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Abstract

A gossip protocol is a distributed communication paradigm inspired by the gossip phenomenon that can be observed
in social networks. Initially born to efficiently disseminate information, as its human counterpart, it has been later used
to solve several other problems, such as failure detection, data aggregation, distributed topology construction, resource
allocation – just to name a few. Gossip protocols tend to be used in contexts where both the scale and the dynamism
of the underlying communication network make the adoption of traditional communication protocols highly unpractical.
In this article, we first introduce a collection of gossip protocols for information diffusion, and we provide an analytical
model to study their performance with respect to speed and quality of the diffusion. We then introduce three examples of
gossip-based protocols that solve the most diverse problems, namely membership management, aggregation and overlay
topology construction.
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1 Introduction
A gossip protocol is a distributed communication paradigm inspired by both the spreading of epidemics and the gossip
phenomenon that can be observed in social networks. Initially born to efficiently disseminate information, as its human
counterpart, it has been later used to solve several other problems, such as failure detection, data aggregation, distributed
topology construction and maintenance, resource allocation – just to name a few. Gossip protocols tend to be used
in contexts where both the scale and the dynamism of the underlying communication network make the adoption of
traditional communication protocols infeasible.

The term epidemic protocol is used as a synonym for gossip protocol, because the way gossip spreads information can
be modeled as the spread of a virus in a biological community.

1.1 Historical overview
The first work to adopt the gossip and epidemic terminology was the seminal paper of Alan Demers et al. [1]; in this
paper, the problem of information dissemination in a distributed collection of database servers (part of the Xerox internal
network) has been solved using two main approaches, called anti-entropy and rumor mongering. In the former, nodes
participating in the protocol periodically exchange information with random partners and try to reconcile potentially
inconsistent copies of the replicated database; in the latter, databases updates are quickly disseminated pushing them
towards randomly selected nodes, in the hope that they have not received the updates yet. Combined together, these
approaches provide eventual consistency, a weak form of consistency that guarantees that in the absence of new updates,
all the copies of the database will eventually become equal.

Following the original paper of Demers published at the end of the 80’s [1], the 90’s have been devoted mostly to
translate the original ideas in the field of distributed reliable broadcast, with several optimizations regarding the speed
of dissemination, the amount of overhead traffic, and reliability [2, 3, 4]. Important aspects that were introduced in the
original paper but solved only several years later include the reduction of the amount of networking traffic traveling long
distances in the underlying network – a problem called spatial gossip [5], and the development of efficient flow-control
mechanisms [6].

At the beginning of years 2000s, the applicability of gossip protocols has been enormously widened: from simple in-
formation routers, nodes participating in a gossip protocol have been transformed in full-fledged computing units, capable
of modifying their own state to reflect the information they received through gossip exchanges and to send modified infor-
mation around. Using this approach, protocols have been proposed that are capable to maintain up-to-date membership
information about the state of large-scale and dynamic P2P network [7], to perform failure detection [8], to implement
garbage collection [9], to compute aggregate information [10], to self-organize complex overlay topologies [11], and to
allocate resources [12].

The original information dissemination problem is extensively discussed in Section 2; after that, a general scheme for
extending the applicability of gossip is presented in Section 3, followed by three examples of its application, in the fields
of membership management (Section 4), aggregation (Section 5) and topology construction (Section 6).
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1.2 Technological adoption
It is now possible to find implementations of gossip protocols in several distributed systems and architectures, sometimes
disguised under different terminology.

The first example may be considered the NNTP protocol [13], whose specification predates, by one year, the definition
of gossip protocols themselves. NNTP was the protocol adopted in Usenet, in which posts were exchanged among nodes
through communication channels established temporarily using phone calls.

Modern peer-to-peer systems are often based on periodic, random exchanges of information among peers. The fore-
most example is the file-sharing application BitTorrent [14], in which peers mutually exchange chunks of files over a
an overlay network that is randomly mutated. Several examples of peer-to-peer video streaming services have adopted
gossip-based mechanisms to disseminate live video streams, the most important of which is the Chinese PPTV, based on
the PPLive protocol [15].

Modern NoSQL architectures [16], where scalability has been one of the main drivers, have abandoned strong consis-
tency models like linearizability and serializability in favor of the eventual consistency model offered by gossip protocols.
Examples of such systems include key-value stores like Riak [17] and wide-column stores like Cassandra [18].

Apart from open-source NoSQL products, several sources (although often covered by corporate secrecy) seem to
indicate the gossip paradigm is widely adopted even inside modern data centers maintained by cloud providers. For
example, Amazon has been reported to use an anti-entropy gossip protocol to maintain a fully-connected overlay network
inside their datacenters [19].

1.3 The gossip philosophy
With the extension of the areas and the problems where the gossip paradigm has been applied, the important question
of what is exactly a gossip protocol has been raised [20, 21, 22]. Key aspects that have been identified are the repeated
probabilistic exchange of information between two members. Probabilistic means that nodes select their communication
partners in a non-deterministic way, choosing from a collection of potential candidates taken from the full set of partic-
ipating nodes. Repetition is also crucial: in principle, gossip is an endless process, although very often the process may
be activated when needed and stopped when the system has converged to the desired state. The mutual exchange between
two nodes is finally another important aspect: nodes are supposed to provide as well as to consume information to and
from their partners.

In general, gossip protocols are the right choice when reliability in spite of high level of failures and scalability
are major concerns. Real deployments that include literally millions of nodes exchanging information using the gossip
approach are not uncommon; at the same time, systems like that are subject to enormous dynamism in their composition,
with large percentage of the entire system joining or leaving at any time.

2 Information dissemination
The most natural application of gossip (or epidemics) in distributed systems is the diffusion of information to a collection
of nodes. The information to be spread may assume several forms: messages could be broadcast to all nodes, updates
should be applied to all the copies of a replicated database, chunks of a live streaming video must be delivered to all
connected clients. Depending on the nature of information, several different techniques and optimizations may be applied,
but they all boil down to the same basic concept: some nodes are aware of a piece of information and some are not, and
the nodes that have it should cooperate in order to diffuse these pieces to those that do not.

We thus describe the problem first from the point of view of a single variable that is replicated among all nodes,
providing algorithmic abstractions to update it on all nodes. In such simple settings, the performance of the diffusion
problem can be evaluated analytically. Later, we will extend the description by considering multiple, concurrent updates.
The following presentation has been influenced by the original paper of Demers et al. [1], by the subsequent theoretical
papers on epidemic spreading by Pittel et al. [23] and Karp et al. [24], and finally by the work of Jelasity [25].

2.1 Problem definition
We consider a system composed of fixed collection P of nodes, which is known to all nodes. We will later relax this
assumption. Nodes may communicate with each other by exchanging messages. Nodes may fail and messages can be
lost, although in the analytical model we will not consider this possibility.

Each node maintains a single variable value whose content is replicated among all nodes. Nodes receive updates to
this variable, either by exchanging messages between each other, or by means of an external mechanism like a primitive
invocation or a client request. Updates completely overwrite the content of the variable. We will later extend this model
by considering more complex data structures.

In order to deal with the possibility of multiple updates, timestamps are associated to them. Field value.time returns
the timestamp of the latest update known to the node, taken from a totally ordered set of timestamps T . The implementa-
tion of T depends on the nature of the replicated variable and on how it is updated; for example, if only one entity may
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update the variable, timestamps can be as simple as a sequence number; if concurrent updates are performed, either logical
or synchronized clocks may be required. We assume that whenever value is updated, a new timestamp is generated and
associated to value.time .

The goal is to spread the updates to all the nodes; more precisely, if no new updates are injected after some time t,
eventually all correct nodes will have the same copy of the variable. This requirement is called eventual consistency and
is a weak consistency policy.

We adopt a terminology inspired from epidemiology. With respect to the most recent update, a node can be in one of
three states:

• Susceptible (S): the node does not know about the update;

• Infected (I): the node knows the update and is actively spreading it;

• Removed (R): the node knows the update, but it does not participate in the spreading any more.

It is easy to see the parallelism with the spreading of a biological virus: a susceptible patient has not contracted the virus
(yet); an infected one is carrying the virus and can infect other patients; finally, a patient is removed when is not contagious
any more. The goal is to obtain a pandemic.

The three populations (or compartments) described above forms the basis of the so-called compartmental models
of epidemiology, i.e. mathematical frameworks aimed at understanding the complex dynamics of these systems. Two
models will be discussed here, namely the SI model (that only includes susceptible and infected compartments) and the
SIR model (that includes all of them). Epidemiologists have studied several other models including additional states, but
these go beyond the applicability in computer science.

2.2 The SI model, or simple epidemics
The first gossip protocol considered by Demers et al. is the SI model, also called simple epidemics or anti-entropy. Anti-
entropy is an unfortunate name that only describes that the execution of the protocol is aimed at reducing the total disorder,
or entropy, among the nodes.

Three styles of anti-entropy protocols have been proposed, shown in Algorithm 1:

• in the push style, nodes periodically send (push) the current content of variable value to a node selected randomly
from P ;

• in the pull style, nodes periodically ask (pull) new updates of the replicated variable from other, randomly selected
nodes;

• in the push-pull style, push and pull are combined together.

The execution is divided in a set of consecutive rounds of length ∆ time units, represented by the on timeout code
blocks at the beginning of each version, ended by a set timeout operation at the end. We use the term round also to
indicate the collective execution of a timeout block by all the nodes in a time interval ∆ time units long.

Apart from the timeout block, actions are executed whenever a message is received. Actions listed in each code block
are executed atomically.

In the push style, the content of the variable is sent to a randomly selected node through a PUSH message, irrespective
of whether this node has already received the update or not. When the update is received, its timestamp is compared with
the local one; if the update is newer, it is copied in value .

In the pull style, the latest timestamp known to p is sent to a randomly selected peer through a PULL message. When
a PULL message is received, the node compares it with the local timestamp, and if the local timestamp is newer, a REPLY
message is sent with the content of value . When the REPLY message is received, the timestamp of the received value is
compared with the local one again, because other updates may be received in the period between the PULL and the REPLY.

In the push-pull style, the content of value is sent by p to a randomly selected peer q through a PUSHPULL message.
When such message is received, the timestamps are compared: if the received timestamp is newer, the update is copied
on the local variable; if the received timestamp is older, a REPLY message is sent to the sender of PUSHPULL; otherwise,
if they are equal, the content is ignored.

For the purpose of the analysis, we will assume that (i) nodes do not fail; (ii) communication is reliable; (iii) consecu-
tive rounds are synchronized, i.e. they start at the same time on all nodes; (iv) all the messages sent during the execution
of a round (PUSH, PULL, PUSHPULL and their potential REPLY) arrive before the next round starts, i.e. rounds are not
intermixed. The theoretical derivations obtained under these assumptions give a fair indicator of the quantitative behavior
of the gossip protocol in their absence.
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Algorithm 1: Anti-entropy protocol executed by process p

% Push version

on timeout
q ← random(P )
send 〈PUSH, value〉 to q
set timeout ∆

on receive 〈PUSH, v〉
if value.time < v.time then

value ← v

% Pull version

on timeout
q ← random(P )
send 〈PULL, p, value.time〉 to q
set timeout ∆

on receive 〈PULL, q, t〉
if value.time > t then

send 〈REPLY, value〉 to q

on receive 〈REPLY, v〉
if value.time < v.time then

value ← v

% Push-pull version

on timeout
q ← random(P )
send 〈PUSHPULL, p, value〉 to q
set timeout ∆

on receive 〈PUSHPULL, q, v〉
if value.time < v.time then

value ← v
else if value.time > v.time then

send 〈REPLY, value〉 to q

on receive 〈REPLY, v〉
if value.time < v.time then

value ← v

Push style We will start by analyzing the push model with regards to the spreading of a single (the latest) update.
Let n = |P | the total number of nodes and let the consecutive rounds be numbered starting from 1. Let st and it
be the proportion of nodes belonging to the susceptible and the infected compartments after the execution of t rounds,
respectively. Clearly, st = 1 − it. At the beginning, before executing any rounds, i0 = 1/n and s0 = 1 − 1/n, as
only one node has obtained the update (through external means). We can compute the expectation of st+1 as a function
of st, provided that the randomly selected node is chosen uniformly at each node, independently from other nodes and
independently of past decisions. In such conditions, we have:

E(st+1) = st

(
1− 1

n

)n(1−st)

≈ ste−(1−st) (1)

where the approximation holds for large n. In other words, a node is susceptible at time t+ 1 if it was susceptible at time
t (the term st) and if it is not selected among all possible nodes (the probability 1 − 1/n) by any of the infected nodes
(which are n(1− st)).

Under this model, eventually all the nodes will become infected, as the expected proportion of susceptible nodes tends
to zero. Pittel et al. [23] estimated that the expected number rounds T (n) for a system composed of n nodes to become
completely infected is:

T (n) = log2 n+ lnn+O(1) = O(log n) (2)

as n tends to infinity. While the proof is complex, the formula can be intuitively explained as follows. The execution of
the protocol can be divided in three phases. During the initial one, most of the nodes are susceptible, so infected nodes
will only be able to contact susceptible ones and it will double after each round, explaining the log2 n term. In the final
phase, few susceptible nodes are left, and E(st+1) will be approximated by ste−1, leading to the term lnn. The ”middle”
phase between the initial and the final phases can be shown to last only a constant number of rounds.

Pull style Starting again from i0 = 1/n and s0 = 1− 1/n, the expected number of susceptible nodes at round t+ 1 can
be evaluated as follows:

E(st+1) = st · st = s2t (3)

In other words, a node is susceptible at time t + 1 if it was susceptible at time t and it contacts another susceptible
node during its pull request, leading to the second term st. At the beginning, the first infected node may have to wait
some rounds before infecting anybody else. But eventually – in O(log n) rounds w.h.p. – half of the nodes will be
infected. After st becomes smaller than 1/2, the expected number of rounds to complete the process is in the order of
O(log log n) [24].

Figure 1 shows the probability of remaining in the susceptible state after a given number of rounds, shown on the
x-axis; in other words, the probability of not being reached by the update. It is immediate to see the superiority of pull
over push.

Push-pull style Clearly, a combination of the two approaches would retain the benefit of both, at the cost of an increased
communication overhead. This style is called push-pull. Although faster in practice, the expected number of rounds
needed to reach all nodes is still O(log n) [24].
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Figure 1: Probability for a node to remain in the susceptible state after t rounds, for both push and pull protocols.

2.3 The SIR model, or complex epidemics
The SI model is designed to run forever, and thus is appropriate in systems where a continuous flux of updates is generated.
In many scenarios, however, updates are rare; to deal with these cases, the SIR model, also called complex epidemics or
rumor mongering, has been introduced. This model includes a third state, called removed, that describes a node that has
received an update but it is not actively distributing it anymore.

The SIR model is based on the push style, although pull could be used as well. As soon as a new update is available at
a single infected node, the update is pushed towards other random nodes. Susceptible nodes receiving the update become
infected, and start pushing the update as well. Eventually, the protocol terminates, when all susceptible and infected nodes
have switched to the removed state.

Reaching an agreement on termination among an extremely large number of nodes through a consensus protocol
would be prohibitively costly; on the other hand, deciding to terminate based on fixed thresholds relative to the age of the
messages, irrespective of the size of the network, is difficult. Instead, termination is decided locally by each node, based
on the history of local exchanges it has performed so far.

In the original paper [1], the decision to transition to the removed state is influenced by the following factors:

• When: the evaluation on whether to transition to the removed state can be performed at each round (blind), or only
after having received a message that confirms that the exchange partner was already aware of the update (feedback).

• How: the transition can be performed after a fixed number k of rounds in which it has been evaluated (counter), or
with a given probability 1/k at each round (coin).

The combination of these factors leads to four different variants: blind/counter, blind/coin, feedback/counter or feed-
back/coin. Algorithm 2 shows two of these combinations (blind/coin and feedback/counter), from which the other variants
may be derived.

The evaluation of the performance of these variants is based on the following figures of merit:

• Residue. The number of nodes that are still susceptible at the end of the protocol. This value, denoted as s∗, may
be different from zero because the protocols may turn all the infected nodes into removed ones before being able to
spread the updates to all nodes.

• Total traffic. While some nodes will send more updates than others, it is convenient to measure the total traffic m
generated by the protocol as the total amount of updates sent by all nodes. To understand the average load on single
nodes, sometimes is useful to measure m/n, i.e. the average number of updates sent by nodes.

• Delay. The average delay tavg is the difference between the time of initial injection of the update and its arrival
at a given node, averaged over all nodes. The maximum delay tmax is the difference between the time of initial
injection and the time when the last node has received the update. In both cases, time can be measured in number
of rounds.

It is possible to evaluate s∗ analytically using differential equations, a standard technique in epidemiology [26]; we
show here the analysis for the case feedback/coin. Let i, s and r be the fraction of nodes infected, susceptible and removed
respectively, so that i+ s+ r = 1. The analysis is based on the following differential equations:

ds

dt
= −si (4)

di

dt
= +si− 1

k
(1− s)i (5)
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Algorithm 2: Rumor-mongering protocol executed by process p

% Blind/coin variant

on update(v)
state ← INFECTED
value ← v
set timeout ∆

on timeout
if state = INFECTED then

q ← random(P )
send 〈PUSH, value〉 to q
if tossCoin(1/k) then

state ← REMOVED

set timeout ∆

on receive 〈PUSH, v〉
if state = SUSCEPTIBLE then

value ← v
state = INFECTED

% Feedback/counter variant

on update(v)
value ← v
state ← INFECTED
counter ← k
set timeout ∆

on timeout
if state = INFECTED then

q ← random(P )
send 〈PUSH, p, value〉 to q
set timeout ∆

on receive 〈PUSH, q, v〉
send 〈REPLY, state〉 to q
if state = SUSCEPTIBLE then

value ← v
state = INFECTED
counter ← k

on receive 〈REPLY, s〉
if s 6= SUSCEPTIBLE then

counter ← counter − 1
if counter = 0 then

state ← REMOVED

The first one suggests that susceptible nodes will be infected at a rate that depends on si, i.e. on the fraction of
susceptible nodes to which infected nodes are actively pushing. The second one has an additional term for loss due to
infected nodes that are becoming removed with probability 1/k after having contacted non-susceptible nodes.

The system of equations is solved by taking their ratio to eliminate t. Let us solve for i as a function of s:

ds

di
= −k + 1

k
+

1

ks
, (6)

which yields

i(s) = −k + 1

k
s+

1

k
ln s+ c, (7)

where c is the constant of integration, that can be determined using the initial condition: i(1− 1/n) = 1/n. For large n,
1/n goes to zero, giving

c =
k + 1

k
(8)

and a solution
i(s) =

k + 1

k
(1− s) +

1

k
ln s. (9)

We are now interested in the value s∗ in which i(s∗) = 0, i.e. the time in which there are no infected nodes and thus the
protocol has terminated. The residue s∗ can be computed as follows:

s∗ = e−(k+1)(1−s∗) (10)

While the equation is implicit in s∗, it shows that the residue decreases exponentially with k, meaning that increasing k
is an effective way to make sure that everybody get the update. For example, already with k = 1, the residue is as low as
20%, while with k = 5 only 0.24% of the nodes will miss the update.

When discussing total traffic, a surprising observations applies to all four variants. Since each infected node selects
its partner independently at random from the entire set V , each push message sent has the same probability 1/n to hit that
particular node, irrespective of how nodes switch to the removed state. This means that the probability of a given node to
stay susceptible after m update message are sent can be computed by:

s(m) =

(
1− 1

n

)m

(11)

which can be approximated as s(m) ≈ e−m/n in the limit of large n. Substituting the desired value of s∗, we can easily
compute the total number of messages that need to be sent: m ≈ −n ln s∗. For example, if we set the residue s∗ to 1/n,
i.e. we allow only for a single node node to miss the update, then we need m ≈ n lnn messages; in the blind/counter
variant, this means that k has to be set equal to lnn.

Based on this observation, the only parameter that distinguishes the four variants is delay; among them, counter and
feedback provides the shortest delay, with counter playing a more significant role than feedback on both tavg and tmax ,
while blind-coin provides the worst delay (see Table 1).
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Blind/coin
Coin Residue Avg. Traffic Delay
k s m/n tavg tmax

1 0.960 0.04 19.0 38.0
2 0.205 1.59 17.0 33.0
3 0.060 2.82 15.0 32.0
4 0.021 3.91 14.1 32.0
5 0.008 4.95 13.8 32.0

Feedback/counter
Counter Residue Avg. Traffic Delay

k s m/n tavg tmax

1 0.176 1.74 11.0 16.8
2 0.037 3.30 12.1 16.9
3 0.011 4.53 12.5 17.4
4 0.004 5.64 12.7 17.5
5 0.001 6.68 12.8 17.7

Table 1: Performance of the blind/coin and feedback/counter variants of rumor mongering illustrated in Algorithm 2 [1].

2.4 Implementation details for information dissemination
When translating the single-update abstract protocols discussed in the previous sections into practical ones, several im-
plementation details need to be considered. We discuss here some of the most important ones.

Mixing anti-entropy and rumor mongering The first aspect to be considered is that the rumor mongering and the anti-
entropy variants of epidemic protocols can be profitably run together. Rumor mongering protocols can spread updates
rapidly with very low network traffic. Unfortunately, some of the nodes may fail to receive the updates, meaning that the
replicated database would end up into an inconsistent state and stay there forever. While the probability of such event can
be made arbitrarily low, it will never be zero. To avoid this problem, the anti-entropy protocol can be run on top of rumor
mongering, less frequently, to reconciliate the state of database replicas. In this way, we get a rapid spreading of updates
with low overhead, and an eventual consistency guarantee, again with low overhead due to the reduced gossip frequency.

Beyond single values or updates For the purpose of analysis and protocol description, the original gossip protocols
have been described from the point of view of a single variable (anti-entropy) or a single update to be disseminated (rumor
mongering) [1]. Clearly, this is not the case in real systems.

In the case of anti-entropy, the problem is strongly dependent on the kind of database that is replicated. Several modern
systems based on gossip are key-value stores [18, 19], and this was also the case for the Xerox database [1]. Clearly, the
option of exchanging the entire content of the database is not a viable option, also because most of the replicas are already
identical. The first solution that comes to mind is to transform the push-, pull-, and push-pull exchanges into multi-stage
reconciliation protocols, where checksums are exchanged first and only if they differ, the entire database is exchanged.
This is not a satisfactory idea either, because even if they need reconciliation, they are probably already mostly identical.
A more sophisticated approach defines a time window τ large enough that updates are expected to reach all nodes within
time τ . Each node maintains a recent update lists containing all the updates whose age is smaller than τ , and update lists
are exchanged until checksums show that the databases have been reconciled.

While this approach could be a viable solution, it fails to deliver good performances in systems overloaded by a high
rate of updates. Recently, a novel reconciliation protocol called Scuttlebutt has been introduced [6], and it has been
applied in Cassandra [18]. In a nutshell, Scuttlebutt aggressively selects updates that have not been made obsolete by later
updates, but without starving updates that are not yet obsolete.

In the case of rumor-mongering, the problem has been reduced to the problem of set reconciliations (with sets contain-
ing the IDs of the updates that have been already received), and they have been treated extensively by Byers, Considine
and Miztenmacher [27] and Minsky, Trachtenberg and Zippel [28].

Flow control In all the models above, it has been implicitly assumed that the communication channels have sufficient
bandwidth to transmit all gossip messages, even in the presence of concurrent updates. Clearly, this assumption has to
be revisited under heavy load. The problem was originally recognized in the Demers’ paper [1] in terms of connection
limits; in other words, nodes may limit the maximum number of exchanges that are accepted/performed during one
round. It has been noted that under extremely low connection limits (e.g., 1-2 connections per round), the pull version
gets significantly worse, and, paradoxically, push get significantly better. Several papers have appeared after that, with
the goal of optimizing the throughput of probabilistic broadcast protocols based on gossip [29, 2]. More recently, the
Scuttlebutt protocol [6] contains specific features for flow control. The goal is to adaptively determine the maximum rate
at which a participant can submit updates without creating a backlog of updates. Missing a global oversight, the flow
control mechanism has to be completely decentralized. Using a form of decentralized aggregation (see Section 5), nodes
may compute the average update rate and adapt their sending behavior to such value.

2.5 Dealing with failures
Failures have not been discussed so far. The reason for this is that they have very little effect on the behavior of gossip,
apart from slowing down the diffusion process. Message losses may result in void rounds (rounds with no exchanges) for
some of the nodes. Crashed nodes leave the system and do not participate in the protocol any more; other nodes keep
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exchanging messages, occasionally randomly selecting nodes that have crashed. If the percentage of crashed nodes is
large, many gossip exchanges are wasted and the protocol could slow down considerably. This has raised the issue of
keeping the membership list up-to-date, a problem which is discussed in the next sections.

3 Beyond dissemination
Surprisingly, the gossip paradigm can be applied to much more than just information dissemination. When spreading
messages, gossip nodes act just as forwarders: they receive messages and they take local decisions about whether to keep
spreading them and to which nodes. The key observation here is that nodes may act as full-fledged information processors:
they may hold some potentially complex state, they may update the local state based on the information which is received,
and they may modify the information which is sent around.

Several problems have been solved in this way. Gossip has been used to maintain up-to-date membership informa-
tion about the state of large-scale and dynamic P2P network [7], to perform failure detection [8], to implement garbage
collection [9], to compute aggregate information [10], to self-organize complex overlay topologies [11], to allocate re-
sources [12] and for distributed machine learning [30]. The large body of research work in some of these areas – namely
membership management and aggregation – have been summarized in survey papers [7, 31].

In the rest of the paper, we expose three of these protocols following a generic solution scheme that has emerged over
the years, based on the push-pull style. The scheme is shown in Algorithm 3.

Algorithm 3: General scheme executed by p:

on initialization
stateis initialized
set timeout ∆

on timeout
q ← selectNeighbor()
msg ← prepareRequest(state, q)
send 〈REQUEST,msg , p〉 to q
set timeout ∆

on receive 〈REQUEST, req , q〉
rep ← prepareReply(state, req , q)
send 〈REPLY, rep, p〉 to q
state ← mergeRequest(state, req , q)

on receive 〈REPLY, rep, q〉
state ← mergeReply(state, rep, q)

The protocol can be described as follows:

• The local state is initialized in a protocol-dependent way, and a timeout is set up to start the periodic execution of
push-pull rounds.

• Every ∆ time units, each node sends a digest of its current state in a REQUEST message to a node q selected through
the selectNeighbor() primitive. The digest is extracted from the current state through function prepareRequest()
and may be specifically addressed to the selected node q, which is passed as input to the primitive.

• Upon receipt of a REQUEST message from a process q, node p generates a reply through function prepareReply()
and sends a REPLY message back to q. prepareReply() may be affected by the content of the request and its sender,
and thus it takes both these parameters as input. The local state is updated through function mergeRequest(), that
takes the local state plus the received digest as input.

• Finally, when receiving a REPLY message, the local state is updated through the mergeReply() function, which
again takes the received digest as input.

By customizing the primitives selectNeighbor(), prepareRequest(), prepareReply(), mergeRequest() and mergeReply(),
different problems can be solved, as demonstrated in the following sections.

4 Membership management
Soon after the development of the first gossip protocols [32], it became immediately clear that the problem of maintaining
the list of nodes participating in the protocol is a dissemination problem by itself. In the original Xerox scenario, the
complete membership list was sent to all nodes whenever an update was needed. The list was relatively small (several
hundred of machines) and although not specified in the original paper, it was probably fairly static.

In modern systems, such as peer-to-peer networks and very large datacenters, the diffusion of the membership list
presents two important issues: scale and dynamism. The list may comprise several thousand of machines; furthermore,
because of failures, it may need to be updated continuously, particularly if the system is subject to churn (nodes joining
and leaving at their will). The original solution of keeping all the nodes up-to-date cannot be practiced any more.
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4.1 Problem statement
An important observation is that nodes do not need the complete membership list to randomly select a partner to exchange
information with; in fact, nodes actually need just a sample of such list, selected uniformly at random. This sample is
called partial view, it could be (actually, it should be) different at each node, and it must be taken from a reasonably
up-to-date version of the membership list. The problem of providing nodes with such up-to-date partial views is called
membership management or peer sampling.

Modern gossip protocols are thus typically based upon a peer sampling service, that provides them a getPeer() primi-
tive that returns a single randomly selected peer. Not surprisingly, it is possible to implement such important component
of gossip-based systems through gossip.

4.2 Algorithm
The first solution to deal with the problem of dynamic membership through gossip has been proposed by van Renesse et
al. [8], who proposed a gossip failure detection service in 1998. The first system to properly define the membership prob-
lem, however, was LBCast [3] in 2003, followed by Newscast [33] and Cyclon [34]. A generic framework encompassing
most of the previous solutions is given in [7].

We introduce here Newscast [33], modified to fit into the generic scheme proposed in Section 3. The local state
maintained at each node is a partial view containing c node descriptors, where a descriptor is formed by a pair (node
address, timestamp). The address is used to communicate with the node, while the timestamp represents the age of the
descriptor itself, and could be implemented with a counter that is increased after each round.

The primitives listed in Algorithm 3 are customized as follows:

• Primitive selectNeighbor() returns a random node taken from the partial view:

selectNeighbor()→ random(state)

where random() returns a random element from a set.

• Primitives prepareRequest() and prepareReply() returns the entire partial view, plus a fresh identifier representing
the local node p:

prepareRequest(state)→ state ∪ {(p, now()}
prepareReply(state, req , q)→ state ∪ {(p, now()}

where now() returns a new timestamp. In other words, at most c+ 1 descriptors are sent in each message.

• Primitives mergeRequest() and mergeReply() merge the c descriptors contained in the local view and the c + 1
received with the message; from this union, the c freshest descriptors (in timestamp order) are extracted through
function extractFreshest():

mergeRequest(state, req , q)→ extractFreshest(state ∪ req)

mergeReply(state, rep, q)→ extractFreshest(state ∪ rep)

Ties are solved by randomly selections.

In order to join the system, a node p must discover the address of at least one node q already present in the network.
At that point, p may start an exchange with q, obtaining its first partial view. The fresh descriptor of p is added to the view
of q. From then onwards, descriptors are continuously shuffled between nodes through the random selection of partners,
and old descriptors are removed from the system thanks to the selection of fresh descriptors. A node leaving the system
(or crashing, for that matter) is not required to perform any special action: it stops injecting fresh identifiers of itself in
the system, and it will be quickly forgotten by all the other nodes.

4.3 Experimental results
The overlay topology that is obtained by running this protocol should be as random as possible. Figures 2a and 2b show
two key figures of merit that characterize the obtained topology: average path length and clustering coefficient. The
average path length is extremely low, grows logarithmically with the network size and it is in line with the expected
value in a random network. The clustering coefficient is larger than the expected value in a random network, and this is
explained by the fact that after each exchange, two nodes have the same partial view.

From the point of view of the ability to self-clean the network, the expected number of rounds needed to forget a
descriptor belonging to a node that has crashed or leaved is logarithmic in the size of the partial view, c; this is because
after each exchange, the node doubles its knowledge related to descriptors having the same age, and the obsolete descriptor
quickly become superseded by more than c other descriptors and thus is expelled from the system.
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all possible edges [21]. In other words, if a node has k neighbors, and the subgraph induced
by these neighbors has m edges, then the clustering coeffi cient is 2m/k(k − 1) since there
could be at most k(k − 1)/2 edges. The clustering coeffi cient of a graph is the average of
the clustering coeffi cients of its nodes. For comparison, in a random graph where each pair
of nodes is connected with probability 2c/n, the clustering coeffi cient is exactly 2c/n. This is
much smaller than the values shown, while in such a random graph the average degree is 2c,
approximately the same as in the undirected newscast graphs.
The large clustering coeffi cient is fortunately not problematic because the average path length
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all possible edges [21]. In other words, if a node has k neighbors, and the subgraph induced
by these neighbors has m edges, then the clustering coeffi cient is 2m/k(k − 1) since there
could be at most k(k − 1)/2 edges. The clustering coeffi cient of a graph is the average of
the clustering coeffi cients of its nodes. For comparison, in a random graph where each pair
of nodes is connected with probability 2c/n, the clustering coeffi cient is exactly 2c/n. This is
much smaller than the values shown, while in such a random graph the average degree is 2c,
approximately the same as in the undirected newscast graphs.
The large clustering coeffi cient is fortunately not problematic because the average path length

(b) Clustering coefficient.

Figure 2: Average path length and clustering coefficient as a function of networks size and partial view size c [7].

Related to communication costs, each exchange requires to send and receive c+ 1 descriptors; in large networks, each
node actively starts one exchange and may participate in Poisson(1) exchanges per round, in the limit of large networks.
Given a round length in the order of seconds and few bytes to store a descriptor, the bandwidth cost associated to this
protocol are in the order of few hundred bytes per second.

4.4 Dealing with failures
One important property of an overlay network is robustness to random node removal. Figure 3 shows the size of the
largest connected component in the graph that is left when a given percentage of nodes is removed, starting from an initial
size of 100.000 nodes. It can be seen that with a partial view size of 80, practically all the remaining nodes are included in
it. Experiments shows that the first small component starts to disconnect from this large component only after removing
a large number of nodes; on average, 68%, 83% and 94% of the nodes in the case of partial view sizes of 20, 40 and 80,
respectively. 12
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is small. This means that information dissemination is still effi cient because an arbitrary pair
of nodes are separated only by a few links. Furthermore, in Section VI we will show that from
the point of view of the applications presented here the newscast graph is a suffi ciently good
approximation of a random graph.

C. Robustness
One important property of a communication network is robustness to random node removal.

As before, we examine the undirected version of the communication graph. Figure 7 shows
how the newscast network reacts to random node removal. It can be seen that with a cache
size of 80 practically all the remaining nodes are connected.
Even though it can be seen that most of the network remains connected forming one large

connected component, it is not clear from the fi gure when the fi rst small components start
to disconnect from this large component. For cache sizes 20, 40 and 80 this happens after
removing 68%, 83% and 94% of the nodes, respectively.

D. Communication Costs
Let us begin with the global communication costs. The cycle length, ∆T , defi nes the wall

clock time of one newscast cycle. The communication cost of one cycle for the overall system
depends on the cache size c. In each ∆T time units each correspondent initiates exactly one
information exchange session which involves the transfer of 2c cache entries. The size of a
cache entry can be seen from Figure 3. It has a fi xed-sized component and a news item, which
is application dependent. In the case of aggregation, a news item will generally be either empty
or a single floating point number. Clearly, the global communication costs of one cycle grows
linearly with the network size, but stays constant from the perspective of a single node.

Figure 3: Size of the largest connected component after the random removal of a variable number of nodes. Initial network
size is 100.000 nodes [7].

5 Aggregation
Distributed aggregation is a common name for a set of functions that provide a summary of some global system property.
In other words, they allow local access to global information in order to simplify the task of controlling, monitoring and
optimizing distributed applications. Examples of aggregation applications include the computation of network size, total
free storage, maximum load, average uptime, location and intensity of hotspots, etc.

While it is obviously possible (and often desirable) to compute such functions in a centralized way, the gossip paradigm
offers an alternative solution which is completely decentralized and does not present any single point of failure or bottle-
neck, demonstrating once again its enormous potentiality.
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The first proposal to adopt gossip to perform aggregation was Astrolabe [35], where aggregation was used to monitor
distributed applications. Astrolabe, however, was a complex system mixing hierarchical techniques with epidemic proto-
cols. The first protocols completely based on gossip have been proposed by Kempe et al. [36], based on the push style.
Since then, several protocols have been proposed; we propose here a collection of simple protocols based on the push-pull
style [10]. More recently, flow-updating protocols have been proposed [37, 38], overcoming the limitations from the fault
tolerance point of view.

Section 5.1 illustrates how to perform average aggregation, i.e. how to compute an average over a set of values dis-
tributed among a collection of nodes. Section 5.3 shows how the basic average protocol can be extended to compute
minimum/maximum, counting, sum, variance, top-k ranking, distribution estimation, etc. Section 5.4 discusses imple-
mentation details of aggregation protocols, such as the problem of termination and how failures may affect the global
computation.

5.1 Problem definition
Consider a collection of nodes. Nodes have access to a peer sampling protocol that provides them with random samples
of the entire population of nodes, accessed through a getPeer() primitive that returns a random node among the ones
participating in the protocol. Nodes may communicate with each other by exchanging messages. Nodes may fail and
messages can be lost, although in the analytical model we will not consider this possibility.

Each nodes stores a single numerical value; the goal is to compute the average of all values and distribute it to all
nodes. To reach this goal, each node maintains an estimate of the average, which is updated through repeated gossip
exchanges with the other participants until the estimates stored by all nodes have converged enough.

5.2 Algorithm
The solution proposed here is based on the general scheme discussed in Section 3, customized as follows. First of all, the
local state is represented by a single numerical variable representing the current estimate of the average aggregate. It is
initialized with the numerical value known to p.

selectNeighbor() returns a random node as obtained by calling the getPeer() method of the underlying peer sampling
service. In the original paper [10], the rest of the primitives were customized as follows:

prepareRequest(state, q)→ state (12)
prepareReply(state, req , q)→ state (13)

mergeRequest(state, req , q)→ (state + req)/2 (14)
mergeReply(state, rep, q)→ (state + rep)/2 (15)

In other words, the primitives prepareRequest() and prepareReply() just return the current estimate, while primitives
mergeRequest() and mergeReply() compute a simple local average between the local state and the message received from
the exchange partner.

After each exchange, the sum of the two local estimates remains unchanged, since the operations simply redistribute
the initial sum equally among the two nodes, under the assumption that exchanges are performed atomically. So, the
operation does not change the global average but it decreases the variance over the set of all estimates in the system. It is
easy to see that the variance tends to zero, that is, the value at each node will converge to the true global average, as long
as the network of nodes is not partitioned into disjoint clusters.

Theoretical results on the speed of convergence have been formally proved [10]. Let σ2(t) be the variance computed
over all the estimates after the execution of t gossip rounds by all nodes. It is possible to prove that:

E[σ2(t+ 1)] = ρ · σ2(t) (16)

where ρ = 1
2
√
e
≈ 0.3032. In other words, the expected variance after t + 1 rounds corresponds to the variance after t

rounds, reduced by a constant convergence factor ρ, meaning that variance is expected to be reduced by a factor of ρt

after t rounds. Particularly interesting is the fact that this result is independent of the size of the network, although the
initial variance and the desired variance may be influenced by the size.

The proof is based on strong synchrony assumptions, but experimental analysis shows that the result holds even in
asynchronous distributed systems [10], as illustrated in Figure 4.

Nevertheless, in the original algorithm, concurrent (non-atomic) gossip exchanges may interfere with each other: a
node p may initiate an exchange with a partner q, and before receiving a reply, may receive a request from another node
r. If this request is accepted and replied, the sum of the estimates stored by the three nodes after the two exchanges will
differ from the sum before. In fact, let ep, eq and er be the estimates at p, q and r before the exchanges, respectively; after
the exchanges, q will hold ep+eq

2 ; r will hold ep+er
2 ; and p will hold

( ep+er
2 + eq

)
/2; the sum of these values is equal to

5ep+4eq+3er
4 , which is different from ep + eq + er.
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While refusing the request from r is an acceptable solution to this problem, that has been adopted in the original aggre-
gation paper [10], it has been later shown that it is possible to avoid this problem by adopting the following customizations
of the prepare/merge functions [39]:

prepareRequest(state, q)→ state (17)
prepareReply(state, req , q)→ state − (state + req)/2 = d (18)

mergeRequest(state, req , q)→ state − d (19)
mergeReply(state, d, q)→ state + d (20)

In this way, each concurrent exchange is performed by adding and subtracting the same quantity to both the initiator
of the exchange and its partner, allowing concurrent exchanges to overlap each other at no risk.

It is possible to show that if primitive getPeer() provides nodes selected sufficiently at random, the number of ex-
changes for each node during a round can be described by the random variable 1 + Poisson(1). Thus, on average, two
exchanges per round are executed by each node (one initiated by the node and the other one coming from another node),
with a very low variance.

5.3 Other aggregation functions
It is easy to extend the above approach to other aggregate functions:

• Computing the minimum and the maximum of all values is straightforward: methods prepareRequest() and prepareReply()
just return the local state, while mergeRequest() and mergeReply() compute the minimum or maximum between
the two values.

• It is possible to count the number of nodes in the system by using the following trick: let assume that one nodes
starts with value 1, while all other nodes start with value 0. Computing the average gives 1/n, from which is
easy to deduce n. Obviously, selecting that one node is a problem per se, but it can be easily avoided by allowing
multiple ”labeled” aggregation protocols to be executed concurrently, with each node starting a new protocol with
a probability that depends on previous size estimates.

• Once both the average of the values µ and the size of the network n are known, it is easy to compute the total sum
µ · n.

• Variance can be computed as mean of square minus square of mean: a2 − a2.

The list of application to the aggregation problem does not end here. For example, Haridasan and van Renesse [40]
proposed several gossip-based protocols based on distributed synopsis to estimate the distribution of a set of values; Sacha
and Montresor [39] used the aggregation average protocol discussed above to identify the top-k most frequent items in a
distributed multiset of values.

5.4 Implementation details for aggregation
Building on the simple ideas presented in the previous sections, we now complete the details so as to obtain a full-fledged
solution for gossip-based aggregation in practical settings.
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Adaptivity The generic protocol described so far is not adaptive, as it does not take into account the dynamism of the
network or the variability in values that are being aggregated. To provide up-to-date estimates, the protocol must be
periodically restarted: at each node, the protocol is terminated and the current estimate is returned as the aggregation
output; then, the current local values are used to re-initialize the estimates and aggregation starts again with these fresh
initial values.

To implement termination, each node executes the protocol for a predefined number of rounds γ, depending on the
required accuracy of the output and the convergence factor that can be achieved in the particular overlay topology adopted.
An execution of the gossip protocol is called epoch.

Synchronization The protocol described so far is based on the assumption that rounds and epochs proceed in lock step
at all nodes. In a large-scale distributed system, this assumption cannot be satisfied due to the unpredictability of message
delays and the different drift rates of local clocks. To provide a simple form of barrier synchronization among all nodes,
nodes terminate their current instance of aggregation protocol and start a new one whenever they discover a new epoch
identifier. Experimental evaluation has shown that this simple approach is sufficient to obtain the desired results.

5.5 Dealing with failures
Failures of nodes and communication channels may have adverse effect on the computation of the true average (or other
aggregate functions). For example, the crash of a node may remove significant quantities from the values to be aggregated.
This is particularly relevant at the beginning of a protocol execution, when values may be widely different from each other;
it becomes less of a problem after a few gossip iterations, as differences are quickly smoothed out. See Figure 5a for an
example of such effect on a count estimation, which is particularly affected by such problem.
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Figure 5: Network size estimation in a network of size 105 nodes. [10]

In the case of communication failures, different issues may occur if either a link is broken or single messages may be
lost. Missing links have only the effect of slowing down the computation; the REQUEST messages are not delivered, nodes
miss their chance of starting a gossip exchange, but no other adverse effect occur. Losing messages, on the other hand,
may have sever effects on the estimate, as quantities stored in REPLY messages may be lost forever. The effect becomes
significant, however, only with severe loss rates, as illustrated in Figure 5b.

To solve this problem, the same trick used to evaluate the size of the network may be applied. Multiple concurrent
instances of the aggregation protocol may be run, and outliers are discarded. As it turns out, the resulting implementation
is extremely accurate, with errors smaller than 5% under realistic conditions. In harsher failure conditions, approaches
based on flow updating [37, 38] may provide much better quality.

6 Overlay topology construction
Apart from building random topologies through peer sampling protocols, gossip protocols have been employed to build
other kinds of overlay topologies.

Overlay networks have emerged as the single-most important abstraction when implementing a wide range of func-
tions in large, fully decentralized systems. The overlay network needs to be designed appropriately to support the appli-
cation at hand efficiently. For example, application-level multicast might need carefully controlled random networks or
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trees, depending on the multicast approach [35, 3]; search protocols may require superpeer networks [41], networks that
are organized based on proximity and/or capacity of the nodes [42], or distributed hash tables [43].

Most of the proposed approaches typically assume that a given network already exists and only a relatively small pro-
portion of nodes join and leave concurrently [11]. Gossip-based topology construction protocols enable the construction
of complex overlay topologies from scratch, or the concurrent addition of large number of nodes or even the merger of
two existing networks [44].

6.1 Problem definition
Consider a set of nodes that may communicate with each other by exchanging messages through a routed network. Each
node has a profile containing additional information about the node that is relevant for the definition of an overlay network.
Node ID, geographical location, available resources, etc. are all examples of profile information. The address and the
profile together form the node descriptor.

As in peer sampling, each node maintains a partial view that contains a set of node descriptors. Views can be inter-
preted as sets of edges between nodes, naturally defining a directed graph over the nodes that determines the topology of
an overlay network.

Initially, partial views are initialized by nodes taken from a peer sampling service. The goal is to build a desirable
overlay network by filling the views of all nodes with descriptors of the appropriate neighbors. For example, if nodes have
to be organized in a ring topology in increasing order of node ID, the view must contain the successor and the predecessor
in such order.

A way to describe the desired overlay is through the ranking method, that sorts a set of nodes (potential neighbors)
according to the “taste” of a given base node. More formally, the input of the problem is a set of n nodes, the target view
size k (bounded by n) and a ranking method rank(). The ranking method takes as parameters the base node p and a set of
nodes and returns an ordered list of them. All nodes in the network apply the same ranking method, known a priori. The
first k nodes in this order are then selected to be the neighbors of the base node.

The target graph to be built is defined by the ranking method. One way of actually defining useful ranking methods
is through a distance function that defines a metric space over the set of nodes. The ranking method can simply return
an ordering of the given set according to non-decreasing distance from the base node. For example, to build the ring
described before, let k = 2 and let the profile of a node be a real number in the interval [0, 1[. The ranking method can be
defined based on the one-dimensional distance function between nodes a and b as d(a, b) = min(M − |a− b|, |a− b|), to
obtain a circular structure. Multiple ranking policies can be applied concurrently, for example to separately identify the
closest predecessor and the closest successor in the ring.

It is interesting to note the strong link to the construction of k-nearest neighbor (KNN) graphs, an important data-
mining problem where a set of objects in a metric space need to be associated with the k nearest objects based on
some distance measure. Recently, algorithms have been proposed to compute approximate KNN graphs on stand-alone
multicore machines, in a way similar to what is proposed here [45].

6.2 Algorithm
A simple but inefficient approach to build the target graph could be the following: each node disseminates its descriptors to
every other node, using the dissemination protocols described in Section 2, and collects all the descriptors that it receives.
At this point, each node sorts this set of descriptors according to the ranking method and picks the first k elements to be
its neighbors.

The cost of this approach is O(n) both in terms of space and communication overhead, clearly not acceptable. Once
again, the concept of partial view can solve the problem: nodes collect all the descriptors that they receive, but instead of
sending around all of them, or a random selection, they send a subset of them, selected based on the ranking preferences
of the receiving node. In this way, nodes tend to accumulate descriptors that are closer to their target, and by starting
new exchanges with them, they tend to communicate with nodes that are closer and closer. For this reason, the protocol
converge to the correct set of neighbors.

The algorithm follows the scheme of Algorithm 3, executed by process p, customized as follows:

• The variable state is a partial view containing the descriptors that node p has collected so far; initially, this set is
initialized with a random collection of descriptors, potentially taken from a peer sampling protocol.

• Method selectNeighbor() returns a node selected randomly from the first ψ nodes returned by the ranking function
rank() executed on the base node p over the local view contained in state .

selectNeighbor()→ random(extract(rank(state, p), ψ))

• Methods prepareRequest() and prepareReply() return the first m nodes returned by the ranking function rank()
executed on the base node p over the local view contained in state .

prepareRequest(state, q)→ extract(rank(state, q),m))

prepareReply(state, req , q)→ extract(rank(state, q),m))
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• Methods mergeRequest() and mergeReply() just returns the set union of the local variable and the received mes-
sage:

mergeRequest(state, req)→ state ∪ req

mergeReply(state, rep)→ state ∪ rep

In the previous descriptions, extract(L, k) returns the first k elements of the ordered sequenceL (or the entire sequence,
if it is smaller than k elements), while random(S) returns a random element from the set S. ψ is a parameter describing the
size of the pool of nodes from which a random partner should be selected, whilem is the maximum number of descriptors
to be included in messages. If ψ = m = n, the protocol behaves like a dissemination protocol with unbounded message
sizes, corresponding to the inefficient protocol described at the beginning of the section. Too small values of ψ make
the protocol select the same neighbors over and over again, while too large value of ψ make the protocol select nodes
that are potentially not close to the target destination and thus behave like a random dissemination protocol with bounded
messages. To solve the former problem, it is possible to apply a small tabu list containing the last few nodes that have
been contacted.

6.3 Implementation details
Figure 6a shows the convergence time needed by the protocol to converge from a random topology to a ring one, un-
der different starting mechanisms. Convergence time is measured as the number of rounds needed to obtain the target
topology. The synchronous start mechanism means that all the nodes start the protocol at the same time; flooding means
that a reliable broadcast approach is used [46], while anti-entropy push and anti-entropy push-pull are defined in Sec-
tion 2. Experimental analysis shows that the convergence time depends logarithmically on the number of nodes in the
system [11].
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Figure 6: Convergence and termination time [11].

To make the system practical, a mechanism to stop the protocol when convergence is reached is needed. A simple but
effective, and most importantly, local approach is based on measuring how many rounds the local partial view has gone
unchanged. If this number goes beyond a threshold δidle , the node stops participating in the protocol. Eventually, all the
nodes will stop, either because they have reached convergence, or without reaching it (a scenario that may occur with very
low values of δidle , like 2 or 3). Figure 6b shows the total termination time using the push-pull starting mechanism with
variable values of δidle .

6.4 Dealing with failures
In case of benign failures like node crashes or message losses, no particular modifications are needed. The resulting
topology may be an approximation of the target one; but only particularly high levels of churn and messages losses may
reduce the quality of the converged overlay, as shown in Figures 7a and 7b, respectively. Failure rate is measured as
the ratio of node failing per round; for example, with a round length of 1 second, a failure rate of 0.01 means that the
average lifetime of a node is less than 2 minutes. In such extreme scenario, 98.5% of the target edges have been correctly
discovered, a number similar to a scenario when 20% of the messages are lost. In more reasonable situations, where
around 2% of the messages are lost and the failure rate is around 0.001, convergence to the target topology is reached.
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Figure 7: Resilience to failures [11].

7 Conclusions
Gossip protocols are a powerful paradigm to design decentralized distributed protocols that are both robust and efficient.
While initially specialized in information dissemination, they have been later used to solve the most diverse problems,
including but not limited to protocols capable to maintain up-to-date membership information about the state of large-
scale and dynamic P2P network [7], to perform failure detection [8], to implement garbage collection [9], to compute
aggregate information [10], to self-organize complex overlay topologies [11], and to allocate resources [12].

After several years of application, the major challenge left is how to apply the epidemic paradigm in environments
where Byzantine failures are possible. While preliminary efforts have already started to appear [47, 48, 49], a general
framework similar to the one presented in this document is still missing.

The adoption of gossip protocols by the industry appears to be rather limited. Looking just at the academic literature,
there seems to be very limited exceptions - such as the reported adoption of gossip protocols in Amazon’s internal products
like S3 and Dynamo [19]. In reality, there is an increasing number of open-source and commercial products adopting the
epidemic approach, such as Apache Cassandra [18], Riak [17] by Basho, Consul [50] and Nomad [51] by HashiCorp, to
conclude with ScaleCube [52]. Sometimes, the adoption of gossip protocols is hidden under other names and technologies;
for example, the BitTorrent [14] protocol finds its roots in epidemic dissemination, while its PEX extension is a primitive
membership protocol [53].

The adoption of gossip protocols is mostly motivated by extreme large-scale and failure uncertainty; in the absence
of such conditions, gossip protocols are overkill. Even when applicable, the epidemic approach is threatened by the
omnipresence and the high availability of the cloud. Developing fully decentralized services is difficult and error-prone,
while centralized approaches have longly proved their reliability. Yet, the growing diffusion of the Internet of Things will
open up novel application spaces where the epidemic approach could be profitably applied.
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[4] Kermarrec, A.M., Massoulié, L., and Ganesh, A.J. (2003) Probabilistic reliable dissemination in large-scale systems.
IEEE Trans. Parallel Distrib. Syst., 14 (3), 248–258, doi:10.1109/TPDS.2003.1189583.

[5] Kempe, D., Kleinberg, J., and Demers, A. (2004) Spatial gossip and resource location protocols. J. ACM, 51 (6),
943–967.

[6] van Renesse, R., Dumitriu, D., Gough, V., and Thomas, C. (2008) Efficient reconciliation and flow control for anti-
entropy protocols, in Proceedings of the 2nd Workshop on Large-Scale Distributed Systems and Middleware, ACM,
LADIS ’08, doi:10.1145/1529974.1529983.

16



[7] Jelasity, M., Voulgaris, S., Guerraoui, R., Kermarrec, A.M., and van Steen, M. (2007) Gossip-based peer sampling.
ACM Trans. Comput. Syst., 25 (3), doi:10.1145/1275517.1275520.

[8] van Renesse, R., Minsky, Y., and Hayden, M. (1998) A gossip-style failure detection service, in Proceedings of the
IFIP International Conference on Distributed Systems Platforms and Open Distributed Processing, Springer-Verlag,
Middleware ’98, pp. 55–70. URL http://dl.acm.org/citation.cfm?id=1659232.1659238.

[9] Guo, K., Hayden, M., van Renesse, R., Vogels, W., and Birman, K. (1997) GSGC: An efficient gossip-style garbage
collection scheme for scalable reliable multicast, Tech. Rep. TR97-1656, Cornell CS, Ithaca, NY.

[10] Jelasity, M., Montresor, A., and Babaoglu, O. (2005) Gossip-based aggregation in large dynamic networks. ACM
Trans. Comput. Syst., 23 (1), 219–252.

[11] Jelasity, M., Montresor, A., and Babaoglu, O. (2009) T-Man: Gossip-based fast overlay topology construction.
Computer Networks, 53 (13), 2321 – 2339, doi:http://dx.doi.org/10.1016/j.comnet.2009.03.013.

[12] Jelasity, M., Montresor, A., and Babaoglu, O. (2004) A modular paradigm for building self-organizing peer-to-
peer applications, in Engineering Self-Organising Systems: Nature-Inspired Approaches to Software Engineering,
Springer-Verlag, no. 2977 in Lecture Notes in Artificial Intelligence, pp. 265–282.

[13] Kantor, B. and Lapsley, P. (1986), Network News Transfer Protocol, RFC 977 (Proposed Standard). URL http:
//www.ietf.org/rfc/rfc977.txt, obsoleted by RFC 3977.

[14] Cohen, B. (2003) Incentives build robustness in BitTorrent, in Proceedings of the 6th Workshop on Economics of
Peer-to-Peer Systems, pp. 68–72.

[15] Huang, G. (2007) PPLive: A practical P2P live system with huge amount of users, in Proceedings of the ACM
SIGCOMM Workshop on Peer-to-Peer Streaming and IPTV Workshop, pp. 22–28.

[16] Han, J., E, H., Le, G., and Du, J. (2011) Survey on NoSQL databases, in Proceedings of the 6th International
Conference on Pervasive Computing and Applications, ICPCA’11, pp. 363–366, doi:10.1109/ICPCA.2011.6106531.

[17] Basho Technologies, Inc. (2017), Riak, http://basho.com/products/#riak.

[18] Lakshman, A. and Malik, P. (2010) Cassandra: A decentralized structured storage system. SIGOPS Oper. Syst. Rev.,
44 (2), 35–40, doi:10.1145/1773912.1773922.

[19] DeCandia, G., Hastorun, D., Jampani, M., Kakulapati, G., Lakshman, A., Pilchin, A., Sivasubramanian, S., Vosshall,
P., and Vogels, W. (2007) Dynamo: Amazon’s highly available key-value store, in Proceedings of Twenty-first
ACM SIGOPS Symposium on Operating Systems Principles, ACM, SOSP ’07, pp. 205–220, doi:10.1145/1294261.
1294281.

[20] Kermarrec, A. and van Steen, M. (2007) Gossiping in distributed systems. Operating Systems Review, 41 (5), 2–7,
doi:10.1145/1317379.1317381. URL http://doi.acm.org/10.1145/1317379.1317381.

[21] Birman, K. (2007) The promise, and limitations, of gossip protocols. Operating Systems Review, 41 (5), 8–13,
doi:10.1145/1317379.1317382. URL http://doi.acm.org/10.1145/1317379.1317382.

[22] Costa, P., Gramoli, V., Jelasity, M., Jesi, G.P., Merrer, E.L., Montresor, A., and Querzoni, L. (2007) Exploring
the interdisciplinary connections of gossip-based systems. Operating Systems Review, 41 (5), 51–60, doi:10.1145/
1317379.1317388. URL http://doi.acm.org/10.1145/1317379.1317388.

[23] Pittel, B. (1987) On spreading a rumor. SIAM Journal on Applied Mathematics, 47 (1), 213–223, doi:10.1137/
0147013.

[24] Karp, R., Schindelhauer, C., Shenker, S., and Vocking, B. (2000) Randomized rumor spreading, in Proc. of the 41st
Annual Symposium on Foundations of Computer Science, FOCS’00, pp. 565–574.

[25] Jelasity, M. (2011) Gossip, Springer Berlin Heidelberg, Berlin, Heidelberg, pp. 139–162, doi:10.1007/
978-3-642-17348-6 7. URL http://dx.doi.org/10.1007/978-3-642-17348-6_7.

[26] Keyfitz, B. and Keyfitz, N. (1997) The mckendrick partial differential equation and its uses in epidemiology and pop-
ulation study. Mathematical and Computer Modelling, 26 (6), 1 – 9, doi:http://dx.doi.org/10.1016/S0895-7177(97)
00165-9. URL http://www.sciencedirect.com/science/article/pii/S0895717797001659.

[27] Byers, J., Considine, J., and Mitzenmacher, M. (2002) Fast approximate reconciliation of set differences, Tech. Rep.,
BU Computer Science.

17



[28] Minsky, Y., Trachtenberg, A., and Zippel, R. (2003) Set reconciliation with nearly optimal communication complex-
ity. Transactions on Information Theory,, 49 (9), 2213–2218.

[29] Sun, Q. and Sturman, D.C. (2000) A gossip-based reliable multicast for large-scale high-throughput applications, in
Proceedings of the International Conference on Dependable Systems and Networks, DSN’00, pp. 347–358.
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