
Distributed Algorithms
Peer-to-Peer Systems

Alberto Montresor

Università di Trento

2018/10/18

Acknowledgments: J. Chase, K. Ross, D. Rubenstein, P. Maymounkov, D.
Mazieres, D. Carra, B. Cohen, A. Legout, V. Samprati,
K. Tamilmani, N. Liogkas, I. Mohomed, D. Epema

This work is licensed under a Creative Commons
Attribution-ShareAlike 4.0 International License.

references

B. Cohen.
Incentives build robustness in BitTorrent.
In Proc. of the Workshop on Economics of P2P Systems, 2003.
http:
//www.disi.unitn.it/~montreso/ds/papers/BitTorrent.pdf.

D. Featherston.
Cassandra: Principles and application.
http:
//www.disi.unitn.it/~montreso/ds/papers/Cassandra.pdf.

M. Izal, G. Urvoy-Keller, E. Biersack, P. Felber, A. Al Hamra, and
L. Garcés-Erice.
Dissecting bittorrent: Five months in a torrent’s lifetime.
In Passive and Active Network Measurement, volume 3015 of
Lecture Notes in Computer Science, pages 1–11. Springer.
http:
//www.disi.unitn.it/~montreso/ds/papers/FiveMonths.pdf.

T. Locher, P. Moor, S. Schmid, and R. Wattenhofer.
Free riding in BitTorrent is cheap.
In Proc. of HotNets-V, Irvine, USA, Nov. 2006. Usenix.
http:
//www.disi.unitn.it/~montreso/ds/papers/BitThief.pdf.

E. K. Lua, J. Crowcroft, M. Pias, R. Sharma, and S. Lim.
A survey and comparison of peer-to-peer overlay network schemes.
IEEE Communications Surveys and Tutorials, 7(2):72–93, 2005.
http:
//www.disi.unitn.it/~montreso/ds/papers/P2PSurvey.pdf.

P. Maymounkov and D. Mazieres.
Kademlia: A peer-to-peer information system based on the XOR
metric.
In Proc. of the 1st International Workshop on Peer-to-Peer Systems
(IPTPS’02), pages 258–263. Springer, 2002.
http:
//www.disi.unitn.it/~montreso/ds/papers/kademlia.pdf.

M. Piatek, T. Isdal, T. E. Anderson, A. Krishnamurthy, and
A. Venkataramani.
Do incentives build robustness in BitTorrent?
In Proc. of NSDI’07, Cambridge, Massachusetts, USA, Apr. 2007.
USENIX.
http:
//www.disi.unitn.it/~montreso/ds/papers/BitTyrant.pdf.

J. Pouwelse, P. Garbacki, J. Wang, A. Bakker, J. Yang, A. Iosup,
D. Epema, M. Reinders, M. Van Steen, and H. Sips.
TRIBLER: a social-based peer-to-peer system.
Concurrency and Computation: Practice and Experience,
20(2):127–138, 2008.
http://www.disi.unitn.it/~montreso/ds/papers/Tribler.pdf.

S. Ratnasamy, P. Francis, M. Handley, R. Karp, and S. Shenker.
A scalable content-addressable network.
In Proc. of SIGCOMM’01, pages 161–172, San Diego, California,
USA, 2001. ACM.
http://www.disi.unitn.it/~montreso/ds/papers/CAN.pdf.

I. Stoica, R. Morris, D. Karger, M. F. Kaashoek, and
H. Balakrishnan.
Chord: A scalable peer-to-peer lookup service for internet
applications.
In Proc. of the 2001 Conference on Applications, Technologies,
Architectures, and Protocols for Computer Communications
(SIGCOMM), pages 149–160, San Diego, CA, 2001. ACM Press.
http://www.disi.unitn.it/~montreso/ds/papers/chord.pdf.

G. Urdaneta, G. Pierre, and M. van Steen.
A survey of DHT security techniques.
ACM Computing Surveys, 43(2), Jan. 2011.
http://www.disi.unitn.it/~montreso/ds/papers/
DhtSecuritySurvey.pdf.

http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
http://www.disi.unitn.it/~montreso/ds/papers/BitTorrent.pdf
http://www.disi.unitn.it/~montreso/ds/papers/BitTorrent.pdf
http://www.disi.unitn.it/~montreso/ds/papers/Cassandra.pdf
http://www.disi.unitn.it/~montreso/ds/papers/Cassandra.pdf
http://www.disi.unitn.it/~montreso/ds/papers/FiveMonths.pdf
http://www.disi.unitn.it/~montreso/ds/papers/FiveMonths.pdf
http://www.disi.unitn.it/~montreso/ds/papers/BitThief.pdf
http://www.disi.unitn.it/~montreso/ds/papers/BitThief.pdf
http://www.disi.unitn.it/~montreso/ds/papers/P2PSurvey.pdf
http://www.disi.unitn.it/~montreso/ds/papers/P2PSurvey.pdf
http://www.disi.unitn.it/~montreso/ds/papers/kademlia.pdf
http://www.disi.unitn.it/~montreso/ds/papers/kademlia.pdf
http://www.disi.unitn.it/~montreso/ds/papers/BitTyrant.pdf
http://www.disi.unitn.it/~montreso/ds/papers/BitTyrant.pdf
http://www.disi.unitn.it/~montreso/ds/papers/Tribler.pdf
http://www.disi.unitn.it/~montreso/ds/papers/CAN.pdf
http://www.disi.unitn.it/~montreso/ds/papers/chord.pdf
http://www.disi.unitn.it/~montreso/ds/papers/DhtSecuritySurvey.pdf
http://www.disi.unitn.it/~montreso/ds/papers/DhtSecuritySurvey.pdf

Table of contents

1 Introduction
2 Distributed Hash Tables

Overview
Chord
CAN
Kademlia
Cassandra
DHT Security
DHT Summary

3 Unstructured systems
Gnutella
BitTorrent

Introduction

Introduction

Definition
A peer-to-peer system is a collection of peer nodes, that act both as
servers and as clients

Provide resources to other peers
Consume resources from other peers

Characteristics
Put together resources at the edge of the Internet
Share resources by direct exchange between nodes
Perform critical functions in a decentralized manner

Alberto Montresor (UniTN) DS - P2P 2018/10/18 1 / 107

Introduction

Motivation for P2P

Cost-effective
Exploit the “dark matter” of the Internet constituted by “edge”
resources

No central point of failure
Control and resources are decentralized

Scalability
Since every peer is alike, it is possible to add more peers to the
system and scale to larger networks

Alberto Montresor (UniTN) DS - P2P 2018/10/18 2 / 107

Introduction

It’s a broad area. . .

P2P file sharing
Gnutella
eMule
BitTorrent

P2P communication
Instant messaging
Voice-over-IP: Skype

P2P computation
Seti@home

DHTs & their apps
Chord, CAN, Kademlia, . . .

P2P wireless
Ad-hoc networking

Alberto Montresor (UniTN) DS - P2P 2018/10/18 3 / 107

Introduction

Overlay networks

Network

TCP/IP

Overlay

Alberto Montresor (UniTN) DS - P2P 2018/10/18 4 / 107

Introduction

Overlay networks

Virtual edge
TCP connection
or simply a pointer to an IP address

Overlay maintenance
Periodically ping to make sure neighbor is still alive
Or verify liveness while messaging
If neighbor goes down, may want to establish new edge
New node needs to bootstrap

Alberto Montresor (UniTN) DS - P2P 2018/10/18 5 / 107

Introduction

Overlay networks

Tremendous design
flexibility

Topology
Message types
Protocols
Messaging over TCP or
UDP

Underlying physical net is
transparent to developer

But some overlays
exploit proximity

!"

!"#$%&'()*&%%*+,*-.#*&//%+0&-+1,*%&'#$
2$#3#,415(*4#(+6,*

7%#8+9+%+-'
21/1%16':*3&+,-#,&,0#
;#((&6#*-'/#(
<$1-101%
;#((&6+,6*1"#$*2=<*1$*>?<

>,4#$%'+,6*/.'(+0&%*,#-*+(*
-$&,(/&$#,-*-1*4#"#%1/#$

@5-*(13#*1"#$%&'(*#8/%1+-*
/$18+3+-'

&//%+0&-+1,
-$&,(/1$-
,#-A1$B
4&-&*%+,B
/.'(+0&%

&//%+0&-+1,
-$&,(/1$-
,#-A1$B
4&-&*%+,B
/.'(+0&%

&//%+0&-+1,
-$&,(/1$-
,#-A1$B
4&-&*%+,B
/.'(+0&%

Alberto Montresor (UniTN) DS - P2P 2018/10/18 6 / 107

Introduction

Overlay Topology
Unstructured:

No explicit topology
Observed rather than
engineered
Example: Gnutella,
BitTorrent

Structured:
An explicit “shape” is
maintained
Examples: Rings,
Trees, DHTs
Random topologies are
“structured” as well

Centralized

Decentralized Hybrid

Hierarchical

Alberto Montresor (UniTN) DS - P2P 2018/10/18 7 / 107

Introduction

Criteria for topology selection

Does it simplify location of data?

Does it
balance the load, if nodes are equal?
exploit heterogeneity, otherwise?

Is it robust?
Can it work if part of it is suddenly removed?
Can it be maintained in spite of churn?

Has some correspondence with the underlying network topology?
Proximity (latency-based)
e.g., Pastry, Kazaa, Skype

Alberto Montresor (UniTN) DS - P2P 2018/10/18 8 / 107

Table of contents

1 Introduction
2 Distributed Hash Tables

Overview
Chord
CAN
Kademlia
Cassandra
DHT Security
DHT Summary

3 Unstructured systems
Gnutella
BitTorrent

Distributed Hash Tables Overview

Distributed Hash Table (DHT)

A peer-to-peer algorithm that offers an associative Map interface:
put(Key k, Value v): associate a value v to the key k
Value get(Key k): returns the value associated to key k

(Distributed) Hash Tables:
Hash tables map keys to memory locations
Distributed hash tables map keys to nodes

Organization:
Each node is responsible for a portion of the key space
Messages are routed between nodes to reach responsible nodes
Replication used to tolerate failures

Alberto Montresor (UniTN) DS - P2P 2018/10/18 9 / 107

Distributed Hash Tables Overview

Routing in DHTs

put(9, “x”) get(9)

1.

2. 3.

1.

2.

3.

9 x

Alberto Montresor (UniTN) DS - P2P 2018/10/18 10 / 107

Distributed Hash Tables Overview

DHT Implementations

The founders (2001):
Chord
CAN
Pastry
Tapestry

The ones which are actually used:
Kademlia and its derivatives (up to 4M nodes!)

BitTorrent
Kad (eMule)
The Storm Botnet

Cassandra DHT
Part of Apache Cassandra
Initially developed at Facebook

The ones which are actually used, but we don’t know much about:
Microsoft DHT based on Pastry
Amazon’s Dynamo key-value store

Alberto Montresor (UniTN) DS - P2P 2018/10/18 11 / 107

Distributed Hash Tables Overview

Step 1: From Keys and Nodes to IDs

Keys and nodes are represented by identifiers taken from an ID
space

Key identifiers: computed through an hash function (e.g., SHA-1)
e.g., ID(k) = SHA1(k)

Node identifiers: randomly assigned or computed through an hash
function

e.g., ID(n) = SHA1(IP address of n)

Why?
Very low probability that two nodes have exactly the same ID

Nodes and keys are mapped in the same space

Alberto Montresor (UniTN) DS - P2P 2018/10/18 12 / 107

Distributed Hash Tables Overview

Step 2: Partition the ID space

Each node in the DHT stores some k, v pairs

Partition the ID space in zones, depending on the node IDs:

A pair (k, v) is stored at the node n such that (examples):
its identifier ID(n) is the closest to ID(k);
its identifier ID(n) is the largest node id smaller than ID(k)

0 2160-1

0 2160-1

Alberto Montresor (UniTN) DS - P2P 2018/10/18 13 / 107

Distributed Hash Tables Overview

Step 2: Build overlay network

Each node has two sets of neighbors:
Immediate neighbors in the key space (leafs)

Guarantee correctness, avoid partitions
If we had only them, linear routing time

Long-range neighbors
Allow sub-linear routing
If we had only them, connectivity problems

0 2160-1

Alberto Montresor (UniTN) DS - P2P 2018/10/18 14 / 107

Distributed Hash Tables Overview

Step 3: Route puts/gets through the overlay

Recursive routing: the initiator starts the process, contacted nodes
forward the message
Iterative routing: the initiator personally contact the nodes at each
routing step

0 2160-1

get

answer

0 2160-1

get

answer

Recursive routing

Iterative routing

1
2

3

4

1

2

5

446

3

Alberto Montresor (UniTN) DS - P2P 2018/10/18 15 / 107

Distributed Hash Tables Overview

Routing around failures (1)

Under churn, neighbors may have failed
To detect failures, acknowledge each hop (recursive routing)

0 2160-1

get

answer

Recursive routing
1

2
3

4
ack

Alberto Montresor (UniTN) DS - P2P 2018/10/18 16 / 107

Distributed Hash Tables Overview

Routing around failures (2)

If we don’t receive ack or response, resend through a different
neighbor

0 2160-1

get

answer

Recursive routing

0 2160-1

get

answer

Iterative routing

4

Alberto Montresor (UniTN) DS - P2P 2018/10/18 17 / 107

Distributed Hash Tables Overview

Routing around failures (3)

Must compute timeouts carefully
If too long, increase put/get latency
If too short, get message explosion

Parallel sending could be a design decision – see Kademlia

0 2160-1

get

Alberto Montresor (UniTN) DS - P2P 2018/10/18 18 / 107

Distributed Hash Tables Overview

Computing good timeouts

Use TCP-style timers
Keep past history of latencies
Use this to compute timeouts for new requests

Works fine for recursive lookups
Only talk to neighbors, so history small, current

In iterative lookups, source leads the entire lookup process
Must potentially have good timeout for any node

Alberto Montresor (UniTN) DS - P2P 2018/10/18 19 / 107

Distributed Hash Tables Overview

Recovering from failures

Can’t route around failures forever
Will eventually run out of neighbors

Must also find new nodes as they join
Especially important if they’re our immediate predecessors or
successors

new

0 2160-1

Old responsibility

New responsibility

Alberto Montresor (UniTN) DS - P2P 2018/10/18 20 / 107

Distributed Hash Tables Overview

Recovery from failures

Reactive recovery
When a node stops sending acknowledgments, notify other
neighbors of potential replacements

Proactive recovery
Periodically, each node sends its neighbor list to each of its
neighbors

A B C E
0 2160-1

“D failed, use C,E”

Reactive recovery

V

“D failed, use C,B”

A B C D E
0 2160-1

“Neighbors: D,E”

Proactive recovery

“Neighbors: B,A”

Alberto Montresor (UniTN) DS - P2P 2018/10/18 21 / 107

Distributed Hash Tables Chord

Chord

ID space: uni-dimensional ring in [0, 2m − 1]
(m = 160)
Routing table size: O(log n)

Routing time: O(log n)

0

2m-2

2m-1

2m-1

Bibliography

I. Stoica, R. Morris, D. Karger, M. F. Kaashoek, and H. Balakrishnan. Chord: A
scalable peer-to-peer lookup service for internet applications.
In Proc. of the 2001 Conference on Applications, Technologies, Architectures, and
Protocols for Computer Communications (SIGCOMM), pages 149–160, San Diego,
CA, 2001. ACM Press.
http://www.disi.unitn.it/~montreso/ds/papers/chord.pdf

Alberto Montresor (UniTN) DS - P2P 2018/10/18 22 / 107

http://www.disi.unitn.it/~montreso/ds/papers/chord.pdf

Distributed Hash Tables Chord

Identifier mapping

Example:
Node 8 maps [5, 8]
Node 15 maps [9, 15]
Node 20 maps [16, 20]
. . .
Node 4 maps [59, 4]

Random ID assignment
Each node maintains a
pointer to its successor

4

20

32
35

8

15

44

58

Alberto Montresor (UniTN) DS - P2P 2018/10/18 23 / 107

Distributed Hash Tables Chord

Join procedure (1)

Example:
Node with id = 50 joins
the ring
Node 50 needs to know
at least one node
already in the system
Assume known node is
15

4

20

32
35

8

15

44

58

succ=58
pred=35

succ=4
pred=44

50

succ=?
pred=?

Alberto Montresor (UniTN) DS - P2P 2018/10/18 24 / 107

Distributed Hash Tables Chord

Join procedure (2)

Example:
Node 50: send
〈join, 50〉 to node 15

Message is routed to
node 44

Node 44: returns node
58

Node 50: updates its
successor to 58

4

20

32
35

8

15

44

58

50

succ=58
pred=35

succ=4
pred=44

‹JOIN, 50›

58

succ=58
pred=?

Alberto Montresor (UniTN) DS - P2P 2018/10/18 25 / 107

Distributed Hash Tables Chord

Stabilization

Periodically, each node A:
sends a 〈stabilize〉 message to its successor B

Upon receiving 〈stabilize〉 message from A, node B:
returns its predecessor B′ = pred(B) to A by sending a
〈notify, B′〉 message
updates its predecessor to A, if A is between B′ and B

Upon receiving 〈notify, B′〉 message from B, node A:
updates its successor to B′, if B′ is between A and B

Alberto Montresor (UniTN) DS - P2P 2018/10/18 26 / 107

Distributed Hash Tables Chord

Join procedure (4)

Example:
Node 50: send
〈stabilize〉 to node 58

Node 58: update
predecessor to 50

Node 58: send
〈notify, 50〉 back

4

20

32
35

8

15

44

58

50

succ=58
pred=35

succ=4
pred=44

succ=58
pred=?

‹STABILIZE›

‹NOTIFY, 50›

50

Alberto Montresor (UniTN) DS - P2P 2018/10/18 27 / 107

Distributed Hash Tables Chord

Join procedure (5)

Example:
Node 44: send
〈stabilize〉 to its
successor node 58

Node 58: replies with
〈notify, 50〉
Node 44: updates it
successor to 50

4

20

32
35

8

15

44

58

50

succ=58
pred=35

succ=4
pred=50

succ=58
pred=?

‹STABILIZE›

‹NOTIFY, 50›

50

Alberto Montresor (UniTN) DS - P2P 2018/10/18 28 / 107

Distributed Hash Tables Chord

Join procedure (6)

Example:
Node 44: send
〈stabilize〉 to its new
successor, node 50

Node 50: updates it
predecessor to 44

This completes the joining
operation!

4

20

32
35

8

15

44

58

50

succ=50
pred=35

succ=4
pred=50

succ=58
pred=44

‹STABILIZE›

‹NOTIFY, 44›

Alberto Montresor (UniTN) DS - P2P 2018/10/18 29 / 107

Distributed Hash Tables Chord

Achieving efficiency

Chord requires each node to keep a finger table containing up to m
entries

The i-th entry (0 ≤ i ≤ m− 1) of node n will contain the address
of the successor of (n+ 2i) mod 2m

Fingers are used in routing to reduce the number of hops to
O(logN)

Alberto Montresor (UniTN) DS - P2P 2018/10/18 30 / 107

Distributed Hash Tables Chord

Achieving efficiency

80 + 20
80 + 21

80 + 22

80 + 23

80 + 24

80 + 25

(80 + 26) mod 27 = 16

0

i ft[i]
0 96
1 96
2 96
3 96
4 96
5 112
6 20

32

45
80

20
112

96

Alberto Montresor (UniTN) DS - P2P 2018/10/18 31 / 107

Distributed Hash Tables Chord

Achieving robustness

To improve robustness, each node maintains k > 1 immediate
successors instead of only one
In the 〈notify〉 message, node A can send its k − 1 successors to
its predecessor B
Upon receiving the 〈notify〉 message, B can update its successor
list by concatenating the successor list received from A with A
itself

Alberto Montresor (UniTN) DS - P2P 2018/10/18 32 / 107

Distributed Hash Tables Chord

Optimizations

Reduce latency
Choose finger that reduces expected time to reach destination
Choose the closest node from range [n+ 2i−1, n+ 2i) as successor

Accommodate heterogeneous systems
Multiple virtual nodes per physical node

Alberto Montresor (UniTN) DS - P2P 2018/10/18 33 / 107

Distributed Hash Tables CAN

CAN

Associate to each node and item a
unique ID in an d-dimensional
Cartesian space on a d-torus
Routing table size is constant: O(d)

Guarantees that a key is found in at
most d · n1/d steps, where n is the
total number of nodes

k
1
, v

1
k

2
, v

2

Figure: A 2-torus

Bibliography

S. Ratnasamy, P. Francis, M. Handley, R. Karp, and S. Shenker. A scalable content-
addressable network.
In Proc. of SIGCOMM’01, pages 161–172, San Diego, California, USA, 2001. ACM.
http://www.disi.unitn.it/~montreso/ds/papers/CAN.pdf

Alberto Montresor (UniTN) DS - P2P 2018/10/18 34 / 107

http://www.disi.unitn.it/~montreso/ds/papers/CAN.pdf

Distributed Hash Tables CAN

Example: 2-dimensional space

Space divided between nodes

All nodes cover the entire space

Each node covers either a
square or a rectangular area of
ratios 1 : 2 or 2 : 1

Example:
Node n1 : (1, 2) – first node
that joins – cover the entire
space

1 2 3 4 5 6 70

1

2

3

4

5

6

7

0

n
1

Alberto Montresor (UniTN) DS - P2P 2018/10/18 35 / 107

Distributed Hash Tables CAN

Example: 2-dimensional space

Example:
Node n2 : (4, 2) joins: space is
divided between n1 and n2

1 2 3 4 5 6 70

1

2

3

4

5

6

7

0

n
1 n

2

Alberto Montresor (UniTN) DS - P2P 2018/10/18 36 / 107

Distributed Hash Tables CAN

Example: 2-dimensional space

Example:
Node n3 : (3, 5) joins

1 2 3 4 5 6 70

1

2

3

4

5

6

7

0

n
1 n

2

n
3

Alberto Montresor (UniTN) DS - P2P 2018/10/18 37 / 107

Distributed Hash Tables CAN

Example: 2-dimensional space

Example:
Nodes n4 : (5, 5) and n5 : (6, 6)
join

1 2 3 4 5 6 70

1

2

3

4

5

6

7

0

n
1 n

2

n
3 n

4

n
5

Alberto Montresor (UniTN) DS - P2P 2018/10/18 38 / 107

Distributed Hash Tables CAN

Example: 2-dimensional space

Example:
Nodes: n1 : (1, 2), n2 : (4, 2),
n3 : (3, 5), n4 : (5, 5), n5 : (6, 6)
Items: k1 : (2, 3), k2 : (5, 1),
k3 : (2, 1), k4 : (7, 5)
Each item is stored by the
node who owns its mapping in
the space

1 2 3 4 5 6 70

1

2

3

4

5

6

7

0

n
1 n

2

n
3 n

4

n
5

k
1

k
3

k
2

k
4

Alberto Montresor (UniTN) DS - P2P 2018/10/18 39 / 107

Distributed Hash Tables CAN

Example: 2-dimensional space

Example:
Each node knows its neighbors
in the d-space
Forward query to the neighbor
that is closest to the query id
Example: assume n1 queries k4
Can route around some failures

1 2 3 4 5 6 70

1

2

3

4

5

6

7

0

n
1 n

2

n
3 n

4

n
5

k
1

k
3

k
2

k
4

Alberto Montresor (UniTN) DS - P2P 2018/10/18 40 / 107

Distributed Hash Tables CAN

Example: 2-dimensional space

Node joining:
1 Discover some node I already

in CAN
2 Pick random point (x, y) in

space
3 I routes to (x, y), discovers

node J (x,y)

I

J

new node

Alberto Montresor (UniTN) DS - P2P 2018/10/18 41 / 107

Distributed Hash Tables CAN

Example: 2-dimensional space

Node joining:
1 Split J zone in half
2 New node owns one half

I

J

Alberto Montresor (UniTN) DS - P2P 2018/10/18 42 / 107

Distributed Hash Tables CAN

Node departures

Take-over mechanism:
Node explicitly hands over its zone and the associated (key,value)
database to one of its neighbors

A maximum of 2d nodes need to be contacted

Problem: in case of network failure, no regeneration of data

Solution: every node has a backup of its neighbors

Alberto Montresor (UniTN) DS - P2P 2018/10/18 43 / 107

Distributed Hash Tables CAN

Multi-verse?

Increasing availability:
Each key is mapped into r different realities

Each reality is associated with a different hash function

A key is not available only when the r nodes hosting it in different
realities are down at the same time

Alberto Montresor (UniTN) DS - P2P 2018/10/18 44 / 107

Distributed Hash Tables Kademlia

Kademlia

Key points
Kademlia uses tree-based routing
SHA-1 hash function in a 160-bit address space
Every node maintains information about keys close to itself

Distance based on the XOR metric: d(a, b) = a⊕ b
Uses parallel asynchronous queries to avoid timeout delays
Routes are selected based on latency

Bibliography

P. Maymounkov and D. Mazieres. Kademlia: A peer-to-peer information system based
on the XOR metric.
In Proc. of the 1st International Workshop on Peer-to-Peer Systems (IPTPS’02), pages
258–263. Springer, 2002.
http://www.disi.unitn.it/~montreso/ds/papers/kademlia.pdf

Alberto Montresor (UniTN) DS - P2P 2018/10/18 45 / 107

http://www.disi.unitn.it/~montreso/ds/papers/kademlia.pdf

Distributed Hash Tables Kademlia

Kademlia Tree

11…11 00…00

1

1

1

1

1

1

11 1

1 1

1

1

11

1

0

0

0

0

0

0

0

0

0

0

0 0

0

0

0

0

0

Space of 160-bit numbers

Node / Peer

Nodes are treated as leafs in binary tree
Node’s position in the tree is determined by the shortest unique
prefix of its ID
A node is responsible for all “closest” IDs (those having same prefix
as itself)

Alberto Montresor (UniTN) DS - P2P 2018/10/18 46 / 107

Distributed Hash Tables Kademlia

Kademlia Tree

11…11 00…00

1

1

1

1

1

1

11 1

1 1

1

1

11

1

0

0

0

0

0

0

0

0

0

0

0 0

0

0

0

0

0

Space of 160-bit numbers

Node / Peer

common
prefix: 001

common
prefix: 00

common
prefix: 0

No common prefix

From the point of view of each node, the tree is divided into a
series of maximal subtrees that do not contain the node
Example: the red node with prefix 0011

A node must know at least one node in each of these subtrees
Alberto Montresor (UniTN) DS - P2P 2018/10/18 47 / 107

Distributed Hash Tables Kademlia

Routing table

11…11 00…00

1

1

1

1

1

1

11 1

1 1

1

1

11

1

0

0

0

0

0

0

0

0

0

0

0 0

0

0

0

0

0

Space of 160-bit numbers

Node / Peer

Consider routing table for a node with prefix 0011
The routing table is composed of a series of k-buckets
corresponding to each of the subtrees
Consider a 2-bucket example, each bucket will have at least 2
contacts for each subtree

Alberto Montresor (UniTN) DS - P2P 2018/10/18 48 / 107

Distributed Hash Tables Kademlia

Kademlia Tree

11…11 00…00

1

1

1

1

1

1

11 1

1 1

1

1

11

1

0

0

0

0

0

0

0

0

0

0

0 0

0

0

0

0

0

Space of 160-bit numbers

Node / Peer
No common prefix

Consider a query for ID 111010. . . initiated by node 0011100. . .

Alberto Montresor (UniTN) DS - P2P 2018/10/18 49 / 107

Distributed Hash Tables Kademlia

Messages

Kademlia protocol consists of 4 RPCs:
pingn→m()

Probe node m to see if it is online

storen→m(k, v)

Instruct node m to store a 〈k,m〉 pair

findNoden→m(t)

Returns the k contacts “closest” to t

findValuen→m(k)

Returns the value associated to k, if present, or
Returns k contacts closest to k

Alberto Montresor (UniTN) DS - P2P 2018/10/18 50 / 107

Distributed Hash Tables Kademlia

Routing

Goal: find k nodes closest to ID t – Protocol executed by n0

Initial phase :
insert in a set S all the nodes in the
routing table

Iteration
select a subset T ⊆ S of the α nodes
closest to t
invoke findNode(t) on nodes in T , in
parallel
collect the replies in a new set S
repeat until no new node is discovered

Final phase
invoke findNode(t) to all of k closest
nodes not already queried
return when have results from all the
k-closest nodes

n0

na, nb

findNode(t)

findNode(t)

na

nb

n0

nd, ne, nh

nc, nd, nena

nb

nf, ng, nh

n0

findNode(t)

findNode(t)

nd

nh

nd, ne, nh

α = 2

 k = 3

Alberto Montresor (UniTN) DS - P2P 2018/10/18 51 / 107

Distributed Hash Tables Kademlia

Kademlia summary

Strengths:
Low control message overhead
Tolerance to node failure and leave
Capable of selecting low-latency path for query routing
Unlike Chord, Kademlia is symmetric: a⊕ b = b⊕ a

Peers receive lookup queries from precisely the same set of
neighbors contained in their routing tables

Weaknesses:
Balancing of storage load is not truly solved
No experimental results provided

Alberto Montresor (UniTN) DS - P2P 2018/10/18 52 / 107

Distributed Hash Tables Cassandra

Cassandra

Few information available:
O(1) routing hops

O(N) routing state
Thanks to a routing protocol that guarantees that eventually every
node knows every other node

Bibliography

D. Featherston. Cassandra: Principles and application.
http://www.disi.unitn.it/~montreso/ds/papers/Cassandra.pdf

Alberto Montresor (UniTN) DS - P2P 2018/10/18 53 / 107

http://www.disi.unitn.it/~montreso/ds/papers/Cassandra.pdf

Distributed Hash Tables DHT Security

Security aspects of DHTs

Security weaknesses specific to DHTs
Sybil attacks

an attacker introduces a large number of bogus nodes that can
subvert protocols based on redundancy

Eclipse attacks
an attacker tries to corrupt the routing tables of honest nodes by
filling them with references to malicious nodes

Routing and storage attacks
various attacks where malicious nodes do not follow the routing and
storage protocols correctly

Bibliography

G. Urdaneta, G. Pierre, and M. van Steen. A survey of DHT security techniques.
ACM Computing Surveys, 43(2), Jan. 2011.
http://www.disi.unitn.it/~montreso/ds/papers/DhtSecuritySurvey.pdf

Alberto Montresor (UniTN) DS - P2P 2018/10/18 54 / 107

http://www.disi.unitn.it/~montreso/ds/papers/DhtSecuritySurvey.pdf

Distributed Hash Tables DHT Security

Example of attacks
A Survey of DHT Security Techniques · 3

Eclipsed node
pointing to
malicious peers

0 1
2

3

4

5

6

7

8

9

10

11

12

13

14
151617

18
19

20

21

22

23

24

25

26

27

28

29

30
31

1 4
2 4
3 9
4 9
5 18

1 9
2 9
3 9
4 14
5 20

1 11
2 11
3 14
4 18
5 28

1 14
2 14
3 18
4 20
5 28

1 21
2 28
3 28
4 28
5 4

1 28
2 28
3 28
4 1
5 9

Routing table

Actual node

Sybil attacker with
multiple IDs

Reference to
malicious node

Any routing decision
or storage manipulation
possible

Key of entity

Fig. 1. The organization of a typical DHT, illustrating attacks on the core functionality.

Issues that are inherent to all DHT deployments, but which are independent of the as-
sociated protocols, such as churn and unbalanced loads, as well as application-specific
attacks, are out of the scope of this paper. In the same light, we do not discuss denial of
service attacks, which have been studied by Daswani [2004].

There have been several surveys that describe DHTs and peer-to-peer (P2P) systems in
general. However, not many survey solutions to security issues in DHTs. Sit and Mor-
ris [2002] explore the subject and provide general guidelines. Castro et al. [2002] study
DHT security issues under a generic DHT model, and provide solutions using Pastry as
a representative of their model. Wallach [2002] discusses a wide range of security issues
in several P2P systems, including Pastry, but does not enumerate the numerous proposals.
Srivatsa and Liu [2004] make an extensive quantitative analysis of security threats in DHTs
and some of the defenses. Levine et al. [2006] summarize general approaches to address
the Sybil attack in a variety of scenarios, but do not discuss any specific measures. Reide-
meister et al. [2005] study security issues specific to CAN [Ratnasamy et al. 2001]. Dahan
and Sato [2007] criticize several practical aspects related to DHT security as well as their
use in other systems that require security.

In this paper, we supplement these surveys by providing a comprehensive overview of
the research in the area of DHT security, concentrating on numerous specific solutions.
We focus on proposed defenses against the aforementioned attacks, discuss their advan-

ACM Journal Name, Vol. V, No. N, Month 20YY.

Alberto Montresor (UniTN) DS - P2P 2018/10/18 55 / 107

Distributed Hash Tables DHT Security

Defenses against Sybil attacks

Collusion is easier

Possible defenses:
Centralized certification
Distributed registration
Physical network characteristics
Social networks
Computational puzzles

You can only reduce the impact of Sybil attacks, not eliminate
them completely

Alberto Montresor (UniTN) DS - P2P 2018/10/18 56 / 107

Distributed Hash Tables DHT Security

Defenses against eclipse attacks

Effect of eclipse attack (“table poisoning”) is measured by:
percentage of malicious entries in routing tables
percentage of malicious users in the network

Possible defenses:
Constrained neighbor selection

Original Chord: only one node may fit in a finger table entry – good
Random Chord: several nodes may fit in finger table entry – bad
Pastry: some table entries may be filled by any node sharing a short
prefix – bad
Kademlia: table entries are filled by fast-responding peers – good

In-degree anonymous auditing
Malicious nodes have larger in-degree

Alberto Montresor (UniTN) DS - P2P 2018/10/18 57 / 107

Distributed Hash Tables DHT Security

Defenses against routing and storage attacks

Redundant routing
Possible approaches:

Multiple paths
Wide paths
Multiple wide paths

Wide paths require one good node per hop, multiple paths require a
path with only good nodes

Redundant storage
Storing replicas “numerically close” to each other

Chord, Pastry, Kademlia
Pros: easier to maintain consistency
Cons: malicious node may control a region of space

Storing replicas spread over the identifier space
Tapestry, several other proposals
Pros: most difficult to subvert an area
Cons: requires additional tables

Alberto Montresor (UniTN) DS - P2P 2018/10/18 58 / 107

Distributed Hash Tables DHT Security

Why Kademlia?

Generic reasons
Relative security: wide searches
Replicated storage

The reality is that Kademlia is insecure
Successful (academic) attacks on Kad/BitTorrent
Successful infiltrations on the Storm BotNet

The real reasons
For BitTorrent, damage is limited anyway (decentralized tracking)
Many alternative ways to obtain peers (PEX, multiple trackers)

Alberto Montresor (UniTN) DS - P2P 2018/10/18 59 / 107

Distributed Hash Tables DHT Summary

Comparison

CAN Chord Tapestry Pastry
Architecture d-dimens. ring Plaxton Plaxton

space tree tree
Routing hops O(dN1/d) O(logN) O(logbN) O(logbN)

Routing state 2d logN logbN B logbN

Join cost 2d (logN)2 logbN logbN

Kademlia Viceroy Koorde Kelips
Architecture Tree Butterfly de Brujin n-dimens.

network graph space
Routing hops O(logN) O(log n) O

(
logn

log logn

)
O(1)

Routing state k logN logN logN
√
n

Join cost k logN logN logN
√
n

Alberto Montresor (UniTN) DS - P2P 2018/10/18 60 / 107

Distributed Hash Tables DHT Summary

Conclusions

The DHT abstraction is doing well, both inside clouds and in P2P
networks

Kademlia seems to be the winner. Main reasons:
Performance
Relative security

Alberto Montresor (UniTN) DS - P2P 2018/10/18 61 / 107

Table of contents

1 Introduction
2 Distributed Hash Tables

Overview
Chord
CAN
Kademlia
Cassandra
DHT Security
DHT Summary

3 Unstructured systems
Gnutella
BitTorrent

Unstructured systems Gnutella

Gnutella: brief history

Nullsoft (a subsidiary of AOL) released Gnutella on March 14th,
2000, announcing it on Slashdot

AOL removed Gnutella from Nullsoft servers on March 15th, 2000

After a few days, the Gnutella protocol was reverse-engineered

Napster was shutdown in early 2001, spurring the popularity of
Gnutella

On October 2010, LimeWire (a popular client) was shutdown by
court’s order

Alberto Montresor (UniTN) DS - P2P 2018/10/18 62 / 107

Unstructured systems Gnutella

Gnutella

Gnutella is a protocol for peer-to-peer search, consisting of:
A set of message formats

5 basic message types

A set of rules governing the exchange of messages
Broadcast
Back-propagate
Handshaking

An hostcache for node bootstrap

Alberto Montresor (UniTN) DS - P2P 2018/10/18 63 / 107

Unstructured systems Gnutella

Gnutella topology: unstructured

No central authority
Each node selects its own neighbors

Alberto Montresor (UniTN) DS - P2P 2018/10/18 64 / 107

Unstructured systems Gnutella

Gnutella routing

S

S

Alberto Montresor (UniTN) DS - P2P 2018/10/18 65 / 107

Unstructured systems Gnutella

Gnutella routing

S

S

Alberto Montresor (UniTN) DS - P2P 2018/10/18 66 / 107

Unstructured systems Gnutella

Gnutella routing

S

S

Alberto Montresor (UniTN) DS - P2P 2018/10/18 67 / 107

Unstructured systems Gnutella

Gnutella routing

S

S

Alberto Montresor (UniTN) DS - P2P 2018/10/18 68 / 107

Unstructured systems Gnutella

Gnutella messages

Each message is composed of:
A 16-byte ID field uniquely identifying the message

randomly generated
not related to the address of the requester (anonymity)
used to detect duplicates and route back-propagate messages

A message type field
ping, pong
query, queryhit
push (for firewalls)

A Time-To-Live (TTL) Field

Payload length

Alberto Montresor (UniTN) DS - P2P 2018/10/18 69 / 107

Unstructured systems Gnutella

Gnutella messages

ping (broadcast)
Used to maintain information about the nodes currently in the
network
Originally, a “who’s there” flooding message
A peer receiving a ping is expected to respond with a pong message

pong (back-propagate)
A ping message has the same ID of the corresponding ping message
Contains:

address of connected Gnutella peer
total size and total number of files shared by this peer

Alberto Montresor (UniTN) DS - P2P 2018/10/18 70 / 107

Unstructured systems Gnutella

Gnutella messages

query (broadcast)
The primary mechanism for searching the distributed network
Contains the query string
A servent is expected to respond with a queryhit message if a
match is found against its local data set

queryhit (back-propagate)
The response to a query
Has the same ID of the corresponding query message
Contains enough information to acquire the data matching the
corresponding query

IP Address + port number
List of file names

Alberto Montresor (UniTN) DS - P2P 2018/10/18 71 / 107

Unstructured systems Gnutella

Beyond the original Gnutella

Several problems in Gnutella 0.4 (the original one):
What kind of topology is generated?

Is it planned (“engineered”)?
Is it good?

ping-pong traffic
More than 50% of the traffic generated by Gnutella 0.4 is
ping-pong related

Scalability
Each query generates a huge amount of traffic

e.g. TTL = 6, d = 10 ⇒ 106 messages
Potentially, each query is received multiple times from all neighbors

Alberto Montresor (UniTN) DS - P2P 2018/10/18 72 / 107

Unstructured systems Gnutella

Gnutella overlay vs underlying topology

Figure 7: Two different mappings of Gnutella’s virtual network topology (blue, dotted arrows) to the
underlying network infrastructure (black, solid lines). Left picture: perfect mapping. A message inserted
into the network by node A travels physical link D-E only once to reach all other nodes. Right picture:
inefficient mapping. The same distribution requires that the message traverse physical link D-E six times.

Unfortunately, it is prohibitively expensive to compute exactly the mapping of the Gnutella onto the
Internet topology, due both to the inherent difficulty of extracting Internet topology and to the
computational scale of the problem. Instead, we proceed with two high-level experiments that
highlight the mismatch between the topologies of the two networks.
The Internet is a collection of Autonomous Systems (AS) connected by routers. ASs, in turn, are
collections of local area networks under a single technical administration. From an ISP point of view
traffic crossing AS borders is more expensive than local traffic. We found that only 2-5% of Gnutella
connections link nodes located within the same AS, although more than 40% of these nodes are located
within the top ten ASs. This result indicates that most Gnutella-generated traffic crosses AS borders,
thus increasing costs, unnecessarily. .
In the second experiment we assume that the hierarchical organization of domain names mirrors that of
the Internet infrastructure. For example, it is likely that communication costs between two hosts in the
“uchicago.edu” domain are significantly smaller than between “uchicago.edu” and “sdsc.edu.” The
underlying assumption here is that domain names express some sort of organizational hierarchy and
that organizations tend to build networks that exploit locality within that hierarchy.
In order to study how well the Gnutella virtual topology maps on to the Internet partitioning as defined
by domain names, we divide the Gnutella virtual topology graph into clusters, i.e., subgraphs with high
interior connectivity. Given the flooding-like routing algorithm used by Gnutella, it is within these
clusters that most load is generated. We are therefore interested to see how well these clusters map on
the partitioning defined by the domain naming scheme.
We use a simple clustering algorithm based on the connectivity distribution described earlier: we define
as clusters subgraphs formed by one hub with its adjacent nodes. If two clusters have more than 25%
nodes in common, we merge them. After the clustering is done, we (1) assign nodes that are included
in more than one cluster only to the largest cluster and (2) form a last cluster with nodes that are not
included in any other cluster.
We define the entropy [11] of a set C, containing |C| hosts, each labeled with one of the n distinct
domain names, as:

()
=

−−−−=
n

i
iiii ppppCE

1
)1log()1()log()(,

where ip is the probability of randomly picking a host with domain name i.

H

G

E

F

D

A

B

C H

G
E

F

D

A

B

C

Alberto Montresor (UniTN) DS - P2P 2018/10/18 73 / 107

Unstructured systems Gnutella

Traffic

4.3. Connectivity and Reliability in Gnutella Network. Power-law Distributions.
When analyzing global connectivity and reliability patterns in the Gnutella network, it is important to
keep in mind the self-organized network behavior: users decide only the maximum number of
connections a node should support, and nodes decide whom to connect to or when to drop/add a
connection based only on local information.
Recent research [1,7,8,13] shows that many natural networks such as molecules in a cell, species in an
ecosystem, and people in a social group organize themselves as so called power-law networks. In these
networks most nodes have few links and a tiny number of hubs have a large number of links. More
specifically, in a power-law network the fraction of nodes with L links is proportional to kL− , where k
is a network dependent constant.
This structure helps explain why networks ranging from metabolisms to ecosystems to the Internet are
generally highly stable and resilient, yet prone to occasional catastrophic collapse [14]. Since most
nodes (molecules, Internet routers, Gnutella servents) are sparsely connected, little depends on them: a
large fraction can be taken away and the network stays connected. But, if just a few highly connected
nodes are eliminated, the whole system could crash. One implication is that these networks are
extremely robust when facing random node failures, but vulnerable to well-planned attacks.
Given the diversity of networks that exhibit power-law structure and their properties we were interested
to determine whether Gnutella falls into the same category. Figure 5 presents the connectivity
distribution in Nov. 2000. Although data are noisy (due to the small size of the networks), we can
easily recognize the signature of a power-law distribution: the connectivity distribution appears as a
line on a log-log plot. [6,4] confirm that early Gnutella networks were power-law. Later
measurements (Figure 6) however, show that more recent networks tend to move away from this
organization: there are too few nodes with low connectivity to form a pure power-law network. In
these networks the power-law distribution is preserved for nodes with more than 10 links while nodes
with fewer link follow an almost constant distribution.

 Node connectivity distribution .

1

10

100

1000

10000

1 10 100
Number of links (log scale)

N
um

. o
f n

od
es

 (l
og

 sc
al

e)

 Node connectivity distribution .

1

10

100

1000

10000

1 10 100Number of links (log scale)

N
um

be
r o

f n
od

es
 (l

og

sc
al

e)

Figure 5: Connectivity distribution during November
2000. Each series of points represents one Gnutella
network topology we discovered at different times during
that month. Note the log scale on both axes. Gnutella
nodes organized themselves into a power-law network.

Figure 6: Connectivity distributions during March 2001.
Each series of points represents one Gnutella network
topology discovered during March 2001. Note the log
scale on both axes. Networks crawled during May/June
2001 show a similar pattern.

We speculate there are two reasons for the peculiar distribution in Figure 6. First, Gnutella users are
technically savvy users, early technology adopters. The percentage of Gnutella users with modem
connection is significantly lower than in the Internet users population: less than 20% users connect

Alberto Montresor (UniTN) DS - P2P 2018/10/18 74 / 107

Unstructured systems Gnutella

Connectivity (and robustness)

4. Gnutella Network Analysis
We first summarize Gnutella network growth trends and dynamic behavior (Section 4.1). Our data
gathered over a six month period show that although Gnutella overhead traffic has recently been
decreasing, the generated traffic volume currently represents a significant percentage of total Internet
traffic and is a major obstacle to further growth (Section 4.2). We continue with a macroscopic
analysis of the network: we study first connectivity patterns (Section 4.3) and then the mapping of the
Gnutella topology to the underlying networking infrastructure (Section 4.4).

4.1 Growth Trends and Dynamic Behavior
Figure 1 presents the growth of the Gnutella network during a 6-month period. We ran our crawler
during November 2000, February/March 2001, and May 2001. While in November 2000 the largest
connected component of the network we found had 2,063 hosts, this grew to 14,949 hosts in March and
48,195 hosts in May 2001. Although Gnutella’s failure to scale has been predicted time and again, the
number of nodes in the largest network component grew about 25 times (admittedly from a low base)
in a 6-month interval. It is worth mentioning that the number of connected components is relatively
small: the largest connected component includes more than 95% of the active nodes discovered.

 Gnutella Network Growth .

-

10

20

30

40

50

11
/2

0/
00

11
/2

1/
00

11
/2

5/
00

11
/2

8/
00

02
/2

7/
01

03
/0

1/
01

03
/0

5/
01

03
/0

9/
01

03
/1

3/
01

03
/1

6/
01

03
/1

9/
01

03
/2

2/
01

03
/2

4/
01

05
/1

2/
01

05
/1

6/
01

05
/2

2/
01

05
/2

4/
01

05
/2

9/
01

N
um

be
r o

f n
od

es
 in

 th
e

la
rg

es
t

ne
tw

or
k

co
m

po
ne

nt
 ('

00
0)

 Message Frequency .

-

5

10

15

20

25
1 30 59 88 11
7

14
6

17
5

20
4

23
3

26
2

29
1

32
0

34
9

37
8

minute

m
es

sa
ge

s p
er

 se
co

d

Ping
Push
Query
Other

Figure 1: Gnutella network growth. The plot presents the
number of nodes in the largest connected component in the
network. Data collected during Nov. 2000, Feb./March
2001 and May 2001. We found a significantly larger
network around Memorial Day (May 24-28) and
Thanksgiving 2000, when apparently more people hunt for
shared music online.

Figure 2: Generated traffic (messages/sec) in Nov. 2000
classified by message type over a 376 minute period. Note
that overhead traffic (PING messages, that serve only to
maintain network connectivity) formed more than 50% of
the traffic. The only ‘true’ user traffic is QUERY
messages. Overhead traffic has decreased by May 2001 to
less than 10% of all generated traffic.

Using records of successive crawls, we investigate the dynamic graph structure over time. We discover
that about 40% of the nodes leave the network in less than 4 hours, while only 25% of the nodes are
alive for more than 24 hours. Given this dynamic behavior, it is important to find the appropriate
tradeoff between discovery time and invasiveness of our crawler. Increasing the number of parallel
crawling tasks reduces discovery time but increases the burden on the application. Obviously, the
Gnutella map our crawler produces is not an exact ‘snapshot’ of the network. However, we argue that
the network graph we obtain is close to a snapshot in a statistical sense: all properties of the network:
size, diameter, average connectivity, and connectivity distribution are preserved.

Alberto Montresor (UniTN) DS - P2P 2018/10/18 75 / 107

Unstructured systems Gnutella

Gnutella conclusions

Gnutella 0.6:
Superpeer-based organization
Ping/pong caching
Query routing

Summary:
A milestone in P2P computing

Gnutella proved that full decentralization is possible

But:
Gnutella is a patchwork of hacks
The ping-pong mechanism, even with caching, is just plain
inefficient

Alberto Montresor (UniTN) DS - P2P 2018/10/18 76 / 107

Unstructured systems BitTorrent

BitTorrent

Interest on P2P system driven by file sharing applications
end users become content provider

Main focus is to efficiently discover content
different generations of P2P. . .

centralized (Napster), unstructured (Gnutella), structured (DHT)
. . . with different problems

single point of failure (centralized), low success rate (unstructured),
high management traffic (structured)

But. . . what happens when you find the content?

Alberto Montresor (UniTN) DS - P2P 2018/10/18 77 / 107

Unstructured systems BitTorrent

BitTorrent

Designed for efficient content download
Search features not included
Large portion of the Internet traffic is due
to BitTorrent
Basic concept: file swarming

Bibliography

B. Cohen. Incentives build robustness in BitTorrent.
In Proc. of the Workshop on Economics of P2P Sys-
tems, 2003.
http://www.disi.unitn.it/~montreso/ds/papers/
BitTorrent.pdf

http://business.financialpost.com/2011/07/01/bittorrent-turns-ten

Alberto Montresor (UniTN) DS - P2P 2018/10/18 78 / 107

http://www.disi.unitn.it/~montreso/ds/papers/BitTorrent.pdf
http://www.disi.unitn.it/~montreso/ds/papers/BitTorrent.pdf
http://business.financialpost.com/2011/07/01/bittorrent-turns-ten

Unstructured systems BitTorrent

Legal (!) applications

Music, video and the like
BitTorrent Inc
SubPop Records
Norwegian Broadcasting Corporation

Software
Linux distributions
Blizzard: Diablo III, StarCraft II, World of Warcraft (game
updates)

Web services
Amazon S3 equipped with built-in BitTorrent support
Facebook, Twitter use BitTorrent to distribute updates to their
servers

Alberto Montresor (UniTN) DS - P2P 2018/10/18 79 / 107

Unstructured systems BitTorrent

BitTorrent architecture

web server

tracker

1. file.torrent

2. random peer set

P1 P2 P3

file.xvid

seeders

leechers

Alberto Montresor (UniTN) DS - P2P 2018/10/18 80 / 107

Unstructured systems BitTorrent

Torrent file

A torrent file is a bencoded dictionary with the following keys:
announce – the URL of the tracker
name – suggested file/directory name
piece length – number of bytes per piece (commonly 256KB)
pieces – a concatenation of each piece’s SHA-1 hash.
Exactly one of length or files:

length – size of the file (in bytes)
files – a list of files with the following keys:

path - pathname of the file
length - size of the file (in bytes)

Alberto Montresor (UniTN) DS - P2P 2018/10/18 81 / 107

Unstructured systems BitTorrent

BitTorrent architecture

Peer Selection
“Which peers to upload to”
Efficiency criteria:

Maximize service capacity
Foster reciprocation and prevent
free riders

Piece selection
“Which pieces to download from
selected peer”
Should guarantee piece diversity

Always find an interesting piece in
selected peer
Do not bias peer selection

Alberto Montresor (UniTN) DS - P2P 2018/10/18 82 / 107

Unstructured systems BitTorrent

Piece selection

The order in which pieces are selected by peers is critical

A bad algorithm could create a situation where all peers have all
pieces that are currently available and none of the missing ones

If the original seed disappears, the download cannot be completed!

Alberto Montresor (UniTN) DS - P2P 2018/10/18 83 / 107

Unstructured systems BitTorrent

Policies

Strict Priority
A piece is broken into sub-pieces (typically 16KB in size)
Policy: Until a piece is assembled, only download sub-pieces for that
piece from the same source
This policy lets complete pieces assemble quickly

Rarest first
Policy: Determine the pieces that are most rare among your peers
and download those first
This ensures that the most common pieces are left till the end to
download
Rarest first also ensures that a large variety of pieces are
downloaded from the seed

Alberto Montresor (UniTN) DS - P2P 2018/10/18 84 / 107

Unstructured systems BitTorrent

Policies

Random first piece
Initially, a peer has nothing to trade
Important to get a complete piece ASAP
Rare pieces are typically available at fewer peers, so downloading a
rare piece initially is not a good idea
Policy: Select a random piece of the file and download it

Endgame mode
Policy: When all the sub-pieces that a peer doesn’t have are actively
being requested, these are requested from every peer
When the sub-piece arrives, the replicated requests are canceled
This ensures that a download doesn’t get prevented from
completion due to a single peer with a slow transfer rate
Some bandwidth is wasted; in practice, not too much

Alberto Montresor (UniTN) DS - P2P 2018/10/18 85 / 107

Unstructured systems BitTorrent

Peer selection

Choking
Choking is a temporary refusal to upload; download occurs as
normal

One of BitTorrent’s most powerful idea

It ensures that nodes cooperate and eliminates(?) the free-ride
problem

When a node is unchoked, upload restart

Connection is kept open to reduce setup costs

Based on game-theoretic tit-for-tat strategy in repeated games

Alberto Montresor (UniTN) DS - P2P 2018/10/18 86 / 107

Unstructured systems BitTorrent

Prisoner’s Dilemma

Two men are arrested, but the police do not possess enough
information for a conviction. Following the separation of the two men,
the police offer both a similar deal:

Prisoner B Prisoner B
stays silent confesses

Prisoner A stays silent Both serve 1 months A serves 1 year
B goes free

Prisoner A confesses B serves 1 year Both serve 3 months
A goes free

Alberto Montresor (UniTN) DS - P2P 2018/10/18 87 / 107

Unstructured systems BitTorrent

Prisoner’s Dilemma

Single-iteration game
What is the best strategy?

“Confessing” is a dominant strategy
If the other prisoner confesses, the best move is to confess
If the other prisoner stay silent, the best move is to confess

What about iterated games?
Robert Axelrod’s “The evolution of cooperation”

Tournament of computer programs playing PD

The winner: Tit-for-tat, Anatol Rapoport

Alberto Montresor (UniTN) DS - P2P 2018/10/18 88 / 107

Unstructured systems BitTorrent

Prisoner’s Dilemma

Single-iteration game
What is the best strategy?

“Confessing” is a dominant strategy
If the other prisoner confesses, the best move is to confess
If the other prisoner stay silent, the best move is to confess

What about iterated games?
Robert Axelrod’s “The evolution of cooperation”

Tournament of computer programs playing PD

The winner: Tit-for-tat, Anatol Rapoport

Alberto Montresor (UniTN) DS - P2P 2018/10/18 88 / 107

Unstructured systems BitTorrent

Prisoner’s Dilemma

Single-iteration game
What is the best strategy?

“Confessing” is a dominant strategy
If the other prisoner confesses, the best move is to confess
If the other prisoner stay silent, the best move is to confess

What about iterated games?

Robert Axelrod’s “The evolution of cooperation”

Tournament of computer programs playing PD

The winner: Tit-for-tat, Anatol Rapoport

Alberto Montresor (UniTN) DS - P2P 2018/10/18 88 / 107

Unstructured systems BitTorrent

Prisoner’s Dilemma

Single-iteration game
What is the best strategy?

“Confessing” is a dominant strategy
If the other prisoner confesses, the best move is to confess
If the other prisoner stay silent, the best move is to confess

What about iterated games?
Robert Axelrod’s “The evolution of cooperation”

Tournament of computer programs playing PD

The winner: Tit-for-tat, Anatol Rapoport

Alberto Montresor (UniTN) DS - P2P 2018/10/18 88 / 107

Unstructured systems BitTorrent

Prisoner’s Dilemma

Tit-for-tat
Be nice at the beginning
Do onto others as they do onto you:
If the other prisoner confesses, you must retaliate back
Have a recovery mechanism to ensure eventual cooperation

How to translate this in BitTorrent?

Alberto Montresor (UniTN) DS - P2P 2018/10/18 89 / 107

Unstructured systems BitTorrent

Choking/unchoking

Goal: have several bidirectional connections running continuously
Upload to peers who have uploaded to you recently

“Do onto others as they do onto you”

Unused connections are uploaded to on a trial basis to see if better
transfer rates could be found using them

“Be nice at the beginning”
“Have a recovery mechanism to ensure eventual cooperation”

Alberto Montresor (UniTN) DS - P2P 2018/10/18 90 / 107

Unstructured systems BitTorrent

Choking/unchoking specifics

A peer always unchokes a fixed number of its peers (default: 4)

Decision to choke/unchoke done based on current download rates,
averaged over the last 20s

Evaluation on who to choke/unchoke is performed every 10s
Prevents wasting of resources by rapidly choking/unchoking peers
Enough for TCP to ramp up transfers to their full capacity

Which peer is the optimistic unchoke is rotated every 30s
Used to discover if a currently choked peer would be better

Alberto Montresor (UniTN) DS - P2P 2018/10/18 91 / 107

Unstructured systems BitTorrent

Additional details

Anti-snubbing:
A peer is said to be snubbed if each of its peers chokes it

To handle this, snubbed peer stops uploading to its peers

Optimistic unchoking done more often
Hope is that will discover a new peer that will upload to us

Seeding:
Once download is complete, a peer has no download rates to use
for comparison nor has any need to use them

The question is, which nodes to upload to?

Policy: Upload to those with the best upload rate.
This ensures that pieces get replicated faster

Alberto Montresor (UniTN) DS - P2P 2018/10/18 92 / 107

Unstructured systems BitTorrent

Improvements over the tracker bottleneck

Trackerless BitTorrent (i.e., w/o a centralized tracker):
Based on variants of Kademlia DHT
Tracker run by a normal end-host
Vuze DHT vs Mainline DHT

Peer Exchange (PEX):
Each peer directly update other peers as to which peers are
currently in the swarm
Epidemic sampling!
Three incompatible version of PEX (Vuze, BitComet, Mainline)

Multitracking
Multiple trackers in the torrent file

Alberto Montresor (UniTN) DS - P2P 2018/10/18 93 / 107

Unstructured systems BitTorrent

Five months in a torrent’s lifetime

Analysis of a tracker log
1.77GB Linux Redhat 9 distribution
Five months - April-August 2003
180.000 downloads

Bibliography

M. Izal, G. Urvoy-Keller, E. Biersack, P. Felber, A. Al Hamra, and L. Garcés-Erice.

Dissecting bittorrent: Five months in a torrent’s lifetime.
In Passive and Active Network Measurement, volume 3015 of Lecture Notes in Com-
puter Science, pages 1–11. Springer.
http://www.disi.unitn.it/~montreso/ds/papers/FiveMonths.pdf

Alberto Montresor (UniTN) DS - P2P 2018/10/18 94 / 107

http://www.disi.unitn.it/~montreso/ds/papers/FiveMonths.pdf

Unstructured systems BitTorrent

Network: Number of active peers over time

source (original seed) through a back-off algorithm. Results are promising since
Slurpie is able to outperform BitTorrent in a controlled environment. Still, the
actual performance of Slurpie in case of flash crowds and for a large number of
clients is unknown.

4 Tracker Log Analysis

The tracker log covers a period of 5 months from April to August 2003. The
corresponding torrent has as content the 1.77 GB Linux Redhat 9 distribution.
180, 000 clients participated to this torrent with a peak of 51, 000 clients during
the first five days (see Figures 4 and 4). These first five days clearly exhibits
a flash-crowd. As clients periodically report to the tracker their current state,
along with the amount of bytes they have uploaded and downloaded, the tracker
log allows us to observe the global evolution of the file replication process among
peers.

 0
 500

 1000
 1500
 2000
 2500
 3000
 3500
 4000
 4500

31/03
24:00

01/05
12:00

01/06
24:00

01/07
12:00

01/08
24:00

01/09
06:00

N
um

be
r o

f p
ee

rs

Time

All peers
SEEDS

LEECHERS

(a) Complete trace

 0
 500

 1000
 1500
 2000
 2500
 3000
 3500
 4000
 4500

30/03
24:00

31/03
24:00

01/04
24:00

02/04
24:00

03/04
24:00

N
um

be
r o

f p
ee

rs

Time

All peers
SEEDS

LEECHERS

(b) Zoom on the first five days

Fig. 1. Number of active peers over time

4.1 Global Performance

Analyzing the tracker log, our first finding is that BitTorrent clients are altruistic
in the sense that they actively send data to other clients, both as leechers and as
seeds. Altruism is enforced during the download phase by the tit-for-tat policy,
as a selfish client will be served with a very low priority. Once they become
seed, the peers remain connected for another six and a half hours on average.
This “social” behavior can be explained by two factors: first, the client must
be explicitly terminated after completion of the download, which might well
happen while the user is not at his computer, e.g., overnight; second, as the

Figure: Complete trace
Alberto Montresor (UniTN) DS - P2P 2018/10/18 95 / 107

Unstructured systems BitTorrent

Network: Number of active peers over time

source (original seed) through a back-off algorithm. Results are promising since
Slurpie is able to outperform BitTorrent in a controlled environment. Still, the
actual performance of Slurpie in case of flash crowds and for a large number of
clients is unknown.

4 Tracker Log Analysis

The tracker log covers a period of 5 months from April to August 2003. The
corresponding torrent has as content the 1.77 GB Linux Redhat 9 distribution.
180, 000 clients participated to this torrent with a peak of 51, 000 clients during
the first five days (see Figures 4 and 4). These first five days clearly exhibits
a flash-crowd. As clients periodically report to the tracker their current state,
along with the amount of bytes they have uploaded and downloaded, the tracker
log allows us to observe the global evolution of the file replication process among
peers.

 0
 500

 1000
 1500
 2000
 2500
 3000
 3500
 4000
 4500

31/03
24:00

01/05
12:00

01/06
24:00

01/07
12:00

01/08
24:00

01/09
06:00

N
um

be
r o

f p
ee

rs

Time

All peers
SEEDS

LEECHERS

(a) Complete trace

 0
 500

 1000
 1500
 2000
 2500
 3000
 3500
 4000
 4500

30/03
24:00

31/03
24:00

01/04
24:00

02/04
24:00

03/04
24:00

N
um

be
r o

f p
ee

rs

Time

All peers
SEEDS

LEECHERS

(b) Zoom on the first five days

Fig. 1. Number of active peers over time

4.1 Global Performance

Analyzing the tracker log, our first finding is that BitTorrent clients are altruistic
in the sense that they actively send data to other clients, both as leechers and as
seeds. Altruism is enforced during the download phase by the tit-for-tat policy,
as a selfish client will be served with a very low priority. Once they become
seed, the peers remain connected for another six and a half hours on average.
This “social” behavior can be explained by two factors: first, the client must
be explicitly terminated after completion of the download, which might well
happen while the user is not at his computer, e.g., overnight; second, as the

Figure: First five days
Alberto Montresor (UniTN) DS - P2P 2018/10/18 96 / 107

Unstructured systems BitTorrent

Network: Proportion of seeders and leechers

content being replicated is perfectly legal, the user has no particular incentive to
quickly disconnect from the torrent. In fact, the presence of seeds is a key feature,
since it greatly enhances the upload capacity of this torrent and the ability to
scale to large client populations. Over the 5 months period covered by the log
file, we observed that the seeds have contributed more than twice the amount
of data sent by leechers (see Figure 2). We also observed that the proportion of
seeds is consistently higher than 20%, with a peak at 40% during the first 5 days
(see Figure 3). This last figure clearly illustrates that BitTorrent can sustain
a high flash-crowd since it quickly creates new seeds. To put it differently, in
situations where new peers arrive at a high rate, the resources of the system are
not divided evenly between clients, which would result, like in a processor sharing
queue under overload, in no peers completing the download. On the contrary,
older peers have a higher priority since they hold more chunks than younger
peers, which gives them more chance to complete the download and become
seeds for newcomers. Obviously, this strategy benefits from the cooperation of
users that let their clients stay as seeds for long periods of time.

 0

 5e+12

 1e+13

 1.5e+13

 2e+13

 2.5e+13

 3e+13

 3.5e+13

 4e+13

 4.5e+13

31/03 01/05 01/06 01/07 01/08 01/09

C
um

ul
at

iv
e

up
lo

ad
ed

 b
yt

es

Time

Uploaded by SEEDS
Uploaded by LEECHERS

Fig. 2. Volumes uploaded by seeds and
leechers

 0

 20

 40

 60

 80

 100

31/03 01/05 01/06 01/07 01/08 01/09

P
er

ce
nt

ag
e

Time

LEECHERS
SEEDS

Fig. 3. Proportions of seeds and leechers

4.2 Individual Session Performance

A fundamental performance metric for BitTorrent is the average download rate
of leechers. Over the 5 months period covered by the tracker log, we observed an
average download rate consistently above 500kb/s. This impressive figure indi-
cates that most of the BitTorrent clients have good connectivity (at least ADSL),
which is not surprising given the total size of the file. Moreover, BitTorrent ex-
hibits good scalability: during the initial flash-crowd, the average download rate
was close to 600kb/s and the aggregate download rate of all simultaneously active
clients was more than 800Mb/s.

BitTorrent is thus able to capitalize the bandwidth of end system hosts to
achieve a very high aggregate throughput. Still, the final objective of BitTorrent
is to replicate a given content over all the peers in a torrent. We thus need to know

Figure: Complete trace

Alberto Montresor (UniTN) DS - P2P 2018/10/18 97 / 107

Unstructured systems BitTorrent

Client: Cumulative download and upload evolution

that complete the download in a single session. 17, 000 peers out of the 20, 584
initial peers, are in the four clusters (11498 in US cluster, 2114 in NL, 1995
in AU and 1491 in CM). We plot in Figure 4.2 the distribution of download
throughputs achieved by the peers in the NL and US clusters (the AU and CN
clusters are highly similar to the US cluster and not depicted for sake of clarity).
Figure 4.2 reveals that the download throughput of the hosts in the NL cluster
is significantly smaller than the throughput of the hosts in the US cluster (where
more mass is on the right side of the curve). This can indicate that clients in the
US have, in general, better access links than in Europe.

5 Client Log Analysis

To better observe the individual behavior of a BitTorrent peer, we have run an
instrumented client behind a 10Mb/s campus network access link. Our client
joined the torrent approximatively in the middle of the 5 months period (i.e., far
after the initial flash crowd). We experienced a transfer time of approximately
4, 500 seconds (i.e., much lower than the average download times previously
mentioned) and our client remained connected as a seed for 13 hours. Our client
logged detailed information about the upload or download of each individual
chunk. In Figure 6, we represent the number of peers with whom our client is
trading. At time 0, our client knows around 40 peers whose addresses have been
provided by the tracker. We next continuously discover new peers (peers that
contacted us) up to the end of the download (at time 4, 500 seconds) where we
observe a sudden decrease of the number of peers, most probably because the
seeds we where connected to have closed their connection to us as soon as we
have completed the download. After the download, we stay connected as seed to
between 80 and 95 leechers (4 of them being served while the others are choked).

30

40

50

60

70

80

90

100

0 10000 20000 30000 40000 50000

nu
m

be
r o

f p
ee

rs

time(s)

Number of connected peers evolution

Fig. 6. Number of peers dur-
ing and after download

0
1e+09
2e+09
3e+09
4e+09
5e+09
6e+09
7e+09
8e+09
9e+09

0 10000 20000 30000 40000 50000

do
w

n/
up

lo
ad

ed
(b

yt
es

)

time(s)

Cumulative download and upload evolution

download
upload

Fig. 7. Complete torrent

0

1e+07

2e+07

3e+07

4e+07

5e+07

6e+07

7e+07

0 100 200 300 400 500 600

do
w

n/
up

lo
ad

ed
(b

yt
es

)

time(s)

Cumulative download and upload evolution

download
upload

Fig. 8. First 10 minutes of
download

Figures 7 and 8 show the amount of bytes downloaded and uploaded with
respect to time for the complete trace and the first 10 minutes of the trace
respectively. From these figures, we can draw several conclusions:

– There is a warm-up period (around 100 seconds) to obtain some first chunks.
But as soon as the client has obtained a few chunks, it is able to start

Figure: Complete torrent

Alberto Montresor (UniTN) DS - P2P 2018/10/18 98 / 107

Unstructured systems BitTorrent

Client: Cumulative download and upload evolution

that complete the download in a single session. 17, 000 peers out of the 20, 584
initial peers, are in the four clusters (11498 in US cluster, 2114 in NL, 1995
in AU and 1491 in CM). We plot in Figure 4.2 the distribution of download
throughputs achieved by the peers in the NL and US clusters (the AU and CN
clusters are highly similar to the US cluster and not depicted for sake of clarity).
Figure 4.2 reveals that the download throughput of the hosts in the NL cluster
is significantly smaller than the throughput of the hosts in the US cluster (where
more mass is on the right side of the curve). This can indicate that clients in the
US have, in general, better access links than in Europe.

5 Client Log Analysis

To better observe the individual behavior of a BitTorrent peer, we have run an
instrumented client behind a 10Mb/s campus network access link. Our client
joined the torrent approximatively in the middle of the 5 months period (i.e., far
after the initial flash crowd). We experienced a transfer time of approximately
4, 500 seconds (i.e., much lower than the average download times previously
mentioned) and our client remained connected as a seed for 13 hours. Our client
logged detailed information about the upload or download of each individual
chunk. In Figure 6, we represent the number of peers with whom our client is
trading. At time 0, our client knows around 40 peers whose addresses have been
provided by the tracker. We next continuously discover new peers (peers that
contacted us) up to the end of the download (at time 4, 500 seconds) where we
observe a sudden decrease of the number of peers, most probably because the
seeds we where connected to have closed their connection to us as soon as we
have completed the download. After the download, we stay connected as seed to
between 80 and 95 leechers (4 of them being served while the others are choked).

30

40

50

60

70

80

90

100

0 10000 20000 30000 40000 50000

nu
m

be
r o

f p
ee

rs

time(s)

Number of connected peers evolution

Fig. 6. Number of peers dur-
ing and after download

0
1e+09
2e+09
3e+09
4e+09
5e+09
6e+09
7e+09
8e+09
9e+09

0 10000 20000 30000 40000 50000

do
w

n/
up

lo
ad

ed
(b

yt
es

)

time(s)

Cumulative download and upload evolution

download
upload

Fig. 7. Complete torrent

0

1e+07

2e+07

3e+07

4e+07

5e+07

6e+07

7e+07

0 100 200 300 400 500 600

do
w

n/
up

lo
ad

ed
(b

yt
es

)

time(s)

Cumulative download and upload evolution

download
upload

Fig. 8. First 10 minutes of
download

Figures 7 and 8 show the amount of bytes downloaded and uploaded with
respect to time for the complete trace and the first 10 minutes of the trace
respectively. From these figures, we can draw several conclusions:

– There is a warm-up period (around 100 seconds) to obtain some first chunks.
But as soon as the client has obtained a few chunks, it is able to start

Figure: First ten minutes

Alberto Montresor (UniTN) DS - P2P 2018/10/18 99 / 107

Unstructured systems BitTorrent

Client: Number of connected peers

that complete the download in a single session. 17, 000 peers out of the 20, 584
initial peers, are in the four clusters (11498 in US cluster, 2114 in NL, 1995
in AU and 1491 in CM). We plot in Figure 4.2 the distribution of download
throughputs achieved by the peers in the NL and US clusters (the AU and CN
clusters are highly similar to the US cluster and not depicted for sake of clarity).
Figure 4.2 reveals that the download throughput of the hosts in the NL cluster
is significantly smaller than the throughput of the hosts in the US cluster (where
more mass is on the right side of the curve). This can indicate that clients in the
US have, in general, better access links than in Europe.

5 Client Log Analysis

To better observe the individual behavior of a BitTorrent peer, we have run an
instrumented client behind a 10Mb/s campus network access link. Our client
joined the torrent approximatively in the middle of the 5 months period (i.e., far
after the initial flash crowd). We experienced a transfer time of approximately
4, 500 seconds (i.e., much lower than the average download times previously
mentioned) and our client remained connected as a seed for 13 hours. Our client
logged detailed information about the upload or download of each individual
chunk. In Figure 6, we represent the number of peers with whom our client is
trading. At time 0, our client knows around 40 peers whose addresses have been
provided by the tracker. We next continuously discover new peers (peers that
contacted us) up to the end of the download (at time 4, 500 seconds) where we
observe a sudden decrease of the number of peers, most probably because the
seeds we where connected to have closed their connection to us as soon as we
have completed the download. After the download, we stay connected as seed to
between 80 and 95 leechers (4 of them being served while the others are choked).

30

40

50

60

70

80

90

100

0 10000 20000 30000 40000 50000

nu
m

be
r o

f p
ee

rs

time(s)

Number of connected peers evolution

Fig. 6. Number of peers dur-
ing and after download

0
1e+09
2e+09
3e+09
4e+09
5e+09
6e+09
7e+09
8e+09
9e+09

0 10000 20000 30000 40000 50000

do
w

n/
up

lo
ad

ed
(b

yt
es

)

time(s)

Cumulative download and upload evolution

download
upload

Fig. 7. Complete torrent

0

1e+07

2e+07

3e+07

4e+07

5e+07

6e+07

7e+07

0 100 200 300 400 500 600

do
w

n/
up

lo
ad

ed
(b

yt
es

)

time(s)

Cumulative download and upload evolution

download
upload

Fig. 8. First 10 minutes of
download

Figures 7 and 8 show the amount of bytes downloaded and uploaded with
respect to time for the complete trace and the first 10 minutes of the trace
respectively. From these figures, we can draw several conclusions:

– There is a warm-up period (around 100 seconds) to obtain some first chunks.
But as soon as the client has obtained a few chunks, it is able to start

Figure: Around 14 hours

Alberto Montresor (UniTN) DS - P2P 2018/10/18 100 / 107

Unstructured systems BitTorrent

Cheating BitTorrent

Tit-for-tat strategy has been designed to foster reciprocation

Nevertheless, its incentives are not robust to strategic clients

Two examples:
BitTyrant

a strategic client that tries to improve download/upload rate
BitThief

a client that never uploads anything

Bibliography

M. Piatek, T. Isdal, T. E. Anderson, A. Krishnamurthy, and A. Venkataramani. Do
incentives build robustness in BitTorrent?
In Proc. of NSDI’07, Cambridge, Massachusetts, USA, Apr. 2007. USENIX.
http://www.disi.unitn.it/~montreso/ds/papers/BitTyrant.pdf

T. Locher, P. Moor, S. Schmid, and R. Wattenhofer. Free riding in BitTorrent is
cheap.
In Proc. of HotNets-V, Irvine, USA, Nov. 2006. Usenix.
http://www.disi.unitn.it/~montreso/ds/papers/BitThief.pdf

Alberto Montresor (UniTN) DS - P2P 2018/10/18 101 / 107

http://www.disi.unitn.it/~montreso/ds/papers/BitTyrant.pdf
http://www.disi.unitn.it/~montreso/ds/papers/BitThief.pdf

Unstructured systems BitTorrent

BitTyrant

How to improve performance?
Maximize reciprocation bandwidth per connection
Maximize number of reciprocating peers
Deviate from equal split

Unchoking algorithm
dp: download rate of connection p
up: upload rate of connection p
Each round, rank peers by the ratio up/dp and unchoke the first k
such that the upload capacity is reached:

k∑
i=1

ui ≤ cap

Alberto Montresor (UniTN) DS - P2P 2018/10/18 102 / 107

Unstructured systems BitTorrent

BitTyrant

Figure 11: Download times and sample standard devia-
tion comparing performance of a single BitTyrant client
and an unmodified Azureus client on a synthetic Planet-
Lab swarm.

sult, BitTyrant did not recover from its initial set of com-
paratively poor peers. To some extent, performance can
be based on luck with respect to the set of initial peers
returned. More often than not, BitTyrant benefits from
this, as it always requests a comparatively large set of
peers from the tracker.

Another circumstance for which BitTyrant cannot sig-
nificantly improve performance is a swarm whose ag-
gregate performance is controlled by data availability
rather than the upload capacity distribution. In the wild,
swarms are often hamstrung by the number of peers seed-
ing the file—i.e., those with a complete copy. If the ca-
pacity of these peers is low or if the torrent was only
recently made available, there may simply not be enough
available data for peers to saturate their upload capac-
ities. In other words, if a seed with 128 KB/s capac-
ity is providing data to a swarm of newly joined users,
those peers will be able to download at a rate of at most
128 KB/s regardless of their capacity. Because many
of the swarms we joined were recent, this effect may
account for the 12 swarms for which download perfor-
mance differed by less than 10%.

These scenarios can hinder the performance of Bit-
Tyrant, but they account for a small percentage of our
observed swarms overall. For most real swarms today,
users can realize significant performance benefits from
the strategic behavior of BitTyrant.

Although the performance improvements gained from
using BitTyrant in the real world are encouraging, they
provide little insight into the operation of the system at
scale. We next evaluate BitTyrant in synthetic scenar-
ios on PlanetLab to shed light on the interplay between
swarm properties, strategic behavior, and performance.
Because PlanetLab does not exhibit the highly skewed
bandwidth distribution observed in our traces, we rely on
application level bandwidth caps to artificially constrain
the bandwidth capacity of PlanetLab nodes in accor-
dance with our observed distribution. However, because
PlanetLab is often oversubscribed and shares bandwidth

equally among competing experiments, not all nodes are
capable of matching the highest values from the observed
distribution. To cope with this, we scaled by 1/10th both
the upload capacity draws from the distribution as well as
relevant experimental parameters such as file size, initial
unchoke bandwidth, and block size. This was sufficient
to provide overall fidelity to our intended distribution.

Figure 11 shows the download performance for a sin-
gle BitTyrant client as a function of rate averaged over six
trials with sample standard deviation. This experiment
was hosted on 350 PlanetLab nodes with bandwidth ca-
pacities drawn from our scaled distribution. Three seeds
with combined capacity of 128 KB/s were located at UW
serving a 5 MB file. We did not change the default seed-
ing behavior, and varying the combined seed capacity
had little impact on overall swarm performance after ex-
ceeding the average upload capacity limit. To provide
synthetic churn with constant capacity, each node’s Bit-
Tyrant client disconnected immediately upon completion
and reconnected immediately.

The results of Figure 11 provide several insights into
the operation of BitTyrant.

• BitTyrant does not simply improve performance, it
also provides more consistent performance across
multiple trials. By dynamically sizing the active set
and preferentially selecting peers to optimistically un-
choke, BitTyrant avoids the randomization present
in existing TFT implementations, which causes slow
convergence for high capacity peers (Section 3.1).

• There is a point of diminishing returns for high ca-
pacity peers, and BitTyrant can discover it. For clients
with high capacity, the number of peers and their avail-
able bandwidth distribution are significant factors in
determining performance. Our modeling results from
Section 4.1 suggest that the highest capacity peers may
require several hundred available peers to fully max-
imize throughput due to reciprocation. Real world
swarms are rarely this large. In these circumstances,
BitTyrant performance is consistent, allowing peers to
detect and reallocate excess capacity for other uses.

• Low capacity peers can benefit from BitTyrant. Al-
though the most significant performance benefit comes
from intelligently sizing the active set for high capac-
ity peers (see Figure 8), low capacity peers can still im-
prove performance with strategic peer selection, pro-
viding them with an incentive to adopt BitTyrant.

• Fidelity to our specified capacity distribution is con-
sistent across multiple trials. Comparability of exper-
iments is often a concern on PlanetLab, but our re-
sults suggest a minimum download time determined
by the capacity distribution that is consistent across
trials spanning several hours. Further, the consistent
performance of BitTyrant in comparison to unmodi-

Alberto Montresor (UniTN) DS - P2P 2018/10/18 103 / 107

Unstructured systems BitTorrent

BitThief

Download only: benefits
no copyright issues (only
contributors are sued)
conserve resources
spoil the community

by piece. Peers participating in a torrent download are sub-
divided into seeders which have already downloaded the
whole file and which (altruistically) provide other peers
with any piece they request, and leechers which are still
in progress of downloading the torrent. While seeders up-
load to all peers (in a round robin fashion), leechers upload
only to those peers from which they also get some pieces in
return. The peer selection for uploading is done by unchok-
ing a fixed number of peers every ten seconds and thus en-
abling them to send requests. If a peer does not contribute
for a while it is choked again and another peer is unchoked
instead.

The purpose of this mechanism is to enforce contribu-
tions of all peers. However, each leecher periodically un-
chokes a neighboring leecher, transferring some data to
this neighboring peer for free (called optimistic unchoking
in BitTorrent lingo). This is done in order to allow newly
joined peers without any pieces of the torrent to bootstrap.
Clearly, this unchoking mechanism is one weakness that
can be exploited by BitThief.

3 BITTHIEF: A FREE RIDING CLIENT

In this section we provide evidence that, with some simple
tricks, uploading can be avoided in BitTorrent while main-
taining a high download rate. In particular, our own client
BitThief is described and evaluated. BitThief is written in
Java and is based on the official implementation3 (writ-
ten in Python, also referred to as official client or main-
line client), and the Azureus4 implementation. We kept the
implementation as simple as possible and added a lot of in-
strumentational code to analyze our client’s performance.
BitThief does not perform any chokes or unchokes of re-
mote peers, and it never announces any pieces. In other
words, a remote peer always assumes that it interacts with
a newly arrived peer that has just started downloading.
Compared to the official client, BitThief is more aggres-
sive during the startup period, as it re-announces itself to
the tracker in order to get many remote peer addresses as
quickly as possible. The tracker typically responds with 50
peer addresses per announcement. This parameter can be
increased to at most 200 in the announce request, but most
trackers will trim the list to a limit of 50. Tracker announce-
ments are repeated at an interval received in the first an-
nounce response, usually in the order of once every 1800
seconds. Our client ignores this number and queries the
tracker more frequently, starting with a configurable inter-
val and then exponentially backing off to once every half an
hour. Interestingly, during all our tests, our client was not
banned by any of the trackers and could thus gather a lot
of peers. The effect of our aggressive behavior is depicted
in Figure 1. Finally, note that it would also be possible to
make use of the distributed tracker protocol.5 This proto-
col is useful if the main tracker is not operational. Thus far,
we have not incorporated this functionality into our client
however.

3See http://bittorrent.com/.
4See http://azureus.sourceforge.net/.
5See http://www.bittorrent.org/Draft DHT protocol.html.

 0

 100

 200

 300

 400

 500

 600

 0 2 4 6 8 10 12 14 16 18

C
o

n
n

e
ct

io
n

s

Time (minutes)

BitThief
Official Client

Figure 1: Number of open connections over time. In comparison to the
official client, BitThief opens connections much faster.

Having a large number of open connections improves
the download rate twofold: First, connecting to more seed-
ers allows our client to benefit more often from their round
robin unchoking periods. Second, there will be more leech-
ers in our neighborhood that include BitThief in their peri-
odical optimistic unchoke slot. Opening more connections
increases download speed linearly, as remote peers act in-
dependently of the number of our open connections. How-
ever, note that opening two connections to the same peer
does not help, as the official client, Azureus, and presum-
ably all other clients as well immediately close a second
connection originating from the same IP address.

Our experiments with BitThief demonstrate that the
common belief that the performance will degrade if a large
number of TCP connections is maintained simultaneously
is unfounded. On the contrary, more connections always
help to increase the download rate when using BitThief.
The reason why the total number of TCP connections is
kept small in BitTorrent might be that a moderate number
of connections suffice to saturate the average user’s band-
width when following the real protocol, and no further gain
could be achieved by connecting to more peers.

In contrast to other BitTorrent clients, BitThief does not
apply the so-called rarest-first policy, but uses a simpler
piece selection algorithm instead: We fetch whatever we
can get. If our client is unchoked by a remote peer, it picks a
random missing piece. Our algorithm ensures that we never
leave an unchoke period unused. Furthermore, just like all
other BitTorrent clients, we strive to complete the pieces
we downloaded partially as soon as possible in order to
check them against the hash from the metafile and write
them to the harddisk immediately.

3.1 Seeders
We first tested the client on several torrents obtained from
Mininova6 and compared it to the official client.7 By de-
fault, the official client does not allow more than 80 con-
nections. In order to ensure a fair comparison, we removed
this limitation and permitted the client to open up to 500

6See http://www.mininova.org/.
7Official client vers. 4.20.2 (linux source). Obtained from

bittorrent.com, used with parameters: --min peers 500
--max initiate 500 --max allow in 500.

86 Free Riding in BitTorrent is Cheap

Gains from optimistic unchoking:
Ask for as many clients as possible

Increment tracker polling
Decentralized tracking, PEX

Connect to all available clients
higher chance of being unchoked

Always pretend to be a newcomer
Advertise no pieces
Download whatever available
Most clients are nice

Gains from free sharing of seeders:
Seeders select peers in two ways:

highest bandwidth
round robin

BitThief report high upload rate
Alberto Montresor (UniTN) DS - P2P 2018/10/18 104 / 107

Unstructured systems BitTorrent

BitThief

Size Seeders Leechers µ σ
A 170MB 10518 (303) 7301 (98) 13 4
B 175MB 923 (96) 257 (65) 14 8
C 175MB 709 (234) 283 (42) 19 8
D 349MB 465 (156) 189 (137) 25 6
E 551MB 880 (121) 884 (353) 47 17
F 31MB N/A (29) N/A (152) 52 13
G 798MB 195 (145) 432 (311) 88 5

Table 1: Characteristics of our test torrents. The numbers in parentheses
represent the maximum number of connections BitThief maintained con-
currently to the respective peer class and is usually significantly lower
than the peer count the tracker provided. µ and σ are the average and
standard deviation of the official client’s download times in minutes. The
tracker of Torrent F did not provide any peer count information. Based on
the number of different IP addresses our client exchanged data with, we
estimate the total number of peers in this torrent to be more than 340.

connections. In a first experiment, we did not impose any
restrictions on our client, in particular, BitThief was also
permitted to download from seeders. The tests were run
on a PC with a public IP address and an open TCP port,
so that remote peers could connect to our client. We fur-
ther blocked all network traffic to or from our university
network, as this could bias the measurements. The prop-
erties of the different torrents used in this experiment are
depicted in Table 1. Note that the tracker information is not
very accurate in general and its peer count should only be
considered a hint on the actual number of peers in the tor-
rent.

 0

 1

 2

 3

 4

 5

 6

GFEDCBA

R
e

la
tiv

e
 D

o
w

n
lo

a
d

 D
u

ra
tio

n

Figure 2: Relative download times for six torrents. The download time
of the official client is normalized to 1.0. Every torrent was downloaded
three times with both clients. The plot shows relative download times with
the fastest run at the lower end of the bar, the average running time at the
level of the horizontal tick mark, and the slowest run at the upper end of
the bar.

The results are summarized in Figure 2. As a first obser-
vation, note that in every experiment, BitThief succeeded
eventually to download the entire file. More interestingly,
the time required to do so is often not much longer than
with uploading! Exceptions are Torrents E and G, where
there are relatively few seeders but plenty of leechers. In
that case, it takes roughly four times longer with our client.
However, the download came at a large cost for the offi-
cial client as it had to upload over 3.5GB of data. Torrents
A, B and F also offer valuable insights: In those torrents,
BitThief was, on average, slightly faster than the official

client, which uploaded 232MB in a run of torrent A and
129MB in a run of Torrent B. We conclude that in torrents
with many peers, particularly seeders, and in torrents for
small files, BitThief seems to have an advantage over the
official client, probably due to the aggressive connection
opening.

3.2 Leechers
In this section, we further constrain BitThief to only down-
load from other leechers. Interestingly, as we will see, even
in such a scenario, free riding is possible.

Seeders are identified by the bitmask the client gets when
the connection to the remote peer is established, and the
have-message received every time the remote peer has suc-
cessfully acquired a new piece. As soon as the remote peer
has accumulated all pieces, we immediately close the con-
nection. We conducted the tests at the same time as in Sec-

 0

 2

 4

 6

 8

 10

 12

 14

 16

GFEDCBA

R
e

la
tiv

e
 D

o
w

n
lo

a
d

 D
u

ra
tio

n

Figure 3: Relative download times of BitThief for six torrents without
downloading from any seeders. The download time of the official client
is normalized to 1.0. As in the first experiment, the torrents were down-
loaded three times with the official client and three times using BitThief
restricted to download from leechers only. The bars again represent the
same minimum, average and maximum running times.

tion 3.1 and also used the same torrents. The running times
are depicted in Figure 3. It does not come as a surprise that
the average download time has increased. Nevertheless, we
can again see that all downloads finished eventually. More-
over, note that the test is slightly unfair for BitThief, as the
official client was allowed to download not only from the
leechers, but also from all seeders! In fact, in some swarms
only a relatively small fraction of all peers are leechers. For
example in Torrent C, merely 15% are leechers, and Bit-
Thief can thus download from less than a sixth of all avail-
able peers; nevertheless, BitThief only requires roughly 5
times longer than the official client.

We conclude that even without downloading from seed-
ers, BitThief can download the whole torrent from leech-
ers exclusively. Therefore, it is not only the seeders which
provide opportunities to free ride, but the leechers can be
exploited as well.

3.3 Further Experiments
The measurements presented so far have all been obtained
through experiments on the Internet and hence were subject
to various external effects. For example, in case BitThief

HotNetsV Session 5: Anti/Social 87

Figure: With seeders

Size Seeders Leechers µ σ
A 170MB 10518 (303) 7301 (98) 13 4
B 175MB 923 (96) 257 (65) 14 8
C 175MB 709 (234) 283 (42) 19 8
D 349MB 465 (156) 189 (137) 25 6
E 551MB 880 (121) 884 (353) 47 17
F 31MB N/A (29) N/A (152) 52 13
G 798MB 195 (145) 432 (311) 88 5

Table 1: Characteristics of our test torrents. The numbers in parentheses
represent the maximum number of connections BitThief maintained con-
currently to the respective peer class and is usually significantly lower
than the peer count the tracker provided. µ and σ are the average and
standard deviation of the official client’s download times in minutes. The
tracker of Torrent F did not provide any peer count information. Based on
the number of different IP addresses our client exchanged data with, we
estimate the total number of peers in this torrent to be more than 340.

connections. In a first experiment, we did not impose any
restrictions on our client, in particular, BitThief was also
permitted to download from seeders. The tests were run
on a PC with a public IP address and an open TCP port,
so that remote peers could connect to our client. We fur-
ther blocked all network traffic to or from our university
network, as this could bias the measurements. The prop-
erties of the different torrents used in this experiment are
depicted in Table 1. Note that the tracker information is not
very accurate in general and its peer count should only be
considered a hint on the actual number of peers in the tor-
rent.

 0

 1

 2

 3

 4

 5

 6

GFEDCBA

R
e

la
tiv

e
 D

o
w

n
lo

a
d

 D
u

ra
tio

n

Figure 2: Relative download times for six torrents. The download time
of the official client is normalized to 1.0. Every torrent was downloaded
three times with both clients. The plot shows relative download times with
the fastest run at the lower end of the bar, the average running time at the
level of the horizontal tick mark, and the slowest run at the upper end of
the bar.

The results are summarized in Figure 2. As a first obser-
vation, note that in every experiment, BitThief succeeded
eventually to download the entire file. More interestingly,
the time required to do so is often not much longer than
with uploading! Exceptions are Torrents E and G, where
there are relatively few seeders but plenty of leechers. In
that case, it takes roughly four times longer with our client.
However, the download came at a large cost for the offi-
cial client as it had to upload over 3.5GB of data. Torrents
A, B and F also offer valuable insights: In those torrents,
BitThief was, on average, slightly faster than the official

client, which uploaded 232MB in a run of torrent A and
129MB in a run of Torrent B. We conclude that in torrents
with many peers, particularly seeders, and in torrents for
small files, BitThief seems to have an advantage over the
official client, probably due to the aggressive connection
opening.

3.2 Leechers
In this section, we further constrain BitThief to only down-
load from other leechers. Interestingly, as we will see, even
in such a scenario, free riding is possible.

Seeders are identified by the bitmask the client gets when
the connection to the remote peer is established, and the
have-message received every time the remote peer has suc-
cessfully acquired a new piece. As soon as the remote peer
has accumulated all pieces, we immediately close the con-
nection. We conducted the tests at the same time as in Sec-

 0

 2

 4

 6

 8

 10

 12

 14

 16

GFEDCBA

R
e

la
tiv

e
 D

o
w

n
lo

a
d

 D
u

ra
tio

n

Figure 3: Relative download times of BitThief for six torrents without
downloading from any seeders. The download time of the official client
is normalized to 1.0. As in the first experiment, the torrents were down-
loaded three times with the official client and three times using BitThief
restricted to download from leechers only. The bars again represent the
same minimum, average and maximum running times.

tion 3.1 and also used the same torrents. The running times
are depicted in Figure 3. It does not come as a surprise that
the average download time has increased. Nevertheless, we
can again see that all downloads finished eventually. More-
over, note that the test is slightly unfair for BitThief, as the
official client was allowed to download not only from the
leechers, but also from all seeders! In fact, in some swarms
only a relatively small fraction of all peers are leechers. For
example in Torrent C, merely 15% are leechers, and Bit-
Thief can thus download from less than a sixth of all avail-
able peers; nevertheless, BitThief only requires roughly 5
times longer than the official client.

We conclude that even without downloading from seed-
ers, BitThief can download the whole torrent from leech-
ers exclusively. Therefore, it is not only the seeders which
provide opportunities to free ride, but the leechers can be
exploited as well.

3.3 Further Experiments
The measurements presented so far have all been obtained
through experiments on the Internet and hence were subject
to various external effects. For example, in case BitThief

HotNetsV Session 5: Anti/Social 87

Figure: Without seeders

Size Seeders Leechers µ σ
A 170MB 10518 (303) 7301 (98) 13 4
B 175MB 923 (96) 257 (65) 14 8
C 175MB 709 (234) 283 (42) 19 8
D 349MB 465 (156) 189 (137) 25 6
E 551MB 880 (121) 884 (353) 47 17
F 31MB N/A (29) N/A (152) 52 13
G 798MB 195 (145) 432 (311) 88 5

Table 1: Characteristics of our test torrents. The numbers in parentheses
represent the maximum number of connections BitThief maintained con-
currently to the respective peer class and is usually significantly lower
than the peer count the tracker provided. µ and σ are the average and
standard deviation of the official client’s download times in minutes. The
tracker of Torrent F did not provide any peer count information. Based on
the number of different IP addresses our client exchanged data with, we
estimate the total number of peers in this torrent to be more than 340.

connections. In a first experiment, we did not impose any
restrictions on our client, in particular, BitThief was also
permitted to download from seeders. The tests were run
on a PC with a public IP address and an open TCP port,
so that remote peers could connect to our client. We fur-
ther blocked all network traffic to or from our university
network, as this could bias the measurements. The prop-
erties of the different torrents used in this experiment are
depicted in Table 1. Note that the tracker information is not
very accurate in general and its peer count should only be
considered a hint on the actual number of peers in the tor-
rent.

 0

 1

 2

 3

 4

 5

 6

GFEDCBA

R
e
la

tiv
e
 D

o
w

n
lo

a
d
 D

u
ra

tio
n

Figure 2: Relative download times for six torrents. The download time
of the official client is normalized to 1.0. Every torrent was downloaded
three times with both clients. The plot shows relative download times with
the fastest run at the lower end of the bar, the average running time at the
level of the horizontal tick mark, and the slowest run at the upper end of
the bar.

The results are summarized in Figure 2. As a first obser-
vation, note that in every experiment, BitThief succeeded
eventually to download the entire file. More interestingly,
the time required to do so is often not much longer than
with uploading! Exceptions are Torrents E and G, where
there are relatively few seeders but plenty of leechers. In
that case, it takes roughly four times longer with our client.
However, the download came at a large cost for the offi-
cial client as it had to upload over 3.5GB of data. Torrents
A, B and F also offer valuable insights: In those torrents,
BitThief was, on average, slightly faster than the official

client, which uploaded 232MB in a run of torrent A and
129MB in a run of Torrent B. We conclude that in torrents
with many peers, particularly seeders, and in torrents for
small files, BitThief seems to have an advantage over the
official client, probably due to the aggressive connection
opening.

3.2 Leechers
In this section, we further constrain BitThief to only down-
load from other leechers. Interestingly, as we will see, even
in such a scenario, free riding is possible.

Seeders are identified by the bitmask the client gets when
the connection to the remote peer is established, and the
have-message received every time the remote peer has suc-
cessfully acquired a new piece. As soon as the remote peer
has accumulated all pieces, we immediately close the con-
nection. We conducted the tests at the same time as in Sec-

 0

 2

 4

 6

 8

 10

 12

 14

 16

GFEDCBA

R
e
la

tiv
e
 D

o
w

n
lo

a
d
 D

u
ra

tio
n

Figure 3: Relative download times of BitThief for six torrents without
downloading from any seeders. The download time of the official client
is normalized to 1.0. As in the first experiment, the torrents were down-
loaded three times with the official client and three times using BitThief
restricted to download from leechers only. The bars again represent the
same minimum, average and maximum running times.

tion 3.1 and also used the same torrents. The running times
are depicted in Figure 3. It does not come as a surprise that
the average download time has increased. Nevertheless, we
can again see that all downloads finished eventually. More-
over, note that the test is slightly unfair for BitThief, as the
official client was allowed to download not only from the
leechers, but also from all seeders! In fact, in some swarms
only a relatively small fraction of all peers are leechers. For
example in Torrent C, merely 15% are leechers, and Bit-
Thief can thus download from less than a sixth of all avail-
able peers; nevertheless, BitThief only requires roughly 5
times longer than the official client.

We conclude that even without downloading from seed-
ers, BitThief can download the whole torrent from leech-
ers exclusively. Therefore, it is not only the seeders which
provide opportunities to free ride, but the leechers can be
exploited as well.

3.3 Further Experiments
The measurements presented so far have all been obtained
through experiments on the Internet and hence were subject
to various external effects. For example, in case BitThief

HotNetsV Session 5: Anti/Social 87

Alberto Montresor (UniTN) DS - P2P 2018/10/18 105 / 107

Unstructured systems BitTorrent

Tribler

Problem:
Most users have different
upload/download speeds
Tit-for-tat may restrict the
download speed
Solution: let your friends
help you for free

Helper

Collector

Helper

Helper

Helper

Non-collaborative DownloadCollaborative Download

Download completed Downloading

Bibliography

J. Pouwelse, P. Garbacki, J. Wang, A. Bakker, J. Yang, A. Iosup, D. Epema, M. Rein-

ders, M. Van Steen, and H. Sips. TRIBLER: a social-based peer-to-peer system.
Concurrency and Computation: Practice and Experience, 20(2):127–138, 2008.
http://www.disi.unitn.it/~montreso/ds/papers/Tribler.pdf

Alberto Montresor (UniTN) DS - P2P 2018/10/18 106 / 107

http://www.disi.unitn.it/~montreso/ds/papers/Tribler.pdf

Unstructured systems BitTorrent

Tribler

peer

upload download

256 Kbps

bartering

friend

for
free

bartering
equal

Alberto Montresor (UniTN) DS - P2P 2018/10/18 107 / 107

Reading Material

E. K. Lua, J. Crowcroft, M. Pias, R. Sharma, and S. Lim. A survey and
comparison of peer-to-peer overlay network schemes.
IEEE Communications Surveys and Tutorials, 7(2):72–93, 2005.
http://www.disi.unitn.it/~montreso/ds/papers/P2PSurvey.pdf

http://www.disi.unitn.it/~montreso/ds/papers/P2PSurvey.pdf

	Introduction
	Distributed Hash Tables
	Overview
	Chord
	CAN
	Kademlia
	Cassandra
	DHT Security
	DHT Summary

	Unstructured systems
	Gnutella
	BitTorrent

