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Introduction

Introduction

What these structures have in common?

World Wide Web
Internet
Movie actor collaborations
Science collaborations
Citations of papers
Sexual relationships

Food webs
Facebook & Linkedin
Co-occurrence of words
Your brain
The power network of USA
Protein folding

They can be described as graphs
They all show similar features!
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Introduction

Brief historical overview:

1736: Graph theory (Euler)

1937: Journal Sociometry founded

1959: Random graphs (Erdős-Rényi)

1967: Small-world (Milgram)

1990s: “Complex networks”
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Introduction

Complex network research

Rapidly increasing interest over the last decade, since much more
network data available now

Multidisciplinary research
Physics
Biology
Sociology
Mathematics
Epidemiology
. . .

Strong implications for Computer Science
Robustness of networks
Efficiency: function of networks depends on their structure
Design and engineering
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Introduction

Complex network research

Complex networks is a branch of
physics

Empirical science: loop of modeling
and observation

Models are models
Explain some aspects
Don’t explain other aspects

Has a lot to do with condensed matter
physics
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Topological properties Degree statistics

Degree statistics (1)

Degree

The degree ki of node i is the number of edges the node has to
other nodes
In this lecture, we will only consider undirected graphs
Called local centrality in social network analysis
Measures how important is a node w.r.t. its neighbors
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Topological properties Degree statistics

Degree statistics (2)

Degree distribution

The average degree of a graph G = (V,E) is 〈k〉 = |E|
|V |

P (k) is the probability that a random node has degree k

The probability distribution gives an idea of the spread in the
number of links the nodes have

Zheng, Salganik, and Gelman: Estimate Social Structure in Networks 415

Figure 2. Estimated Distributions of “Gregariousness” or Expected Degree, ai = eαi From the Fitted Model. Men and women have similar
distributions (with medians of about 610 and means about 750), with a great deal of variation among persons. The overlain lines are posterior
simulation draws indicating inferential uncertainty in the histograms.

250 and 1,710. These estimates are a bit higher than those of
McCarty et al. (2001), for reasons that we discuss near the end
of Section 4.2.

The spread in each of the histograms of Figure 2 represents
population variability almost entirely. The model allows us to
estimate the individual ai’s to within a coefficient of variation
of about ±25%. When taken together, this allows us to estimate
the distribution precisely. This precision can be seen in the solid
lines overlaid on Figure 2 that represent inferential uncertainty.

Figure 3 presents a simple regression analysis estimating
some of the factors predictive of αi = log(ai), using the data
on the respondents in the McCarty et al. survey. These explana-
tory factors are relatively unimportant in explaining social net-
work size; the regression summarized in Figure 3 has an R2 of
only 10%. The strongest patterns are that persons with a col-
lege education, a job outside the home, and high incomes know
more people and that persons over 65 and those with low in-
comes know fewer people.

4.2 Relative Sizes bk of Subpopulations

We now consider the group-level parameters. The left panel
of Figure 4 shows the 32 subpopulations k and the estimates

Figure 3. Coefficients (and ±1 standard error and ±2 standard error
intervals) of the Regression of Estimated Log Gregariousness Parame-
ters αi on Personal Characteristics. Because the regression is on the
logarithmic scale, the coefficients (with the exception of the constant
term) can be interpreted as proportional differences: thus, with all else
held constant, women have social network sizes 11% smaller than men,
persons over 65 have social network sizes 14% lower than others, and
so forth. The R2 of the model is only 10%, indicating that these predic-
tors explain little of the variation in gregariousness in the population.

of eβk , the proportion of links in the network that go to a mem-
ber of group k (where Beβk is the total degree of group k). The
right panel displays the estimated overdispersions ωk. The sam-
ple size is large enough so that the 95% error bars are tiny
for the βk’s and reasonably small for the ωk’s as well. [It is
a general property of statistical estimation that mean parame-
ters (such as the β’s in this example) are easier to estimate than
dispersion parameters such as the ω’s.] The figure also displays
the separate estimates from the men and women.

Considering the β’s first, the clearest pattern in Figure 4
is that respondents of each sex tend to know more people in
groups of their own sex. We can also see that the 95% intervals
are wider for groups with lower β’s, which makes sense be-
cause the data are discrete, and for these groups, the counts yik

are smaller and provide less information.
Another pattern in the estimated bk’s is the way in which they

scale with the size of group k. One would expect an approxi-
mate linear relation between the number of people in group k

and our estimate for bk; that is, on a graph of log bk versus
log(group size), we would expect the groups to fall roughly
along a line with slope 1. However, as can be seen in Figure 5,
this is not the case. Rather, the estimated prevalence increases
approximately with square root of population size, a pattern that
is particularly clean for the names. This relation has also been
observed by Killworth et al. (2003).

Discrepancies from the linear relation can be explained by
difference in average degrees (e.g., as members of a social or-
ganization, Jaycees would be expected to know more people
than average, so their bk should be larger than an average group
of an equal size), inconsistency in definitions (e.g., what is the
definition of an American Indian?), and ease or difficulty of
recall (e.g., a friend might be a twin without you knowing it,
whereas you would probably know whether she gave birth in
the last year).

This still leaves unanswered the question of why a square
root (i.e., a slope of 1/2 in the log–log plot), rather than a linear
(a slope of 1) pattern. Killworth et al. (2003) discussed vari-
ous explanations for this pattern. As they note, it is easier to
recall rare persons and events, whereas more people in more
common categories are easily forgotten. You will probably re-
member every Ulysses you ever met, but may find it difficult to
recall all the Michaels and Roberts you know even now.

This reasoning suggests that acquaintance networks are
systematically underestimated, and hence when this scale-up
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Topological properties Distance statistics

Distance statistics (1)

Path length

The path length d(i, j), or goedesic distance, between two nodes i
and j is the length of the shortest path connecting them.
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Topological properties Distance statistics

Distance statistics (2)

Average path length

The average path length of a connected graph G = (V,E) is defined
as:

`(G) =
1

|V |(|V | − 1)

∑
i,j∈V,i 6=j

d(i, j)

1

4 5

2

3

1

3 4

2

Figure: (a) `(G) = (4 · ((2 + 2 + 2 + 1)/8) + 1)/5 = 1.6. (b) `(G) = 1
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Topological properties Distance statistics

Distance statistics (3)

Diameter

The diameter is the maximal shortest path between any two vertices:
diam(G) = max{d(i, j) : i, j ∈ V }

1

4 5

2

3

1

3 4

2

Figure: (a) diam(G) = 2. (b) diam(G) = 1
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Topological properties Clustering coefficient

Clustering coefficient (1)

Induced graphs

The subgraph Gi = (Vi, Ei) induced by node i over a graph G =
(V,E) is given by the neighbors of i and the edges linking them:

Vi = {j : j ∈ V ∧ (i, j) ∈ E}
Ei = {(i, j) : i, j ∈ Vi ∧ (i, j) ∈ E}

1 2

3

4 7

5

6
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Topological properties Clustering coefficient

Clustering coefficient (2)

Local clustering coefficient

The local clustering coefficient of node i in graph G is the ratio
between the size of |Ei| and the number of all potential edges that
link two nodes in Vi:

CC(G, i) =
|Ei|

|Vi|(|Vi| − 1)/2
=

2|Ei|
|Vi|(|Vi| − 1)

1 2

3

4 7

5

6

CC(5)=2/6= 0.33
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Topological properties Clustering coefficient

Clustering coefficient (3)

Clustering coefficient

The clustering coefficient of graph G is the average over the local
clustering coefficient of all nodes in the graph

CC(G) =
1

N

∑
i∈V

CC(G, i)

Facebook clustering coefficient 0.16
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Topological properties Milgram Experiment

The Milgram Small-World Experiment
Milgram’s experiment (1967):
Given a target individual and a particular property, pass the message
to a person you correspond with who is “closest” to the target.
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Topological properties Milgram Experiment

The Milgram Small-World Experiment

Some facts

Target person worked in Boston as a stockbroker.
296 senders from Boston and Omaha.
20% of senders reached target.
Average path length = 6.5.

“Six degrees of separation”

It’s a small world after all!
Kevin-Bacon game
Erdös number
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Topological properties Milgram Experiment

Six Degrees and Popular Culture

“Everything is Different”

A fascinating game grew out of this
discussion. One of us suggested
performing the following experiment to
prove that the population of the Earth
is closer together now than they have
ever been before. We should select any
person from the 1.5 billion inhabitants
of the Earth—anyone, anywhere at
all. He bet us that, using no more
than five individuals, one of whom
is a personal acquaintance, he could
contact the selected individual using
nothing except the network of personal
acquaintances.

Frigyes Karinthy, 1929
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Topological properties Milgram Experiment

Statistics over real networks

et al., 1999). Since the edges of the World Wide Web are
directed, the network is characterized by two degree dis-
tributions: the distribution of outgoing edges, Pout(k),
signifies the probability that a document has k outgoing
hyperlinks, and the distribution of incoming edges,
Pin(k), is the probability that k hyperlinks point to a
certain document. Several studies have established that
both Pout(k) and Pin(k) have power-law tails:

Pout!k "#k!$out and Pin!k "#k!$ in. (3)

Albert, Jeong, and Barabási (1999) have studied a
subset of the World Wide Web containing 325 729 nodes
and have found $out"2.45 and $ in"2.1. Kumar et al.
(1999) used a 40-million-document crawl by Alexa Inc.,
obtaining $out"2.38 and $ in"2.1 (see also Kleinberg
et al., 1999). A later survey of the World Wide Web to-
pology by Broder et al. (2000) used two 1999 Altavista
crawls containing in total 200 million documents, obtain-
ing $out"2.72 and $ in"2.1 with scaling holding close to
five orders of magnitude (Fig. 2). Adamic and Huber-
man (2000) used a somewhat different representation of
the World Wide Web, with each node representing a
separate domain name and two nodes being connected if
any of the pages in one domain linked to any page in the
other. While this method lumped together pages that
were on the same domain, representing a nontrivial ag-
gregation of the nodes, the distribution of incoming
edges still followed a power law with $ in

dom"1.94.
Note that $ in is the same for all measurements at the

document level despite the two-years’ time delay be-
tween the first and last web crawl, during which the
World Wide Web had grown at least five times larger.
However, $out has a tendency to increase with the
sample size or time (see Table II).

Despite the large number of nodes, the World Wide
Web displays the small-world property. This was first re-
ported by Albert, Jeong, and Barabási (1999), who
found that the average path length for a sample of
325 729 nodes was 11.2 and predicted, using finite size
scaling, that for the full World Wide Web of 800 million
nodes that would be a path length of around 19. Subse-
quent measurements by Broder et al. (2000) found that
the average path length between nodes in a 50-million-
node sample of the World Wide Web is 16, in agreement
with the finite size prediction for a sample of this size.
Finally, the domain-level network displays an average
path length of 3.1 (Adamic, 1999).

The directed nature of the World Wide Web does not
allow us to measure the clustering coefficient using Eq.
(1). One way to avoid this difficulty is to make the net-
work undirected, making each edge bidirectional. This
was the path followed by Adamic (1999), who studied
the World Wide Web at the domain level using a 1997
Alexa crawl of 50 million web pages distributed among
259 794 sites. Adamic removed the nodes that had have
only one edge, focusing on a network of 153 127 sites.
While these modifications are expected to increase the
clustering coefficient somewhat, she found C"0.1078,
orders of magnitude higher than Crand"0.000 23 corre-
sponding to a random graph of the same size and aver-
age degree.

B. Internet

The Internet is a network of physical links between
computers and other telecommunication devices (Fig.

TABLE I. The general characteristics of several real networks. For each network we have indicated the number of nodes, the
average degree %k&, the average path length l , and the clustering coefficient C . For a comparison we have included the average
path length l rand and clustering coefficient Crand of a random graph of the same size and average degree. The numbers in the last
column are keyed to the symbols in Figs. 8 and 9.

Network Size %k& l l rand C Crand Reference Nr.

WWW, site level, undir. 153 127 35.21 3.1 3.35 0.1078 0.00023 Adamic, 1999 1
Internet, domain level 3015–6209 3.52–4.11 3.7–3.76 6.36–6.18 0.18–0.3 0.001 Yook et al., 2001a,

Pastor-Satorras et al., 2001
2

Movie actors 225 226 61 3.65 2.99 0.79 0.00027 Watts and Strogatz, 1998 3
LANL co-authorship 52 909 9.7 5.9 4.79 0.43 1.8#10!4 Newman, 2001a, 2001b, 2001c 4

MEDLINE co-authorship 1 520 251 18.1 4.6 4.91 0.066 1.1#10!5 Newman, 2001a, 2001b, 2001c 5
SPIRES co-authorship 56 627 173 4.0 2.12 0.726 0.003 Newman, 2001a, 2001b, 2001c 6

NCSTRL co-authorship 11 994 3.59 9.7 7.34 0.496 3#10!4 Newman, 2001a, 2001b, 2001c 7
Math. co-authorship 70 975 3.9 9.5 8.2 0.59 5.4#10!5 Barabási et al., 2001 8

Neurosci. co-authorship 209 293 11.5 6 5.01 0.76 5.5#10!5 Barabási et al., 2001 9
E. coli, substrate graph 282 7.35 2.9 3.04 0.32 0.026 Wagner and Fell, 2000 10
E. coli, reaction graph 315 28.3 2.62 1.98 0.59 0.09 Wagner and Fell, 2000 11

Ythan estuary food web 134 8.7 2.43 2.26 0.22 0.06 Montoya and Solé, 2000 12
Silwood Park food web 154 4.75 3.40 3.23 0.15 0.03 Montoya and Solé, 2000 13
Words, co-occurrence 460.902 70.13 2.67 3.03 0.437 0.0001 Ferrer i Cancho and Solé, 2001 14

Words, synonyms 22 311 13.48 4.5 3.84 0.7 0.0006 Yook et al., 2001b 15
Power grid 4941 2.67 18.7 12.4 0.08 0.005 Watts and Strogatz, 1998 16
C. Elegans 282 14 2.65 2.25 0.28 0.05 Watts and Strogatz, 1998 17

50 R. Albert and A.-L. Barabási: Statistical mechanics of complex networks

Rev. Mod. Phys., Vol. 74, No. 1, January 2002
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Graph modeling Random graphs

Erdös-Rényi Random (E-R) Networks

Random Graph

Given a network of N nodes, connect each pair (pi, pj) of nodes with
probability p

Two different realizations for N = 5 and p = 0.5
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Graph modeling Random graphs

Some properties of E-R networks

Given an E-R graph with N nodes and probability p

Expected number of edges: |E| = pN(N − 1)/2

Expected average degree: 〈k〉 = 2|E|/N = p(N − 1) ≈ pN

Degree distribution: P (k) =
(
N−1
k

)
pk(1− p)N−1−k (binomial)

In the limit of large N , diam(G) = logN
log〈k〉

Average path length is bounded by diameter

Clustering coefficient: CC(G) = p
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Graph modeling Random graphs

Random networks vs real ones

Question

Are random networks a good model for real networks?
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Graph modeling Random graphs

Statistics over real networks

et al., 1999). Since the edges of the World Wide Web are
directed, the network is characterized by two degree dis-
tributions: the distribution of outgoing edges, Pout(k),
signifies the probability that a document has k outgoing
hyperlinks, and the distribution of incoming edges,
Pin(k), is the probability that k hyperlinks point to a
certain document. Several studies have established that
both Pout(k) and Pin(k) have power-law tails:

Pout!k "#k!$out and Pin!k "#k!$ in. (3)

Albert, Jeong, and Barabási (1999) have studied a
subset of the World Wide Web containing 325 729 nodes
and have found $out"2.45 and $ in"2.1. Kumar et al.
(1999) used a 40-million-document crawl by Alexa Inc.,
obtaining $out"2.38 and $ in"2.1 (see also Kleinberg
et al., 1999). A later survey of the World Wide Web to-
pology by Broder et al. (2000) used two 1999 Altavista
crawls containing in total 200 million documents, obtain-
ing $out"2.72 and $ in"2.1 with scaling holding close to
five orders of magnitude (Fig. 2). Adamic and Huber-
man (2000) used a somewhat different representation of
the World Wide Web, with each node representing a
separate domain name and two nodes being connected if
any of the pages in one domain linked to any page in the
other. While this method lumped together pages that
were on the same domain, representing a nontrivial ag-
gregation of the nodes, the distribution of incoming
edges still followed a power law with $ in

dom"1.94.
Note that $ in is the same for all measurements at the

document level despite the two-years’ time delay be-
tween the first and last web crawl, during which the
World Wide Web had grown at least five times larger.
However, $out has a tendency to increase with the
sample size or time (see Table II).

Despite the large number of nodes, the World Wide
Web displays the small-world property. This was first re-
ported by Albert, Jeong, and Barabási (1999), who
found that the average path length for a sample of
325 729 nodes was 11.2 and predicted, using finite size
scaling, that for the full World Wide Web of 800 million
nodes that would be a path length of around 19. Subse-
quent measurements by Broder et al. (2000) found that
the average path length between nodes in a 50-million-
node sample of the World Wide Web is 16, in agreement
with the finite size prediction for a sample of this size.
Finally, the domain-level network displays an average
path length of 3.1 (Adamic, 1999).

The directed nature of the World Wide Web does not
allow us to measure the clustering coefficient using Eq.
(1). One way to avoid this difficulty is to make the net-
work undirected, making each edge bidirectional. This
was the path followed by Adamic (1999), who studied
the World Wide Web at the domain level using a 1997
Alexa crawl of 50 million web pages distributed among
259 794 sites. Adamic removed the nodes that had have
only one edge, focusing on a network of 153 127 sites.
While these modifications are expected to increase the
clustering coefficient somewhat, she found C"0.1078,
orders of magnitude higher than Crand"0.000 23 corre-
sponding to a random graph of the same size and aver-
age degree.

B. Internet

The Internet is a network of physical links between
computers and other telecommunication devices (Fig.

TABLE I. The general characteristics of several real networks. For each network we have indicated the number of nodes, the
average degree %k&, the average path length l , and the clustering coefficient C . For a comparison we have included the average
path length l rand and clustering coefficient Crand of a random graph of the same size and average degree. The numbers in the last
column are keyed to the symbols in Figs. 8 and 9.

Network Size %k& l l rand C Crand Reference Nr.

WWW, site level, undir. 153 127 35.21 3.1 3.35 0.1078 0.00023 Adamic, 1999 1
Internet, domain level 3015–6209 3.52–4.11 3.7–3.76 6.36–6.18 0.18–0.3 0.001 Yook et al., 2001a,

Pastor-Satorras et al., 2001
2

Movie actors 225 226 61 3.65 2.99 0.79 0.00027 Watts and Strogatz, 1998 3
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Neurosci. co-authorship 209 293 11.5 6 5.01 0.76 5.5#10!5 Barabási et al., 2001 9
E. coli, substrate graph 282 7.35 2.9 3.04 0.32 0.026 Wagner and Fell, 2000 10
E. coli, reaction graph 315 28.3 2.62 1.98 0.59 0.09 Wagner and Fell, 2000 11

Ythan estuary food web 134 8.7 2.43 2.26 0.22 0.06 Montoya and Solé, 2000 12
Silwood Park food web 154 4.75 3.40 3.23 0.15 0.03 Montoya and Solé, 2000 13
Words, co-occurrence 460.902 70.13 2.67 3.03 0.437 0.0001 Ferrer i Cancho and Solé, 2001 14

Words, synonyms 22 311 13.48 4.5 3.84 0.7 0.0006 Yook et al., 2001b 15
Power grid 4941 2.67 18.7 12.4 0.08 0.005 Watts and Strogatz, 1998 16
C. Elegans 282 14 2.65 2.25 0.28 0.05 Watts and Strogatz, 1998 17

50 R. Albert and A.-L. Barabási: Statistical mechanics of complex networks

Rev. Mod. Phys., Vol. 74, No. 1, January 2002
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Graph modeling Small-world networks

Small-World Networks

Answer – No!

Average path length of real networks is similar to the one of
random networks...
...but their clustering coefficient is many orders of magnitude
larger

Problem – Modeling small-world networks

How we can build a network with small degree, small average path
length and large clustering coefficient?
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Graph modeling Small-world networks

Small-World Networks

Watts-Strogatz Model

Watts and Strogatz (1998) observed that by taking a locally con-
nected network and randomly rewiring a small number of edges, the
average distance between two nodes falls drastically
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Graph modeling Small-world networks

Formal definition

Watts-Strogatz Model

1 Construct a regular ring lattice, a graph with N nodes each
connected to k neighbors, k/2 on each side

Label nodes 0, 1, . . . , N − 1
Add an edge (i, j) if and only if 0 < |i− j| mod N ≤ k/2

2 For every node i ∈ [0, N − 1], take each each every edge (i, j)
with i < j and rewire it with probability p

Replace (i, j) with (i, k) such that i 6= k and (i, k) /∈ E
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Graph modeling Small-world networks

The small-world region
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Graph modeling Small-world networks

Looking back at degree distribution

Question

Are Watts-Strogatz networks a good model for real networks?

Figure: Binomial distribution for n = 20 p = 0.1 (blue), p = 0.5 (green) and
p = 0.8 (red). http://en.wikipedia.org/wiki/File:Binomial_Distribution.PNG

Alberto Montresor (UniTN) DS - Complex Network 2019/10/09 25 / 35
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Graph modeling Small-world networks

Looking back at degree distribution

Question

Are Watts-Strogatz networks a good model for real networks?

Figure: Real network degree distributions: from left to right, Actors, WWW,
Power grid
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Graph modeling Scale-Free Networks

Scale-Free Networks

Many nodes have few connections and a few nodes have many
connections
This observation holds on the local and global scale of the network
In other words, there is no inherent scale

Power-law degree distribution

Formally this translates into a power-law degree distribution:
P (k) ∝ k−λ
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Graph modeling Scale-Free Networks

Statistics over real networks

domain, composed of hundreds of routers and comput-
ers, is represented by a single node, and an edge is
drawn between two domains if there is at least one route
that connects them. Faloutsos et al. (1999) have studied
the Internet at both levels, concluding that in each case
the degree distribution follows a power law. The inter-
domain topology of the Internet, captured at three dif-
ferent dates between 1997 and the end of 1998, resulted
in degree exponents between !I

as!2.15 and !I
as!2.2.

The 1995 survey of Internet topology at the router level,
containing 3888 nodes, found !I

r!2.48 (Faloutsos et al.,
1999). Recently Govindan and Tangmunarunkit (2000)
mapped the connectivity of nearly 150 000 router inter-
faces and nearly 200 000 router adjacencies, confirming
the power-law scaling with !I

r!2.3 [see Fig. 3(a)].
The Internet as a network does display clustering and

small path length as well. Yook et al. (2001a) and Pastor-
Satorras et al. (2001), studying the Internet at the do-
main level between 1997 and 1999, found that its clus-
tering coefficient ranged between 0.18 and 0.3, to be
compared with Crand!0.001 for random networks with
similar parameters. The average path length of the In-
ternet at the domain level ranged between 3.70 and 3.77
(Pastor-Satorras et al., 2001; Yook et al. 2001a) and at
the router level it was around 9 (Yook et al., 2001a),
indicating its small-world character.

C. Movie actor collaboration network

A much-studied database is the movie actor collabo-
ration network, based on the Internet Movie Database,

which contains all movies and their casts since the 1890s.
In this network the nodes are the actors, and two nodes
have a common edge if the corresponding actors have
acted in a movie together. This is a continuously expand-
ing network, with 225 226 nodes in 1998 (Watts and Stro-
gatz, 1998), which grew to 449 913 nodes by May 2000
(Newman, Strogatz, and Watts, 2000). The average path
length of the actor network is close to that of a random
graph with the same size and average degree, 3.65 com-
pared with 2.9, but its clustering coefficient is more than
100 times higher than a random graph (Watts and Stro-
gatz, 1998). The degree distribution of the movie actor
network has a power-law tail for large k [see Fig. 3(b)],
following P(k)"k"!actor, where !actor!2.3#0.1 (Bara-
bási and Albert, 1999; Albert and Barabási, 2000; Ama-
ral et al., 2000).

D. Science collaboration graph

A collaboration network similar to that of the movie
actors can be constructed for scientists, where the nodes
are the scientists and two nodes are connected if the two
scientists have written an article together. To uncover
the topology of this complex graph, Newman (2001a,
2001b, 2001c) studied four databases spanning physics,
biomedical research, high-energy physics, and computer
science over a five-year window (1995–1999). All these
networks show a small average path length but a high
clustering coefficient, as summarized in Table I. The de-
gree distribution of the collaboration network of high-
energy physicists is an almost perfect power law with an
exponent of 1.2 [Fig. 3(c)], while the other databases
display power laws with a larger exponent in the tail.

Barabási et al. (2001) investigated the collaboration
graph of mathematicians and neuroscientists publishing
between 1991 and 1998. The average path length of
these networks is around l math!9.5 and l nsci!6, their
clustering coefficient being Cmath!0.59 and Cnsci
!0.76. The degree distributions of these collaboration
networks are consistent with power laws with degree ex-
ponents 2.1 and 2.5, respectively [see Fig. 3(d)].

E. The web of human sexual contacts

Many sexually transmitted diseases, including AIDS,
spread on a network of sexual relationships. Liljeros
et al. (2001) have studied the web constructed from the
sexual relations of 2810 individuals, based on an exten-
sive survey conducted in Sweden in 1996. Since the
edges in this network are relatively short lived, they ana-
lyzed the distribution of partners over a single year, ob-
taining for both females and males a power-law degree
distribution with an exponent ! f!3.5#0.2 and !m!3.3
#0.2, respectively.

F. Cellular networks

Jeong et al. (2000) studied the metabolism of 43 or-
ganisms representing all three domains of life, recon-
structing them in networks in which the nodes are the

FIG. 3. The degree distribution of several real networks: (a)
Internet at the router level. Data courtesy of Ramesh Govin-
dan; (b) movie actor collaboration network. After Barabási
and Albert 1999. Note that if TV series are included as well,
which aggregate a large number of actors, an exponential cut-
off emerges for large k (Amaral et al., 2000); (c) co-authorship
network of high-energy physicists. After Newman (2001a,
2001b); (d) co-authorship network of neuroscientists. After
Barabási et al. (2001).
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(a) Internet at the router level
(b) movie actor collaboration

network
(c) co-authorship network of

high-energy physicists
(d) co-authorship network of

neuroscientists
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Graph modeling Scale-Free Networks

Statistics over real networks

1). The topology of the Internet is studied at two differ-
ent levels. At the router level, the nodes are the routers,
and edges are the physical connections between them.
At the interdomain (or autonomous system) level, each

FIG. 1. Network structure of the World Wide Web and the
Internet. Upper panel: the nodes of the World Wide Web are
web documents, connected with directed hyperlinks (URL’s).
Lower panel: on the Internet the nodes are the routers and
computers, and the edges are the wires and cables that physi-
cally connect them. Figure courtesy of István Albert.

TABLE II. The scaling exponents characterizing the degree distribution of several scale-free networks, for which P(k) follows a
power law (2). We indicate the size of the network, its average degree !k", and the cutoff # for the power-law scaling. For directed
networks we list separately the indegree ($ in) and outdegree ($out) exponents, while for the undirected networks, marked with an
asterisk (*), these values are identical. The columns lreal , lrand , and lpow compare the average path lengths of real networks with
power-law degree distribution and the predictions of random-graph theory (17) and of Newman, Strogatz, and Watts (2001) [also
see Eq. (63) above], as discussed in Sec. V. The numbers in the last column are keyed to the symbols in Figs. 8 and 9.

Network Size !k" # $out $ in l real l rand l pow Reference Nr.

WWW 325 729 4.51 900 2.45 2.1 11.2 8.32 4.77 Albert, Jeong, and Barabási 1999 1
WWW 4!107 7 2.38 2.1 Kumar et al., 1999 2
WWW 2!108 7.5 4000 2.72 2.1 16 8.85 7.61 Broder et al., 2000 3

WWW, site 260 000 1.94 Huberman and Adamic, 2000 4
Internet, domain* 3015–4389 3.42–3.76 30–40 2.1–2.2 2.1–2.2 4 6.3 5.2 Faloutsos, 1999 5
Internet, router* 3888 2.57 30 2.48 2.48 12.15 8.75 7.67 Faloutsos, 1999 6
Internet, router* 150 000 2.66 60 2.4 2.4 11 12.8 7.47 Govindan, 2000 7

Movie actors* 212 250 28.78 900 2.3 2.3 4.54 3.65 4.01 Barabási and Albert, 1999 8
Co-authors, SPIRES* 56 627 173 1100 1.2 1.2 4 2.12 1.95 Newman, 2001b 9
Co-authors, neuro.* 209 293 11.54 400 2.1 2.1 6 5.01 3.86 Barabási et al., 2001 10
Co-authors, math.* 70 975 3.9 120 2.5 2.5 9.5 8.2 6.53 Barabási et al., 2001 11

Sexual contacts* 2810 3.4 3.4 Liljeros et al., 2001 12
Metabolic, E. coli 778 7.4 110 2.2 2.2 3.2 3.32 2.89 Jeong et al., 2000 13
Protein, S. cerev.* 1870 2.39 2.4 2.4 Jeong, Mason, et al., 2001 14

Ythan estuary* 134 8.7 35 1.05 1.05 2.43 2.26 1.71 Montoya and Solé, 2000 14
Silwood Park* 154 4.75 27 1.13 1.13 3.4 3.23 2 Montoya and Solé, 2000 16

Citation 783 339 8.57 3 Redner, 1998 17
Phone call 53!106 3.16 2.1 2.1 Aiello et al., 2000 18

Words, co-occurrence* 460 902 70.13 2.7 2.7 Ferrer i Cancho and Solé, 2001 19
Words, synonyms* 22 311 13.48 2.8 2.8 Yook et al., 2001b 20

FIG. 2. Degree distribution of the World Wide Web from two
different measurements: !, the 325 729-node sample of Albert
et al. (1999); ", the measurements of over 200 million pages by
Broder et al. (2000); (a) degree distribution of the outgoing
edges; (b) degree distribution of the incoming edges. The data
have been binned logarithmically to reduce noise. Courtesy of
Altavista and Andrew Tomkins. The authors wish to thank
Luis Amaral for correcting a mistake in a previous version of
this figure (see Mossa et al., 2001).
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Graph modeling Scale-Free Networks

Barabási-Albert Model

Preferential attachment

Start with a small clique of size m0 ≥ 3

Repeat adding a new node with m ≤ m0 edges
New node is connected with node i with a probability
proportional to the number of links that i already has.
Formally,

P (i) =
ki∑
j kj
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Graph modeling Scale-Free Networks

Mathematical properties

m0 + t nodes, mt edges
P (k) ∝ k−3

`(G) = logN
log logN

(somewhat smaller than random)
CC(G) ≈ N−0.75

Summary

Models degree distribution
But doesn’t model clustering
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Other topological properties

Assortativity

Assortativity describes the correlation between the degree of a
node and the degree of its neighbors.
Networks in which highly connected nodes are linked to other
nodes with a high degree are termed assortative. Such networks
include social networks
Networks in which highly connected nodes are only linked to nodes
with a low degree are termed disassortative. Such networks include
the World Wide Web and biological networks.
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Other topological properties

Robustness

We need to understand how
vulnerable existing systems are

We need to design self-healing
and self-protecting systems

Node removal models:
Random: a random node is
removed along with all the
links
Preferential: the most
connected (highest degree)
nodes are removed

Let us start from a connected network, and at each
time step remove a node. The disappearance of the node
implies the removal of all edges that connect to it, dis-
rupting some of the paths between the remaining nodes
(Fig. 31). One way to monitor the disruption of an ini-
tially connected network is to study the relative size of
the largest cluster that remains connected, S , and the
average path length l of this cluster, as a function of the
fraction f of the nodes removed from the system. We
expect that the size of the largest cluster will decrease
and its average path length increase as an increasing
number of nodes are removed from the network.

1. Random network, random node removal

We start by investigating the response of a random
network to the random removal of its nodes [see Fig.

32(a), !], looking at the changes in the relative size of
the largest cluster S (i.e., the fraction of nodes contained
in the largest cluster) and its average path length l as an
increasing number of nodes are randomly removed.

As expected, for a random network, the size S of the
largest cluster decreases from S!1 as f increases. If only
the removed nodes were missing from the largest cluster,
S would follow the diagonal corresponding to S!1 for
f!0 and S!0 for f!1. While for small f , S follows this
line, as f increases the decrease becomes more rapid,
indicating that clusters of nodes become isolated from
the main cluster. At a critical fraction fc , S drops to 0,
indicating that the network breaks into tiny isolated
clusters. These numerical results indicate an inverse per-
colation transition. Indeed, percolation theory can be
used to calculate the critical fraction fc (Sec. IX.B).

The behavior of the average path length l also con-
firms this percolationlike transition: it starts from a value
characteristic of an unperturbed random graph, in-
creases with f as paths are disrupted in the network, and
peaks at fc [Fig. 32(c), filled squares]. After the network
breaks into isolated clusters, l decreases as well, since in
this regime the size of the largest cluster decreases very
rapidly.

When f is small we can use the prediction of random-
graph theory, Eq. (16), indicating that l scales as
ln(SN)/ln(!k"), where !k" is the average degree of the
largest cluster (Sec. IV.G). Since the number of edges
decreases more rapidly than the number of nodes during
node removal (the disruption of each node inducing the
disruption of several edges), !k" decreases faster with
increasing f than SN , and consequently l increases.
However, for f!fc the prediction of percolation theory
becomes valid, and Eq. (44) indicates that l no longer
depends on !k" and decreases with S .

2. Scale-free network, random node removal

While a random network undergoes an inverse perco-
lation transition when a critical fraction of its nodes are
randomly removed, the situation is dramatically differ-
ent for a Barabási-Albert network [Figs. 32(b) and (d),
square datapoints]. Simulations indicate that while the
size of the largest cluster decreases, it reaches 0 at a
higher f . At the same time, l increases much more
slowly than in the random case, and its peak is much less
prominent. The behavior of the system still suggests a
percolation transition, but analytical calculations indi-
cate that this is merely a finite size effect, and fc→1 for
a scale-free network as the size of the network increases
(Sec. IX.B). In simple terms, scale-free networks display
an exceptional robustness against random node failures.

3. Preferential node removal

In the case of an intentional attack, when the nodes
with the highest number of edges are targeted, the net-
work breaks down faster than in the case of random
node removal. The general breakdown scenario again
follows an inverse percolation transition, but now the
critical fraction is much lower than in the random case.

FIG. 31. Illustration of the effects of node removal on an ini-
tially connected network. In the unperturbed state the distance
between nodes A and B is 2, but after two nodes are removed
from the system, it increases to 6. At the same time the net-
work breaks into five isolated clusters.

FIG. 32. The relative size S (a),(b) and average path length l
(c),(d) of the largest cluster in an initially connected network
when a fraction f of the nodes are removed. (a),(c) Erdős-
Rényi random network with N!10 000 and !k"!4; (b),(d)
scale-free network generated by the Barabási-Albert model
with N!10 000 and !k"!4. !, random node removal; ", pref-
erential removal of the most connected nodes. After Albert,
Jeong, and Barabási (2000).
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Other topological properties

Robustness
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this regime the size of the largest cluster decreases very
rapidly.

When f is small we can use the prediction of random-
graph theory, Eq. (16), indicating that l scales as
ln(SN)/ln(!k"), where !k" is the average degree of the
largest cluster (Sec. IV.G). Since the number of edges
decreases more rapidly than the number of nodes during
node removal (the disruption of each node inducing the
disruption of several edges), !k" decreases faster with
increasing f than SN , and consequently l increases.
However, for f!fc the prediction of percolation theory
becomes valid, and Eq. (44) indicates that l no longer
depends on !k" and decreases with S .

2. Scale-free network, random node removal

While a random network undergoes an inverse perco-
lation transition when a critical fraction of its nodes are
randomly removed, the situation is dramatically differ-
ent for a Barabási-Albert network [Figs. 32(b) and (d),
square datapoints]. Simulations indicate that while the
size of the largest cluster decreases, it reaches 0 at a
higher f . At the same time, l increases much more
slowly than in the random case, and its peak is much less
prominent. The behavior of the system still suggests a
percolation transition, but analytical calculations indi-
cate that this is merely a finite size effect, and fc→1 for
a scale-free network as the size of the network increases
(Sec. IX.B). In simple terms, scale-free networks display
an exceptional robustness against random node failures.

3. Preferential node removal

In the case of an intentional attack, when the nodes
with the highest number of edges are targeted, the net-
work breaks down faster than in the case of random
node removal. The general breakdown scenario again
follows an inverse percolation transition, but now the
critical fraction is much lower than in the random case.

FIG. 31. Illustration of the effects of node removal on an ini-
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between nodes A and B is 2, but after two nodes are removed
from the system, it increases to 6. At the same time the net-
work breaks into five isolated clusters.

FIG. 32. The relative size S (a),(b) and average path length l
(c),(d) of the largest cluster in an initially connected network
when a fraction f of the nodes are removed. (a),(c) Erdős-
Rényi random network with N!10 000 and !k"!4; (b),(d)
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Jeong, and Barabási (2000).
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(a,c) random network,
N = 10000,
〈k〉 = 4

(b,d) BA network,
N = 10000,
〈k〉 = 4

� random removal
◦ preferential

removal
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Other topological properties

The story is not over...

k-core decomposition

Betweenness centrality

Closeness centrality

Eigenvector centrality

Cohesive subgroups

. . .
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Other topological properties

Conclusions

As computer scientists, what we can learn from complex networks?

Technological networks are resembling more and more to “real-life”
networks

It opens a new topic of research: empirical computer science

Measurement studies on:
BitTorrent,
Internet,
WWW, . . .

Mathematical modeling is a useful tool, but it is not enough
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