Distributed Algorithms
Practical Byzantine Fault Tolerance

Alberto Montresor

Universita di Trento

2020/12/03
This work is licensed under a Creative Commons @ @ @
Attribution-ShareAlike 4.0 International License. BY SA

http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
http://www.disi.unitn.it/~montreso/ds/papers/PbftTocs.pdf
http://www.disi.unitn.it/~montreso/ds/papers/PbftTocs.pdf
http://www.disi.unitn.it/~montreso/ds/papers/ByzantineGenerals.pdf
http://www.disi.unitn.it/~montreso/ds/papers/ByzantineGenerals.pdf

Table of contents

© Introduction
© Byzantine generals
© Practical Byzantine Fault Tolerance

Introduction

Motivation

@ Processes may exhibit arbitrary (Byzantine) behavior
o Malicious attacks
o They lie
o They collude
e Software error

o Arbitrary states, messages

Examples

e Amazon outage (2008), “Root cause was a single bit flip in
internal state messages’!

e Shuttle Mission ST'S-124 (2008), 3-1 disagreement on sensors
during fuel loading (on Earth!)?

2http://status.aws.amazon.com/s3-20080720 . html
Zhttps://c3.nasa.gov/dashlink/resources/624/
TEET S50/ T30 1746

http://status.aws.amazon.com/s3-20080720.html
https://c3.nasa.gov/dashlink/resources/624/

History

o State-of-the-art at the end of the 90’s
o Theoretically feasible algorithms to tolerate Byzantine failures, but
inefficient in practice
e Assume synchrony — known bounds for message delays and
processing speed
e Most importantly: synchrony assumption needed for correctness —
what about DoS?

Bibliography

L. Lamport, R. Shostak, and M. Pease. The Byzantine generals problem.

ACM Transactions on Programming Languages and Systems (TOPLAS), 4(3):382—
401, 1982.

http://www.disi.unitn.it/ montreso/ds/papers/ByzantineGenerals.pdf

Alberto Montresor (UniTN) DS - BFT 2020/12/03 2 /46

http://www.disi.unitn.it/~montreso/ds/papers/ByzantineGenerals.pdf

Table of contents

© Byzantine generals

Byzantine generals

Byzantine generals

Attack!
No, wait!
Surrender!

Alberto Montresor (UniTN) DS - BFT 2020/12/03 3/46

Specification

A commanding general must send an order to his n — 1 lieutenant
generals such that:

o IC1: All loyal lieutenants obey the same order

o IC2: If the commanding general is loyal, then every loyal
lieutenant obeys the order he sends

Alberto Montresor (UniTN) DS - BFT 2020/12/03

4/46

Byzantine generals

Assumption - "Oral" messages

o Every message that is sent is received correctly

@ The receiver of a message knows who sent it

o The absence of a message can be detected

Alberto Montresor (UniTN) 2020/12/03

5 /46

Byzantine generals

Assumption - "Oral" messages

o Every message that is sent is received correctly
Reliability

@ The receiver of a message knows who sent it
Symmetric encryption

o The absence of a message can be detected
Synchrony

Alberto Montresor (UniTN) 2020/12/03

5 /46

Byzantine generals

Impossibility results

Under the “Oral” messages assumption, no solution with three generals
can handle even a single traitor

Attack! Attack! Retreat!

- -
- -«

He said “Retreat”! He said “Retreat”!

Alberto Montresor (UniTN) 2020/12/03 6 /46

“Oral Message” algorithm OM(m)

e Algorithm OM(0)

@ The commander sends its value to every lieutenant
@ Each lieutenant uses the value he received from commander, or uses
RETREAT if he received no value

e Algorithm OM(m)

@ The commander sends its value to every lieutenant

@ Vi, let v; be the value lieutenant i receives from the commander, or
RETREAT if it has received no value. Lieutenant i acts as the
commander of algorithm OM(m — 1) to send the value v; to each of
the other n — 2 other lieutenants

@ Vj # i, let v; be the value received by i from j in Step 2 of
algorithm OM(m — 1) or RETREAT if no value. Lieutenant i uses the
value majority(v1, ..., v,—1) (deterministic function)

Alberto Montresor (UniTN) DS - BFT 2020/12/03 7 /46

“Oral Message” Algorithm Examples — OM(1)

N .
L NS
-

A A

Alberto Montresor (UniTN) DS - BFT 2020/12/03 8 /46

“Oral Message” Algorithm Examples — OM(1)

N . .
L NS
-

A A

Alberto Montresor (UniTN) DS - BFT 2020/12/03 8 /46

“Oral Message” Algorithm Examples — OM(1)

N . .
D
-

R A

Alberto Montresor (UniTN) DS - BFT 2020/12/03 8 /46

Byzantine generals

“Oral Message” Algorithm Examples — OM(1)

R

S
D

R A

Alberto Montresor (UniTN) DS - BFT 2020/12/03 8 /46

Byzantine generals

“Oral Message” Algorithm Examples — OM(1)

A

Y=
Y

R A

Alberto Montresor (UniTN) DS - BFT 2020/12/03 8 /46

Byzantine generals

Formal proof

Theorem: Necessary Condition

For any m > 1, no solution with fewer than 3m + 1 generals can
cope with m traitors.

Theorem: Correctness

For any m, Algorithm OM(m) satisfies conditions IC1 and IC2 if
there are 3m + 1 generals or more and at most m traitors

Alberto Montresor (UniTN) DS - BFT 2020/12/03 9 /46

Byzantine generals

Necessary Condition — Proof by contradiction

Theorem: Necessary Condition

For any m > 1, no solution with fewer than 3m + 1 generals can
cope with m traitors.

@ Let’s assume that such solution exists.

o We can transform it in a solution for m = 1 and 3 machines, which
cannot exist (see above)

o Transformation:
o three machines "simulate" m generals each; so we have 3m generals
e since one machine can be traitorous, at most m generals are
traitorous
e we use the solution to obtain a decision
o we use this decision to solve the problem with 3 machines, m =1

Alberto Montresor (UniTN) DS - BFT 2020/12/03 10 /46

Byzantine generals

Lemma - By induction on m

Lemma 1

For any m and k, Algorithm OM(m) satisfies condition IC2 if there
are more than 2k + m generals and at most k traitors

@ Base case m = 0, with £k = m = 0 traitors
o Due to oral messages, OM (0) trivially satisfies IC2

e Induction hypothesis: OM (m — 1) is correct

o Each OM (m — 1) protocol involves n — 1 generals
o OM(m —1) is correct if at most k generals are traitorous, and there
are more than 2k + (m — 1) generals:

n—1>2k+(m-1)

Alberto Montresor (UniTN) DS - BFT 2020/12/03 11 /46

Byzantine generals

Lemma - By induction on m

Lemma 1

For any m and k, Algorithm OM(m) satisfies condition IC2 if there
are more than 2k + m generals and at most k traitors

o Induction m > 0, with max k traitors
e The loyal commander sends v to all n — 1 liutenents
o All loyal liutenents send v using OM (m — 1)
e Since n > 2k + m, we have

n—1>2k4+m—-1=2k+(m—-1)

o We can thus apply the induction hypothesis: every loyal liutenent 4
gets v; = v for each loyal liutenent j

In OM(m — 1), traitorous generals < k, loyal generals >n —1—k
o There is a majority of loyal generals if

n—1—-k>ken—1>2k

which is true because n — 1 > 2k + (m — 1) > 2k for m > 1
DS - BFT 2020/12/03 12 /46

Byzantine generals

Correctness

Theorem: Correctness

For any m, Algorithm OM(m) satisfies conditions IC1 and IC2 if
there are 3m + 1 generals or more and at most m traitors

1C2:

@ Since we have at most k£ = m traitors, by Lemma 1 we have IC2 is
satisfied if n > 2k +m = 3m

IC1 - Loyal commander:

e By IC2 all loyal liutenents follow the order sent by the commander,
so IC1 is satisfied

Alberto Montresor (UniTN) DS - BFT 2020/12/03 13 /46

Byzantine generals

Correctness

Theorem: Correctness

For any m, Algorithm OM(m) satisfies conditions IC1 and IC2 if
there are 3m + 1 generals or more and at most m traitors

IC1 - Traitorous commander — we prove it by induction on m
e Base case m = 0: OM (0) satisfies both IC'1 and IC?2

o Induction hypothesis:
o O(m — 1) is correct with > 3(m — 1) generals and < m — 1 traitors

@ Induction:

There are more than 3m — 1 liutenents

At most m — 1 liutenents are traitors

So, we can apply induction and O(m — 1) is correct

Every loyal liutenent will receive the same values from the loyal
liutenents and will decide the same majority

Alberto Montresor (UniTN) DS - BFT 2020/12/03 14 /46

Problems with this approach

o Message paths of length up to m + 1 (expensive)

o Absence of messages must be detected via time-out
(vulnerable to DoS)

An attacker may compromise the safety of a service by delaying
non-faulty nodes or the communication between them until they
are tagged as faulty and excluded from the replica group. Such a
denial-of-service attack is generally easier than gaining control over
a non-faulty node.

Alberto Montresor (UniTN) DS - BFT 2020/12/03 15 /46

Byzantine generals

Signed messages

o A loyal general’s signature cannot be forged, and any alteration of
the contents of his signed messages can be detected

e Anyone can verify the authenticity of a general’s signature

Algorithm SM(m)

For any m, Algorithm SM (m) solves the Byzantine Generals Prob-
lem if there are at most m traitors.

Alberto Montresor (UniTN) DS - BFT 2020/12/03 16 /46

Table of contents

© Practical Byzantine Fault Tolerance

Practical Byzantine Fault Tolerance

A Byzantine ‘renaissance”

Bibliography

M. Castro and B. Liskov. Practical Byzantine fault tolerance and proactive

recovery.
ACM Trans. Comput. Syst., 20:398-461, Nov. 2002.
http://www.disi.unitn.it/ “montreso/ds/papers/PbftTocs.pdf

Contributions

o First state machine replication protocol that survives Byzantine
faults in asynchronous networks

e Live under weak Byzantine assumptions — Byzantine Paxos/Raft!
o Implementation of a Byzantine, fault tolerant distributed FS

o Experiments measuring cost of replication technique

Alberto Montresor (UniTN) DS - BFT 2020/12/03 17 /46

http://www.disi.unitn.it/~montreso/ds/papers/PbftTocs.pdf

Practical Byzantine Fault Tolerance

Assumptions

o System model

e Asynchronous distributed system with N processes
o Unreliable channels

o Unbreakable cryptography
o Message m is signed by its sender i, and we write (m)y;), through:

o Public/private key pairs
o Message authentication codes (MAC)

o A digest d(m) of message m is produced through collision-resistant
hash functions

Alberto Montresor (UniTN) DS - BFT 2020/12/03 18 /46

Practical Byzantine Fault Tolerance

Assumptions

o Failure model

o Up to f Byzantine servers
o N > 3f total servers
o (Potentially Byzantine clients)

o Independent failures

o Different implementations of the service
o Different operating systems
o Different root passwords, different administrator

Alberto Montresor (UniTN) DS - BFT 2020/12/03 19 /46

Practical Byzantine Fault Tolerance

Specification

@ State machine replication
o Replicated service with a state and deterministic operations
operating on it
o Clients issue a request and block waiting for reply

o Safety

o The system satisfies linearizability, provided that N > 3f + 1
o Regardless of “faulty clients”...

o all operations performed by faulty clients are observed in a
consistent way by non-faulty clients

o The algorithm does not rely on synchrony to provide safety...

e Liveness

o It relies on synchrony to provide liveness

o Assumes delay(t) does not grow faster than ¢ indefinitely

o Weak assumption — if network faults are eventually repaired
o Circumvent the impossibility results of FLP

Alberto Montresor (UniTN) DS - BFT 2020/12/03 20/ 46

Practical Byzantine Fault Tolerance

Optimality

Theorem

To tolerate up to f malicious nodes, N must be equal to 3f + 1

Proof

Optimality

Theorem

To tolerate up to f malicious nodes, N must be equal to 3f + 1

Proof

o It must be possible to proceed after communicating with
N — f replicas, because the faulty replicas may not respond

Optimality

Theorem

To tolerate up to f malicious nodes, N must be equal to 3f + 1

Proof

o It must be possible to proceed after communicating with
N — f replicas, because the faulty replicas may not respond

@ But the f replicas not responding may be just slow, so f of
those that responded might be faulty

Optimality

Theorem

To tolerate up to f malicious nodes, N must be equal to 3f + 1

Proof
o It must be possible to proceed after communicating with

N — f replicas, because the faulty replicas may not respond

@ But the f replicas not responding may be just slow, so f of
those that responded might be faulty

@ The correct replicas who responded (N — 2f) must outnumber

the faulty replicas, so
N-2f>f=N>3f

Alberto Montresor (UniTN) DS - BFT 2020/12/03 21 /46

bical Byzantine Fault

Optimality

@ So, N > 3f to ensure that at least a correct replica is present in
the reply set

o N =3f + 1; more is useless

e more and larger messages
e without improving resiliency

Alberto Mont F 2020/12/03 22 /46

Practical Byzantine Fault Tolerance

Processes and views

Replicas IDs: 0... N —1

Replicas move through a sequence of configurations called views

@ During view v:
e Primary replica is i: ¢ = v mod N
e The other are backups

e View changes are carried out when the primary appears to have
failed

Alberto Montresor (UniTN) DS - BFT 2020/12/03 23 /46

The algorithm

e To invoke an operation, the client
sends a request to the primary

o The primary multicasts the request to
the backups

@ Quorums are employed to guarantee
ordering on operations

@ When an order has been agreed,
replicas execute the request and send
a reply to the client

o When the client receives at least f + 1
identical replies, it is satisfied

Alberto Montresor (UniTN) DS - BFT 2020/12/03 24 /46

Practical Byzantine Fault Tolerance

Problems

@ The primary could be faulty!

e could ignore commands; assign same sequence number to different
requests; skip sequence numbers; etc

o backups monitor primary’s behavior and trigger view changes to
replace faulty primary

o Backups could be faulty!

e could incorrectly store commands forwarded by a correct primary
e use dissemination Byzantine quorum systems

o Faulty replicas could incorrectly respond to the client!
o Client waits for f + 1 matching replies before accepting response

Alberto Montresor (UniTN) DS - BFT 2020/12/03 25 /46

Practical Byzantine Fault Tolerance

The general idea

o Algorithm steps are justified by certificates
o Sets (quorums) of signed messages from distinct replicas proving
that a property of interest holds

o With quorums of size at least 2f + 1
e Any two quorums intersect in at least one correct replica
o There is always one quorum that contains only non-faulty replicas

1. State: 2. State: 3. State: 4. State:
[ALTTT--* [A[TTT=""

(ALTT T~ I

Servers

Clients

Alberto Montresor (UniTN) DS - BFT 2020/12/03 26 / 46

Practical Byzantine Fault Tolerance

The general idea

o Algorithm steps are justified by certificates
o Sets (quorums) of signed messages from distinct replicas proving
that a property of interest holds
o With quorums of size at least 2f + 1
e Any two quorums intersect in at least one correct replica
o There is always one quorum that contains only non-faulty replicas
1. State:

2. State: 3. State: 4. State:
[A[TTT-** [A[B[TT-"

* [BTTT==* [B[TTT-"*"]

Servers n =

Clients

' write B
—_

Alberto Montresor (UniTN)

DS - BFT

2020/12/03 26 / 46

Practical Byzantine Fault Tolerance

Protocol schema

o Normal operation

o How the protocol works in the absence of failures
o hopefully, the common case

o View changes
o How to depose a faulty primary and elect a new one

o Garbage collection
e How to reclaim the storage used to keep certificates

@ Recovery
o How to make a faulty replica behave correctly again (not here)

Alberto Montresor (UniTN) DS - BFT 2020/12/03 27 / 46

State

o The internal state of each of the replicas include:

o the state of the actual service
e a message log containing all the messages the replica has accepted
e an integer denoting the replica current view

Alberto Montresor (UniTN) DS - BFT 2020/12/03 28 / 46

Practical Byzantine Fault Tolerance

Client request

\Iiequest
Primary

\

Backup 1 o
Backup 2 -
Backup 3 »

(REQUEST, 0,1, €) 5(c)
@ o: state machine operation
e ¢: timestamp (used to ensure exactly-once semantics)
e c: client id

e o(c): client signature

Alberto Montresor (UniTN) DS - BFT 2020/12/03 29 /46

Practical Byzantine Fault Tolerance

Pre-prepare phase

\Iiequest
Primary

Backup 1 k >
Backup 2 \\ >
Backup 3 \ »

Pre-prepare

\

((PRE-PREPARE, v, 1, d(M)) 5 (), M)

e v: current view e o(p): primary signature
@ n: sequence number @ m: client message

e d(m): digest of client message

Alberto Montresor (UniTN) DS - BFT 2020/12/03 30 /46

Practical Byzantine Fault Tolerance

Pre-prepare phase

((PRE-PREPARE, v, 1, d(M)) 5 (), ™M)
o Correct replica 7 accepts PRE-PREPARE if:

o the PRE-PREPARE message is well-formed

e the current view of i is v

e 4 has not accepted another PRE-PREPARE for (v, n) with a different
digest

e n is between two water-marks L and H
(to avoid sequence number exhaustion caused by faulty primaries)

o Each accepted PRE-PREPARE message is stored in the accepting
replica’s message log (including the primary’s)

o Non-accepted PRE-PREPARE messages are just discarded

Alberto Montresor (UniTN) DS - BFT 2020/12/03 31 /46

Practical Byzantine Fault Tolerance

Prepare phase

\iiequest
Primary

T\ i
R4]
e\ K i

Pre-prepare Prepare
(PREPARE, v, n, d(m)) ;)

o Accepted by correct replica j if:

o the PREPARE message is well-formed
e current view of j is v
e n is between two water-marks L and H

Alberto Montresor (UniTN) DS - BFT 2020/12/03 32 /46

Practical Byzantine Fault Tolerance

Prepare phase

\iiequest
Primary >

T\ i
R4]
e\ K i

Pre-prepare Prepare
(PREPARE, v, n, d(m)) 53
o Replicas that send PREPARE accept the sequence number n for m
in view v
o FEach accepted PREPARE message is stored in the accepting
replica’s message log

Alberto Montresor (UniTN) DS - BFT 2020/12/03 32 /46

Practical Byzantine Fault Tolerance

Prepare certificate (P-certificate)

e Replica i produces a prepare certificate prepared(m,v,n, 1) iff its
log holds:

o The request m

o A PRE-PREPARE for m in view v with sequence number n

o Log contains 2f PREPARE messages from different backups that
match the PRE-PREPARE

e prepared(m,v,n,i) means that a quorum of (2f + 1) replicas
agrees with assigning sequence number n to m in view v

Theorem

There are no two non-faulty replicas 4, j such that prepared(m, v, n,)
and prepared(m’,v,n, j), with m # m/

Proof?

Alberto Montresor (UniTN) DS - BFT 2020/12/03 33 /46

Practical Byzantine Fault Tolerance

Commit phase

\iequest
Primary >
Backup 1 k // / »

Backup 2 -

Pre-prepare Prepare Commit

(COMMIT, v, n, d(m), i) ;)
e After having collected a P-certificate prepared(m, v, n,1), replica i
sends a COMMIT message

o Accepted if:

o The COMMIT message is well-formed
o Current view of 7 is v
e n is between two water-marks L and H

Alberto Montresor (UniTN) DS - BFT 2020/12/03 34 /46

Commit certificate (C-Certificate)

o Commit certificates ensure total order across views

e we guarantee that we can’t miss prepare certificates during a view
change

e A replica has a certificate committed(m, v, n, 1) if:
o it had a P-certificate prepared(m,v,n,)
o log contains 2f 4+ 1 matching cOMMIT from different replicas
(possibly including its own)

@ Replica executes a request after it gets commit certificate for it,
and has cleared all requests with smaller sequence numbers

Alberto Montresor (UniTN) DS - BFT 2020/12/03 35 /46

Practical Byzantine Fault Tolerance

Reply phase

N 1
. V|
R N/,

KA

Backup 3
Pre-prepare Prepare Commit Reply

\/

\/

\/

(REPLY, v,t,¢,1,7) ;)
o r is the reply

o Client waits for f + 1 replies with the same ¢, 7

o If the client does not receive replies soon enough, it broadcast the
request to all replicas

Alberto Montresor (UniTN) DS - BFT 2020/12/03 36 /46

Practical Byzantine Fault Tolerance

View change

o A un-satisfied replica backup ¢ mutinies:
o stops accepting messages (except VIEW-CHANGE and NEW-VIEW)
o multicasts (VIEW-CHANGE, v + 1, P,) ,(;)
e P contains a P-certificate P, for each request m
(up to a given number, see garbage collection)

o Mutiny succeeds if the new primary collects a new-view certificate

V:

e a set containing 2f + 1 VIEW-CHANGE messages

o indicating that 2f + 1 distinct replicas (including itself) support the
change of leadership

Alberto Montresor (UniTN) DS - BFT 2020/12/03 37 /46

Practical Byzantine Fault Tolerance

View change

The “primary elect” p’ (replica v + 1 mod N):

e extracts from the new-view certificate V' the highest sequence
number A of any message for which V' contains a P-certificate

@ creates a new PRE-PREPARE message for any client message m
with sequence number n < h and add it to the set O

o if there is a P-certificate for n,m in V'

O < O U (PRE-PREPARE, v + 1,7, dyn) o ()
o Otherwise

O < O U (PRE-PREPARE, v + 1,1, dnuil) o (p)

o p' multicasts (NEW-VIEW, v + 1, V, O) 4)

Alberto Montresor (UniTN) DS - BFT 2020/12/03 38 /46

Practical Byzantine Fault Tolerance

View change

e Backup accepts a (NEW-VIEW, v + 1, V, O)
o it is signed properly by p’
o V contains valid VIEW-CHANGE messages for v + 1
o the correctness of O can be locally verified
(repeating the primary’s computation)

o(p') message for v + 1 if

o Actions:

o Adds all entries in O to its log (so did p'!)
o Multicasts a PREPARE for each message in O
o Adds all PREPARES to the log and enters new view

Alberto Montresor (UniTN) DS - BFT 2020/12/03 39 /46

Practical Byzantine Fault Tolerance

Garbage collection

o A correct replica keeps in log messages about request o until:

e 0 has been executed by a majority of correct replicas, and
o this fact can proven during a view change

o Truncate log with stable checkpoints

o Each replica i periodically (after processing k requests) checkpoints
state and multicasts (CHECKPOINT, n, d, i)

o n: last executed request
o d: state digest

o A set S containing 2f + 1 equivalent CHECKPOINT messages from
distinct processes are a proof of the checkpoint’s correctness
(stable checkpoint certificate)

Alberto Montresor (UniTN) DS - BFT 2020/12/03 40 / 46

Practical Byzantine Fault Tolerance

View Change, revisited

o Message (VIEW-CHANGE, v + 1,n, .5, C, P, i),
e n: the sequence number of the last stable checkpoint
e S: the last stable checkpoint
o C: the checkpoint certificate (2f + 1 checkpoint messages)

o Message (NEW-VIEW, v + 1,1, V, O) ()
e n: the sequence number of the last stable checkpoint
e V,0O: contains only requests with sequence number larger than n

Alberto Montresor (UniTN) DS - BFT 2020/12/03 41 /46

Practical Byzantine Fault Tolerance

Optimizations

o Reducing replies

e One replica designated to send reply to client
o Other replicas send digest of the reply

e Lower latency for writes (4 messages)

o Replicas respond at Prepare phase (tentative execution)
o Client waits for 2f + 1 matching responses

e Fast reads (one round trip)

o Client sends to all; they respond immediately
o Client waits for 2f + 1 matching responses

Alberto Montresor (UniTN) DS - BFT 2020/12/03 42 /46

Optimizations: cryptography

o Reducing overhead

o Public-key cryptography only for view changes
o MACs (message authentication codes) for all other messages

e To give an idea (Pentium 200Mhz)

o Generating 1024-bit RSA signature of a MD5 digest: 43ms
o Generating a MAC of the same message: 10us

Alberto Montresor (UniTN) DS - BFT 2020/12/03 43 /46

Application: Byzantine NFS server

replica 0

snfsd 4

replication
library

client

v

kernel VM

relay
Andrew
replication
library
r 3

benchmark

replica n

v
\ kernel NFS client‘ g [snfsd 2

replication
library

kernel VM

Alberto Montresor (UniTN) DS - BFT 2020/12/03 44 / 46

Practical Byzantine Fault Tolerance

Application: Byzantine NFS server

BFS
phase strict r/o lookup | NFS-std
1 0.55 (-69%) | 0.47 (-73%) 1.75
2 924 (-2%) | 791 (-16%) 9.46
3 7.24 (35%) | 6.45 (20%) 536
4 8.77(32%) | 7.87 (19%) 6.60
5 38.68 (-2%) | 38.38 (-2%) 39.35
total | 64.48 (3%) | 61.07 (-2%) 62.52

Table 3: Andrew benchmark: BFS vs NFS-std. The
times are in seconds.

Alberto Montresor (UniTN)

DS - BFT

2020/12/03

45/ 46

Reality Check

Example of systems that have adopted Byzantine Fault Tolerance:
o Boeing 777 Aircraft Information Management System
@ Boeing 777/787 flight control system
o SpaceX Dragon flight control system

Alberto Montresor (UniTN) DS - BFT 2020/12/03 46 / 46

	Introduction
	Byzantine generals
	Practical Byzantine Fault Tolerance

