Distributed Algorithms

Consensus: Beyond Impossibility Results

Alberto Montresor

Università di Trento

2019/10/09

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

Table of contents

- Introduction
- Pailure detectors
 - Introduction
 - Specification
 - Reductions
- 3 Reliable Broadcast
- Consensus
 - Introduction
 - Algorithms
 - Discussion
- 6 Randomization
 - Ben-Or protocol
- 6 Hybrid approach

The usual system model

- System is asynchronous
 - No bounds on messages and process execution delays
 - No bounds on clock drift
- Processes fail by crashing
 - Stop executing actions after the crash
 - We do not consider Byzantine failures
 - \bullet At most f processes fail
- Communication is reliable
 - Perfect Links

(Uniform) Consensus

Termination

Every correct process eventually decide on some value

Uniform Integrity

Each process decides at most once

Uniform Validity

If a process decides v, then v was proposed by some process

(Uniform) Agreement

No two correct (any) processes decide differently.

Consensus

Consensus in such systems

- Impossible [FLP85], even if:
 - at most one process may crash (f = 1), and
 - all links are reliable

Solving Consensus "in practice"

- Changing the model
- Changing the specification

Remember

• Better safe than sorry! (i.e.: look for safety, not for liveness)

Consensus

Consensus in such systems

- Impossible [FLP85], even if:
 - at most one process may crash (f = 1), and
 - all links are reliable

Solving Consensus "in practice"

- Changing the model
- Changing the specification

Remember

• Better safe than sorry! (i.e.: look for safety, not for liveness)

Solving Consensus

- Failure Detectors
 - Move the problem of failure detection to separate modules
 - Solve the problem even with unreliable FD
- Randomized algorithms
 - Processes are equipped with coin-flip oracles that return a random value according to some specific distribution
 - Termination is guaranteed with probability 1
- Hybrid
 - Randomized + failure detectors

Table of contents

- Introduction
 - 2 Failure detectors
 - Introduction
 - Specification
 - Reductions
- Reliable Broadcast
- Consensus
 - Introduction
 - Algorithms
 - Discussion
- Randomization
 - Ben-Or protocol
- 6 Hybrid approach

Introduction to FD

Failure detector

A distributed oracle whose task is to provide processes with hints about which other processes are *up* (operational) or *down* (crashed)

- A fundamental building block in distributed systems
 - Reliable Broadcast
 - Consensus
 - Group membership & communication
 - ...
- Reality Check:
 - ISIS, used in the 90s for Air Traffic Control Systems

Introduction to FD

Failure detector

A distributed oracle whose task is to provide processes with hints about which other processes are up (operational) or down (crashed)

However

- Hints may be incorrect
- FD may give different hints to different processes
- FD may change its mind about the operational status of a process

Failure detectors

If they are unreliable, why using failure detectors?

- Defined by abstract properties
 - Not defined in term of a specific implementation
- Modular decomposition
 - We show correctness assuming only abstract properties
 - Any FD implementation can be used!
 - Protocols are not expressed in term of low-level parameters

Failure detectors

Problem

Which is the "weakest" failure detector $Fd_{min}(P)$ that can be used to solve problem P in an asynchronous system?

From a theoretical point of view

• Necessary and sufficient conditions

Practical considerations

- To solve P we need a system where $Fd_{min}(P)$ can be implemented
- ullet It allows us to determine if problem P_1 is "more difficult" than P_2

Bibliography

T. D. Chandra and S. Toueg. Unreliable failure detectors for reliable distributed systems.

Journal of the ACM, 43(2):225–267, 1996.

http://www.disi.unitn.it/~montreso/ds/papers/CT96-JACM.pdf

V. Hadzilacos, S. Toueg, and T. D. Chandra. The weakest failure detector for solving consensus.

Journal of the ACM, 43(4):685-722, 1996.

http://www.disi.unitn.it/~montreso/ds/papers/chandra96weakest.pdf

A. Mostéfaoui and M. Raynal. Solving Consensus using Chandra-Toueg's unreliable failure detectors: A general quorum-based approach.

In Proc. of the 13th International Symposium on Distributed Computing (DISC'00), pages 49–63, Bratislava, Slovak Republic, 1999.

http://www.disi.unitn.it/~montreso/ds/papers/PI-1254.pdf

Formal definitions (1)

Time

- To simplify the presentation, we assume the existence of a discrete global clock (not accessible by processes)
- Let $\mathcal{T} = \mathbb{N}$ be the set of clock ticks

Failure pattern

A failure pattern is a function $F: \mathcal{T} \Rightarrow 2^{\Pi}$, where F(t) denotes the set of processes that have crashed through time t

• $\forall t \in \mathcal{T} : F(t) \subseteq F(t+1)$ (no recovery)

Formal definitions (2)

Correct, crashed set

- $crashed(F) = \bigcup_{t \in \mathcal{T}} F(t)$ (Crashed set)
- $correct(F) = \Pi crashed(F)$ (Correct set)
- A process is **correct** if belongs to correct(F), otherwise is faulty

Failure detector history

A failure detector history is a function $H: \Pi \times \mathcal{T} \to 2^{\Pi}$, where H(p,t) is the output of the failure detector of process p at time t

• If $q \in H(p,t)$, we say that p suspects q at time t in H

Completeness

Strong Completeness

Eventually, every faulty process is permanently suspected by every correct process.

$$\forall F, \forall H, \exists t \in \mathcal{T}, \forall p \in crashed(F), \forall q \in correct(F), \forall t' \geq t : p \in H(q, t')$$

Weak Completeness

Eventually, every faulty process permanently suspected by some correct process.

$$\forall F, \forall H, \exists t \in \mathcal{T}, \forall p \in crashed(F), \exists q \in correct(F), \forall t' \geq t : p \in H(q, t')$$

Motivation behind Weak Completeness

We do not want every process "to ping" all other processes continuously

Accuracy (1)

Strong Accuracy

Every correct process is never suspected.

$$\forall F, \forall H, \forall t \in \mathcal{T}, \forall p \in correct(F), \forall q : p \notin H(q, t)$$

Weak Accuracy

Some correct process is never suspected.

$$\forall F, \forall H, \forall t \in \mathcal{T}, \exists p \in correct(F), \forall q : p \notin H(q, t)$$

Accuracy (2)

Eventual Strong Accuracy

There is a time after which every correct process is not suspected by any correct process.

$$\forall F, \forall H, \exists t \in \mathcal{T}, \forall t \geq t', \forall p \in correct(F), \forall q \in correct(F): p \notin H(q, t')$$

Eventual Weak Accuracy

There is a time after which some correct process is never suspected by any correct process.

$$\forall F, \forall H, \exists t \in \mathcal{T}, \forall t \geq t', \exists p \in correct(F), \forall q \in correct(F) : p \notin H(q, t')$$

Failure Detector Classes

	Accuracy			
	Strong	Weak	Ev. Strong	Ev. Weak
Strong	Perfect	Strong	Ev. Perfect	Ev. Strong
Completeness	P	S	$\diamond P$	$\diamond S$
Weak		Weak		Ev. Weak
Completeness		W		$\diamond W$

Reductions

Reduction

We say that an algorithm $T_{D\to E}$ is a reduction from D to E if it transforms a failure detector of class D into a failure detector of class E, and we write $D \geq E$.

Some easy reductions

From Weak Completeness to Strong Completeness

Reduction from class D to class E, executed by process p_i

upon initialization **do**

$$| suspected_i^E \leftarrow \emptyset$$

repeat periodically

B-broadcast(
$$\langle \text{SUSPECT}, suspected_i^D \rangle$$
)

upon B-deliver(
$$\langle \text{SUSPECT}, S \rangle$$
) from p_j do
\[suspected_i^E \leftrightarrow suspected_i^E \cup S - \{p_i, p_j\}

Using this reduction, we can show that

- $\diamond W > \diamond S$, so $\diamond W \equiv \diamond S$
- W > S, so $W \equiv S$

Table of contents

- Introduction
- Pailure detectors
 - Introduction
 - Specification
 - Reductions
- Reliable Broadcast
- Consensus
 - Introduction
 - Algorithms
 - Discussion
- Randomization
 - Ben-Or protocol
- Ben-Or protocol
- 6 Hybrid approach

Reliable Broadcast Recap

Reliable Broadcast

- Implementable with process failures and message omissions
- Proposed implementation: flooding, $O(n^2)$ messages

Uniform Reliable Broadcast

- Implementable with process failures and no message omissions
- Same implementation (different assumptions)

Message complexity

- Conservative protocol: many messages in the absence of failures
- Can we do better than that?
- We apply failure detectors

Reliable broadcast protocol based on $\diamond S$ executed by p

```
upon initialization do
    Set delivered \leftarrow Set(Message) % Msgs already delivered
    Map from \leftarrow new \text{ Map(Process, Set)()} \% \text{ Msgs sent from processes}
upon R-broadcast(m) do
    send \langle m, p \rangle to \Pi
upon q \in \diamond P.suspect() do
    foreach m \in from[q] do
        send \langle m, q \rangle to \Pi
upon receive (\langle m, s \rangle) do
    from[s] \leftarrow from[s] \cup \{m\}
    if not m \in delivered then
        R-deliver(m)
        delivered \leftarrow delivered \cup \{m\}
        if s \in \diamond P.suspect() then
             send \langle m, s \rangle to \Pi
```

Reliable Broadcast with $\diamond S$ – Scenario 1

Reliable Broadcast with $\diamond S$ – Scenario 2

Reliable Broadcast with $\diamond S$ – Proof

- Uniform Integrity, Validity: As before
- Agreement:

Let p be a correct process that R-delivers a message m Let q be another correct process

Let s = sender(m); there are two cases

- Case 2: s is faulty by Strong Completeness, s will be suspected by p, p will send m, q will receive it

Comment

If the failure detector is not accurate, more messages will be sent; but not other adverse effect will occur

Reliable Broadcast through FD

Reliable Broadcast

- Can be implemented using a linear number of messages in the absence of failures
- An Eventually Perfect FD as accurate as possible is required to reduce the number of messages

But...

• Think what is needed to implement a failure detector!

Table of contents

- Introduction
- 2 Failure detectors
 - Introduction
 - Specification
 - Reductions
- Reliable Broadcast
- Consensus
 - Introduction
 - Algorithms
 - Discussion
- Randomization
 - Ben-Or protocol
- 6 Hybrid approach

Consensus and Failure Detectors

Problem

Is perfect failure detection necessary for Consensus?

$\diamond S$ versus Consensus

- Initially, it can output arbitrary information
- But there is a time after which:
 - Every process that crashes is suspected (completeness)
 - Some process that does not crash is not suspected (accuracy)
- When f < n/2, $\diamond S$ is necessary and sufficient to solve Consensus
- Note: $\diamond S \equiv \diamond W$

Consensus and Failure Detectors

Problem

Is perfect failure detection necessary for Consensus?

S versus Consensus

- It can output arbitrary information about most of the processes
- But there is at least one correct process which is never suspected
- When f < n, S is necessary and sufficient to solve Consensus
- Note: $S \equiv W$

- Processes are numbered $0, 1, \ldots, n-1$
- They execute asynchronous rounds
- In round r, the coordinator
 - corresponds to process $(r \mod n)$
 - tries to impose its estimate as the consensus value
 - succeeds if does not crash and it is not suspected by $\diamond S$
- The protocol described here is based on [Mostéfaoui and Raynal, 1999]

- Processes are numbered $0, 1, \ldots, n-1$
- They execute asynchronous rounds
- In round r, the coordinator
 - corresponds to process $(r \mod n)$
 - tries to impose its estimate as the consensus value
 - succeeds if does not crash and it is not suspected by $\diamond S$
- The protocol described here is based on [Mostéfaoui and Raynal, 1999]

- Processes are numbered $0, 1, \ldots, n-1$
- They execute asynchronous rounds
- In round r, the coordinator
 - corresponds to process $(r \mod n)$
 - tries to impose its estimate as the consensus value
 - succeeds if does not crash and it is not suspected by $\diamond S$
- The protocol described here is based on [Mostéfaoui and Raynal, 1999]

- Processes are numbered $0, 1, \ldots, n-1$
- They execute asynchronous rounds
- In round r, the coordinator
 - corresponds to process $(r \mod n)$
 - tries to impose its estimate as the consensus value
 - succeeds if does not crash and it is not suspected by $\diamond S$
- The protocol described here is based on [Mostéfaoui and Raynal, 1999]

- Processes are numbered $0, 1, \ldots, n-1$
- They execute asynchronous rounds
- In round r, the coordinator
 - corresponds to process $(r \mod n)$
 - tries to impose its estimate as the consensus value
 - succeeds if does not crash and it is not suspected by $\diamond S$
- The protocol described here is based on [Mostéfaoui and Raynal, 1999]


```
upon propose(v_i) do
    integer r \leftarrow 0
                                                          % Round
    integer est \leftarrow v_i
                                                          % Estimate
    boolean decided \leftarrow false
    boolean stop \leftarrow false
    while not stop do
                                                             % Coordinator
        integer c \leftarrow r \bmod n
        r \leftarrow r + 1
         { Phase 1 of round r; from p_c to all }
        if i = c then
             B-broadcast(\langle PHASE1, r, est, p_i \rangle)
        wait B-deliver(\langle PHASE1, r, v, p_c \rangle) or p_c \in suspected_i^{\diamond S}
        if p_c \in suspected_i then
             aux \leftarrow ?
        else
             aux \leftarrow v
```

```
{ Phase 2 of round r; from all to all }
          B-broadcast(\langle PHASE2, r, aux, p_i \rangle)
          Set rec \leftarrow \emptyset
                                                          % Received values
         Set proc \leftarrow \emptyset
                                                          % Replying processes
         while |proc| \leq |n/2| do
              wait B-deliver(\langle PHASE2, r, v, p_i \rangle)
              rec \leftarrow rec \cup \{v\}
              proc \leftarrow proc \cup \{p_i\}
         if rec = \{v\} then est \leftarrow v; B-broadcast(\langle \text{DECIDE}, v \rangle); stop \leftarrow true
         if rec = \{v, ?\} then est \leftarrow v
         if rec = \{?\} then do nothing
upon B-deliver(\langle \text{DECIDE}, v \rangle) do
    if not decided then
          B-broadcast(\langle \text{DECIDE}, v \rangle)
         decide(v)
          decided \leftarrow \mathbf{true}
```

Proof of correctness – Termination

Proof: Termination

- wait #1: With $\diamond S$, no process blocks forever waiting for a message from a dead coordinator
- wait #2: Given that f < n/2, eventually every node will receive more than $\lfloor n/2 \rfloor$ messages and will exit from Phase 2
- Thanks to $\diamond S$, eventually some correct process p_c is not falsely suspected. When p_c becomes the coordinator, every correct process receives c's estimate and decides.

Proof of correctness – Agreement


```
upon propose(v_i) do
    integer r \leftarrow 0
                                                        % Round
    integer est \leftarrow v_i
                                                         % Estimate
    boolean decided \leftarrow false
    boolean stop \leftarrow false
    while not stop do
                                                            % Coordinator
        integer c \leftarrow r \bmod n
        r \leftarrow r + 1
         { Phase 1 of round r; from p_c to all }
        if i = c then
             B-broadcast(\langle PHASE1, r, est, p_i \rangle)
        wait B-deliver(\langle PHASE1, r, v, p_c \rangle) or p_c \in suspected_i^S
        if p_c \in suspected_i then
             aux \leftarrow ?
        else
             aux \leftarrow v
```

Consensus Algorithm based on S executed by process p_i

```
{ Phase 2 of round r; from all to all }
          B-broadcast(\langle PHASE2, r, aux, p_i \rangle)
          Set rec \leftarrow \emptyset
                                                           % Received values
         Set proc \leftarrow \emptyset
                                                           % Replying processes
         while proc \cup suspected_i^S \neq \Pi do
                                                                                      % Was: |proc| < n/2
              wait B-deliver(\langle PHASE2, r, v, p_i \rangle)
              rec \leftarrow rec \cup \{v\}
              proc \leftarrow proc \cup \{p_i\}
         if rec = \{v\} then est \leftarrow v; B-broadcast(\langle \text{DECIDE}, v \rangle); stop \leftarrow true
         if rec = \{v, ?\} then est \leftarrow v
         if rec = \{?\} then do nothing
upon B-deliver(\langle \text{DECIDE}, v \rangle) do
     if not decided then
          \mathsf{B}\text{-broadcast}(\langle \mathtt{DECIDE}, v \rangle)
         decide(v)
          decided \leftarrow \mathbf{true}
```

What if the FD misbehaves

- Accuracy can be not satisfied
 - Consensus algorithm remains always safe
 - It is also live during "good" FD periods
- Completeness is always satisfied

Indulgent algorithms

Indulgent algorithms

- Never violate the safety property
- If the FD is not accurate, they do not terminate
- Require "stable" periods in order to terminate

The protocol just shown is an indulgent algorithm

Bibliography

R. Guerraoui. Indulgent algorithms.

In Proc. of the 19th annual ACM Symposium on Principles of Distributed Computing Systems (PODC'00), pages 49–63, Portland, OR, 2000.

http://www.disi.unitn.it/~montreso/ds/papers/p289-guerraoui.pdf

Failure detectors as an abstraction

Some advantages

- Increases the modularity and portability of algorithms
- Suggests why Consensus is not so difficult in practice
- Determines minimal info about failures to solve consensus
- Encapsulates various models of partial synchrony

Broadening the applicability of FDs

Other models

- Crashes + Link failures (fair links)
- Network partitioning
- Crash/Recovery
- Byzantine (arbitrary) failures
- FDs + Randomization

Other problems

- Atomic Commitment
- Group Membership
- Leader Election
- Reliable Broadcast

From theory to practice

- FD implementation needs to be message-efficient:
 - FDs with linear message complexity (ring, hierarchical, gossip)
- "Eventual" guarantees are not sufficient:
 - FDs with Quality-of-Service guarantees
- Failure detection should be easily available:
 - Shared FD service (with QoS guarantees)

From theory to practice

Bibliography

R. van Renesse, Y. Minsky, and M. Hayden. A gossip-style failure detection service.

In *Proc. of Middleware '98*, pages 55–70, The Lake District, United Kingdom, 1998. Springer-Verlag.

http://www.disi.unitn.it/~montreso/ds/papers/fd-gossip.pdf

W. Chen, S. Toueg, and M. Aguilera. On the quality of service of failure detectors.

IEEE Transactions on Computers, 51:561–580, 2002.

http://www.disi.unitn.it/~montreso/ds/papers/fd-qos.pdf

Table of contents

- Introduction
- 2 Failure detectors
 - Introduction
 - Specification
 - Reductions
- Reliable Broadcast
- Consensus
 - Introduction
 - Algorithms
 - Discussion
- Randomization
 - Ben-Or protocol
- 6 Hybrid approach

Another approach: randomization

- First protocol to achieve binary Consensus with probabilistic termination in an asynchronous model
- The protocol is f-correct tolerates up to f crash failures, with f < n/2
- Expected time: $O(2^{2n})$ phases to converge

Bibliography

M. Ben-Or. Another advantage of free choice: Completely asynchronous agreement protocols (extended abstract).

In Proc. of the 2nd annual ACM Symposium on Principles of Distributed Computing Systems (PODC'83), pages 27–30, 1983.

http://www.disi.unitn.it/~montreso/ds/papers/p27-ben-or.pdf

Ben-Or's Algorithm

- Operates in rounds, each round has two phases:
 - Report phase each process transmits its value, and waits to hear from other processes
 - Decision phase if majority found, take its value; otherwise, flip a coin to change the local value
- The idea:
 - If enough processes detected the majority, decide
 - If I know that someone detected majority, switch to the majority's value
 - Otherwise, flip a coin; eventually, a majority of correct processes will flip in the same way

Ben-Or's Algorithm executed by process p_i

```
upon propose(v_i) do
    integer r \leftarrow 0
                                                        % Round
    integer est \leftarrow v_i
                                                        % Estimate
while true do
   r \leftarrow r + 1
    B-broadcast(\langle REPORT, r, est \rangle)
   wait to deliver more than n-f (REPORT, r,*) messages
    if delivered more than n/2 (REPORT, r, v) messages with the same value v then
        B-broadcast(\langle PROPOSAL, r, v \rangle)
   else
        B-broadcast(\langle PROPOSAL, r, ? \rangle)
    wait to deliver more than n - f (PROPOSAL, r, *) messages
    if delivered a \langle PROPOSAL, r, v \rangle with v with v \neq ? then
        est \leftarrow v
   else
        est \leftarrow \mathsf{random}(\{0,1\})
    if delivered more than f (PROPOSAL, r, v) with v with v \neq ? then
        decide(v)
```

The algorithm

- Based on the original version of Ben-Or
- It never stops; once decided, it keeps deciding the same value
- It is easy to transform it in an algorithm that stops one round after the one in which the decision has been taken

Proof of correctness

Proof: Uniform Agreement

- At most one value can receive majority in the first phase of a round
- If some process sees f + 1 (PROPOSAL, $r, v \neq ?$), then:
 - every process sees at least one $\langle \texttt{PROPOSAL}, r, v \neq ? \rangle$ message
- if every process sees at least one $\langle PROPOSAL, r, v \neq ? \rangle$ message, then
 - \bullet every process changes its estimate to v
 - every process reports v in the first phase of round r+1
- If every process reports v in the first phase of round r+1,
 - every process decides v in the second phase of round r+1

Proof of correctness

Proof: Validity

- If there are two distinct values at the beginning, one of them will be chosen
- Otherwise, if all processes report their common value v at round 0, then:
 - all processes send $\langle PROPOSAL, 0, v \rangle$
 - all processes decide on the second phase of round 0

Proof of correctness

Proof: Termination

- If no process sees the majority value, then they all will flip coins, and start everything again
- Eventually a majority among the correct processes flips the same random value
 - The correct processes will observe the majority value.
 - The correct processes will propagate PROPOSAL messages, containing the majority value
- Correct processes will receive the PROPOSAL messages, and the protocol finishes

Table of contents

- Introduction
- 2 Failure detectors
 - Introduction
 - Specification
 - Reductions
- Reliable Broadcast
- Consensus
 - Introduction
 - Algorithms
 - Discussion
- Randomization
 - Ben-Or protocol
- 6 Hybrid approach

Hybrid approach

- We can combine
 - Failure Detectors
 - Randomized approach
- Advantages:
 - Deterministic termination if FD is accurate ("good periods")
 - Probabilistic termination otherwise ("bad periods")
- Oracles available at each process
 - FD-oracle: Failure detector $\diamond S$
 - R-oracle: Random coin-flip

Reading material

T. D. Chandra and S. Toueg. Unreliable failure detectors for reliable distributed systems.

Journal of the ACM, 43(2):225–267, 1996.

http://www.disi.unitn.it/~montreso/ds/papers/CT96-JACM.pdf

A. Mostéfaoui and M. Raynal. Solving Consensus using Chandra-Toueg's unreliable failure detectors: A general quorum-based approach.

In Proc. of the 13th International Symposium on Distributed Computing (DISC'00), pages 49–63, Bratislava, Slovak Republic, 1999.

http://www.disi.unitn.it/~montreso/ds/papers/PI-1254.pdf

M. K. Aguilera and S. Toueg. Failure detection and randomization: A hybrid approach to solve consensus.

SIAM Journal of Computing, 1998.

http: