Distributed Algorithms Practical Byzantine Fault Tolerance

Alberto Montresor

Università di Trento

2020/12/03

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

Table of contents

- 1
 2
 - Introduction
- 2 Byzantine generals
- 3 Practical Byzantine Fault Tolerance

Motivation

- Processes may exhibit arbitrary (Byzantine) behavior
 - Malicious attacks
 - They lie
 - They collude
 - Software error
 - Arbitrary states, messages

Examples

- Amazon outage (2008), "Root cause was a single bit flip in internal state messages"¹
- Shuttle Mission STS-124 (2008), 3-1 disagreement on sensors during fuel loading (on Earth!)^2

²http://status.aws.amazon.com/s3-20080720.html

²https://c3.nasa.gov/dashlink/resources/624/

Alberto Montresor (UniTN)

Introduction

History

- State-of-the-art at the end of the 90's
 - Theoretically feasible algorithms to tolerate Byzantine failures, but inefficient in practice
 - Assume synchrony known bounds for message delays and processing speed
 - Most importantly: synchrony assumption needed for correctness what about DoS?

Bibliography

L. Lamport, R. Shostak, and M. Pease. The Byzantine generals problem. ACM Transactions on Programming Languages and Systems (TOPLAS), 4(3):382–401, 1982.

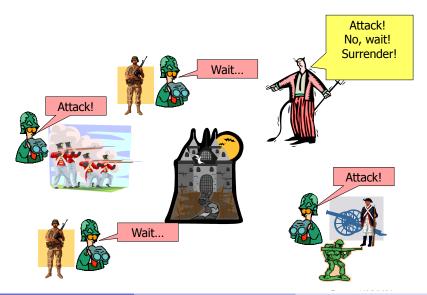
http://www.disi.unitn.it/~montreso/ds/papers/ByzantineGenerals.pdf

Table of contents

1) Introduction

2 Byzantine generals

Practical Byzantine Fault Tolerance



Specification

A commanding general must send an order to his n-1 lieutenant generals such that:

- IC1: All loyal lieutenants obey the same order
- **IC2**: If the commanding general is loyal, then every loyal lieutenant obeys the order he sends

Assumption - "Oral" messages

- Every message that is sent is received correctly
- The receiver of a message knows who sent it
- The absence of a message can be detected

Assumption - "Oral" messages

- Every message that is sent is received correctly Reliability
- The receiver of a message knows who sent it Symmetric encryption
- The absence of a message can be detected Synchrony

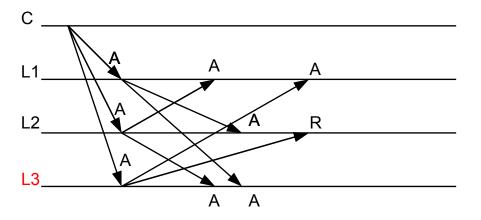
Impossibility results

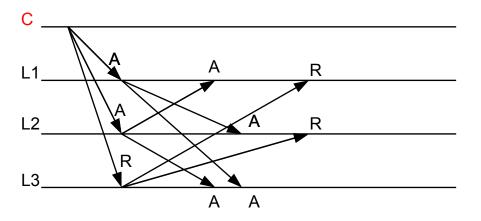
Under the "Oral" messages assumption, no solution with three generals can handle even a single traitor

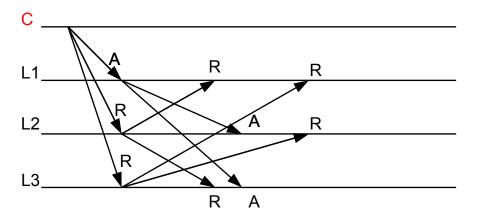


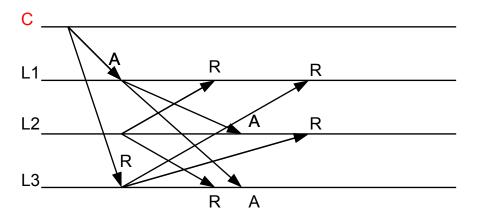
"Oral Message" algorithm OM(m)

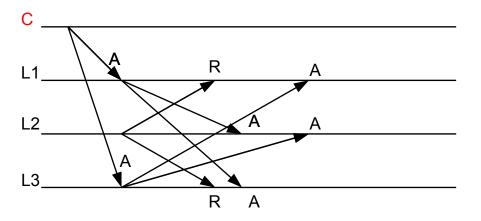
- Algorithm OM(0)
 - **1** The commander sends its value to every lieutenant
 - 2 Each lieutenant uses the value he received from commander, or uses RETREAT if he received no value
- Algorithm OM(m)
 - **1** The commander sends its value to every lieutenant
 - ② $\forall i$, let v_i be the value lieutenant *i* receives from the commander, or RETREAT if it has received no value. Lieutenant *i* acts as the commander of algorithm OM(m-1) to send the value v_i to each of the other n-2 other lieutenants
 - ③ $\forall j \neq i$, let v_j be the value received by *i* from *j* in Step 2 of algorithm OM(m-1) or RETREAT if no value. Lieutenant *i* uses the value majority($v_1, ..., v_{n-1}$) (deterministic function)











Formal proof

Theorem: Necessary Condition

For any m > 1, no solution with fewer than 3m + 1 generals can cope with m traitors.

Theorem: Correctness

For any m, Algorithm OM(m) satisfies conditions **IC1** and **IC2** if there are 3m + 1 generals or more and at most m traitors

Necessary Condition – Proof by contradiction

Theorem: Necessary Condition

For any m > 1, no solution with fewer than 3m + 1 generals can cope with m traitors.

- Let's assume that such solution exists.
- We can transform it in a solution for m = 1 and 3 machines, which cannot exist (see above)
- Transformation:
 - $\bullet\,$ three machines "simulate" m generals each; so we have 3m generals
 - since one machine can be traitorous, at most m generals are traitorous
 - we use the solution to obtain a decision
 - we use this decision to solve the problem with 3 machines, m = 1

Lemma - By induction on m

Lemma 1

For any m and k, Algorithm OM(m) satisfies condition **IC2** if there are more than 2k + m generals and at most k traitors

- Base case m = 0, with k = m = 0 traitors
 - Due to oral messages, OM(0) trivially satisfies IC2
- Induction hypothesis: OM(m-1) is correct
 - Each OM(m-1) protocol involves n-1 generals
 - OM(m-1) is correct if at most k generals are traitorous, and there are more than 2k + (m-1) generals:

$$n-1 > 2k + (m-1)$$

Lemma - By induction on m

Lemma 1

For any m and k, Algorithm OM(m) satisfies condition **IC2** if there are more than 2k + m generals and at most k traitors

- Induction m > 0, with max k traitors
 - The loyal commander sends v to all n-1 liutenents
 - All loyal liutenents send v using OM(m-1)
 - Since n > 2k + m, we have

$$n-1 > 2k + m - 1 = 2k + (m-1)$$

- We can thus apply the induction hypothesis: every loyal liutenent i gets $v_j = v$ for each loyal liutenent j
- In OM(m-1), traitorous generals $\leq k$, loyal generals $\geq n-1-k$
- There is a majority of loyal generals if

$$n-1-k>k\Leftrightarrow n-1>2k$$

which is true because $n-1 > 2k + (m-1) \ge 2k$ for $m \ge 1$

Alberto Montresor (UniTN)

Correctness

Theorem: Correctness

For any m, Algorithm OM(m) satisfies conditions **IC1** and **IC2** if there are 3m + 1 generals or more and at most m traitors

IC2:

• Since we have at most k = m traitors, by Lemma 1 we have IC2 is satisfied if n > 2k + m = 3m

IC1 - Loyal commander:

• By IC2 all loyal liutenents follow the order sent by the commander, so IC1 is satisfied

Correctness

Theorem: Correctness

For any m, Algorithm OM(m) satisfies conditions **IC1** and **IC2** if there are 3m + 1 generals or more and at most m traitors

IC1 - Traitorous commander – we prove it by induction on m

- Base case m = 0: OM(0) satisfies both IC1 and IC2
- Induction hypothesis:
 - O(m-1) is correct with > 3(m-1) generals and $\le m-1$ traitors

• Induction:

- There are more than 3m-1 liutenents
- At most m-1 liutenents are traitors
- So, we can apply induction and O(m-1) is correct
- Every loyal liutenent will receive the same values from the loyal liutenents and will decide the same majority

Problems with this approach

- Message paths of length up to m + 1 (expensive)
- Absence of messages must be detected via time-out (vulnerable to DoS)

An attacker may compromise the safety of a service by delaying non-faulty nodes or the communication between them until they are tagged as faulty and excluded from the replica group. Such a denial-of-service attack is generally easier than gaining control over a non-faulty node.

Signed messages

- A loyal general's signature cannot be forged, and any alteration of the contents of his signed messages can be detected
- Anyone can verify the authenticity of a general's signature

Algorithm SM(m)

For any m, Algorithm SM(m) solves the Byzantine Generals Problem if there are at most m traitors.

Table of contents

- 1 Introduction
 - Byzantine generals
- **3** Practical Byzantine Fault Tolerance

A Byzantine "renaissance"

Bibliography

M. Castro and B. Liskov. Practical Byzantine fault tolerance and proactive recovery. *ACM Trans. Comput. Syst.*, 20:398-461, Nov. 2002. http://www.disi.unitn.it/~montreso/ds/papers/PbftTocs.pdf

Contributions

- First state machine replication protocol that survives Byzantine faults in asynchronous networks
- Live under weak Byzantine assumptions Byzantine Paxos/Raft!
- Implementation of a Byzantine, fault tolerant distributed FS
- Experiments measuring cost of replication technique

Assumptions

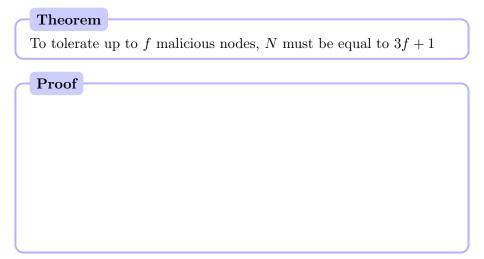
- System model
 - $\bullet\,$ Asynchronous distributed system with N processes
 - Unreliable channels
- Unbreakable cryptography
 - Message m is signed by its sender i, and we write $\langle m \rangle_{\sigma(i)}$, through:
 - Public/private key pairs
 - Message authentication codes (MAC)
 - A digest d(m) of message m is produced through collision-resistant hash functions

Assumptions

- Failure model
 - Up to f Byzantine servers
 - N > 3f total servers
 - (Potentially Byzantine clients)
- Independent failures
 - Different implementations of the service
 - Different operating systems
 - Different root passwords, different administrator

Specification

- State machine replication
 - Replicated service with a state and deterministic operations operating on it
 - Clients issue a request and block waiting for reply
- Safety
 - The system satisfies linearizability, provided that N > 3f + 1
 - Regardless of "faulty clients"...
 - all operations performed by faulty clients are observed in a consistent way by non-faulty clients
 - The algorithm does not rely on synchrony to provide safety...
- Liveness
 - It relies on synchrony to provide liveness
 - Assumes delay(t) does not grow faster than t indefinitely
 - Weak assumption if network faults are eventually repaired
 - Circumvent the impossibility results of FLP



Theorem

To tolerate up to f malicious nodes, N must be equal to 3f + 1

Proof

• It must be possible to proceed after communicating with N - f replicas, because the faulty replicas may not respond

Theorem

To tolerate up to f malicious nodes, N must be equal to 3f + 1

Proof

- It must be possible to proceed after communicating with N f replicas, because the faulty replicas may not respond
- But the *f* replicas not responding may be just slow, so *f* of those that responded might be faulty

Theorem

To tolerate up to f malicious nodes, N must be equal to 3f + 1

Proof

- It must be possible to proceed after communicating with N f replicas, because the faulty replicas may not respond
- But the *f* replicas not responding may be just slow, so *f* of those that responded might be faulty
- The correct replicas who responded (N-2f) must outnumber the faulty replicas, so

$$N - 2f > f \Rightarrow N > 3f$$

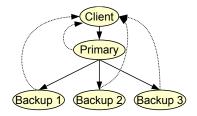
- So, N > 3f to ensure that at least a correct replica is present in the reply set
- N = 3f + 1; more is useless
 - more and larger messages
 - without improving resiliency

Processes and views

- Replicas IDs: $0 \dots N 1$
- Replicas move through a sequence of configurations called views
- During view v:
 - Primary replica is $i: i = v \mod N$
 - The other are backups
- View changes are carried out when the primary appears to have failed

The algorithm

- To invoke an operation, the client sends a request to the primary
- The primary multicasts the request to the backups
- Quorums are employed to guarantee ordering on operations
- When an order has been agreed, replicas execute the request and send a reply to the client
- When the client receives at least f + 1 identical replies, it is satisfied



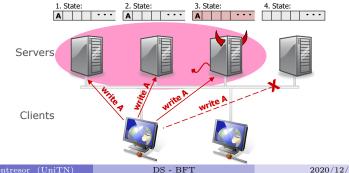
Problems

• The primary could be faulty!

- could ignore commands; assign same sequence number to different requests; skip sequence numbers; etc
- backups monitor primary's behavior and trigger view changes to replace faulty primary
- Backups could be faulty!
 - could incorrectly store commands forwarded by a correct primary
 - use dissemination Byzantine quorum systems
- Faulty replicas could incorrectly respond to the client!
 - Client waits for f + 1 matching replies before accepting response

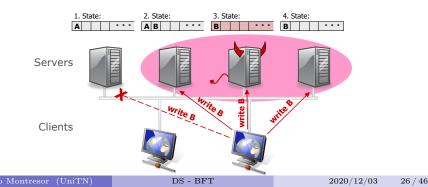
The general idea

- Algorithm steps are justified by certificates
 - Sets (quorums) of signed messages from distinct replicas proving that a property of interest holds
- With quorums of size at least 2f + 1
 - Any two quorums intersect in at least one correct replica
 - There is always one quorum that contains only non-faulty replicas



The general idea

- Algorithm steps are justified by certificates
 - Sets (quorums) of signed messages from distinct replicas proving that a property of interest holds
- With quorums of size at least 2f + 1
 - Any two quorums intersect in at least one correct replica
 - There is always one quorum that contains only non-faulty replicas



Protocol schema

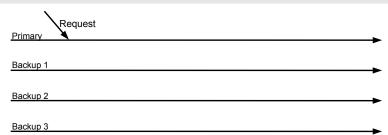
• Normal operation

- How the protocol works in the absence of failures
- hopefully, the common case
- View changes
 - How to depose a faulty primary and elect a new one
- Garbage collection
 - How to reclaim the storage used to keep certificates
- Recovery
 - How to make a faulty replica behave correctly again (not here)

State

- The internal state of each of the replicas include:
 - the state of the actual service
 - a message log containing all the messages the replica has accepted
 - an integer denoting the replica current view

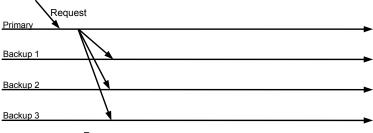
Client request



$\langle \text{REQUEST}, o, t, c \rangle_{\sigma(c)}$

- *o*: state machine operation
- t: timestamp (used to ensure exactly-once semantics)
- c: client id
- $\sigma(c)$: client signature

Pre-prepare phase



Pre-prepare

 $\langle \langle \text{PRE-PREPARE}, v, n, d(m) \rangle_{\sigma(p)}, m \rangle$

- v: current view
- *n*: sequence number
- d(m): digest of client message

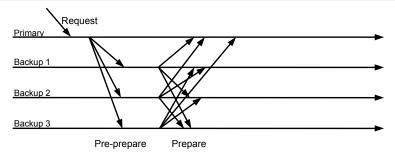
- $\sigma(p)$: primary signature
- $\bullet~m:$ client message

Pre-prepare phase

$\langle \langle \text{PRE-PREPARE}, v, n, d(m) \rangle_{\sigma(p)}, m \rangle$

- Correct replica i accepts PRE-PREPARE if:
 - the PRE-PREPARE message is well-formed
 - the current view of i is v
 - i has not accepted another PRE-PREPARE for $\langle v,n\rangle$ with a different digest
 - *n* is between two water-marks *L* and *H* (to avoid sequence number exhaustion caused by faulty primaries)
- Each accepted PRE-PREPARE message is stored in the accepting replica's message log (including the primary's)
- Non-accepted PRE-PREPARE messages are just discarded

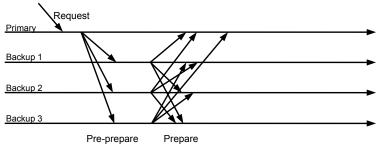
Prepare phase



$\langle \text{PREPARE}, v, n, d(m) \rangle_{\sigma(i)}$

- Accepted by correct replica *j* if:
 - the PREPARE message is well-formed
 - current view of j is v
 - n is between two water-marks L and H

Prepare phase



$\langle \text{PREPARE}, v, n, d(m) \rangle_{\sigma(i)}$

- Replicas that send PREPARE accept the sequence number n for m in view v
- Each accepted PREPARE message is stored in the accepting replica's message log

Prepare certificate (P-certificate)

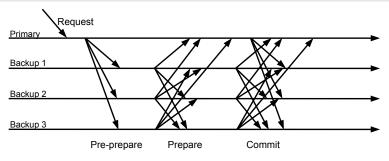
- Replica i produces a prepare certificate **prepared**(m, v, n, i) iff its log holds:
 - The request m
 - A pre-prepare for m in view v with sequence number n
 - Log contains 2f PREPARE messages from different backups that match the PRE-PREPARE
- **prepared**(m, v, n, i) means that a quorum of (2f + 1) replicas agrees with assigning sequence number n to m in view v

Theorem

There are no two non-faulty replicas i, j such that $\mathbf{prepared}(m, v, n, i)$ and $\mathbf{prepared}(m', v, n, j)$, with $m \neq m'$

Proof?

Commit phase



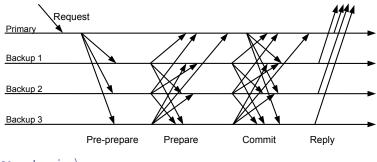
$\langle \text{COMMIT}, v, n, d(m), i \rangle_{\sigma(i)}$

- After having collected a P-certificate $\mathbf{prepared}(m, v, n, i)$, replica i sends a COMMIT message
- Accepted if:
 - The COMMIT message is well-formed
 - Current view of i is v
 - n is between two water-marks L and H

Commit certificate (C-Certificate)

- Commit certificates ensure total order across views
 - we guarantee that we can't miss prepare certificates during a view change
- A replica has a certificate committed(m, v, n, i) if:
 - it had a P-certificate $\mathbf{prepared}(m, v, n, i)$
 - log contains 2f + 1 matching COMMIT from different replicas (possibly including its own)
- Replica executes a request after it gets commit certificate for it, and has cleared all requests with smaller sequence numbers

Reply phase



$\langle \text{REPLY}, v, t, c, i, r \rangle_{\sigma(i)}$

- r is the reply
- Client waits for f + 1 replies with the same t, r
- If the client does not receive replies soon enough, it broadcast the request to all replicas

View change

- A un-satisfied replica backup *i* mutinies:
 - stops accepting messages (except VIEW-CHANGE and NEW-VIEW)
 - multicasts (VIEW-CHANGE, $v + 1, P, i \rangle_{\sigma(i)}$
 - P contains a P-certificate P_m for each request m (up to a given number, see garbage collection)
- Mutiny succeeds if the new primary collects a new-view certificate V:
 - a set containing 2f + 1 VIEW-CHANGE messages
 - indicating that 2f + 1 distinct replicas (including itself) support the change of leadership

View change

The "primary elect" p' (replica $v + 1 \mod N$):

- extracts from the new-view certificate V the highest sequence number h of any message for which V contains a P-certificate
- creates a new PRE-PREPARE message for any client message m with sequence number $n \leq h$ and add it to the set O
 - if there is a P-certificate for n, m in V

$$O \leftarrow O \cup \langle \text{PRE-PREPARE}, v+1, n, d_m \rangle_{\sigma(p')}$$

• Otherwise

$$O \leftarrow O \cup \langle \text{PRE-PREPARE}, v+1, n, d_{null} \rangle_{\sigma(p')}$$

• p' multicasts (NEW-VIEW, v + 1, V, O) $_{\sigma(p')}$

View change

- Backup accepts a (NEW-VIEW, v + 1, V, O)_{$\sigma(p')$} message for v + 1 if
 - it is signed properly by p'
 - V contains valid view-change messages for v+1
 - the correctness of O can be locally verified (repeating the primary's computation)
- Actions:
 - Adds all entries in O to its log (so did p'!)
 - Multicasts a PREPARE for each message in ${\cal O}$
 - Adds all PREPARES to the log and enters new view

Garbage collection

- \bullet A correct replica keeps in log messages about request o until:
 - $\bullet~o$ has been executed by a majority of correct replicas, and
 - this fact can proven during a view change
- Truncate log with stable checkpoints
 - Each replica i periodically (after processing k requests) checkpoints state and multicasts (CHECKPOINT, $n,d,i\rangle$
 - *n*: last executed request
 - $\bullet~d:$ state digest
- A set S containing 2f + 1 equivalent CHECKPOINT messages from distinct processes are a proof of the checkpoint's correctness (stable checkpoint certificate)

View Change, revisited

- Message (VIEW-CHANGE, $v + 1, n, S, C, P, i \rangle_{\sigma(i)}$
 - n: the sequence number of the last stable checkpoint
 - S: the last stable checkpoint
 - C: the checkpoint certificate (2f + 1 checkpoint messages)
- Message (NEW-VIEW, v + 1, n, V, O) $_{\sigma(p')}$
 - n: the sequence number of the last stable checkpoint
 - V, O: contains only requests with sequence number larger than n

Optimizations

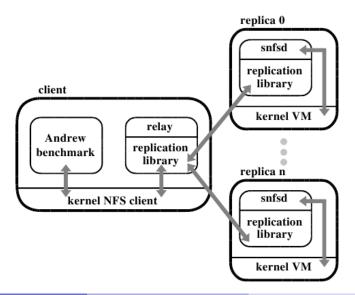
• Reducing replies

- One replica designated to send reply to client
- Other replicas send digest of the reply
- Lower latency for writes (4 messages)
 - Replicas respond at Prepare phase (tentative execution)
 - Client waits for 2f + 1 matching responses
- Fast reads (one round trip)
 - Client sends to all; they respond immediately
 - Client waits for 2f + 1 matching responses

Optimizations: cryptography

- Reducing overhead
 - Public-key cryptography only for view changes
 - MACs (message authentication codes) for all other messages
- To give an idea (Pentium 200Mhz)
 - Generating 1024-bit RSA signature of a MD5 digest: 43ms
 - $\bullet\,$ Generating a MAC of the same message: $10\mu s$

Application: Byzantine NFS server



Application: Byzantine NFS server

	BFS		
phase	strict	r/o lookup	NFS-std
1	0.55 (-69%)	0.47 (-73%)	1.75
2	9.24 (-2%)	7.91 (-16%)	9.46
3	7.24 (35%)	6.45 (20%)	5.36
4	8.77 (32%)	7.87 (19%)	6.60
5	38.68 (-2%)	38.38 (-2%)	39.35
total	64.48 (3%)	61.07 (-2%)	62.52

Table 3: Andrew benchmark: BFS vs NFS-std. The times are in seconds.

Reality Check

Example of systems that have adopted Byzantine Fault Tolerance:

- Boeing 777 Aircraft Information Management System
- \bullet Boeing 777/787 flight control system
- SpaceX Dragon flight control system