
Distributed Algorithms
Consensus: Beyond Impossibility Results

Alberto Montresor

Università di Trento

2019/10/09

This work is licensed under a Creative Commons
Attribution-ShareAlike 4.0 International License.

references

M. K. Aguilera and S. Toueg.
Failure detection and randomization: A hybrid approach to solve
consensus.
SIAM Journal of Computing, 1998.
http://www.disi.unitn.it/~montreso/ds/papers/
hybrid-siam1998.pdf.

M. Ben-Or.
Another advantage of free choice: Completely asynchronous
agreement protocols (extended abstract).
In Proc. of the 2nd annual ACM Symposium on Principles of
Distributed Computing Systems (PODC’83), pages 27–30, 1983.
http:
//www.disi.unitn.it/~montreso/ds/papers/p27-ben-or.pdf.

T. D. Chandra and S. Toueg.
Unreliable failure detectors for reliable distributed systems.
Journal of the ACM, 43(2):225–267, 1996.
http:
//www.disi.unitn.it/~montreso/ds/papers/CT96-JACM.pdf.

W. Chen, S. Toueg, and M. Aguilera.
On the quality of service of failure detectors.
IEEE Transactions on Computers, 51:561–580, 2002.
http://www.disi.unitn.it/~montreso/ds/papers/fd-qos.pdf.

R. Guerraoui.
Indulgent algorithms.
In Proc. of the 19th annual ACM Symposium on Principles of
Distributed Computing Systems (PODC’00), pages 49–63, Portland,
OR, 2000.
http://www.disi.unitn.it/~montreso/ds/papers/
p289-guerraoui.pdf.

V. Hadzilacos, S. Toueg, and T. D. Chandra.
The weakest failure detector for solving consensus.
Journal of the ACM, 43(4):685–722, 1996.
http://www.disi.unitn.it/~montreso/ds/papers/
chandra96weakest.pdf.

A. Mostéfaoui and M. Raynal.
Solving Consensus using Chandra-Toueg’s unreliable failure
detectors: A general quorum-based approach.
In Proc. of the 13th International Symposium on Distributed
Computing (DISC’00), pages 49–63, Bratislava, Slovak Republic,
1999.
http://www.disi.unitn.it/~montreso/ds/papers/PI-1254.pdf.

R. van Renesse, Y. Minsky, and M. Hayden.
A gossip-style failure detection service.
In Proc. of Middleware ’98, pages 55–70, The Lake District, United
Kingdom, 1998. Springer-Verlag.
http:
//www.disi.unitn.it/~montreso/ds/papers/fd-gossip.pdf.

http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
http://www.disi.unitn.it/~montreso/ds/papers/hybrid-siam1998.pdf
http://www.disi.unitn.it/~montreso/ds/papers/hybrid-siam1998.pdf
http://www.disi.unitn.it/~montreso/ds/papers/p27-ben-or.pdf
http://www.disi.unitn.it/~montreso/ds/papers/p27-ben-or.pdf
http://www.disi.unitn.it/~montreso/ds/papers/CT96-JACM.pdf
http://www.disi.unitn.it/~montreso/ds/papers/CT96-JACM.pdf
http://www.disi.unitn.it/~montreso/ds/papers/fd-qos.pdf
http://www.disi.unitn.it/~montreso/ds/papers/p289-guerraoui.pdf
http://www.disi.unitn.it/~montreso/ds/papers/p289-guerraoui.pdf
http://www.disi.unitn.it/~montreso/ds/papers/chandra96weakest.pdf
http://www.disi.unitn.it/~montreso/ds/papers/chandra96weakest.pdf
http://www.disi.unitn.it/~montreso/ds/papers/PI-1254.pdf
http://www.disi.unitn.it/~montreso/ds/papers/fd-gossip.pdf
http://www.disi.unitn.it/~montreso/ds/papers/fd-gossip.pdf

Table of contents

1 Introduction
2 Failure detectors

Introduction
Specification
Reductions

3 Reliable Broadcast
4 Consensus

Introduction
Algorithms
Discussion

5 Randomization
Ben-Or protocol

6 Hybrid approach

Introduction

The usual system model

System is asynchronous
No bounds on messages and process execution delays
No bounds on clock drift

Processes fail by crashing
Stop executing actions after the crash
We do not consider Byzantine failures
At most f processes fail

Communication is reliable
Perfect Links

Alberto Montresor (UniTN) DS - FD & Consensus 2019/10/09 1 / 45

Introduction

(Uniform) Consensus

Termination

Every correct process eventually decide on some value

Uniform Integrity

Each process decides at most once

Uniform Validity

If a process decides v, then v was proposed by some process

(Uniform) Agreement

No two correct (any) processes decide differently.

Alberto Montresor (UniTN) DS - FD & Consensus 2019/10/09 2 / 45

Introduction

Consensus

Consensus in such systems

Impossible [FLP85], even if:
at most one process may crash (f = 1), and
all links are reliable

Solving Consensus “in practice”

Changing the model
Changing the specification

Remember

Better safe than sorry! (i.e.: look for safety, not for liveness)

Alberto Montresor (UniTN) DS - FD & Consensus 2019/10/09 3 / 45

Introduction

Consensus

Consensus in such systems

Impossible [FLP85], even if:
at most one process may crash (f = 1), and
all links are reliable

Solving Consensus “in practice”

Changing the model
Changing the specification

Remember

Better safe than sorry! (i.e.: look for safety, not for liveness)

Alberto Montresor (UniTN) DS - FD & Consensus 2019/10/09 3 / 45

Introduction

Solving Consensus

Failure Detectors
Move the problem of failure detection to separate modules
Solve the problem even with unreliable FD

Randomized algorithms
Processes are equipped with coin-flip oracles that return a random
value according to some specific distribution
Termination is guaranteed with probability 1

Hybrid
Randomized + failure detectors

Alberto Montresor (UniTN) DS - FD & Consensus 2019/10/09 4 / 45

Table of contents

1 Introduction
2 Failure detectors

Introduction
Specification
Reductions

3 Reliable Broadcast
4 Consensus

Introduction
Algorithms
Discussion

5 Randomization
Ben-Or protocol

6 Hybrid approach

Failure detectors Introduction

Introduction to FD

Failure detector

A distributed oracle whose task is to provide processes with hints
about which other processes are up (operational) or down (crashed)

A fundamental building block in distributed systems
Reliable Broadcast
Consensus
Group membership & communication
. . .

Reality Check:
ISIS, used in the 90s for Air Traffic Control Systems

Alberto Montresor (UniTN) DS - FD & Consensus 2019/10/09 5 / 45

Failure detectors Introduction

Introduction to FD

Failure detector

A distributed oracle whose task is to provide processes with hints
about which other processes are up (operational) or down (crashed)

However

Hints may be incorrect

FD may give different hints to different
processes

FD may change its mind about the
operational status of a process

p

q

rs

t

q

q

q

s

s

SLOW

Alberto Montresor (UniTN) DS - FD & Consensus 2019/10/09 5 / 45

Failure detectors Introduction

Failure detectors

If they are unreliable, why using failure detectors?

Defined by abstract properties
Not defined in term of a specific implementation

Modular decomposition
We show correctness assuming only abstract properties
Any FD implementation can be used!
Protocols are not expressed in term of low-level parameters

Alberto Montresor (UniTN) DS - FD & Consensus 2019/10/09 6 / 45

Failure detectors Introduction

Failure detectors

Problem

Which is the “weakest” failure detector Fdmin(P) that can be used
to solve problem P in an asynchronous system?

From a theoretical point of view

Necessary and sufficient conditions

Practical considerations

To solve P we need a system where Fdmin(P) can be implemented
It allows us to determine if problem P1 is “more difficult” than P2

Alberto Montresor (UniTN) DS - FD & Consensus 2019/10/09 7 / 45

Failure detectors Introduction

History

Bibliography

T. D. Chandra and S. Toueg. Unreliable failure detectors for reliable distributed
systems.
Journal of the ACM, 43(2):225–267, 1996.
http://www.disi.unitn.it/~montreso/ds/papers/CT96-JACM.pdf

V. Hadzilacos, S. Toueg, and T. D. Chandra. The weakest failure detector for
solving consensus.
Journal of the ACM, 43(4):685–722, 1996.
http://www.disi.unitn.it/~montreso/ds/papers/chandra96weakest.pdf

A. Mostéfaoui and M. Raynal. Solving Consensus using Chandra-Toueg’s unre-
liable failure detectors: A general quorum-based approach.
In Proc. of the 13th International Symposium on Distributed Computing (DISC’00),
pages 49–63, Bratislava, Slovak Republic, 1999.
http://www.disi.unitn.it/~montreso/ds/papers/PI-1254.pdf

Alberto Montresor (UniTN) DS - FD & Consensus 2019/10/09 8 / 45

http://www.disi.unitn.it/~montreso/ds/papers/CT96-JACM.pdf
http://www.disi.unitn.it/~montreso/ds/papers/chandra96weakest.pdf
http://www.disi.unitn.it/~montreso/ds/papers/PI-1254.pdf

Failure detectors Specification

Formal definitions (1)

Time

To simplify the presentation, we assume the existence of a
discrete global clock (not accessible by processes)
Let T = N be the set of clock ticks

Failure pattern

A failure pattern is a function F : T ⇒ 2Π, where F (t) denotes the
set of processes that have crashed through time t

∀t ∈ T : F (t) ⊆ F (t + 1) (no recovery)

Alberto Montresor (UniTN) DS - FD & Consensus 2019/10/09 9 / 45

Failure detectors Specification

Formal definitions (2)

Correct, crashed set

crashed(F) =
⋃

t∈T F (t) (Crashed set)
correct(F) = Π− crashed(F) (Correct set)
A process is correct if belongs to correct(F), otherwise is
faulty

Failure detector history

A failure detector history is a function H : Π × T → 2Π, where
H(p, t) is the output of the failure detector of process p at time t

If q ∈ H(p, t), we say that p suspects q at time t in H

Alberto Montresor (UniTN) DS - FD & Consensus 2019/10/09 10 / 45

Failure detectors Specification

Completeness

Strong Completeness

Eventually, every faulty process is permanently suspected by every
correct process.
∀F,∀H,∃t ∈ T ,∀p ∈ crashed(F),∀q ∈ correct(F), ∀t′ ≥ t : p ∈ H(q, t′)

Weak Completeness

Eventually, every faulty process permanently suspected by some cor-
rect process.
∀F,∀H,∃t ∈ T ,∀p ∈ crashed(F),∃q ∈ correct(F), ∀t′ ≥ t : p ∈ H(q, t′)

Motivation behind Weak Completeness

We do not want every process “to ping” all other processes continuously

Alberto Montresor (UniTN) DS - FD & Consensus 2019/10/09 11 / 45

Failure detectors Specification

Accuracy (1)

Strong Accuracy

Every correct process is never suspected.
∀F,∀H,∀t ∈ T , ∀p ∈ correct(F),∀q : p /∈ H(q, t)

Weak Accuracy

Some correct process is never suspected.
∀F,∀H,∀t ∈ T , ∃p ∈ correct(F),∀q : p /∈ H(q, t)

Alberto Montresor (UniTN) DS - FD & Consensus 2019/10/09 12 / 45

Failure detectors Specification

Accuracy (2)

Eventual Strong Accuracy

There is a time after which every correct process is not suspected
by any correct process.
∀F,∀H,∃t ∈ T ,∀t ≥ t′, ∀p ∈ correct(F),∀q ∈ correct(F) : p /∈ H(q, t′)

Eventual Weak Accuracy

There is a time after which some correct process is never suspected
by any correct process.
∀F,∀H,∃t ∈ T ,∀t ≥ t′, ∃p ∈ correct(F),∀q ∈ correct(F) : p /∈ H(q, t′)

Alberto Montresor (UniTN) DS - FD & Consensus 2019/10/09 13 / 45

Failure detectors Specification

Failure Detector Classes

Accuracy
Strong Weak Ev. Strong Ev. Weak

Strong Perfect Strong Ev. Perfect Ev. Strong
Completeness P S �P �S
Weak Weak Ev. Weak
Completeness W �W

Alberto Montresor (UniTN) DS - FD & Consensus 2019/10/09 14 / 45

Failure detectors Reductions

Reductions

Reduction

We say that an algorithm TD→E is a reduction from D to E if it
transforms a failure detector of class D into a failure detector of
class E, and we write D ≥ E.

Some easy reductions

◊S◊P

P S

◊W

W

≥

≥ ≥

≥

≥≥ ≥

Alberto Montresor (UniTN) DS - FD & Consensus 2019/10/09 15 / 45

Failure detectors Reductions

From Weak Completeness to Strong Completeness

Reduction from class D to class E, executed by process pi
upon initialization do

suspectedE
i ← ∅

repeat periodically
B-broadcast(〈suspect, suspectedD

i 〉)

upon B-deliver(〈suspect, S〉) from pj do
suspectedE

i ← suspectedE
i ∪ S − {pi, pj}

Using this reduction, we can show that

�W ≥ �S, so �W ≡ �S
W ≥ S, so W ≡ S

Alberto Montresor (UniTN) DS - FD & Consensus 2019/10/09 16 / 45

Table of contents

1 Introduction
2 Failure detectors

Introduction
Specification
Reductions

3 Reliable Broadcast
4 Consensus

Introduction
Algorithms
Discussion

5 Randomization
Ben-Or protocol

6 Hybrid approach

Reliable Broadcast

Reliable Broadcast Recap

Reliable Broadcast

Implementable with process failures and message omissions
Proposed implementation: flooding, O(n2) messages

Uniform Reliable Broadcast

Implementable with process failures and no message omissions
Same implementation (different assumptions)

Message complexity

Conservative protocol: many messages in the absence of failures
Can we do better than that?
We apply failure detectors

Alberto Montresor (UniTN) DS - FD & Consensus 2019/10/09 17 / 45

Reliable Broadcast

Reliable broadcast protocol based on �S executed by p

upon initialization do
Set delivered← Set〈Message〉 % Msgs already delivered
Map from← new Map〈Process,Set〉() % Msgs sent from processes

upon R-broadcast(m) do
send 〈m, p〉 to Π

upon q ∈ �P.suspect() do
foreach m ∈ from[q] do

send 〈m, q〉 to Π

upon receive(〈m, s〉) do
from[s]← from[s] ∪ {m}
if not m ∈ delivered then

R-deliver(m)
delivered← delivered ∪ {m}
if s ∈ �P.suspect() then

send 〈m, s〉 to Π

Alberto Montresor (UniTN) DS - FD & Consensus 2019/10/09 18 / 45

Reliable Broadcast

Reliable Broadcast with �S – Scenario 1

m
1

p
3

p
2

p
1

m
1

m
1

Alberto Montresor (UniTN) DS - FD & Consensus 2019/10/09 19 / 45

Reliable Broadcast

Reliable Broadcast with �S – Scenario 2

p
3

p
2

p
1

m
1

m
1

suspicion`
Alberto Montresor (UniTN) DS - FD & Consensus 2019/10/09 20 / 45

Reliable Broadcast

Reliable Broadcast with �S – Proof

Uniform Integrity, Validity: As before

Agreement:
Let p be a correct process that R-delivers a message m
Let q be another correct process
Let s = sender(m); there are two cases

Case 1: s is correct – by Validity of Perfect Channels, q will receive
m sent by s
Case 2: s is faulty – by Strong Completeness, s will be suspected by
p, p will send m, q will receive it

Comment

If the failure detector is not accurate, more messages will be sent;
but not other adverse effect will occur

Alberto Montresor (UniTN) DS - FD & Consensus 2019/10/09 21 / 45

Reliable Broadcast

Reliable Broadcast through FD

Reliable Broadcast

Can be implemented using a linear number of messages in the
absence of failures

An Eventually Perfect FD as accurate as possible is required to
reduce the number of messages

But...

Think what is needed to implement a failure detector!

Alberto Montresor (UniTN) DS - FD & Consensus 2019/10/09 22 / 45

Table of contents

1 Introduction
2 Failure detectors

Introduction
Specification
Reductions

3 Reliable Broadcast
4 Consensus

Introduction
Algorithms
Discussion

5 Randomization
Ben-Or protocol

6 Hybrid approach

Consensus Introduction

Consensus and Failure Detectors

Problem

Is perfect failure detection necessary for Consensus?

�S versus Consensus

Initially, it can output arbitrary information

But there is a time after which:
Every process that crashes is suspected (completeness)
Some process that does not crash is not suspected (accuracy)

When f < n/2, �S is necessary and sufficient to solve Consensus

Note: �S ≡ �W

Alberto Montresor (UniTN) DS - FD & Consensus 2019/10/09 23 / 45

Consensus Introduction

Consensus and Failure Detectors

Problem

Is perfect failure detection necessary for Consensus?

S versus Consensus

It can output arbitrary information about most of the processes

But there is at least one correct process which is never suspected

When f < n, S is necessary and sufficient to solve Consensus

Note: S ≡W

Alberto Montresor (UniTN) DS - FD & Consensus 2019/10/09 23 / 45

Consensus Introduction

Rotating coordinators

Processes are numbered 0, 1, . . . , n− 1

They execute asynchronous rounds

In round r, the coordinator
corresponds to process (r mod n)
tries to impose its estimate as the
consensus value
succeeds if does not crash and it is
not suspected by �S

The protocol described here is based
on [Mostéfaoui and Raynal, 1999]

1

2

3

1
0

4

Alberto Montresor (UniTN) DS - FD & Consensus 2019/10/09 24 / 45

Consensus Introduction

Rotating coordinators

Processes are numbered 0, 1, . . . , n− 1

They execute asynchronous rounds

In round r, the coordinator
corresponds to process (r mod n)
tries to impose its estimate as the
consensus value
succeeds if does not crash and it is
not suspected by �S

The protocol described here is based
on [Mostéfaoui and Raynal, 1999]

1

2

3

1
0

4

Alberto Montresor (UniTN) DS - FD & Consensus 2019/10/09 24 / 45

Consensus Introduction

Rotating coordinators

Processes are numbered 0, 1, . . . , n− 1

They execute asynchronous rounds

In round r, the coordinator
corresponds to process (r mod n)
tries to impose its estimate as the
consensus value
succeeds if does not crash and it is
not suspected by �S

The protocol described here is based
on [Mostéfaoui and Raynal, 1999]

1

2

3

1
0

4

Alberto Montresor (UniTN) DS - FD & Consensus 2019/10/09 24 / 45

Consensus Introduction

Rotating coordinators

Processes are numbered 0, 1, . . . , n− 1

They execute asynchronous rounds

In round r, the coordinator
corresponds to process (r mod n)
tries to impose its estimate as the
consensus value
succeeds if does not crash and it is
not suspected by �S

The protocol described here is based
on [Mostéfaoui and Raynal, 1999]

1

2

3

1
0

4

Alberto Montresor (UniTN) DS - FD & Consensus 2019/10/09 24 / 45

Consensus Introduction

Rotating coordinators

Processes are numbered 0, 1, . . . , n− 1

They execute asynchronous rounds

In round r, the coordinator
corresponds to process (r mod n)
tries to impose its estimate as the
consensus value
succeeds if does not crash and it is
not suspected by �S

The protocol described here is based
on [Mostéfaoui and Raynal, 1999]

1

2

3

1
0

4

Alberto Montresor (UniTN) DS - FD & Consensus 2019/10/09 24 / 45

Consensus Algorithms

Consensus Algorithm based on �S executed by process pi
upon propose(vi) do

integer r ← 0 % Round
integer est ← vi % Estimate
boolean decided← false
boolean stop ← false

while not stop do
integer c← r mod n % Coordinator
r ← r + 1

{ Phase 1 of round r; from pc to all }

if i = c then
B-broadcast(〈phase1, r, est , pi〉)

1 wait B-deliver(〈phase1, r, v, pc〉) or pc ∈ suspected�Si
if pc ∈ suspected i then

aux ← ?
else

aux ← v

Alberto Montresor (UniTN) DS - FD & Consensus 2019/10/09 25 / 45

Consensus Algorithms

Consensus Algorithm based on �S executed by process pi

{ Phase 2 of round r; from all to all }

B-broadcast(〈phase2, r, aux , pi〉)
Set rec ← ∅ % Received values
Set proc ← ∅ % Replying processes
while |proc| ≤ bn/2c do

2 wait B-deliver(〈phase2, r, v, pj〉)
rec ← rec ∪ {v}
proc ← proc ∪ {pj}

if rec = {v} then est ← v; B-broadcast(〈decide, v〉); stop ← true
if rec = {v, ?} then est ← v
if rec = {?} then do nothing

upon B-deliver(〈decide, v〉) do
if not decided then

B-broadcast(〈decide, v〉)
decide(v)
decided← true

Alberto Montresor (UniTN) DS - FD & Consensus 2019/10/09 26 / 45

Consensus Algorithms

Proof of correctness – Termination

Proof: Termination

wait #1: With �S, no process blocks forever waiting for a
message from a dead coordinator
wait #2: Given that f < n/2, eventually every node will
receive more than bn/2c messages and will exit from Phase 2
Thanks to �S, eventually some correct process pc is not falsely
suspected. When pc becomes the coordinator, every correct
process receives c’s estimate and decides.

Alberto Montresor (UniTN) DS - FD & Consensus 2019/10/09 27 / 45

Consensus Algorithms

Proof of correctness – Agreement

n=7

p decides v q changes its estimate to v

f=3

Alberto Montresor (UniTN) DS - FD & Consensus 2019/10/09 28 / 45

Consensus Algorithms

Consensus Algorithm based on S executed by process pi
upon propose(vi) do

integer r ← 0 % Round
integer est ← vi % Estimate
boolean decided← false
boolean stop ← false

while not stop do
integer c← r mod n % Coordinator
r ← r + 1

{ Phase 1 of round r; from pc to all }

if i = c then
B-broadcast(〈phase1, r, est , pi〉)

1 wait B-deliver(〈phase1, r, v, pc〉) or pc ∈ suspectedS
i

if pc ∈ suspected i then
aux ← ?

else
aux ← v

Alberto Montresor (UniTN) DS - FD & Consensus 2019/10/09 29 / 45

Consensus Algorithms

Consensus Algorithm based on S executed by process pi

{ Phase 2 of round r; from all to all }

B-broadcast(〈phase2, r, aux , pi〉)
Set rec ← ∅ % Received values
Set proc ← ∅ % Replying processes
while proc ∪ suspectedS

i 6= Π do % Was: |proc| < n/2
2 wait B-deliver(〈phase2, r, v, pj〉)

rec ← rec ∪ {v}
proc ← proc ∪ {pj}

if rec = {v} then est ← v; B-broadcast(〈decide, v〉); stop ← true
if rec = {v, ?} then est ← v
if rec = {?} then do nothing

upon B-deliver(〈decide, v〉) do
if not decided then

B-broadcast(〈decide, v〉)
decide(v)
decided← true

Alberto Montresor (UniTN) DS - FD & Consensus 2019/10/09 30 / 45

Consensus Discussion

What if the FD misbehaves

Accuracy can be not satisfied
Consensus algorithm remains always safe
It is also live – during “good” FD periods

Completeness is always satisfied

Consensus 1 Consensus 2 Consensus 3

Alberto Montresor (UniTN) DS - FD & Consensus 2019/10/09 31 / 45

Consensus Discussion

Indulgent algorithms

Indulgent algorithms

Never violate the safety property
If the FD is not accurate, they do not terminate
Require “stable” periods in order to terminate

The protocol just shown is an indulgent algorithm

Bibliography

R. Guerraoui. Indulgent algorithms.
In Proc. of the 19th annual ACM Symposium on Principles of Distributed Com-
puting Systems (PODC’00), pages 49–63, Portland, OR, 2000.
http://www.disi.unitn.it/~montreso/ds/papers/p289-guerraoui.pdf

Alberto Montresor (UniTN) DS - FD & Consensus 2019/10/09 32 / 45

http://www.disi.unitn.it/~montreso/ds/papers/p289-guerraoui.pdf

Consensus Discussion

Failure detectors as an abstraction

Some advantages

Increases the modularity and portability of algorithms

Suggests why Consensus is not so difficult in practice

Determines minimal info about failures to solve consensus

Encapsulates various models of partial synchrony

Alberto Montresor (UniTN) DS - FD & Consensus 2019/10/09 33 / 45

Consensus Discussion

Broadening the applicability of FDs

Other models

Crashes + Link failures (fair links)
Network partitioning
Crash/Recovery
Byzantine (arbitrary) failures
FDs + Randomization

Other problems

Atomic Commitment
Group Membership
Leader Election
Reliable Broadcast X

Alberto Montresor (UniTN) DS - FD & Consensus 2019/10/09 34 / 45

Consensus Discussion

From theory to practice

FD implementation needs to be message-efficient:
FDs with linear message complexity (ring, hierarchical, gossip)

“Eventual” guarantees are not sufficient:
FDs with Quality-of-Service guarantees

Failure detection should be easily available:
Shared FD service (with QoS guarantees)

Alberto Montresor (UniTN) DS - FD & Consensus 2019/10/09 35 / 45

Consensus Discussion

From theory to practice

Bibliography

R. van Renesse, Y. Minsky, and M. Hayden. A gossip-style failure detection
service.
In Proc. of Middleware ’98, pages 55–70, The Lake District, United Kingdom,
1998. Springer-Verlag.
http://www.disi.unitn.it/~montreso/ds/papers/fd-gossip.pdf

W. Chen, S. Toueg, and M. Aguilera. On the quality of service of failure detec-
tors.
IEEE Transactions on Computers, 51:561–580, 2002.
http://www.disi.unitn.it/~montreso/ds/papers/fd-qos.pdf

Alberto Montresor (UniTN) DS - FD & Consensus 2019/10/09 36 / 45

http://www.disi.unitn.it/~montreso/ds/papers/fd-gossip.pdf
http://www.disi.unitn.it/~montreso/ds/papers/fd-qos.pdf

Table of contents

1 Introduction
2 Failure detectors

Introduction
Specification
Reductions

3 Reliable Broadcast
4 Consensus

Introduction
Algorithms
Discussion

5 Randomization
Ben-Or protocol

6 Hybrid approach

Randomization Ben-Or protocol

Another approach: randomization

First protocol to achieve binary Consensus with probabilistic
termination in an asynchronous model
The protocol is f -correct - tolerates up to f crash failures, with
f < n/2

Expected time: O(22n) phases to converge

Bibliography

M. Ben-Or. Another advantage of free choice: Completely asynchronous agree-
ment protocols (extended abstract).
In Proc. of the 2nd annual ACM Symposium on Principles of Distributed Com-
puting Systems (PODC’83), pages 27–30, 1983.
http://www.disi.unitn.it/~montreso/ds/papers/p27-ben-or.pdf

Alberto Montresor (UniTN) DS - FD & Consensus 2019/10/09 37 / 45

http://www.disi.unitn.it/~montreso/ds/papers/p27-ben-or.pdf

Randomization Ben-Or protocol

Ben-Or’s Algorithm

Operates in rounds, each round has two phases:
Report phase – each process transmits its value, and waits to hear
from other processes
Decision phase – if majority found, take its value; otherwise, flip a
coin to change the local value

The idea:
If enough processes detected the majority, decide
If I know that someone detected majority, switch to the majority’s
value
Otherwise, flip a coin; eventually, a majority of correct processes
will flip in the same way

Alberto Montresor (UniTN) DS - FD & Consensus 2019/10/09 38 / 45

Randomization Ben-Or protocol

Ben-Or’s Algorithm executed by process pi
upon propose(vi) do

integer r ← 0 % Round
integer est ← vi % Estimate

while true do
r ← r + 1
B-broadcast(〈report, r, est〉)
wait to deliver more than n− f 〈report, r, ∗〉 messages
if delivered more than n/2 〈report, r, v〉 messages with the same value v then

B-broadcast(〈proposal, r, v〉)
else

B-broadcast(〈proposal, r, ?〉)
wait to deliver more than n− f 〈proposal, r, ∗〉 messages
if delivered a 〈proposal, r, v〉 with v with v 6=? then

est ← v
else

est ← random({0, 1})
if delivered more than f 〈proposal, r, v〉 with v with v 6=? then

decide(v)

Alberto Montresor (UniTN) DS - FD & Consensus 2019/10/09 39 / 45

Randomization Ben-Or protocol

The algorithm

Based on the original version of Ben-Or

It never stops; once decided, it keeps deciding the same value

It is easy to transform it in an algorithm that stops one round
after the one in which the decision has been taken

Alberto Montresor (UniTN) DS - FD & Consensus 2019/10/09 40 / 45

Randomization Ben-Or protocol

Proof of correctness

Proof: Uniform Agreement

At most one value can receive majority in the first phase of a
round

If some process sees f + 1 〈proposal, r, v 6=?〉, then:
every process sees at least one 〈proposal, r, v 6=?〉 message

if every process sees at least one 〈proposal, r, v 6=?〉 message,
then

every process changes its estimate to v
every process reports v in the first phase of round r + 1

If every process reports v in the first phase of round r + 1,
every process decides v in the second phase of round r + 1

Alberto Montresor (UniTN) DS - FD & Consensus 2019/10/09 41 / 45

Randomization Ben-Or protocol

Proof of correctness

Proof: Validity

If there are two distinct values at the beginning, one of them
will be chosen

Otherwise, if all processes report their common value v at
round 0, then:

all processes send 〈proposal, 0, v〉
all processes decide on the second phase of round 0

Alberto Montresor (UniTN) DS - FD & Consensus 2019/10/09 42 / 45

Randomization Ben-Or protocol

Proof of correctness

Proof: Termination

If no process sees the majority value, then they all will flip
coins, and start everything again

Eventually a majority among the correct processes flips the
same random value

The correct processes will observe the majority value.
The correct processes will propagate proposal messages,
containing the majority value

Correct processes will receive the proposal messages, and
the protocol finishes

Alberto Montresor (UniTN) DS - FD & Consensus 2019/10/09 43 / 45

Table of contents

1 Introduction
2 Failure detectors

Introduction
Specification
Reductions

3 Reliable Broadcast
4 Consensus

Introduction
Algorithms
Discussion

5 Randomization
Ben-Or protocol

6 Hybrid approach

Hybrid approach

Hybrid approach

We can combine
Failure Detectors
Randomized approach

Advantages:
Deterministic termination if FD is accurate (“good periods”)
Probabilistic termination otherwise (“bad periods”)

Oracles available at each process
FD-oracle: Failure detector �S
R-oracle: Random coin-flip

Alberto Montresor (UniTN) DS - FD & Consensus 2019/10/09 44 / 45

Hybrid approach

Reading material

T. D. Chandra and S. Toueg. Unreliable failure detectors for reliable
distributed systems.
Journal of the ACM, 43(2):225–267, 1996.
http://www.disi.unitn.it/~montreso/ds/papers/CT96-JACM.pdf

A. Mostéfaoui and M. Raynal. Solving Consensus using
Chandra-Toueg’s unreliable failure detectors: A general quorum-based
approach.
In Proc. of the 13th International Symposium on Distributed Computing
(DISC’00), pages 49–63, Bratislava, Slovak Republic, 1999.
http://www.disi.unitn.it/~montreso/ds/papers/PI-1254.pdf

M. K. Aguilera and S. Toueg. Failure detection and randomization: A
hybrid approach to solve consensus.
SIAM Journal of Computing, 1998.
http:
//www.disi.unitn.it/~montreso/ds/papers/hybrid-siam1998.pdfAlberto Montresor (UniTN) DS - FD & Consensus 2019/10/09 45 / 45

http://www.disi.unitn.it/~montreso/ds/papers/CT96-JACM.pdf
http://www.disi.unitn.it/~montreso/ds/papers/PI-1254.pdf
http://www.disi.unitn.it/~montreso/ds/papers/hybrid-siam1998.pdf
http://www.disi.unitn.it/~montreso/ds/papers/hybrid-siam1998.pdf

	Introduction
	Failure detectors
	Introduction
	Specification
	Reductions

	Reliable Broadcast
	Consensus
	Introduction
	Algorithms
	Discussion

	Randomization
	Ben-Or protocol

	Hybrid approach

