
Distributed Algorithms
Raft Consensus

Alberto Montresor

Università di Trento

2020/11/26

Acknowledgement: Diego Ongaro and John Ousterhout

This work is licensed under a Creative Commons
Attribution-ShareAlike 4.0 International License.

references

D. Ongaro and J. Ousterhout.
In search of an understandable consensus algorithm.
In 2014 USENIX Annual Technical Conference, pages 305–319,
Philadelphia, PA, June 2014. USENIX Association.
http://www.disi.unitn.it/~montreso/ds/papers/raft.pdf.

http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
http://www.disi.unitn.it/~montreso/ds/papers/raft.pdf

Table of contents

1 Consensus variants
2 Historical overview

Paxos
Raft

3 Raft protocol
Overview
Elections
Normal operation
Neutralizing old leaders
Client protocol
Configuration changes

Consensus variants

Atomic Broadcast

Definition (RB1 – Validity)
If a correct process broadcasts m, then it eventually delivers m

Definition (RB2 – Uniform Integrity)
m is delivered by a process at most once, and only if it was previously
broadcast

Definition (RB3 – Agreement)
If a correct process delivers m, then all correct processes eventually
deliver m

Definition (Total Order)
If correct processes p and q both deliver messages m,m′, then p delivers
m before m′ if and only if q delivers m before m′

deliverp(m)→ deliverp(m
′)⇒ deliver q(m)→ deliver q(m

′)

Alberto Montresor (UniTN) DS - Raft Consensus 2020/11/26 1 / 60

Consensus variants

State machine replication

Definition (State machine)
A state machine consists of:

State variables
Commands which transforms its state

Implemented by deterministic programs
Atomic with respect to other commands

Specification
Agreement: every correct replica receives the same set of
commands
Order: every non-faulty state machine processes the commands it
receives in the same order

Alberto Montresor (UniTN) DS - Raft Consensus 2020/11/26 2 / 60

Consensus variants

Consensus

In the (Uniform) Consensus
problem, the processes propose
values and need to decide
(agree) on one of these values

p

q

rs

t

5

7

82

8

Consensus

5

55

5

Crash!

Definition (Uniform Validity)
Any value decided is a value proposed

Definition ((Uniform) Agreement)
No two correct (any) processes decide
differently

Definition (Termination)
Every correct process eventually
decides

Definition (Uniform Integrity)
Every process decides at most once

Alberto Montresor (UniTN) DS - Raft Consensus 2020/11/26 3 / 60

Consensus variants

Consensus, Atomic Broadcast, State Machine Replication

Equivalence between Consensus and Atomic Broadcast

1 There is an algorithm TConsensus→AtomicBroadcast

2 There is an algorithm TAtomicBroadcast→Consensus

Alberto Montresor (UniTN) DS - Raft Consensus 2020/11/26 4 / 60

Consensus variants

From Atomic Broadcast to Consensus

Transformation executed by process p
upon initialization do

boolean decided← false

upon propose(v) do
A-broadcast(v)

upon A-deliver(v) do
if not decided then

decided← true
decide(u)

Alberto Montresor (UniTN) DS - Raft Consensus 2020/11/26 5 / 60

Consensus variants

From Consensus to Atomic Broadcast

Transformation executed by process p
upon initialization do

Set unordered← ∅ % Messages to be ordered
Set delivered← ∅ % Messages already delivered
boolean wait← false % true when Consensus is running
integer s← 1 % Consensus protocol identifier

upon A-broadcast(m) do
R-broadcast(m)

upon R-deliver(m) do
if not m ∈ delivered then

unordered← unordered ∪ {m}

Alberto Montresor (UniTN) DS - Raft Consensus 2020/11/26 6 / 60

Consensus variants

From Consensus to Atomic Broadcast

Transformation executed by process p
upon decides(S) do

unordered← unordered− S
foreach m ∈ S do

A-deliver(m) % In some deterministic order

delivered← delivered ∪ S
s← s + 1
wait← false

upon unordered 6= ∅ and not wait do
wait← true
proposes(unordered)

Alberto Montresor (UniTN) DS - Raft Consensus 2020/11/26 7 / 60

Consensus variants

Discussion

Summary
Consensus and total order broadcast are equivalent problems in an
asynchronous system with crashes and Perfect Channels

Consensus can be obtained from total order broadcast

Total order broadcast can be obtained from Consensus

Problem
This means that the impossibility results of Consensus apply to Atomic
Broadcast as weel

Alberto Montresor (UniTN) DS - Raft Consensus 2020/11/26 8 / 60

Table of contents

1 Consensus variants
2 Historical overview

Paxos
Raft

3 Raft protocol
Overview
Elections
Normal operation
Neutralizing old leaders
Client protocol
Configuration changes

Historical overview Paxos

Paxos History

1989 Leslie Lamport developed a new consensus protocol called Paxos;
it was published as DEC SRC Technical Report 49. 42 pages!

Abstract
Recent archaeological discoveries on the island of Paxos reveal that the
parliament functioned despite the peripatetic propensity of its part-time
legislators. The legislators maintained consistent copies of the parlia-
mentary record, despite their frequent forays from the chamber and the
forgetfulness of their messengers. The Paxon parliament’s protocol pro-
vides a new way of implementing the state-machine approach to the design
of distributed systems — an approach that has received limited attention
because it leads to designs of insufficient complexity.

Alberto Montresor (UniTN) DS - Raft Consensus 2020/11/26 9 / 60

Historical overview Paxos

Paxos History

1990 Submitted to ACM Trans. on Comp. Sys. (TOCS). Rejected.

1996 “How to Build a Highly Available System Using Consensus”, by B.
Lampson was published in WDAG 1996, Bologna, Italy.

1997 “Revisiting the Paxos Algorithm”, by R. De Prisco, B. Lampson,
N. Lynch was published in WDAG 1997, Saarbrücken, Germany.

1998 The original paper is resubmitted and accepted by TOCS.

2001 Lamport publishes “Paxos made simple” in ACM SIGACT News
Because Lamport “got tired of everyone saying how difficult it was
to understand the Paxos algorithm”
Abstract: “The Paxos algorithm, when presented in plain English, is
very simple”
Introduces the concept of Multi-Paxos

Alberto Montresor (UniTN) DS - Raft Consensus 2020/11/26 10 / 60

Historical overview Paxos

Paxos History

Paxos optimizations and extensions

2004 Leslie Lamport and Mike Massa. “Cheap Paxos”. DSN’04,
Florence, Italy

2005 Leslie Lamport. “Generalized Consensus and Paxos”. Technical
Report MSR-TR-2005-33, Microsoft Research

2006 Leslie Lamport. “Fast Paxos”. Distributed Computing 19(2):79-103

An important milestone

2007 T. D. Chandra, R. Griesemer, J. Redstone. Paxos made live: an
engineering perspective. PODC 2007, Portland, Oregon.

Alberto Montresor (UniTN) DS - Raft Consensus 2020/11/26 11 / 60

Historical overview Paxos

Paxos implementations

Alberto Montresor (UniTN) DS - Raft Consensus 2020/11/26 12 / 60

Historical overview Paxos

The sad state of Paxos

About publications...

“The dirty little secret of the NSDI community is that at most five
people really, truly understand every part of Paxos ;-).” – NSDI
reviewer

About implementations...

“There are significant gaps between the description of the Paxos
algorithm and the needs of a real-world system. . . the final system
will be based on an unproven protocol.” – Chubby authors

Alberto Montresor (UniTN) DS - Raft Consensus 2020/11/26 13 / 60

Historical overview Raft

Raft Consensus Protocol

An algorithm to build real systems

Must be correct, complete, and perform well
Must be understandable

Key design ideas

What would be easier to understand or explain?
Less complexity in state space
Less mechanisms

Bibliography

D. Ongaro and J. Ousterhout. In search of an understandable consensus
algorithm.
In 2014 USENIX Annual Technical Conference, pages 305–319,
Philadelphia, PA, June 2014. USENIX Association.
http://www.disi.unitn.it/~montreso/ds/papers/raft.pdf

Alberto Montresor (UniTN) DS - Raft Consensus 2020/11/26 14 / 60

http://www.disi.unitn.it/~montreso/ds/papers/raft.pdf

Historical overview Raft

Raft implementations

Actual deployments

HydraBase by Facebook (replacement for Apache HBase)
Consul by HashiCorp (datacenter management)
Rafter by Basho (NOSQL key-value store called Riak)
Apache Kudu (distributed database)
Kubernetes and Docker Swarm (container management)

Alberto Montresor (UniTN) DS - Raft Consensus 2020/11/26 15 / 60

Historical overview Raft

Raft implementations

Open-source projects: 80+ total (May 2017)

Language Numbers Language Numbers
Java 18 Javascript 6
Go 8 Clojure 4
Ruby 8 Erlang 4
C/C++ 8 Rust 3
Scala 7 Bloom 3
Python 6 Others 9

Alberto Montresor (UniTN) DS - Raft Consensus 2020/11/26 16 / 60

Table of contents

1 Consensus variants
2 Historical overview

Paxos
Raft

3 Raft protocol
Overview
Elections
Normal operation
Neutralizing old leaders
Client protocol
Configuration changes

Raft protocol Overview

Introduction

Two approaches to consensus / atomic broadcast / state replica-
tion:

Symmetric, leader-less, active replication:
All servers have equal roles
Clients can contact any server

Asymmetric, leader-based, passive replication:
At any given time, one server is in charge, others accept its decisions
Clients communicate with the leader

Raft is leader-based

Decomposes the problem (normal operation, leader changes)
Simplifies normal operation (no conflicts)
More efficient than leader-less approaches

Alberto Montresor (UniTN) DS - Raft Consensus 2020/11/26 17 / 60

Raft protocol Overview

Raft overview

1 Leader election:
Select one of the servers to act as leader
Detect crashes, choose new leader

2 Normal operation
Basic log replication

3 Safety and consistency after leader changes

4 Neutralizing old leaders

5 Client interactions
Implementing linearizeable semantics

6 Configuration changes
Adding and removing servers

Alberto Montresor (UniTN) DS - Raft Consensus 2020/11/26 18 / 60

Raft protocol Overview

Server states

leader Handles all client interactions, log replication
At most 1 viable leader at a time

follower Completely passive (issues no RPCs, responds to
incoming RPCs)

candidate Used to elect a new leader
Normal operation: 1 leader, N-1 followers

●  At any given time, each server is either:
§  Leader: handles all client interactions, log replication

●  At most 1 viable leader at a time

§  Follower: completely passive (issues no RPCs, responds to
incoming RPCs)

§  Candidate: used to elect a new leader

●  Normal operation: 1 leader, N-1 followers

March 3, 2013 Raft Consensus Algorithm Slide 5

Server States

Follower Candidate Leader

start
timeout,

start election
receive votes from
majority of servers

timeout,
new election

discover server with
 higher term discover current server

or higher term

“step
down”

Alberto Montresor (UniTN) DS - Raft Consensus 2020/11/26 19 / 60

Raft protocol Overview

Terms

●  Time divided into terms:
§  Election
§  Normal operation under a single leader

●  At most 1 leader per term
●  Some terms have no leader (failed election)
●  Each server maintains current term value
●  Key role of terms: identify obsolete information
March 3, 2013 Raft Consensus Algorithm Slide 6

Terms

Term 1 Term 2 Term 3 Term 4 Term 5

time

Elections Normal Operation Split Vote

Time divided into terms:
Election
Normal operation under a single leader

At most one leader per term

Some terms have no leader (failed election)

Each server maintains current term value

Key role of terms: identify obsolete information
Alberto Montresor (UniTN) DS - Raft Consensus 2020/11/26 20 / 60

Raft protocol Overview

Server state

Persistent state

Each server persists the following variables to stable storage
synchronously before responding to RPCs:

currentTerm Latest term server has seen (initialized to 0 on first
boot)

votedFor ID of the candidate that received vote in current
term (or null if none)

log[] Log entries:

term term when entry was received by leader
command command for state machine

Alberto Montresor (UniTN) DS - Raft Consensus 2020/11/26 21 / 60

Raft protocol Overview

Server state

Non-persistent state

state Current state; could be leader, candidate,
follower

leader ID of the leader
commitIndex index of highest log entry known to be committed
nextIndex[] index of next log entry to send to peer
matchIndex[] index of highest log entry known to be replicated

Initialization

currentTerm← 1
votedFor← nil
log← {}
state← follower

leader← nil
commitIndex← 0
nextIndex = {1, 1, . . . , 1}
matchIndex = {0, 0, . . . , 0}

Alberto Montresor (UniTN) DS - Raft Consensus 2020/11/26 22 / 60

Raft protocol Overview

RPCs

Communication between leader and followers happen through two
RPCs:

AppendEntries
Add an entry to the log, or
Empty messages used as heartbeats
Message tags: AppendReq, AppendRep

Vote
Message used by candidates to ask votes and win elections
Message tags: VoteReq, VoteRep

Alberto Montresor (UniTN) DS - Raft Consensus 2020/11/26 23 / 60

Raft protocol Overview

Hearthbeats and timeouts

Servers start up as followers

Followers expect to receive RPCs from leaders or candidates

Leaders must send empty AppendEntries RPCs to maintain
authority

If ∆election time units elapse with no RPCs:
Follower assumes leader has crashed
Follower starts new election
Timeouts typically 100-500ms

Alberto Montresor (UniTN) DS - Raft Consensus 2020/11/26 24 / 60

Raft protocol Elections

Election basics - Election start

1 Set new timeout in range [∆election, 2 ·∆election]

2 Increment current term

3 Change to Candidate state

4 Vote for self

5 Send Vote RPCs to all other servers, retry until either:
Receive votes from majority of servers:

Become Leader
Send AppendEntries heartbeats to all other servers

Receive AppendEntries from valid leader:
Return to Follower state

No one wins election (election timeout elapses):
Start new election

Alberto Montresor (UniTN) DS - Raft Consensus 2020/11/26 25 / 60

Raft protocol Elections

Election - Pseudocode

Election code - executed by process p
upon timeout 〈ElectionTimeout〉 do

if state ∈ {follower,candidate} then
t← random(1.0, 2.0) ·∆election
set timeout 〈ElectionTimeout〉 at now() + t
currentTerm← currentTerm + 1
state← candidate
votedFor← p
votes← {p}
foreach q ∈ Π do

cancel timeout 〈RpcTimeout, q〉
set timeout 〈RpcTimeout, q〉 at now()

Alberto Montresor (UniTN) DS - Raft Consensus 2020/11/26 26 / 60

Raft protocol Elections

Election - Pseudocode

RPC timeout code - executed by process p
upon timeout 〈RpcTimeout, q〉 do

if state = candidate then
set timeout 〈RpcTimeout, q〉 at now() + ∆vote
send 〈VoteReq, currentTerm〉 to q

Alberto Montresor (UniTN) DS - Raft Consensus 2020/11/26 27 / 60

Raft protocol Elections

Election - Pseudocode

Election code - executed by process p
on receive 〈VoteReq, term〉 from q do

if term > currentTerm then
stepdown(term)

if term = currentTerm and votedFor ∈ {q,nil} then
votedFor← q
t← random(1.0, 2.0) ·∆election
set timeout 〈ElectionTimeout〉 at now() + t
send 〈VoteRep, term, votedFor〉 to q

Alberto Montresor (UniTN) DS - Raft Consensus 2020/11/26 28 / 60

Raft protocol Elections

Election - Pseudocode

Election code - executed by process p
on receive 〈VoteRep, term, vote〉 from q do

if term > currentTerm then
stepdown(term)

if term = currentTerm and state = candidate then
if vote = p then

votes← votes ∪ {q}
cancel timeout 〈RpcTimeout, q〉
if |votes| > |Π|/2 then

state← leader
leader← p
foreach q ∈ P − {p} do

sendAppendEntries(q)

Alberto Montresor (UniTN) DS - Raft Consensus 2020/11/26 29 / 60

Raft protocol Elections

Election - Pseudocode

procedure stepdown(term)
currentTerm← term
state← follower
votedFor← nil
t← random(1.0, 2.0) ·∆election
set timeout 〈ElectionTimeout〉 at now() + t

Alberto Montresor (UniTN) DS - Raft Consensus 2020/11/26 30 / 60

Raft protocol Elections

Election - Correctness

Safety: allow at most one winner per term

Each server gives out only one vote per term (persist on disk)
Two different candidates can’t accumulate majorities in same term

●  Safety: allow at most one winner per term
§  Each server gives out only one vote per term (persist on disk)
§  Two different candidates can’t accumulate majorities in same

term

●  Liveness: some candidate must eventually win
§  Choose election timeouts randomly in [T, 2T]
§  One server usually times out and wins election before others

wake up
§  Works well if T >> broadcast time

March 3, 2013 Raft Consensus Algorithm Slide 10

Elections, cont’d

Servers

Voted for
candidate A

B can’t also
get majority

Liveness: some candidate must eventually win

Choose election timeouts randomly in [∆election, 2 ·∆election]

One server usually times out and wins election before others wake
up
Works well if ∆election >> broadcast time

Alberto Montresor (UniTN) DS - Raft Consensus 2020/11/26 31 / 60

Raft protocol Elections

Randomize timeouts

How much randomization is needed to avoid split votes?
Conservatively, use random range ≈ 10× network latency●  How much randomization is needed to avoid split votes?

●  Conservatively, use random range ~10x network latency

September 2014 Raft Consensus Algorithm Slide 12

Randomized Timeouts

Alberto Montresor (UniTN) DS - Raft Consensus 2020/11/26 32 / 60

Raft protocol Elections

Log structure

●  Log entry = index, term, command
●  Log stored on stable storage (disk); survives crashes
●  Entry committed if known to be stored on majority of servers

§  Durable, will eventually be executed by state machines
March 3, 2013 Raft Consensus Algorithm Slide 11

Log Structure

T1
add

1 2 3 4 5 6 7 8
T3

jmp
T1

cmp
T1
ret

T2
mov

T3
div

T3
shl

T3
sub

T1
add

T3
jmp

T1
cmp

T1
ret

T2
mov

T1
add

T3
jmp

T1
cmp

T1
ret

T2
mov

T3
div

T3
shl

T3
sub

T1
add

T1
cmp

T1
add

T3
jmp

T1
ret

T2
mov

T3
div

T3
shl

leader

log index

followers

committed entries

term

command

T1
cmp

Log stored on stable storage (disk); survives crashes
Entry committed if known to be stored on majority of servers
Durable, will eventually be executed by state machines

Alberto Montresor (UniTN) DS - Raft Consensus 2020/11/26 33 / 60

Raft protocol Normal operation

Normal operation

Client sends command to leader

Leader appends command to its log
Normal operation code executed by process p
upon receive 〈Request, command〉 from client do

if state = leader then
log.append(currentTerm, command)
foreach q ∈ P − {p} do

sendAppendEntries(q)

Alberto Montresor (UniTN) DS - Raft Consensus 2020/11/26 34 / 60

Raft protocol Normal operation

Normal operation

Leader sends AppendEntries RPCs to followers

Once new entry committed:
Leader passes command to its state machine, returns result to client
Leader notifies followers of committed entries in subsequent
AppendEntries RPCs
Followers pass committed commands to their state machines

Crashed/slow followers?
Leader retries RPCs until they succeed
Performance is optimal in common case: one successful RPC to any
majority of servers

Alberto Montresor (UniTN) DS - Raft Consensus 2020/11/26 35 / 60

Raft protocol Normal operation

Normal operation

RPC timeout code executed by process p
upon timeout 〈RpcTimeout, q〉 do

if state = candidate then
set timeout 〈RpcTimeout, q〉 at now() + ∆vote
send 〈VoteReq, currentTerm〉 to q

if state = leader then
sendAppendEntries(q)

Alberto Montresor (UniTN) DS - Raft Consensus 2020/11/26 36 / 60

Raft protocol Normal operation

How to send append entries

procedure sendAppendEntries(q)
set timeout 〈RpcTimeout, q〉 at now() + ∆election/2
lastLogIndex← choose in[nextIndex[q], log.len()]
nextIndex[q] = lastLogIndex
send
〈AppendReq, term, lastLogIndex− 1, log[lastLogIndex[q]− 1].term,

log[lastLogIndex . . . log.len()], commitIndex〉 to q

Alberto Montresor (UniTN) DS - Raft Consensus 2020/11/26 37 / 60

Raft protocol Normal operation

Log consistency

Consistency in logs

If log entries on different servers have same index and term:
They store the same command
The logs are identical in all preceding entries

If a given entry is committed, all preceding entries are also
committed

High level of coherency between logs:
●  If log entries on different servers have same index

and term:
§  They store the same command
§  The logs are identical in all preceding entries

●  If a given entry is committed, all preceding entries

are also committed

March 3, 2013 Raft Consensus Algorithm Slide 13

Log Consistency

T1
add

1 2 3 4 5 6
T3

jmp
T1

cmp
T1
ret

T2
mov

T3
div

T4
sub

T1
add

T3
jmp

T1
cmp

T1
ret

T2
mov

Alberto Montresor (UniTN) DS - Raft Consensus 2020/11/26 38 / 60

Raft protocol Normal operation

AppendEntries Consistency Check

Each AppendEntries RPC contains index, term of entry
preceding new ones
Follower must contain matching entry; otherwise it rejects request
Implements an induction step, ensures coherency

●  Each AppendEntries RPC contains index, term of
entry preceding new ones

●  Follower must contain matching entry; otherwise it
rejects request

●  Implements an induction step, ensures coherency

March 3, 2013 Raft Consensus Algorithm Slide 14

AppendEntries Consistency Check

T1
add

T3
jmp

T1
cmp

T1
ret

T2
mov

T1
add

T1
cmp

T1
ret

T2
mov

leader

follower

1 2 3 4 5

T1
add

T3
jmp

T1
cmp

T1
ret

T2
mov

T1
add

T1
cmp

T1
ret

T1
shl

leader

follower

AppendEntries succeeds:
matching entry

AppendEntries fails:
mismatch

1 2 3 4 5

Alberto Montresor (UniTN) DS - Raft Consensus 2020/11/26 39 / 60

Raft protocol Normal operation

AppendEntries Consistency Check

Each AppendEntries RPC contains index, term of entry
preceding new ones
Follower must contain matching entry; otherwise it rejects request
Implements an induction step, ensures coherency

●  Each AppendEntries RPC contains index, term of
entry preceding new ones

●  Follower must contain matching entry; otherwise it
rejects request

●  Implements an induction step, ensures coherency

March 3, 2013 Raft Consensus Algorithm Slide 15

AppendEntries Consistency Check

T1
add

T3
jmp

T1
cmp

T1
ret

T2
mov

T1
add

T1
cmp

T1
ret

T2
mov

leader

follower

1 2 3 4 5

T1
add

T3
jmp

T1
cmp

T1
ret

T2
mov

T1
add

T1
cmp

T1
ret

T1
shl

leader

follower

AppendEntries succeeds:
matching entry

1 2 3 4 5

AppendEntries succeeds:
matching entry

Alberto Montresor (UniTN) DS - Raft Consensus 2020/11/26 39 / 60

Raft protocol Normal operation

Normal operation - Pseudocode

Normal operation code - executed by process p
on receive 〈AppendReq, term, prevIndex, prevTerm, entries, commitIndex〉
from q do

if term > currentTerm then
stepdown(term)

if term < currentTerm then
send 〈AppendRep, currentTerm, false〉 to q

else
index← 0
success← prevIndex = 0 or (prevIndex ≤ log.len() and
log[prevIndex].term = prevTerm)

if success then
index← storeEntries(prevIndex, entries, commitIndex)

send 〈AppendRep, currentTerm, success, index〉

Alberto Montresor (UniTN) DS - Raft Consensus 2020/11/26 40 / 60

Raft protocol Normal operation

At beginning of new leader’s term

Old leader may have left entries partially replicated
No special steps by new leader: just start normal operation
Leader’s log is “the truth”
Will eventually make follower’s logs identical to leader’s
Multiple crashes can leave many extraneous log entries

●  At beginning of new leader’s term:
§  Old leader may have left entries partially replicated
§  No special steps by new leader: just start normal operation
§  Leader’s log is “the truth”
§  Will eventually make follower’s logs identical to leader’s
§  Multiple crashes can leave many extraneous log entries:

March 3, 2013 Raft Consensus Algorithm Slide 16

Leader Changes

1 2 3 4 5 6 7 8

T1 T1

T1 T1

T5

T5

T6 T6 T6

T6

T1 T1 T5 T5

T1 T4 T1

T1 T1

T7 T7

T2 T2 T3 T3 T3

T2

T7

s1

s2

s3

s4

s5

Alberto Montresor (UniTN) DS - Raft Consensus 2020/11/26 41 / 60

Raft protocol Normal operation

Safety Requirement

Once a log entry has been applied to a state machine, no other
state machine must apply a different value for that log entry

Raft safety property:
If a leader has decided that a log entry is committed, that entry will
be present in the logs of all future leaders
This guarantees the safety requirement

Leaders never overwrite entries in their logs
Only entries in the leader’s log can be committed
Entries must be committed before applying to state machine

Once a log entry has been applied to a state machine,
no other state machine must apply a different value for
that log entry

●  Raft safety property:
§  If a leader has decided that a log entry is committed, that entry

will be present in the logs of all future leaders

●  This guarantees the safety requirement
§  Leaders never overwrite entries in their logs
§  Only entries in the leader’s log can be committed
§  Entries must be committed before applying to state machine

March 3, 2013 Raft Consensus Algorithm Slide 17

Safety Requirement

Committed → Present in future leaders’ logs
Restrictions on
commitment

Restrictions on
leader election

Alberto Montresor (UniTN) DS - Raft Consensus 2020/11/26 42 / 60

Raft protocol Normal operation

Picking the Best Leader

Can’t tell which
entries are committed!

●  Can’t tell which entries are committed!

●  During elections, choose candidate with log most
likely to contain all committed entries
§  Candidates include log info in RequestVote RPCs

(index & term of last log entry)
§  Voting server V denies vote if its log is “more complete”:

(lastTermV > lastTermC) ||
(lastTermV == lastTermC) && (lastIndexV > lastIndexC)

§  Leader will have “most complete” log among electing majority
March 3, 2013 Raft Consensus Algorithm Slide 18

Picking the Best Leader

T1 T2 T1 T1 T2

1 2 3 4 5

T1 T2 T1 T1

T1 T2 T1 T1 T2
unavailable during
leader transition

committed?

During elections, choose candidate with log most likely to contain
all committed entries

Candidates include index & term of last log entry in VoteReq

Voting server V denies vote if its log is “more complete”:
(lastLogTermC < lastLogTermV) or
(lastLogTermC = lastLogTermV and lastLogIndexC < lastLogIndexV)

Leader will have “most complete” log among electing majority

Alberto Montresor (UniTN) DS - Raft Consensus 2020/11/26 43 / 60

Raft protocol Normal operation

Election - Modified pseudocode

RPC timeout code - executed by process p
upon timeout 〈RpcTimeout, q〉 do

if state = candidate then
set timeout 〈RpcTimeout, q〉 at now() + ∆vote
lastLogTerm← log[log.len()].term
lastLogIndex← log.len()
send 〈VoteReq, currentTerm, lastLogTerm, lastLogIndex〉 to q

if state = leader then
set timeout 〈RpcTimeout, q〉 at now() + ∆election/2
sendAppendEntries(q)

Alberto Montresor (UniTN) DS - Raft Consensus 2020/11/26 44 / 60

Raft protocol Normal operation

Election - Modified pseudocode

Election code - executed by process p
on receive 〈VoteReq, term, lastLogTerm, lastLogIndex〉 from q do

if term > currentTerm then
stepdown(term)

if term = currentTerm and votedFor ∈ {q,nil} and
(lastLogTerm > log[log.len()].term or
(lastLogTerm = log[log.len()].term and lastLogIndex ≥ log.len()))

then
votedFor← q
t← random(1.0, 2.0) ·∆election
set timeout 〈ElectionTimeout〉 at now() + t
send 〈VoteRep, term, votedFor〉

Alberto Montresor (UniTN) DS - Raft Consensus 2020/11/26 45 / 60

Raft protocol Normal operation

Committing Entry from Current Term

Case 1/2: Leader decides entry in current term is committed●  Case #1/2: Leader decides entry in current term is
committed

●  Safe: leader for term 3 must contain entry 4

March 3, 2013 Raft Consensus Algorithm Slide 19

Committing Entry from Current Term

1 2 3 4 5 6

T1 T1

T1 T1

T1 T1

T1

T2

T1

T1 T1

s1

s2

s3

s4

s5

T2

T2

T2

T2

T2

T2

T2

AppendEntries just
succeeded

Can’t be elected as
leader for term 3

Leader for
term 2

Safe: leader for term T3 must contain entry 4

Alberto Montresor (UniTN) DS - Raft Consensus 2020/11/26 46 / 60

Raft protocol Normal operation

Committing Entry from Earlier Terms

Case 2/2: Leader is trying to commit entry from an earlier term●  Case #2/2: Leader is trying to finish committing entry
from an earlier term

●  Entry 3 not safely committed:
§  s5 can be elected as leader for term 5
§  If elected, it will overwrite entry 3 on s1, s2, and s3!

March 3, 2013 Raft Consensus Algorithm Slide 20

Committing Entry from Earlier Term

1 2 3 4 5 6

T1 T1

T1 T1

T1 T1

T1

T2

T1

T1 T1

s1

s2

s3

s4

s5

T2

T2
AppendEntries just
succeeded

T3

T4

T3

Leader for
term 4

T3

Unsafe: Entry 3 not safely committed

s5 can be elected as leader for term T5

If elected, it will overwrite entry 3 on s1, s2, and s3!
Alberto Montresor (UniTN) DS - Raft Consensus 2020/11/26 47 / 60

Raft protocol Normal operation

New commitment rule

For a leader to decide that an
entry is committed:

Must be stored on a
majority of servers
At least one new entry from
leader’s term must also be
stored on majority of servers

Once entry 4 committed:
s5 cannot be elected leader
for term T5

Entries 3 and 4 both safe

●  For a leader to decide an
entry is committed:
§  Must be stored on a majority

of servers
§  At least one new entry from

leader’s term must also be
stored on majority of servers

●  Once entry 4 committed:
§  s5 cannot be elected leader

for term 5
§  Entries 3 and 4 both safe

March 3, 2013 Raft Consensus Algorithm Slide 21

New Commitment Rules

1 2 3 4 5

T1 T1

T1 T1

T1 T1

T1

T2

T1

T1 T1

s1

s2

s3

s4

s5

T2

T2

T3

T4

T3

Leader for
term 4

T4

T4

Combination of election rules and commitment rules
makes Raft safe

T3

Combination of election and commitment rules makes Raft safe

Alberto Montresor (UniTN) DS - Raft Consensus 2020/11/26 48 / 60

Raft protocol Normal operation

Log inconsistencies

Leader changes can result in log inconsistencies:

March 3, 2013 Raft Consensus Algorithm Slide 22

Log Inconsistencies

T1 T4 T1 T1 T4 T5 T5 T6 T6 T6

1 2 3 4 5 6 7 8 9 10 11 12 log index
leader for
term 8

T1 T4 T1 T1 T4 T5 T5 T6 T6

T1 T4 T1 T1

T1 T4 T1 T1 T4 T5 T5 T6 T6 T6 T6

T1 T4 T1 T1 T4 T5 T5 T6 T6 T6

T1 T4 T1 T1 T4

T1 T1 T1

possible
followers

T4 T4

T7 T7

T2 T2 T3 T3 T3 T3 T3 T2

(a)

(b)

(c)

(d)

(e)

(f)

Extraneous
Entries

Missing
Entries

Alberto Montresor (UniTN) DS - Raft Consensus 2020/11/26 49 / 60

Raft protocol Normal operation

Repairing follower log

New leader must make follower logs consistent with its own
Delete extraneous entries
Fill in missing entries

Leader keeps nextIndex for each follower:
Index of next log entry to send to that follower
Initialized to (1 + leader’s last index)

When AppendEntries consistency check fails, decrement
nextIndex and try again

March 3, 2013 Raft Consensus Algorithm

●  New leader must make follower logs consistent with its own
§  Delete extraneous entries
§  Fill in missing entries

●  Leader keeps nextIndex for each follower:
§  Index of next log entry to send to that follower
§  Initialized to (1 + leader’s last index)

●  When AppendEntries consistency check fails, decrement
nextIndex and try again:

Repairing Follower Logs

T1 T4 T1 T1 T4 T5 T5 T6 T6 T6

1 2 3 4 5 6 7 8 9 10 11 12 log index

leader for term 7

T1 T4 T1 T1

T1 T1 T1
followers

T2 T2 T3 T3 T3 T3 T3 T2

(a)

(b)

nextIndex

Slide 23

Alberto Montresor (UniTN) DS - Raft Consensus 2020/11/26 50 / 60

Raft protocol Normal operation

Repairing follower log – Pseudocode

Normal operation code - executed by process p
upon receive〈AppendRep, term, success, index〉 from q do

if term > currentTerm then
stepdown(term)

else if state = leader and term = currentTerm then
if success then

nextIndex[q]← index + 1
else

nextIndex[q]← max(1,nextIndex[q]− 1)

if nextIndex[q] ≤ log .len() then
sendAppendEntries(q)

Alberto Montresor (UniTN) DS - Raft Consensus 2020/11/26 51 / 60

Raft protocol Normal operation

Repairing follower log

When follower overwrites inconsistent entry, it deletes all subsequent
entries
●  When follower overwrites inconsistent entry, it

deletes all subsequent entries:

March 3, 2013 Raft Consensus Algorithm Slide 24

Repairing Logs, cont’d

T1 T4 T1 T1 T4 T5 T5 T6 T6 T6

1 2 3 4 5 6 7 8 9 10 11 log index

leader for term 7

T1 T1 T1 follower (before) T2 T2 T3 T3 T3 T3 T3 T2

nextIndex

T1 T1 T1 follower (after) T4

Alberto Montresor (UniTN) DS - Raft Consensus 2020/11/26 52 / 60

Raft protocol Normal operation

Repairing follower log

procedure storeEntries (prevIndex, entries, c)
index← prevIndex
for j ← 1 to entries.len() do

index← index + 1
if log[index].term 6= entries[j].term then

log = log[1 . . . index− 1] + entries[j]

commitIndex← min(c, index)
return index

Alberto Montresor (UniTN) DS - Raft Consensus 2020/11/26 53 / 60

Raft protocol Neutralizing old leaders

Neutralizing Old Leaders

Deposed leader may not be dead

Temporarily disconnected from network
Other servers elect a new leader
Old leader becomes reconnected, attempts to commit log entries

Terms used to detect stale leaders (and candidates)

Every RPC contains term of sender
If sender’s term is older, RPC is rejected, sender reverts to follower
and updates its term
If receiver’s term is older, it reverts to follower, updates its term,
then processes RPC normally

Election updates terms of majority of servers

Deposed server cannot commit new log entries
Alberto Montresor (UniTN) DS - Raft Consensus 2020/11/26 54 / 60

Raft protocol Neutralizing old leaders

Neutralizing Old Leaders

Normal operation code - executed by process p
on receive 〈AppendReq, term, prevIndex, prevTerm, . . .〉 from q do

if term > currentTerm then
stepdown(term)

if term < currentTerm then
send 〈AppendRep, currentTerm, false〉 to q

else
[. . .]

Alberto Montresor (UniTN) DS - Raft Consensus 2020/11/26 55 / 60

Raft protocol Client protocol

Client protocol

Clients sends commands to leader:

If leader unknown, contact any server
If contacted server not leader, it will redirect to leader

Leader responds when:

command has been logged
command has been committed
command has been executed by leader’s state machine

If request times out (e.g., leader crash):

Client re-issues command to some other server
Eventually redirected to new leader
Retry request with new leader

Alberto Montresor (UniTN) DS - Raft Consensus 2020/11/26 56 / 60

Raft protocol Client protocol

Client protocol

What if leader crashes after executing command, but before re-
sponding?

Must not execute command twice

Solution: client embeds a unique id in each command

Server includes id and response in log entry
Before accepting command, leader checks its log for entry with
that id
If id found in log, ignore new command, return response from old
command

Result: exactly-once semantics as long as client doesn’t crash

Alberto Montresor (UniTN) DS - Raft Consensus 2020/11/26 57 / 60

Raft protocol Configuration changes

Configuration

System configuration

ID, address for each server
Determines what constitutes a majority

Consensus mechanism must support changes in the configuration

Replace failed machine
Change degree of replication

Alberto Montresor (UniTN) DS - Raft Consensus 2020/11/26 58 / 60

Raft protocol Configuration changes

Configuration changes

Cannot switch directly from one configuration to another:
conflicting majorities could arise

Cannot switch directly from one configuration to
another: conflicting majorities could arise

March 3, 2013 Raft Consensus Algorithm Slide 29

Configuration Changes, cont’d

Cold Cnew

Server 1

Server 2

Server 3

Server 4

Server 5

Majority of Cold

Majority of Cnew

time

Alberto Montresor (UniTN) DS - Raft Consensus 2020/11/26 59 / 60

Raft protocol Configuration changes

Joint consensus

Raft uses a 2-phase approach

Intermediate phase uses joint consensus (need majority of both old
and new configurations for elections, commitment)

Once joint consensus is committed, begin replicating log entry for
final configuration

March 3, 2013 Raft Consensus Algorithm Slide 30

●  Raft uses a 2-phase approach:
§  Intermediate phase uses joint consensus (need majority of both

old and new configurations for elections, commitment)
§  Configuration change is just a log entry; applied immediately on

receipt (committed or not)
§  Once joint consensus is committed, begin replicating log entry

for final configuration

Joint Consensus

time Cold+new entry
committed

Cnew entry
committed

Cold

Cold+new

Cnew

Cold can make
unilateral decisions

Cnew can make
unilateral decisions

Alberto Montresor (UniTN) DS - Raft Consensus 2020/11/26 60 / 60

Reading Material

D. Ongaro and J. Ousterhout. In search of an understandable consensus
algorithm.
In 2014 USENIX Annual Technical Conference, pages 305–319, Philadelphia,
PA, June 2014. USENIX Association.
http://www.disi.unitn.it/~montreso/ds/papers/raft.pdf

http://www.disi.unitn.it/~montreso/ds/papers/raft.pdf

	Consensus variants
	Historical overview
	Paxos
	Raft

	Raft protocol
	Overview
	Elections
	Normal operation
	Neutralizing old leaders
	Client protocol
	Configuration changes

