
Distributed Systems 2
Reliable Broadcast

Alberto Montresor

Università di Trento

2021/09/20

This work is licensed under a Creative Commons
Attribution-ShareAlike 4.0 International License.

references

V. Hadzilacos and S. Toueg.
A modular approach to fault-tolerant broadcasts and related
problems.
In S. Mullender, editor, Distributed Systems (2nd ed.).
Addison-Wesley, 1993.
http:
//www.disi.unitn.it/~montreso/ds/papers/FTBroadcast.pdf.

http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
http://www.disi.unitn.it/~montreso/ds/papers/FTBroadcast.pdf
http://www.disi.unitn.it/~montreso/ds/papers/FTBroadcast.pdf

Table of contents

1 Introduction
2 Broadcast specifications and protocols

Best-Effort Broadcast
Reliable Broadcast
Uniform Reliable Broadcast

3 Message ordering
Introduction
Specification
A modular approach
Algorithms and proofs
Atomic Broadcast

Introduction

Introduction

Efficient techniques are required, capable of supporting consistent
behavior between system components in spite of failures.

Examples
Reliable Broadcast/Multicast protocols:
Ensure reliable message delivery to all participants

Agreement protocols:
Ensure all participants to have a consistent system view

Commit protocols:
Implement atomic behavior in transactional types of systems

Alberto Montresor (UniTN) DS - Reliable Broadcast 2021/09/20 1 / 57

Introduction

Broadcast

B

A
deliver

broadcast

deliver

Alberto Montresor (UniTN) DS - Reliable Broadcast 2021/09/20 2 / 57

Introduction

Broadcast Protocol Layering

Application Protocol

Broadcast Protocol

Application Protocol

Broadcast Protocol

Communication Network

broadcast deliver

receivesend

broadcast deliver

receivesend

Alberto Montresor (UniTN) DS - Reliable Broadcast 2021/09/20 3 / 57

Introduction

Basic assumptions (1)

System is asynchronous
No bounds on messages and process execution delays

Processes fail by crashing
stop executing actions after the crash
We do not consider Byzantine failures

Correct/Faulty
A process that does not fail in a run is correct in that run
Otherwise, the process is faulty

Alberto Montresor (UniTN) DS - Reliable Broadcast 2021/09/20 4 / 57

Introduction

Basic assumptions (2)

We will consider two failure models for communication:

No Failures
Validity: If p sends a message to q, and q is correct, then q will
eventually receive m

Integrity: No message is delivered to a process more than once,
and only if it has been sent previously

Perfect Channels
Validity: If p sends a message to q, and p,q are correct, then q will
eventually receive m

Integrity: No message is delivered to a process more than once,
and only if it has been sent previously

Alberto Montresor (UniTN) DS - Reliable Broadcast 2021/09/20 5 / 57

Introduction

What kind of underlying network?

Complete graph
Every process can communicate with every other process
A routing substrate realizes this abstraction

Point-to-point
Every process can communicate with a subset of processes (its
neighbors)
Routing is not implemented at the send/receive level (we may
implement it at the level of our protocols)

Alberto Montresor (UniTN) DS - Reliable Broadcast 2021/09/20 6 / 57

Introduction

Different flavors of broadcast

Reliability
Best-effort
Reliable
Uniform Reliable

Ordering
FIFO
Casual
Atomic
FIFO Atomic
Causal Atomic

Time bounds
Timed Reliable

Primitives
R-Broadcast
F-Broadcast
C-Broadcast
. . .

Alberto Montresor (UniTN) DS - Reliable Broadcast 2021/09/20 7 / 57

Table of contents

1 Introduction
2 Broadcast specifications and protocols

Best-Effort Broadcast
Reliable Broadcast
Uniform Reliable Broadcast

3 Message ordering
Introduction
Specification
A modular approach
Algorithms and proofs
Atomic Broadcast

Broadcast specifications and protocols Best-Effort Broadcast

Best-effort broadcast – Specification

Definition (BEB1 – Validity)
If p and q are correct, then every message B-broadcast by p is
eventually B-delivered by q

Definition (BEB2 – Uniform Integrity)
m is B-delivered by a process at most once, and only if it was
previously broadcast

Alberto Montresor (UniTN) DS - Reliable Broadcast 2021/09/20 8 / 57

Broadcast specifications and protocols Best-Effort Broadcast

Best-effort broadcast – Algorithm

Best-effort broadcast protocol executed by p

upon B-broadcast(m) do
foreach q ∈ Π do

send m to q

upon receive(m) do
B-deliver(m)

Notation – Send to all

foreach q ∈ Π do
send m to q is equivalent to send m to Π

Alberto Montresor (UniTN) DS - Reliable Broadcast 2021/09/20 9 / 57

Broadcast specifications and protocols Best-Effort Broadcast

Best-effort broadcast – Proof

We can show that the protocol works with Perfect Channels:
BEB1 - Validity: By the Validity property of Perfect Channels and
the very facts that

1 the sender sends the message to all
2 every correct process that receives a message B-delivers it

BEB2 – Uniform Integrity: By the Integrity property of Perfect
Channels

Clearly, it will work also with No Failures

Alberto Montresor (UniTN) DS - Reliable Broadcast 2021/09/20 10 / 57

Broadcast specifications and protocols Best-Effort Broadcast

Best-effort broadcast – Example

p1

p2

p3

m1

m1

m1

m2

m2

m2

Alberto Montresor (UniTN) DS - Reliable Broadcast 2021/09/20 11 / 57

Broadcast specifications and protocols Best-Effort Broadcast

Best-effort broadcast – Example

p1

p2

p3

m1

m1

m1

m1

Alberto Montresor (UniTN) DS - Reliable Broadcast 2021/09/20 12 / 57

Broadcast specifications and protocols Best-Effort Broadcast

Best-effort broadcast – Problem

What happens if the sender fails?
Even in the absence of communication failures:

if the sender crashes before being able to send the message to all
some processes will not deliver the message

What we do?
First we revise the specification of broadcast

Then we implement the new specification

Alberto Montresor (UniTN) DS - Reliable Broadcast 2021/09/20 13 / 57

Broadcast specifications and protocols Reliable Broadcast

Reliable Broadcast – Specification

Definition (RB1 – Validity)
If a correct process broadcasts m, then it eventually delivers m

Definition (RB2 – Uniform Integrity)
m is delivered by a process at most once, and only if it was previously
broadcast

Definition (RB3 – Agreement)
If a correct process delivers m, then all correct processes eventually
deliver m

Alberto Montresor (UniTN) DS - Reliable Broadcast 2021/09/20 14 / 57

Broadcast specifications and protocols Reliable Broadcast

Reliable Broadcast – Scenario 1

Does this execution satisfy the RB specification?

p1

p2

p3

m1

m1

m1

m2

m2

Alberto Montresor (UniTN) DS - Reliable Broadcast 2021/09/20 15 / 57

Broadcast specifications and protocols Reliable Broadcast

Reliable Broadcast – Scenario 2

Does this execution satisfy the RB specification?

p1

p2

p3

m1

m1

m1

Alberto Montresor (UniTN) DS - Reliable Broadcast 2021/09/20 16 / 57

Broadcast specifications and protocols Reliable Broadcast

Reliable Broadcast – Scenario 3

Does this execution satisfy the RB specification?

p1

p2

p3

m1

m1

m1

m2

Alberto Montresor (UniTN) DS - Reliable Broadcast 2021/09/20 17 / 57

Broadcast specifications and protocols Reliable Broadcast

Reliable Broadcast – Algorithm v.1

Reliable broadcast protocol executed by p

upon initialization do
Set delivered← ∅ % Messages already delivered

upon R-broadcast(m) do
send m to Π− {p}
R-deliver(m)
delivered← delivered ∪ {m}

upon receive(m) from q do
if not m ∈ delivered then

send m to Π− {p, q}
R-deliver(m)
delivered← delivered ∪ {m}

Alberto Montresor (UniTN) DS - Reliable Broadcast 2021/09/20 18 / 57

Broadcast specifications and protocols Reliable Broadcast

Reliable Broadcast – Scenario 4

Does this execution satisfy the RB specification?

m
1

p
3

p
2

p
1

crash

m
2m

1

m
1

m
2

Alberto Montresor (UniTN) DS - Reliable Broadcast 2021/09/20 19 / 57

Broadcast specifications and protocols Reliable Broadcast

Reliable Broadcast – Proof

Algorithm v.1 implements Reliable Broadcast.
RB1 – Validity: If a correct process broadcasts m, then it
eventually delivers m
By the code implementing R-broadcast.

RB2 – Uniform Integrity: m is delivered by a process at most once,
and only if it was previously broadcast
By the Integrity of Perfect Channels and the use of variable
delivered

RB3 – Agreement: If a correct process delivers m, then all correct
processes eventually deliver m
Before R-delivering m, a correct process p forwards m to all
processes. By Validity of Perfect Channels and the fact that p is
correct, all correct processes will eventually receive m and
R-deliver it.

Alberto Montresor (UniTN) DS - Reliable Broadcast 2021/09/20 20 / 57

Broadcast specifications and protocols Reliable Broadcast

Reliable Broadcast – Scenario 5

Does this execution satisfy the RB specification?

m
1

p
3

p
2

p
1

crash

m
2m

1

m
1

crash

m
2

Alberto Montresor (UniTN) DS - Reliable Broadcast 2021/09/20 21 / 57

Broadcast specifications and protocols Uniform Reliable Broadcast

Uniform Reliable Broadcast – Specification

Definition (URB1 – Validity)
If a correct process broadcasts m, then it eventually delivers m

Definition (URB2 — Uniform Integrity)
m is delivered by a process at most once, and only if it was previously
broadcast

Definition (URB3 – Uniform Agreement)
If a correct process delivers m, then all correct processes eventually
deliver m

Alberto Montresor (UniTN) DS - Reliable Broadcast 2021/09/20 22 / 57

Broadcast specifications and protocols Uniform Reliable Broadcast

Uniform Reliable Broadcast – Proof

Algorithm v.1 implements Uniform Reliable Broadcast...
... but under different assumptions!

URB1, URB2: As RB1, RB2

URB3 – Uniform Agreement: If a process delivers m, then all
correct processes eventually deliver m

Before R-delivering m, a process forwards m to all processes.
By Validity of Perfect Channels, all correct processes will eventually
receive m and R-deliver it
In the absence of communication failures, all correct processes will
eventually receive m and R-deliver it

Alberto Montresor (UniTN) DS - Reliable Broadcast 2021/09/20 23 / 57

Table of contents

1 Introduction
2 Broadcast specifications and protocols

Best-Effort Broadcast
Reliable Broadcast
Uniform Reliable Broadcast

3 Message ordering
Introduction
Specification
A modular approach
Algorithms and proofs
Atomic Broadcast

Message ordering Introduction

Message ordering

Problem
Given the asynchronous nature of distributed systems, messages
may be delivered in any order
Some services, such as replication, need messages to be delivered in
a consistent manner, otherwise replicas may diverge.

Solution
We describe a collection of ordering policies and we show how to
implement them in a modular way.

Alberto Montresor (UniTN) DS - Reliable Broadcast 2021/09/20 24 / 57

Message ordering Specification

Happen-Before

Definition (Happen-before)
We say that an event e happens-before an event e′, and write e→ e′, if
one of the following three cases is true:

1 ∃pi ∈ Π : e = eri , e′ = esi , r < s
(e and e′ are executed by the same process, e before e′)

2 e = send(m, ∗) ∧ e′ = receive(m)
(e is the send event of a message m and e′ is the corresponding
receive event)

3 ∃e′′ : e→ e′′ → e′)
(in other words, → is transitive)

Alberto Montresor (UniTN) DS - Reliable Broadcast 2021/09/20 25 / 57

Message ordering Specification

Space-Time Diagram of a Distributed Computation

e1
1 e2

1 e3
1 e4

1 e5
1 e6

1

e1
2 e2

2 e3
2

e1
3 e2

3 e3
3 e4

3 e5
3 e6

3

p1

p2

p3

Alberto Montresor (UniTN) DS - Reliable Broadcast 2021/09/20 26 / 57

Message ordering Specification

Message ordering

Definition (FIFO Order)
If a process p broadcasts a message m before it broadcast a message m′,
the no correct process delivers m′ unless it has previously delivered m

broadcastp(m)→ broadcastp(m
′)⇒ deliver q(m)→ deliver q(m

′)

Alberto Montresor (UniTN) DS - Reliable Broadcast 2021/09/20 27 / 57

Message ordering Specification

Definition (Causal Order)
If the broadcast of a message m happens-before the broadcast of a
message m′, then no correct process delivers m′ unless it has previously
delivered m

broadcastp(m)→ broadcastq(m
′)⇒ deliver r(m)→ deliver r(m

′)

Is this causal?

m
1

p
3

p
2

p
1

m
2

m
2m

1

m
1

m
2

Alberto Montresor (UniTN) DS - Reliable Broadcast 2021/09/20 28 / 57

Message ordering Specification

Definition (Causal Order)
If the broadcast of a message m happens-before the broadcast of a
message m′, then no correct process delivers m′ unless it has previously
delivered m

broadcastp(m)→ broadcastq(m
′)⇒ deliver r(m)→ deliver r(m

′)

Is this causal? No!

m
1

p
3

p
2

p
1

m
2

m
2m

1

m
1

m
2

Alberto Montresor (UniTN) DS - Reliable Broadcast 2021/09/20 28 / 57

Message ordering Specification

Definition (Causal Order)
If the broadcast of a message m happens-before the broadcast of a
message m′, then no correct process delivers m′ unless it has previously
delivered m

broadcastp(m)→ broadcastq(m
′)⇒ deliver r(m)→ deliver r(m

′)

Is this causal?

m
1

p
3

p
2

p
1

m
2

m
2m

1

m
1

m
2

Alberto Montresor (UniTN) DS - Reliable Broadcast 2021/09/20 29 / 57

Message ordering Specification

Definition (Causal Order)
If the broadcast of a message m happens-before the broadcast of a
message m′, then no correct process delivers m′ unless it has previously
delivered m

broadcastp(m)→ broadcastq(m
′)⇒ deliver r(m)→ deliver r(m

′)

Is this causal? Yes!

m
1

p
3

p
2

p
1

m
2

m
2m

1

m
1

m
2

Alberto Montresor (UniTN) DS - Reliable Broadcast 2021/09/20 29 / 57

Message ordering Specification

Definition (Causal Order)
If the broadcast of a message m happens-before the broadcast of a
message m′, then no correct process delivers m′ unless it has previously
delivered m

broadcastp(m)→ broadcastq(m
′)⇒ deliver r(m)→ deliver r(m

′)

Is this causal?

m
1

p
3

p
2

p
1

m
2

m
2m

1

m
1

m
2

Alberto Montresor (UniTN) DS - Reliable Broadcast 2021/09/20 30 / 57

Message ordering Specification

Definition (Causal Order)
If the broadcast of a message m happens-before the broadcast of a
message m′, then no correct process delivers m′ unless it has previously
delivered m

broadcastp(m)→ broadcastq(m
′)⇒ deliver r(m)→ deliver r(m

′)

Is this causal? Yes!

m
1

p
3

p
2

p
1

m
2

m
2m

1

m
1

m
2

Alberto Montresor (UniTN) DS - Reliable Broadcast 2021/09/20 30 / 57

Message ordering Specification

Message ordering

Problem
Causal Broadcast does not impose any order on messages not causally
related

Example
Consider a replicated database with two copies of a bank account
Initially, account = 1000$

A user deposits 150$ triggering a broadcast of
m1 = {add 150$ to account}
At the same time the bank initiates a broadcast of
m2 = {add 2% interest to account}
Causal Broadcast allows two processes to deliver these updates in
different order, creating inconsistency

Alberto Montresor (UniTN) DS - Reliable Broadcast 2021/09/20 31 / 57

Message ordering Specification

Definition (Total Order)
If correct processes p and q both deliver messages m,m′, then p delivers
m before m′ if and only if q delivers m before m′

deliverp(m)→ deliverp(m
′)⇒ deliver q(m)→ deliver q(m

′)

Is this totally ordered?

m
1

p
3

p
2

p
1

m
2

m
2m

1

m
1

m
2

Alberto Montresor (UniTN) DS - Reliable Broadcast 2021/09/20 32 / 57

Message ordering Specification

Definition (Total Order)
If correct processes p and q both deliver messages m,m′, then p delivers
m before m′ if and only if q delivers m before m′

deliverp(m)→ deliverp(m
′)⇒ deliver q(m)→ deliver q(m

′)

Is this totally ordered? No!

m
1

p
3

p
2

p
1

m
2

m
2m

1

m
1

m
2

Alberto Montresor (UniTN) DS - Reliable Broadcast 2021/09/20 32 / 57

Message ordering Specification

Definition (Total Order)
If correct processes p and q both deliver messages m,m′, then p delivers
m before m′ if and only if q delivers m before m′

deliverp(m)→ deliverp(m
′)⇒ deliver q(m)→ deliver q(m

′)

Is this totally ordered?

m
1

p
3

p
2

p
1

m
2

m
2m

1

m
1

m
2

Alberto Montresor (UniTN) DS - Reliable Broadcast 2021/09/20 33 / 57

Message ordering Specification

Definition (Total Order)
If correct processes p and q both deliver messages m,m′, then p delivers
m before m′ if and only if q delivers m before m′

deliverp(m)→ deliverp(m
′)⇒ deliver q(m)→ deliver q(m

′)

Is this totally ordered? Yes!

m
1

p
3

p
2

p
1

m
2

m
2m

1

m
1

m
2

Alberto Montresor (UniTN) DS - Reliable Broadcast 2021/09/20 33 / 57

Message ordering Specification

Uniform Versions

Definition (Uniform FIFO Order)
If a process p broadcasts a message m before it broadcast a message m′, then no
correct process delivers m′ unless it has previously delivered m

broadcastp(m) → broadcastp(m
′) ⇒ deliverq(m) → deliverq(m

′)

Definition (Uniform Causal Order)
If the broadcast of a message m happens-before the broadcast of a message m′, then
no correct process delivers m′ unless it has previously delivered m

broadcastp(m) → broadcastq(m
′) ⇒ deliverr(m) → deliverr(m

′)

Definition (Uniform Total Order)
If correct processes p and q both deliver messages m,m′, then p delivers m before m′

if and only if q delivers m before m′

deliverp(m) → deliverp(m
′) ⇒ deliverq(m) → deliverq(m

′)

Alberto Montresor (UniTN) DS - Reliable Broadcast 2021/09/20 34 / 57

Message ordering A modular approach

A modular approach to Broadcast

Reliable Broadcast

FIFO Broadcast

Causal Broadcast

Atomic Broadcast

FIFO Atomic Broadcast

Causal Atomic Broadcast

FIFO Order

Causal Order

FIFO Order

Causal Order

Total Order

Total Order

Total Order

Alberto Montresor (UniTN) DS - Reliable Broadcast 2021/09/20 35 / 57

Message ordering A modular approach

A modular approach to Broadcast

Uniform
Reliable Broadcast

Uniform
FIFO Broadcast

Uniform
Causal Broadcast

Uniform
Atomic Broadcast

Uniform
FIFO Atomic Broadcast

Uniform
Causal Atomic Broadcast\

Uniform FIFO Order

Uniform Causal Order

Uniform FIFO Order

Uniform Causal Order

Uniform Total Order

Uniform Total Order

Uniform Total Order

Uniform FIFO Order

Alberto Montresor (UniTN) DS - Reliable Broadcast 2021/09/20 36 / 57

Message ordering A modular approach

Transformation

Informal definition
A broadcast transformation is an algorithm that takes a weaker
broadcast algorithm and transform it into a stronger version

Definition (Transformation)
A transformation from problem A to problem B is an algorithm TA→B

that converts any algorithm A that solves problem A into an algorithm
B that solves problem B

Definition (Preservation)
A transformation TA→B preserves property P if it converts any
algorithm for A into an algorithm that solves problem B and also
satisfies P

Alberto Montresor (UniTN) DS - Reliable Broadcast 2021/09/20 37 / 57

Message ordering A modular approach

Transformation

Properties of weakest RB must be preserved
Uniform Integrity: preserved in all transformations

No message is created
Messages are tagged to avoid re-delivery

Validity, (Uniform) Agreement:
To be proved case by case

To add Total Order:
We cannot start from a simple reliable broadcast
We need stronger assumptions

Alberto Montresor (UniTN) DS - Reliable Broadcast 2021/09/20 38 / 57

Message ordering A modular approach

Transformation

Definition (Blocking transformation)
A transformation of one broadcast algorithm into another is blocking if
the resulting broadcast algorithm has a run in which a process delays
the delivery of a message for a later time.

Example
FIFO Order

Alberto Montresor (UniTN) DS - Reliable Broadcast 2021/09/20 39 / 57

Message ordering Algorithms and proofs

FIFO Order – Algorithm

FIFO Order Transformation executed by process p
upon initialization do

Set buffer← ∅
integer[] next← new integer[1 . . . |Π|]
foreach q ∈ Π do next[q]← 1

upon F-broadcast(m) do
R-broadcast(m)

upon R-deliver(m) do
buffer← buffer ∪ {m}
while ∃m′ ∈ buffer : sender(m′) = sender(m) and

seqn(m′) = next[q] do
F-deliver(m′)
next[q]← next[q] + 1
buffer← buffer− {m′}

Alberto Montresor (UniTN) DS - Reliable Broadcast 2021/09/20 40 / 57

Message ordering Algorithms and proofs

FIFO Order – Proof

Theorem
For any process p, if nextp[q] = k then p has F-delivered the first k − 1
messages F-broadcast by q

Theorem
Suppose a correct process p R-delivers a message m from q and
F-delivers all the messages that q F-broadcast before m. Then p also
F-delivers m

Validity, (Uniform) Agreement, (Uniform) Total Order are
preserved

Uniform FIFO Order is satisfied

The transformation is blocking

Alberto Montresor (UniTN) DS - Reliable Broadcast 2021/09/20 41 / 57

Message ordering Algorithms and proofs

Causal Order - Algorithm

Two transformations:
Both based on FIFO Reliable Broadcast

One is non-blocking
Each message is tagged with “recent history”
When a message is F-delivered, all the causal messages that have
been F-delivered are locally delivered
Does this recall anything?

One blocking
Based on vector clocks

Alberto Montresor (UniTN) DS - Reliable Broadcast 2021/09/20 42 / 57

Message ordering Algorithms and proofs

Causal Order - Algorithm 1

Causal Order Transformation executed by process p
upon initialization do

Set delivered← ∅ % Messages already C-delivered
Sequence recent← 〈〉 % Messages C-delivered since last
C-broadcast

upon C-broadcast(m) do
F-broadcast(recent||m)
recent← 〈〉

upon F-deliver(〈m1, . . . ,mk〉) do
for i← 1 to k do

if not mi ∈ delivered then
delivered← delivered ∪ {mi}
recent← recent||mi

C-deliver(mi)

Alberto Montresor (UniTN) DS - Reliable Broadcast 2021/09/20 43 / 57

Message ordering Algorithms and proofs

Causal Order - Algorithm 1

m
1

p
3

p
2

p
1

m
2

m
2m

1

m
1

m
2

Alberto Montresor (UniTN) DS - Reliable Broadcast 2021/09/20 44 / 57

Message ordering Algorithms and proofs

Causal Order – Proof

Validity, (Uniform) Agreement, (Uniform) Total Order are
preserved

Uniform Causal Order is satisfied

The transformation is non-blocking

Alberto Montresor (UniTN) DS - Reliable Broadcast 2021/09/20 45 / 57

Message ordering Algorithms and proofs

Causal Order - Algorithm 2

Causal Order Transformation executed by process p
upon initialization do

Set buffer← ∅ % Messages to be delivered
integer[] VC ← {0, . . . , 0} % Vector clock

upon C-broadcast(m) do
VC [p]← VC [p] + 1
F-broadcast(〈m,VC 〉)

upon F-deliver(〈m,TS 〉) do
buffer← buffer ∪ {〈m,TS 〉〉
while ∃〈m′,TS ′〉 ∈ buffer : VC [sender(m′)] = TS ′[sender(m′)]− 1 ∧

∀s 6= sender(m′) : VC [s] ≥ TS′[s] do
C-deliver(m′)
VC [sender(m′)]← TS ′[sender(m′)]
buffer← buffer− {m}

Alberto Montresor (UniTN) DS - Reliable Broadcast 2021/09/20 46 / 57

Message ordering Algorithms and proofs

Causal Order - Algorithm 2

m
1

p
3

p
2

p
1

m
2

m
2m

1

m
1

m
2[1,0,0]

[1,1,0]

Alberto Montresor (UniTN) DS - Reliable Broadcast 2021/09/20 47 / 57

Message ordering Algorithms and proofs

Causal Order – Proof

Validity, (Uniform) Agreement, (Uniform) Total Order are
preserved

Uniform Causal Order is satisfied

The transformation is blocking

Alberto Montresor (UniTN) DS - Reliable Broadcast 2021/09/20 48 / 57

Message ordering Algorithms and proofs

A modular approach to Broadcast

(Uniform)
Reliable Broadcast

(Uniform)
FIFO Broadcast

(Uniform)
Causal Broadcast

(Uniform)
Atomic Broadcast

(Uniform) FIFO
Atomic Broadcast

(Uniform) Causal
Atomic Broadcast

(Uniform)
FIFO Order

(Uniform)
Causal Order

(Uniform)
FIFO Order

(Uniform)
Causal Order

(Uniform)
Total Order

(Uniform)
Total Order

(Uniform)
Total Order

Alberto Montresor (UniTN) DS - Reliable Broadcast 2021/09/20 49 / 57

Message ordering Atomic Broadcast

Atomic Broadcast

There are three approaches:
1 We add synchronous assumptions to our system

2 We show that the Atomic Broadcast problem is equivalent to the
Consensus problem

There is an algorithm TConsensus→AtomicBroadcast

There is an algorithm TAtomicBroadcast→Consensus

3 Through a coordinator (actual implementation, see later in group
communication)

Alberto Montresor (UniTN) DS - Reliable Broadcast 2021/09/20 50 / 57

Message ordering Atomic Broadcast

Timed Reliable Broadcast

Definition ((Uniform) Real-Time ∆-Timeliness)
There is a known constant ∆ such that if a message m is broadcast at
real-time t, then no correct (any) process delivers m after real-time
t + ∆

Definition ((Uniform) Local-Time ∆-Timeliness)
There is a known constant ∆ such that no correct (any) process delivers
m after local time TS (m) + ∆ on p’s clock, where TS (m) is the
timestamp obtained by the local clock of the sender

Note
(Uniform) Real-Time ∆-Timeliness ⇒
(Uniform) Local-Time ∆-Timeliness

Alberto Montresor (UniTN) DS - Reliable Broadcast 2021/09/20 51 / 57

Message ordering Atomic Broadcast

Atomic Broadcast, Algorithm 1

Total Order Transformation executed by process p
upon A-broadcast(m) do

T-broadcast(m)

upon T-deliver(m) do
schedule A-deliver(m) at time TS (m) + ∆

Alberto Montresor (UniTN) DS - Reliable Broadcast 2021/09/20 52 / 57

Message ordering Atomic Broadcast

Consensus

In the (Uniform) Consensus
problem, the processes propose
values and need to decide
(agree) on one of these values

p

q

rs

t

5

7

82

8

Consensus

5

55

5

Crash!

Definition (Uniform Validity)
Any value decided is a value proposed

Definition ((Uniform) Agreement)
No two correct (any) processes decide
differently

Definition (Termination)
Every correct process eventually
decides

Definition (Uniform Integrity)
Every process decides at most once

Alberto Montresor (UniTN) DS - Reliable Broadcast 2021/09/20 53 / 57

Message ordering Atomic Broadcast

From Atomic Broadcast to Consensus

Transformation executed by process p
upon initialization do

boolean decided← false

upon propose(v) do
A-broadcast(v)

upon A-deliver(v) do
if not decided then

decided← true
decide(u)

Alberto Montresor (UniTN) DS - Reliable Broadcast 2021/09/20 54 / 57

Message ordering Atomic Broadcast

From Consensus to Atomic Broadcast

Transformation executed by process p
upon initialization do

Set unordered← ∅ % Messages to be ordered
Set delivered← ∅ % Messages already delivered
boolean wait← false % true when Consensus is running
integer s← 1 % Consensus protocol identifier

upon A-broadcast(m) do
R-broadcast(m)

upon R-deliver(m) do
if not m ∈ delivered then

unordered← unordered ∪ {m}

Alberto Montresor (UniTN) DS - Reliable Broadcast 2021/09/20 55 / 57

Message ordering Atomic Broadcast

From Consensus to Atomic Broadcast

Transformation executed by process p
upon decides(S) do

unordered← unordered− S
foreach m ∈ S do

A-deliver(m) % In some deterministic order

delivered← delivered ∪ S
s← s + 1
wait← false

upon unordered 6= ∅ and not wait do
wait← true
proposes(unordered)

Alberto Montresor (UniTN) DS - Reliable Broadcast 2021/09/20 56 / 57

Message ordering Atomic Broadcast

Conclusions

Summary
Consensus and total order broadcast are equivalent problems in an
asynchronous system with crashes and Perfect Channels

Consensus can be obtained from total order broadcast

Total order broadcast can be obtained from Consensus

Problem
But in this way, we have moved the problem from Atomic Broadcast to
Consensus.
Next step: can we solve Consensus?

Alberto Montresor (UniTN) DS - Reliable Broadcast 2021/09/20 57 / 57

Reading Material

V. Hadzilacos and S. Toueg. A modular approach to fault-tolerant broadcasts
and related problems.
In S. Mullender, editor, Distributed Systems (2nd ed.). Addison-Wesley, 1993.
http://www.disi.unitn.it/~montreso/ds/papers/FTBroadcast.pdf

http://www.disi.unitn.it/~montreso/ds/papers/FTBroadcast.pdf

	Introduction
	Broadcast specifications and protocols
	Best-Effort Broadcast
	Reliable Broadcast
	Uniform Reliable Broadcast

	Message ordering
	Introduction
	Specification
	A modular approach
	Algorithms and proofs
	Atomic Broadcast

