
n: sequence number
d(m): digest of client message

σ(p): primary signature
m: client message

Alberto Montresor (UniTN) DS - BFT 2020/12/03 30 / 46

Practical Byzantine Fault Tolerance

Pre-prepare phase

〈〈pre-prepare, v, n, d(m)〉σ(p),m〉
Correct replica i accepts pre-prepare if:

the pre-prepare message is well-formed
the current view of i is v
i has not accepted another pre-prepare for 〈v, n〉 with a different
digest
n is between two water-marks L and H
(to avoid sequence number exhaustion caused by faulty primaries)

Each accepted pre-prepare message is stored in the accepting
replica’s message log (including the primary’s)

Non-accepted pre-prepare messages are just discarded

Alberto Montresor (UniTN) DS - BFT 2020/12/03 31 / 46

Practical Byzantine Fault Tolerance

Prepare phase

Primary

Backup 1

Backup 2

Backup 3

Request

Pre-prepare Prepare

〈prepare, v, n, d(m)〉σ(i)

Accepted by correct replica j if:
the prepare message is well-formed
current view of j is v
n is between two water-marks L and H

Alberto Montresor (UniTN) DS - BFT 2020/12/03 32 / 46

Practical Byzantine Fault Tolerance

Prepare phase

Primary

Backup 1

Backup 2

Backup 3

Request

Pre-prepare Prepare

〈prepare, v, n, d(m)〉σ(i)

Replicas that send prepare accept the sequence number n for m
in view v

Each accepted prepare message is stored in the accepting
replica’s message log

Alberto Montresor (UniTN) DS - BFT 2020/12/03 32 / 46

Practical Byzantine Fault Tolerance

Prepare certificate (P-certificate)

Replica i produces a prepare certificate prepared(m, v, n, i) iff its
log holds:

The request m
A pre-prepare for m in view v with sequence number n
Log contains 2f prepare messages from different backups that
match the pre-prepare

prepared(m, v, n, i) means that a quorum of (2f + 1) replicas
agrees with assigning sequence number n to m in view v

Theorem

There are no two non-faulty replicas i, j such that prepared(m, v, n, i)
and prepared(m′, v, n, j), with m 6= m′

Proof?

Alberto Montresor (UniTN) DS - BFT 2020/12/03 33 / 46

Practical Byzantine Fault Tolerance

Commit phase

Primary

Backup 1

Backup 2

Backup 3

Request

Pre-prepare Prepare Commit

〈commit, v, n, d(m), i〉σ(i)
After having collected a P-certificate prepared(m, v, n, i), replica i
sends a commit message

Accepted if:
The commit message is well-formed
Current view of i is v
n is between two water-marks L and H

Alberto Montresor (UniTN) DS - BFT 2020/12/03 34 / 46

Practical Byzantine Fault Tolerance

Commit certificate (C-Certificate)

Commit certificates ensure total order across views
we guarantee that we can’t miss prepare certificates during a view
change

A replica has a certificate committed(m, v, n, i) if:
it had a P-certificate prepared(m, v, n, i)
log contains 2f + 1 matching commit from different replicas
(possibly including its own)

Replica executes a request after it gets commit certificate for it,
and has cleared all requests with smaller sequence numbers

Alberto Montresor (UniTN) DS - BFT 2020/12/03 35 / 46

Practical Byzantine Fault Tolerance

Reply phase

Primary

Backup 1

Backup 2

Backup 3

Request

Pre-prepare Prepare Commit Reply

〈reply, v, t, c, i, r〉σ(i)
r is the reply

Client waits for f + 1 replies with the same t, r

If the client does not receive replies soon enough, it broadcast the
request to all replicas

Alberto Montresor (UniTN) DS - BFT 2020/12/03 36 / 46

Practical Byzantine Fault Tolerance

View change

A un-satisfied replica backup i mutinies:
stops accepting messages (except view-change and new-view)
multicasts 〈view-change, v + 1, P, i〉σ(i)
P contains a P-certificate Pm for each request m
(up to a given number, see garbage collection)

Mutiny succeeds if the new primary collects a new-view certificate
V :

a set containing 2f + 1 view-change messages
indicating that 2f + 1 distinct replicas (including itself) support the
change of leadership

Alberto Montresor (UniTN) DS - BFT 2020/12/03 37 / 46

Practical Byzantine Fault Tolerance

View change

The “primary elect” p′ (replica v + 1 mod N):
extracts from the new-view certificate V the highest sequence
number h of any message for which V contains a P-certificate

creates a new pre-prepare message for any client message m
with sequence number n ≤ h and add it to the set O

if there is a P-certificate for n,m in V

O ← O ∪ 〈pre-prepare, v + 1, n, dm〉σ(p′)

Otherwise

O ← O ∪ 〈pre-prepare, v + 1, n, dnull〉σ(p′)

p′ multicasts 〈new-view, v + 1, V,O〉σ(p′)

Alberto Montresor (UniTN) DS - BFT 2020/12/03 38 / 46

Practical Byzantine Fault Tolerance

View change

Backup accepts a 〈new-view, v + 1, V,O〉σ(p′) message for v + 1 if
it is signed properly by p′
V contains valid view-change messages for v + 1
the correctness of O can be locally verified
(repeating the primary’s computation)

Actions:
Adds all entries in O to its log (so did p′!)
Multicasts a prepare for each message in O
Adds all prepares to the log and enters new view

Alberto Montresor (UniTN) DS - BFT 2020/12/03 39 / 46

Practical Byzantine Fault Tolerance

Garbage collection

A correct replica keeps in log messages about request o until:
o has been executed by a majority of correct replicas, and
this fact can proven during a view change

Truncate log with stable checkpoints
Each replica i periodically (after processing k requests) checkpoints
state and multicasts 〈checkpoint, n, d, i〉

n: last executed request
d: state digest

A set S containing 2f + 1 equivalent checkpoint messages from
distinct processes are a proof of the checkpoint’s correctness
(stable checkpoint certificate)

Alberto Montresor (UniTN) DS - BFT 2020/12/03 40 / 46

Practical Byzantine Fault Tolerance

View Change, revisited

Message 〈view-change, v + 1, n, S, C, P, i〉σ(i)
n: the sequence number of the last stable checkpoint
S: the last stable checkpoint
C: the checkpoint certificate (2f + 1 checkpoint messages)

Message 〈new-view, v + 1, n, V,O〉σ(p′)
n: the sequence number of the last stable checkpoint
V,O: contains only requests with sequence number larger than n

Alberto Montresor (UniTN) DS - BFT 2020/12/03 41 / 46

Practical Byzantine Fault Tolerance

Optimizations

Reducing replies
One replica designated to send reply to client
Other replicas send digest of the reply

Lower latency for writes (4 messages)
Replicas respond at Prepare phase (tentative execution)
Client waits for 2f + 1 matching responses

Fast reads (one round trip)
Client sends to all; they respond immediately
Client waits for 2f + 1 matching responses

Alberto Montresor (UniTN) DS - BFT 2020/12/03 42 / 46

Practical Byzantine Fault Tolerance

Optimizations: cryptography

Reducing overhead
Public-key cryptography only for view changes
MACs (message authentication codes) for all other messages

To give an idea (Pentium 200Mhz)
Generating 1024-bit RSA signature of a MD5 digest: 43ms
Generating a MAC of the same message: 10µs

Alberto Montresor (UniTN) DS - BFT 2020/12/03 43 / 46

Practical Byzantine Fault Tolerance

Application: Byzantine NFS server

Alberto Montresor (UniTN) DS - BFT 2020/12/03 44 / 46

Practical Byzantine Fault Tolerance

Application: Byzantine NFS server

generate them are refreshed very frequently.
There are no published performance numbers for

SecureRing [16] but it would be slower than Rampart
because its algorithm has more message delays and
signature operations in the critical path.

7.3 Andrew Benchmark
The Andrew benchmark [15] emulates a software
development workload. It has five phases: (1) creates
subdirectories recursively; (2) copies a source tree; (3)
examines the status of all the files in the tree without
examining their data; (4) examines every byte of data in
all the files; and (5) compiles and links the files.
We use the Andrew benchmark to compare BFS with

two other file system configurations: NFS-std, which is
the NFS V2 implementation in Digital Unix, and BFS-nr,
which is identical to BFS but with no replication. BFS-nr
ran two simple UDP relays on the client, and on the server
it ran a thin veneer linked with a version of snfsd from
which all the checkpointmanagement codewas removed.
This configuration does not write modified file system
state to disk before replying to the client. Therefore, it
does not implement NFSV2 protocol semantics, whereas
both BFS and NFS-std do.
Out of the 18 operations in the NFS V2 protocol only

getattr is read-only because the time-last-accessed
attribute of files and directories is set by operations
that would otherwise be read-only, e.g., read and
lookup. The result is that our optimization for read-
only operations can rarely be used. To show the impact
of this optimization, we also ran the Andrew benchmark
on a second version of BFS that modifies the lookup
operation to be read-only. This modification violates
strict Unix file system semantics but is unlikely to have
adverse effects in practice.
For all configurations, the actual benchmark code ran

at the client workstation using the standard NFS client
implementation in the Digital Unix kernel with the same
mount options. The most relevant of these options for
the benchmark are: UDP transport, 4096-byte read and
write buffers, allowing asynchronous client writes, and
allowing attribute caching.
We report the mean of 10 runs of the benchmark for

each configuration. The sample standard deviation for
the total time to run the benchmark was always below
2.6% of the reported value but it was as high as 14% for
the individual times of the first four phases. This high
variance was also present in the NFS-std configuration.
The estimated error for the reported mean was below
4.5% for the individual phases and 0.8% for the total.
Table 2 shows the results for BFS and BFS-nr. The

comparison between BFS-strict and BFS-nr shows that
the overhead of Byzantine fault tolerance for this service
is low — BFS-strict takes only 26% more time to run

BFS
phase strict r/o lookup BFS-nr
1 0.55 (57%) 0.47 (34%) 0.35
2 9.24 (82%) 7.91 (56%) 5.08
3 7.24 (18%) 6.45 (6%) 6.11
4 8.77 (18%) 7.87 (6%) 7.41
5 38.68 (20%) 38.38 (19%) 32.12
total 64.48 (26%) 61.07 (20%) 51.07

Table 2: Andrew benchmark: BFS vs BFS-nr. The times
are in seconds.

the complete benchmark. The overhead is lower than
what was observed for the micro-benchmarks because
the client spends a significant fraction of the elapsed time
computing between operations, i.e., between receiving
the reply to an operation and issuing the next request,
and operations at the server perform some computation.
But the overhead is not uniform across the benchmark
phases. The main reason for this is a variation in the
amount of time the client spends computing between
operations; the first two phases have a higher relative
overhead because the client spends approximately 40%
of the total time computing between operations, whereas
it spends approximately 70% during the last three phases.
The table shows that applying the read-only optimiza-

tion to lookup improves the performance of BFS sig-
nificantly and reduces the overhead relative to BFS-nr
to 20%. This optimization has a significant impact in
the first four phases because the time spent waiting for
lookup operations to complete in BFS-strict is at least
20% of the elapsed time for these phases, whereas it is
less than 5% of the elapsed time for the last phase.

BFS
phase strict r/o lookup NFS-std
1 0.55 (-69%) 0.47 (-73%) 1.75
2 9.24 (-2%) 7.91 (-16%) 9.46
3 7.24 (35%) 6.45 (20%) 5.36
4 8.77 (32%) 7.87 (19%) 6.60
5 38.68 (-2%) 38.38 (-2%) 39.35
total 64.48 (3%) 61.07 (-2%) 62.52

Table 3: Andrew benchmark: BFS vs NFS-std. The
times are in seconds.

Table 3 shows the results for BFS vs NFS-std. These
results show that BFS can be used in practice — BFS-
strict takes only 3% more time to run the complete
benchmark. Thus, one could replace the NFS V2
implementation in Digital Unix, which is used daily
by many users, by BFS without affecting the latency
perceived by those users. Furthermore, BFS with the
read-only optimization for the lookup operation is
actually 2% faster than NFS-std.
The overhead of BFS relative to NFS-std is not the

12

Alberto Montresor (UniTN) DS - BFT 2020/12/03 45 / 46

Practical Byzantine Fault Tolerance

Reality Check

Example of systems that have adopted Byzantine Fault Tolerance:
Boeing 777 Aircraft Information Management System
Boeing 777/787 flight control system
SpaceX Dragon flight control system

Alberto Montresor (UniTN) DS - BFT 2020/12/03 46 / 46

	Introduction
	Byzantine generals
	Practical Byzantine Fault Tolerance

