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1. Introduction

Distributed software is often structured in terms of clients and services. Each service comprises

one or more servers and exports operations which clients invoke by making requests. Although

using a single, centralized, server is the simplest way to implement a service, the resulting service can

only be as fault-tolerant as the processor executing that server. If this level of fault tolerance is unac-

ceptable, then multiple servers that fail independently must be employed. Usually, replicas of a sin-

gle server are executed on separate processors of a distributed system, and protocols are employed to

coordinate client interactions with these replicas. The physical and electrical isolation of processors

in a distributed system ensures that server failures are independent, as required.

The state machine approach is a general method for implementing a fault-tolerant service by

replicating servers and coordinating client interactions with server replicas.1 The approach also pro-

vides a framework for understanding and designing replication management protocols. Many proto-

cols that involve replication of data or software—be it for masking failures or simply to facilitate

cooperation without centralized control—can be derived using the state machine approach. Although

few of these protocols actually were obtained in this manner, viewing them in terms of state machines

helps in understanding how and why they work.

This paper is a tutorial on the state machine approach. It describes the approach and its imple-

mentation for two representative environments. Small examples suffice to illustrate the points. How-

ever, the approach has been successfully applied to larger examples; some of these are mentioned in

§9. Section 2 describes how a system can be viewed in terms of a state machine, clients, and output

devices. Coping with failures is the subject of §3 through §6. An important class of optimizations—

based on the use of time—is discussed in §7. Section 8 describes dynamic reconfiguration. The his-

tory of the approach and related work is discussed in §9.

2. State Machines

Services, servers, and most programming language structures for supporting modularity define

state machines. A state machine consists of state variables, which encode its state, and commands,

which transform its state. Each command is implemented by a deterministic program; execution of

the command is atomic with respect to other commands and modifies the state variables and/or pro-

duces some output. A client of the state machine makes a request to execute a command. The

request names a state machine, names the command to be performed, and contains any information

needed by the command. Output from request processing can be to an actuator (e.g. in a process-

control system), to some other peripheral device (e.g. a disk or terminal), or to clients awaiting

responses from prior requests.
hhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhh

1The term "state machine" is a poor one but, nevertheless, is the one used in the literature.
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In this tutorial, we will describe a state machine simply by listing its state variables and com-

mands. As an example, state machine memory of Figure 2.1 implements a time-varying mapping

from locations to values. A read command permits a client to determine the value currently associ-

ated with a location, and a write command associates a new value with a location.

For generality, our descriptions of state machines deliberately do not specify how command

invocation is implemented. Commands might be implemented

g using a collection of procedures that share data and are invoked by a call, as in a monitor,

g using a single process that awaits messages containing requests and performs the actions they

specify, as in a server, or

g using a collection of interrupt handlers, in which case a request is made by causing an interrupt,

as in an operating system kernel. (Disabling interrupts permits each command to be executed to

completion before the next is started.)

For example, the state machine of Figure 2.2 implements commands to ensure that at all times at

most one client has been granted access to some resource. In it, xfy denotes the result of appending y

to the end of list x, head(x) denotes the first element of list x, and tail(x) denotes the list obtained by

deleting the first element of list x. This state machine would probably be implemented as part of the

supervisor-call handler of an operating system kernel.

Requests are processed by a state machine one at a time, in an order that is consistent with

potential causality. Therefore, clients of a state machine can make the following assumptions about

memory : state_machine
var store : array [0..n] of word

read : command(loc : 0..n)
send store [loc] to client
end read;

write : command(loc : 0..n , value : word)
store [loc ] := value
end write

end memory

Figure 2.1. A memory
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mutex: state_machine
var user : client_id init Φ;

waiting : list of client_id init Φ

acquire: command
if user =Φ → send OK to client ;

user := client

[] user ≠Φ → waiting := waiting f client
fi
end acquire

release: command
if waiting =Φ → user := Φ
[] waiting ≠Φ → send OK to head(waiting );

user := head(waiting );
waiting := tail(waiting )

fi
end release

end mutex

Figure 2.2. A resource allocator

the order in which requests are processed:

O1: Requests issued by a single client to a given state machine sm are processed by sm

in the order they were issued.

O2: If the fact that request r was made to a state machine sm by client c could have

caused a request r ′ to be made by a client c ′ to sm, then sm processes r before r ′.

Note that due to communications network delays, O1 and O2 do not imply that a state machine will

process requests in the order made or in the order received.

To keep our presentation independent of the interprocess communication mechanism used to

transmit requests to state machines, we will program client requests as tuples of the form

〈state_machine.command, arguments〉

and postulate that any results from processing a request are returned using messages. For example, a

client might execute

-3-



〈memory.write , 100, 16.2〉;
〈memory.read, 100〉;
receive v from memory

to set the value of location 100 to 16.2, request the value of location 100, and await that value, setting

v to it upon receipt.

The defining characteristic of a state machine is not its syntax, but that it specifies a determinis-

tic computation that reads a stream of requests and processes each, occasionally producing output:

Semantic Characterization of a State Machine. Outputs of a state machine are completely

determined by the sequence of requests it processes, independent of time and any other activity

in a system.

Not all collections of commands necessarily satisfy this characterization. Consider the following pro-

gram to solve a simple process-control problem in which an actuator is adjusted repeatedly based on

the value of a sensor. Periodically, a client reads a sensor, communicates the value read to state

machine pc, and delays approximately D seconds:

monitor : process
do true → val := sensor;

〈pc.adjust , val 〉;
delay D

od
end monitor

State machine pc adjusts an actuator based on past adjustments saved in state variable q, the sensor

reading, and a control function F.

pc: state_machine
var q : real;

adjust : command(sensor_val : real)
q := F(q , sensor_val);
send q to actuator
end adjust

end pc

Although it is tempting to structure pc as a single command that loops—reading from the sensor,

evaluating F, and writing to actuator—if the value of the sensor is time-varying, then the result

would not satisfy the semantic characterization given above and therefore would not be a state

machine. This is because values sent to actuator (the output of the state machine) would not depend

solely on the requests made to the state machine but would, in addition, depend on the execution

speed of the loop. In the structure used above, this problem has been avoided by moving the loop

into monitor.

In practice, having to structure a system in terms of state machines and clients does not consti-

tute a real restriction. Anything that can be structured in terms of procedures and procedure calls can

also be structured using state machines and clients—a state machine implements the procedure, and
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requests implement the procedure calls. In fact, state machines permit more flexibility in system

structure than is usually available with procedure calls. With state machines, a client making a

request is not delayed until that request is processed, and the output of a request can be sent some-

place other than to the client making the request. We have not yet encountered an application that

could not be programmed cleanly in terms of state machines and clients.

3. Fault Tolerance

Before turning to the implementation of fault-tolerant state machines, we must introduce some

terminology concerning failures. A component is considered faulty once its behavior is no longer

consistent with its specification. In this paper, we consider two representative classes of faulty

behavior:

Byzantine Failures. The component can exhibit arbitrary and malicious behavior, perhaps

involving collusion with other faulty components [Lamport et al 82].

Fail-stop Failures. In response to a failure, the component changes to a state that permits other

components to detect that a failure has occurred and then stops [Schneider 84].

Byzantine failures can be the most disruptive, and there is anecdotal evidence that such failures do

occur in practice. Allowing Byzantine failures is the weakest possible assumption that could be made

about the effects of a failure. Since a design based on assumptions about the behavior of faulty com-

ponents runs the risk of failing if these assumptions are not satisfied, it is prudent that life-critical sys-

tems tolerate Byzantine failures. However, for most applications, it suffices to assume fail-stop

failures.

A system consisting of a set of distinct components is t fault-tolerant if it satisfies its

specification provided that no more than t of those components become faulty during some interval of

interest.2 Fault-tolerance traditionally has been specified in terms of MTBF (mean-time-between-

failures), probability of failure over a given interval, and other statistical measures [Siewiorek &

Swarz 82]. While it is clear that such characterizations are important to the users of a system, there

are advantages in describing fault tolerance of a system in terms of the maximum number of com-

ponent failures that can be tolerated over some interval of interest. Asserting that a system is t fault-

tolerant makes explicit the assumptions required for correct operation; MTBF and other statistical

measures do not. Moreover, t fault-tolerance is unrelated to the reliability of the components that

make up the system and therefore is a measure of the fault tolerance supported by the system archi-

tecture, in contrast to fault tolerance achieved simply by using reliable components. MTBF and other

statistical reliability measures of a t fault-tolerant system can be derived from statistical reliability
hhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhh

2A t fault-tolerant system might continue to operate correctly if more than t failures occur, but correct operation cannot
be guaranteed.
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measures for the components used in constructing that system—in particular, the probability that

there will be t or more failures during the operating interval of interest. Thus, t is typically chosen

based on statistical measures of component reliability.

4. Fault-tolerant State Machines

A t fault-tolerant version of a state machine can be implemented by replicating that state

machine and running a replica on each of the processors in a distributed system. Provided each

replica being run by a non-faulty processor starts in the same initial state and executes the same

requests in the same order, then each will do the same thing and produce the same output. Thus, if

we assume that each failure can affect at most one processor, hence one state machine replica, then by

combining the output of the state machine replicas of this ensemble, we can obtain the output for the t

fault-tolerant state machine.

When processors can experience Byzantine failures, an ensemble implementing a t fault-

tolerant state machine must have at least 2t +1 replicas, and the output of the ensemble is the output

produced by the majority of the replicas. This is because with 2t +1 replicas, the majority of the out-

puts remain correct even after as many as t failures. If processors experience only fail-stop failures,

then an ensemble containing t +1 replicas suffices, and the output of the ensemble can be the output

produced by any of its members. This is because only correct outputs are produced by fail-stop pro-

cessors, and after t failures one non-faulty replica will remain among the t +1 replicas.

The key, then, for implementing an t fault-tolerant state machine is to ensure

Replica Coordination. All replicas receive and process the same sequence of requests.

This can be decomposed into two requirements concerning dissemination of requests to replicas in an

ensemble.

Agreement. Every non-faulty state machine replica receives every request.

Order. Every non-faulty state machine replica processes the requests it receives in the same

relative order.

Notice that Agreement governs the behavior of a client in interacting with state machine replicas and

that Order governs the behavior of a state machine replica with respect to requests from various

clients. Thus, while Replica Coordination could be partitioned in other ways, the Agreement-Order

partitioning is a natural choice because it corresponds to the existing separation of the client from the

state machine replicas.

Implementations of Agreement and Order are discussed in §4.1 and §4.2. These implementa-

tions make no assumptions about clients or commands. While this generality is useful, knowledge of

commands allows Replica Coordination, hence Agreement and Order, to be weakened, and thus

allows cheaper protocols to be employed for managing the replicas in an ensemble. Examples of two

common weakenings follow.
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First, Agreement can be relaxed for read-only requests when fail-stop processors are being

assumed. When processors are fail-stop, a request r whose processing does not modify state variables

need only be sent to a single non-faulty state machine replica. This is because the response from this

replica is—by definition—guaranteed to be correct and, because r changes no state variables, the state

of the replica that processes r will remain identical to the states of replicas that do not.

Second, Order can be relaxed for requests that commute. Two requests r and r ′ commute in a

state machine sm if the sequence of outputs and final state of sm that would result from processing r

followed by r ′ is the same as would result from processing r ′ followed by r. An example of a state

machine where Order can be relaxed appears in Figure 4.1. State machine tally determines the first

from among a set of alternatives to receive at least MAJ votes and sends this choice to SYSTEM. If

clients cannot vote more than once and the number of clients Cno satisfies 2MAJ >Cno, then every

request commutes with every other. Thus, implementing Order would be unnecessary—different

replicas of the state machine will produce the same outputs even if they process requests in different

orders. On the other hand, if clients can vote more than once or 2MAJ ≤Cno, then reordering requests

might change the outcome of the election.

Theories for constructing state machine ensembles that do not satisfy Replica Coordination are

proposed in [Aizikowitz 89] and [Mancini & Pappalardo 88]. Both theories are based on proving that

an ensemble of state machines implements the same specification as a single replica does. The

approach taken in [Aizikowitz 89] uses temporal logic descriptions of state sequences, while the

approach in [Mancini & Pappalardo 88] uses an algebra of actions sequences. A detailed description

of this work is beyond the scope of this tutorial.

tally : state_machine
var votes : array[candidate] of integer init 0

cast_vote : command(choice : candidate)
votes [choice] := votes [choice]+1;
if votes [choice]≥MAJ → send choice to SYSTEM;

halt

[] votes [choice]<MAJ → skip
fi
end cast_vote

end tally

Figure 4.1. Election
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4.1. Agreement

The Agreement requirement can be satisfied by using any protocol that allows a designated pro-

cessor, called the transmitter, to disseminate a value to some other processors in such a way that:

IC1: All non-faulty processors agree on the same value.

IC2: If the transmitter is non-faulty, then all non-faulty processors use its value as the

one on which they agree.

Protocols to establish IC1 and IC2 have received considerable attention in the literature and are some-

times called Byzantine Agreement protocols, reliable broadcast protocols, or simply agreement pro-

tocols. The hard part in designing such protocols is coping with a transmitter that fails part way

through an execution. See [Strong & Dolev 83] for protocols that can tolerate Byzantine processor

failures and [Schneider et al 84] for a (significantly cheaper) protocol that can tolerate (only) fail-stop

processor failures.

If requests are distributed to all state machine replicas by using a protocol that satisfies IC1 and

IC2, then the Agreement requirement is satisfied. Either the client can serve as the transmitter or the

client can send its request to a single state machine replica and let that replica serve as the transmitter.

When the client does not itself serve as the transmitter, however, the client must ensure that its

request is not lost or corrupted by the transmitter before the request is disseminated to the state

machine replicas. One way to monitor for such corruption is by having the client be among the pro-

cessors that receive the request from the transmitter.

4.2. Order and Stability

The Order requirement can be satisfied by assigning unique identifiers to requests and having

state machine replicas process requests according to a total ordering relation on these unique

identifiers. This is equivalent to requiring the following, where a request is defined to be stable at smi

once no request from a correct client and bearing a lower unique identifier can be subsequently

delivered to state machine replica smi:

Order Implementation. A replica next processes the stable request with smallest unique

identifier.

Further refinement of Order Implementation requires selecting a method for assigning unique

identifiers to requests and devising a stability test for that assignment method. Note that any method

for assigning unique identifiers is constrained by O1 and O2 of §2, which imply that if request ri

could have caused request rj to be made then uid(ri)<uid(rj) holds, where uid(r) is the unique

identifier assigned to a request r.

In the subsections that follow, we give three refinements of the Order Implementation. Two are

based on the the use of clocks; a third uses an ordering defined by the replicas of the ensemble.
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Using Logical Clocks

A logical clock [Lamport 78a] is a mapping T̂ from events to the integers. T̂(e), the "time"

assigned to an event e by logical clock T̂, is an integer such that for any two distinct events e and e ′,
either T̂(e)<T̂(e ′) or T̂(e ′)<T̂(e), and if e might be responsible for causing e ′ then T̂(e)<T̂(e ′). It is

a simple matter to implement logical clocks in a distributed system. Associated with each process p

is a counter T̂p . In addition, a timestamp is included in each message sent by p. This timestamp is the

value of T̂p when that message is sent. T̂p is updated according to:

LC1: T̂p is incremented after each event at p.

LC2: Upon receipt of a message with timestamp τ, process p resets T̂p:

T̂p := max(T̂p , τ) + 1.

The value of T̂(e) for an event e that occurs at processor p is constructed by appending a fixed-length

bit string that uniquely identifies p to the value of T̂p when e occurs.

Figure 4.2 illustrates the use of this scheme for implementing logical clocks in a system of three

processors, p, q and r. Events are depicted by dots and an arrow is drawn between events e and e ′ if e

might be responsible for causing event e ′. For example, an arrow between events in different

processes starts from the event corresponding to the sending of a message and ends at the event

corresponding to the receipt of that message. The value of T̂p(e) for each event e is written above

that event.

If T̂(e) is used as the unique identifier associated with a request whose issuance corresponds to

event e, the result is a total ordering on the unique identifiers that satisfies O1 and O2. Thus, a logical

p

q

r

1 2 4

1 2 3 4

1 2 3 4

g g g

g g g g

g g g g

Figure 4.2. Logical Clock Example
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clock can be used as the basis of an Order Implementation if we can formulate a way to determine

when a request is stable at a state machine replica.

It is pointless to implement a stability test in a system where Byzantine failures are possible and

a process or message can be delayed for an arbitrary length of time without being considered faulty.

This is because no deterministic protocol can implement agreement under these conditions [Fischer et

al 85].3 Since it is impossible to satisfy the Agreement requirement, there is no point in satisfying the

Order requirement. The case where relative speeds of non-faulty processors and messages is bounded

is equivalent to assuming that they have synchronized real-time clocks, and will be considered

shortly. This leaves the case where fail-stop failures are possible and a process or message can be

delayed for an arbitrary length of time without being considered faulty. Thus, we now turn to devis-

ing a stability test for that environment.

By attaching sequence numbers to the messages between every pair of processors, it is trivial to

ensure that the following property holds of communications channels.

FIFO Channels. Messages between a pair of processors are delivered in the order sent.

For fail-stop processors, we can also assume:

Failure Detection Assumption. A processor p detects that a fail-stop processor q has failed

only after p has received the last message sent to p by q.

The Failure Detection Assumption is consistent with FIFO Channels, since the failure event for a

fail-stop processor necessarily happens after the last message sent by that processor and, therefore,

should be received after all other messages.

Under these two assumptions, the following stability test can be used.

Logical Clock Stability Test Tolerating Fail-stop Failures. Every client periodically

makes some—possibly null—request to the state machine. A request is stable at replica smi

if a request with larger timestamp has been received by smi from every client running on a

non-faulty processor.

To see why this stability test works, we show that once a request r is stable at smi , no request with

smaller unique identifier (timestamp) will be received. First, consider clients that smi does not detect

as being faulty. Because logical clocks are used to generate unique identifiers, any request made by a

client c must have a larger unique identifier than was assigned to any previous request made by c.

Therefore, from the FIFO Channels assumption, we conclude that once a request from a non-faulty

client c is received by smi , no request from c with smaller unique identifier than uid (r) can be
hhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhh

3The result of [Fischer et al 85] is actually stronger than this. It states that IC1 and IC2 cannot be achieved by a deter-
ministic protocol in an asynchronous system with a single processor that fails in an even less restrictive manner—by simply
halting.
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received by smi . This means that once requests with larger unique identifiers than uid(r) have been

received from every non-faulty client, it is not possible to receive a request with a smaller unique

identifier than uid(r) from these clients. Next, for a client c that smi detects as faulty, the Failure

Detection Assumption implies that no request from c will be received by smi . Thus, once a request r

is stable at smi , no request with smaller timestamp can be received from a client—faulty or non-

faulty.

Synchronized Real-Time Clocks

A second way to produce unique request identifiers satisfying O1 and O2 is by using approxi-

mately synchronized real-time clocks.4 Define Tp(e) to be the value of the real-time clock at proces-

sor p when event e occurs. We can use Tp(e) followed by a fixed-length bit string that uniquely

identifies p as the unique identifier associated with a request made as event e by a client running on a

processor p. To ensure that O1 and O2 (of §2) hold for unique identifiers generated in this manner,

two restrictions are required. O1 follows provided no client makes two or more requests between

successive clock ticks. Thus, if processor clocks have a resolution of R seconds, then each client can

make at most one request every R seconds. O2 follows provided the degree of clock synchronization

is better than the minimum message delivery time. In particular, if clocks on different processors are

synchronized to within δ seconds, then it must take more than δ seconds for a message from one

client to reach another; otherwise, O2 would be violated because a request r made by one client could

have a unique identifier that was smaller than a request r ′ made by another, even though r was caused

by a message sent after r ′ was made.

When unique request identifiers are obtained from synchronized real-time clocks, a stability test

can be implemented by exploiting these clocks and the bounds on message delivery delays. Define ∆
to be constant such that a request r with unique identifier uid(r) will be received by every correct pro-

cessor no later than time uid(r)+∆ according to the local clock at the receiving processor. Such a ∆
must exist if requests are disseminated using a protocol that employs a fixed number of rounds, like

the ones cited above for establishing IC1 and IC2.5 By definition, once the clock on a processor p

reaches time τ, p cannot subsequently receive a request r such that uid(r)<τ − ∆. Therefore, we have

the following stability test.

hhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhh
4A number of protocols to achieve clock synchronization while tolerating Byzantine failures have been proposed

[Lamport & Milliar-Smith 84] [Halpern et al 84]. See [Schneider 86] for a survey. The protocols all require that known
bounds exist for the execution speed and clock rates of non-faulty processors and for message delivery delays along non-
faulty communications links. In practice, these requirements do not constitute a restriction. Clock synchronization achieved
by the protocols is proportional to the variance in message delivery delay, making it possible to satisfy the restriction—
necessary to ensure O2—that message delivery delay exceeds clock synchronization.

5In general, ∆ will be a function of the variance in message delivery delay, the maximum message delivery delay, and
the degree of clock synchronization. See [Cristian et al 85] for a detailed derivation for ∆ in a variety of environments.
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Real-time Clock Stability Test Tolerating Byzantine Failures I. A request r is stable at a

state machine replica smi being executed by processor p if the local clock at p reads τ and

uid(r)<τ−∆.

One disadvantage of this stability test is that it forces the state machine to lag behind its clients

by ∆, where ∆ is proportional to the worst-case message delivery delay. This disadvantage can be

avoided. Due to property O1 of the total ordering on request identifiers, if communications channels

satisfy FIFO Channels, then a state machine replica that has received a request r from a client c can

subsequently receive from c only requests with unique identifiers greater than uid(r). Thus, a request

r is also stable at a state machine replica provided a request with larger unique identifier has been

received from every client.

Real-time Clock Stability Test Tolerating Byzantine Failures II. A request r is stable at

a state machine replica smi if a request with larger unique identifier has been received from

every client.

This second stability test is never passed if a (faulty) processor refuses to make requests. However,

by combining the first and second test, so that a request is considered stable when it satisfies either

test, a stability test results that lags clients by ∆ only when faulty processors or network delays force

it.

Using Replica-Generated Identifiers

In the previous two refinements of the Order Implementation, clients determine the order in

which requests are processed—the unique identifier uid (r) for a request r is assigned by the client

making that request. In the following refinement of the Order Implementation, the state machine

replicas determine this order. Unique identifiers are computed in two phases. In the first phase,

which can be part of the agreement protocol used to satisfy the Agreement requirement, state machine

replicas propose candidate unique identifiers for a request. Then, in the second phase, one of these

candidates is selected and it becomes the unique identifier for that request.

The advantage of this approach to computing unique identifiers is that communications between

all processors in the system is not necessary. When logical clocks or synchronized real-time clocks

are used in computing unique request identifiers, all processors hosting clients or state machine repli-

cas must communicate. In the case of logical clocks, this communication is needed in order for

requests to become stable; in the case of synchronized real-time clocks, this communication is needed

in order to keep the clocks synchronized.6 In the replica-generated identifier approach of this subsec-

tion, the only communication required is among processors running the client and state machine
hhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhh

6This illustrates an advantage of having a client forward its request to a single state machine replica that then serves as
the transmitter for disseminating the request. In effect, that state machine replica becomes the client of the state machine,
and so communication need only involve those processors running state machine replicas.
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replicas.

By constraining the possible candidates proposed in phase 1 for a request’s unique identifier, it

is possible to obtain a simple stability test. To describe this stability test, some terminology is first

required. We say that a state machine replica smi has seen a request r once smi has received r and

proposed a candidate unique identifier for r; and we say that smi has accepted r once that replica

knows the ultimate choice of unique identifier for r. Define cuid(smi , r) to be the candidate unique

identifier proposed by replica smi for request r. Two constraints that lead to a simple stability test

are:

UID1: cuid(smi , r)≤uid(r)

UID2: If a request r ′ is seen by replica smi after r has been accepted by smi then

uid(r)<cuid(smi , r ′).

If these constraints hold throughout execution, then the following test can be used to determine

whether a request is stable at a state machine replica.

Replica-Generated Identifiers Stability Test. A request r that has been accepted by smi is

stable provided there is no request r ′ that has (i) been seen by smi , (ii) not been accepted by

smi , and (iii) for which cuid(smi , r ′)≤uid(r) holds.

To prove that this stability test works, we must show that once an accepted request r is deemed stable

at smi , no request with smaller unique identifier will be subsequently accepted at smi . Let r be a

request that, according to the Replica-Generated Identifiers Stability Test, is stable at replica smi .

Due to UID2, for any request r ′ that has not been seen by smi , uid(r)<cuid(smi , r ′) holds. Thus, by

transitivity using UID1, uid(r)<uid(r ′) holds, and we conclude that r ′ cannot have a smaller unique

identifier than r. Now consider the case where request r ′ has been seen but not accepted by smi

and—because the stability test for r is satisfied—uid(r)<cuid(smi , r ′) holds. Due to UID1, we con-

clude that uid(r)<uid(r ′) holds and, therefore, r ′ does not have a smaller unique identifier than r.

Thus, we have shown that once a request r satisfies the Replica-Generated Identifiers Stability Test at

smi , any request r ′ that is accepted by smi will satisfy uid(r)<uid(r ′), as desired.

Unlike clock-generated unique identifiers for requests, replica-generated ones do not necessarily

satisfy O1 and O2 of §2. Without further restrictions, it is possible for a client to make a request r,

send a message to another client causing request r ′ to be issued, yet have uid(r ′)<uid(r). However,

O1 and O2 will hold provided that once a client starts disseminating a request to the state machine

replicas, the client performs no other communication until every state machine replica has accepted

that request. To see why this works, consider a request r being made by some client and suppose

some request r ′ was influenced by r. The delay ensures that r is accepted by every state machine

replica smj before r ′ is seen. Thus, from UID2 we conclude uid(r)<cuid(smi , r ′) and, by transitivity

with UID1, that uid(r)<uid(r ′), as required.
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To complete this Order Implementation, we have only to devise protocols for computing unique

identifiers and candidate unique identifiers such that:

(4.1)g UID1 and UID2 are satisfied.

(4.2)g r ≠r ′ ⇒ uid (r)≠uid (r ′)

(4.3)g Every request that is seen eventually becomes accepted.

One simple solution for a system of fail-stop processors is the following.

Replica-generated Unique Identifiers. Each state machine replica smi maintains two vari-

ables:

SEENi is the largest cuid(smi , r) assigned to any request r so far seen by smi , and

ACCEPTi is the largest uid(r) assigned to any request r so far accepted by smi .

Upon receipt of a request r, each replica smi computes

(4.4)cuid(smi , r) := max(QSEENi P, QACCEPTi P)+1+.i

(Notice, this means that all candidate unique identifiers are themselves unique.) The replica

then disseminates (using an agreement protocol) cuid(smi , r) to all other replicas and awaits

receipt of a candidate unique identifier for r from every non-faulty replica, participating in

the agreement protocol for that value as well. Let NF be the set of replicas from which can-

didate unique identifiers were received. Finally, the replica computes

(4.5)uid(r) :=
smj ∈ NF
max (cuid(smj , r))

and accepts r.

We prove that this protocol satisfies (4.1)−(4.3) as follows. UID1 follows from using assign-

ment (4.5) to compute uid(r), and UID2 follows from assignment (4.4) to compute cuid(smi , r). To

conclude that (4.2) holds, we argue as follows. Because an agreement protocol is used to disseminate

candidate unique identifiers, all replicas receive the same values from the same replicas. Thus, all

replicas will execute the same assignment statement (4.5) and all will compute the same value for

uid (r). To establish that the these uid (r) values are unique for each request, it suffices to observe

that maximums of disjoint subsets of a collection of unique values—the candidate unique

identifiers—are also unique. Finally, in order to establish (4.3), that every request that is seen is

eventually accepted, we must prove that for each replica smj , a replica smi eventually learns

cuid(smj , r) or learns that smj has failed. This follows trivially from the use of an agreement proto-

col to distribute the cuid(smj , r) and the definition of a fail-stop processor.

An optimization of our Replica-generated Unique Identifiers protocol is the basis for the

ABCAST protocol in the ISIS Toolkit [Birman & Joseph 87] developed at Cornell. In this optimiza-

tion, candidate unique identifiers are returned to the client instead of being disseminated to the other

state machine replicas. The client then executes assignment (4.5) to compute uid (r). Finally, an
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agreement protocol is used by the client in disseminating uid (r) to the state machine replicas. Some

unique replica takes over for the client if the client fails.

It is possible to modify our Replica-generated Unique Identifiers protocol for use in systems

where processors can exhibit Byzantine failures, have synchronized real-time clocks, and communi-

cations channels have bounded message-delivery delays—the same environment as was assumed for

using synchronized real-time clocks to generate unique identifiers. The following changes are

required. First, each replica smi uses timeouts so that smi cannot be forever delayed waiting to

receive and participate in the agreement protocol for disseminating a candidate unique identifier from

a faulty replica smj . Second, if smi does determine that smj has timed-out, smi disseminates "smj

timeout" to all replicas (by using an agreement protocol). Finally, NF is the set of replicas in the

ensemble less any smj for which "smj timeout" has been received from t +1 or more replicas. Notice,

Byzantine failures that cause faulty replicas to propose candidate unique identifiers not produced by

(4.4) do not cause difficulty. This is because candidate unique identifiers that are too small have no

effect on the outcome of (4.5) at non faulty replicas and those that are too large will satisfy UID1 and

UID2.

5. Tolerating Faulty Output Devices

It is not possible to implement a t fault-tolerant system by using a single voter to combine the

outputs of an ensemble of state machine replicas into one output. This is because a single failure—of

the voter—can prevent the system from producing the correct output. Solutions to this problem

depend on whether the output of the state machine implemented by the ensemble is to be used within

the system or outside the system.

Outputs Used Outside the System

If the output of the state machine is sent to an output device, then that device is already a single

component whose failure cannot be tolerated. Thus, being able to tolerate a faulty voter is not

sufficient—the system must also be able to tolerate a faulty output device. The usual solution to this

problem is to replicate the output device and voter. Each voter combines the output of each state

machine replica, producing a signal that drives one output device. Whatever reads the outputs of the

system is assumed to combine the outputs of the replicated devices. This reader, which is not con-

sidered part of the computing system, implements the critical voter.

If output devices can exhibit Byzantine failures, then by taking the output produced by the

majority of the devices, 2t +1-fold replication permits up to t faulty output devices to be tolerated.

For example, a flap on an airplane wing might be designed so that when the 2t +1 actuators that con-

trol it do not agree, the flap always moves in the direction of the majority (rather than twisting). If

output devices exhibit only fail-stop failures, then only t +1-fold replication is necessary to tolerate t

failures because any output produced by a fail-stop output device can be assumed correct. For exam-

ple, video display terminals usually present information with enough redundancy so that they can be
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treated as fail-stop—failure detection is implemented by the viewer. With such an output device, a

human user can look at a one of t +1 devices, decide whether the output is faulty, and only if it is

faulty, look at another, and so on.

Outputs Used Inside the System

If the output of the state machine is to a client, then the client itself can combine the outputs of

state machine replicas in the ensemble. Here, the voter—a part of the client—is faulty exactly when

the client is, so the fact that an incorrect output is read by the client due to a faulty voter is irrelevant.

When Byzantine failures are possible, the client waits until it has received t +1 identical responses,

each from a different member of the ensemble, and takes that as the response from the t fault-tolerant

state machine. When only fail-stop failures are possible, the client can proceed as soon as it has

received a response from any member of the ensemble, since any output produced by a replica must

be correct.

When the client is executed on the same processor as one of the state machine replicas, optimi-

zation of client-implemented voting is possible.7 This is because correctness of the processor implies

that both the state machine replica and client will be correct. Therefore, the response produced by the

state machine replica running locally can be used as that client’s response from the t fault-tolerant

state machine. And, if the processor is faulty, then we are entitled to view the client as being faulty,

so it does not matter what state machine responses the client receives. Summarizing, we have:

Dependent-Failures Output Optimization. If a client and a state machine replica run on

the same processor, then even when Byzantine failures are possible, the client need not

gather a majority of responses to its requests to the state machine. It can use the single

response produced locally.

6. Tolerating Faulty Clients

Implementing a t fault-tolerant state machine is not sufficient for implementing a t fault-tolerant

system. Faults might result in clients making requests that cause the state machine to produce errone-

ous output or that corrupt the state machine so that subsequent requests from non-faulty clients are

incorrectly processed. Therefore, in this section, we discuss various methods for insulating the state

machine from faults that affect clients.

hhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhh
7Care must be exercised when analyzing the fault-tolerance of such a system because a single processor failure can

now cause two system components to fail. Implicit in most of our discussions is that system components fail independently.
It is not always possible to transform a t fault-tolerant system in which clients and state machine replicas have independent
failures to one in which they share processors.
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6.1. Replicating the Client

One way to avoid having faults affect a client is by replicating the client and running each

replica on hardware that fails independently. However, this replication also requires changes to state

machines that handle requests from that client. This is because after a client has been replicated N-

fold, any state machine it interacts with will receive N requests—one from each client replica—when

it formerly received a single request. Moreover, corresponding requests from different client replicas

will not necessarily be identical. First, they will differ in their unique identifiers. Second, unless the

original client is itself a state machine and the methods of §4 are used to coordinate the replicas,

corresponding requests from different replicas can also differ in their content. For example, if a client

makes requests based on the value of some time-varying sensor, then its replicas will each read their

sensors at a slightly different times and, therefore, make different requests.

We first consider modifications to a state machine sm for the case where requests from different

client replicas are known to differ only in their unique identifiers. For this case, modifications are

needed for coping with receiving N requests instead of a single one. These modifications involve

changing each command so that instead of processing every request received, requests are buffered

until enough8 have been received; only then is the corresponding command performed (a single time).

In effect, a voter is being added to sm to control invocation of its commands. Client replication can

be made invisible to the designer of a state machine by including such a voter in the support software

that receives requests, tests for stability, and orders stable requests by unique identifier.

Modifying the state machine for the case where requests from different client replicas can also

differ in their content typically requires exploiting knowledge of the application. As before, the idea

is to transform multiple requests into a single one. For example, in a t fault-tolerant system, if 2t +1

different requests are received, each containing the value of a sensor, then a single request containing

the median of those values might be constructed and processed by the state machine. (Given at most

t Byzantine faults, the median of 2t +1 values is a reasonable one to use because it is bounded from

above and below by a non-faulty value.) A general method for transforming multiple requests con-

taining sensor values into a single request is discussed in [Marzullo 89]. That method is based on

viewing a sensor value as an interval that includes the actual value being measured; a single interval

(sensor) is computed from a set of intervals by using a fault-tolerant intersection algorithm.

6.2. Defensive Programming

Sometimes a client cannot be made fault-tolerant by using replication. In some circumstances,

due to the unavailability of sensors or processors, it simply might not be possible to replicate the
hhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhh

8If Byzantine failures are possible then a t fault-tolerant client requires 2t +1-fold replication and a command is per-
formed after t +1 requests have been received; if failures are restricted to fail-stop, then t +1-fold replication will suffice and
a command can be performed after a single request has been received.
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client. In other circumstances, the application semantics might not afford a reasonable way to

transform multiple requests from client replicas into the single request needed by the state machine.

In all of these circumstances, careful design of state machines can limit the effects of requests from

faulty clients. For example, memory (Figure 2.1) permits any client to write to any location. There-

fore, a faulty client can overwrite all locations, destroying information. This problem could be

prevented by restricting write requests from each client to only certain memory locations—the state

machine can enforce this.

Including tests in commands is another way to design a state machine that cannot be corrupted

by requests from faulty clients. For example, mutex as specified in Figure 2.2, will execute a release

command made by any client—even one that does not have access to the resource. Consequently, a

faulty client could issue such a request and cause mutex to grant a second client access to the resource

before the first has relinquished access. A better formulation of mutex ignores release commands

from all but the client to which exclusive access has been granted. This is implemented by changing

the release in mutex to:

release: command
if user ≠client → skip

[] waiting =Φ ∧ user =client → user := Φ
[] waiting ≠Φ ∧ user =client → send OK to head(waiting );

user := head(waiting );
waiting := tail(waiting )

fi
end release

Sometimes, a faulty client not making a request can be just as catastrophic as one making an

erroneous request. For example, if a client of mutex failed and stopped while it had exclusive access

to the resource, then no client could be granted access to the resource. Of course, unless we are

prepared to bound the length of time that a correctly functioning process can retain exclusive access

to the resource, there is little we can do about this problem. This is because there is no way for a state

machine to distinguish between a client that has stopped executing because it has failed and one that

is executing very slowly. However, given an upper bound B on the interval between an acquire and

the following release, the acquire command of mutex can automatically schedule release on behalf of

a client.

We use the notation

schedule 〈REQUEST 〉 for +τ

to specify scheduling 〈REQUEST 〉 with a unique identifier at least τ greater than the identifier on the

request being processed. Such a request is called a timeout request and becomes stable at some time

in the future, according to the stability test being used for client-generated requests. Unlike requests

from clients, requests that result from executing schedule need not be distributed to all state machine

replicas of the ensemble. This is because each state machine replica will independently schedule its
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own (identical) copy of the request.

We can now modify acquire so that a release operation is automatically scheduled. In the code

that follows, TIME is assumed to be a function that evaluates to the current time. Note that mutex

might now process two release commands on behalf of a client that has acquired access to the

resource: one command from the client itself and one generated by its acquire request. However, the

new state variable time_granted ensures that superfluous release commands are ignored.

acquire: command
if user =Φ → send OK to client ;

user := client ;
time_granted := TIME;
schedule 〈mutex.timeout , time_granted〉 for +B

[] user ≠Φ → waiting := waitingfclient
fi
end acquire

timeout : command(when_granted : integer)
if when_granted ≠ time_granted → skip

[] waiting =Φ ∧ when_granted =time_granted → user := Φ
[] waiting ≠Φ ∧ when_granted =time_granted →

send OK to head(waiting );
user := head(waiting );
time_granted := TIME;
waiting := tail(waiting )

fi
end timeout

7. Using Time to Make Requests

A client need not explicitly send a message to make a request. Not receiving a request can

trigger execution of a command—in effect, allowing the passage of time to transmit a request from

client to state machine [Lamport 84]. Transmitting a request using time instead of messages can be

advantageous because protocols that implement IC1 and IC2 can be costly both in total number of

messages exchanged and in delay. Unfortunately, using time to transmit requests has only limited

applicability, since the client cannot specify parameter values.

The use of time to transmit a request was employed in §6 when we revised the acquire com-

mand of mutex to foil clients that failed to release the resource. There, a release request was automat-

ically scheduled by acquire on behalf of a client being granted the resource. A client transmits a

release request to mutex simply by permitting B (logical clock or real-time clock) time units to pass.

It is only to increase utilization of the shared resource that a client might use messages to transmit a

release request to mutex before B time units have passed.

A more dramatic example of using time to transmit a request is illustrated in connection with

tally of Figure 4.1. Assume that
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g all clients and state machine replicas have (logical or real time) clocks synchronized to within Γ
and

g the election starts at time Strt and this is known to all clients and state machine replicas.

Using time, a client can cast a vote for a default by doing nothing; only when a client casts a vote dif-

ferent from its default do we require that it actually transmit a request message. Thus, we have:

Transmitting a Default Vote. If client has not made a request by time Strt +Γ, then a

request with that client’s default vote has been made.

Notice that the default need not be fixed nor even known at the time a vote is cast. For example, the

default vote could be "vote for the first client that any client casts a non-default vote for". In that

case, the entire election can be conducted as long as one client casts a vote by using actual messages.9

8. Reconfiguration

An ensemble of state machine replicas can tolerate more than t faults if it is possible to remove

state machine replicas running on faulty processors from the ensemble and add replicas running on

repaired processors. (A similar argument can be made for being able to add and remove copies of

clients and output devices.) Let P(τ) be the total number of processors at time τ that are executing

replicas of some state machine of interest, and let F(τ) be the number of them that are faulty. In order

for the ensemble to produce the correct output, we must have

Combining Condition: P(τ)−F(τ)>Enuf for all 0≤τ.

where Enuf ≡
I
K
L 0 if only fail-stop failures are possible.

P(τ)/2 if Byzantine failures are possible.

A processor failure may cause the Combining Condition to be violated by increasing F(τ),

thereby decreasing P(τ)−F(τ). When Byzantine failures are possible, if a faulty processor can be

identified, then removing it from the ensemble decreases Enuf without further decreasing P(τ)−F(τ);

this can keep the Combining Condition from being violated. When only fail-stop failures are possi-

ble, increasing the number of non-faulty processors—by adding one that has been repaired—is the

only way to keep the Combining Condition from being violated because increasing P(τ) is the only

way to ensure that P(τ)−F(τ)>0 holds. Therefore, provided the following conditions hold, it may be

possible to maintain the Combining Condition forever and thus tolerate an unbounded total number

of faults over the life of the system.

hhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhh
9Observe that if Byzantine failures are possible, then a faulty client can be elected. Such problems are always possible

when voters do not have detailed knowledge about the candidates in an election.
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F1: If Byzantine failures are possible, then state machine replicas being executed by

faulty processors are identified and removed from the ensemble before the Combin-

ing Condition is violated by subsequent processor failures.

F2: State machine replicas running on repaired processors are added to the ensemble

before the Combining Condition is violated by subsequent processor failures.

F1 and F2 constrain the rates at which failures and repairs occur.

Removing faulty processors from an ensemble of state machines can also improve system per-

formance. This is because the number of messages that must be sent to achieve agreement is usually

proportional to the number of state machine replicas that must agree on the contents of a request. In

addition, some protocols to implement agreement execute in time proportional to the number of pro-

cessors that are faulty. Removing faulty processors clearly reduces both the message complexity and

time complexity of such protocols.

Adding or removing a client from the system is simply a matter of changing the state machine

so that henceforth it responds to or ignores requests from that client. Adding an output device is also

straightforward—the state machine starts sending output to that device. Removing an output device

from a system is achieved by disabling the device. This is done by putting the device in a state that

prevents it from affecting the environment. For example, a CRT terminal can be disabled by turning

off the brightness so that the screen can no longer be read; a hydraulic actuator controlling the flap on

an airplane wing can be disabled by opening a cutoff valve so that the actuator exerts no presure on

that control surface. However, as suggested by these examples, it is not always possible to disable a

faulty output device: turning off the brightness might have no effect on the screen and the cutoff

valve might not work. Thus, there are systems in which no more than a total of t actuator faults can

be tolerated because faulty actuators cannot be disabled.

The configuration of a system structured in terms of a state machine and clients can be

described using three sets: the clients C , the state machine replicas S , and the output devices O . S is

used by the agreement protocol and therefore must be known to clients and state machine replicas. It

can also be used by an output device to determine which send operations made by state machine

replicas should be ignored. C and O are used by state machine replicas to determine from which

clients requests should be processed and to which devices output should be sent. Therefore, C and O

must be available to all state machine replicas.

Two problems must be solved to support changing the system configuration. First, the values of

C , S , and O must be available when required. Second, whenever a client, state machine replica, or

output device is added to the configuration, the state of that element must be updated to reflect the

current state of the system. These problems are considered in the following two subsections.
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8.1. Managing the Configuration

The configuration of a system can be managed using the state machine in that system. Sets C , S ,

and O are stored in state variables and changed by commands. Each configuration is valid for a col-

lection of requests—those requests r such that uid(r) is in the range defined by two successive

configuration-change requests. Thus, whenever a client, state machine replica, or output device per-

forms an action connected with processing r, it uses the configuration that is valid for r. This means

that a configuration-change request must schedule the new configuration for some point far enough in

the future so that clients, state machine replicas, and output devices all find out about the new

configuration before it actually comes into effect.

There are various ways to make configuration information available to the clients and output

devices of a system. (The information is already available to the state machine.) One is for clients

and output devices to query the state machine periodically for information about relevant pending

configuration changes. Obviously, communication costs for this scheme are reduced if clients and

output devices share processors with state machine replicas. Another way to make configuration

information available is for the state machine to include information about configuration changes in

messages it sends to clients and output devices in the course of normal processing. Doing this

requires periodic communication between the state machine and clients and between the state

machine and output devices.

Requests to change the configuration of the system are made by a failure/recovery detection

mechanism. It is convenient to think of this mechanism as a collection of clients, one for each ele-

ment of C , S , or O . Each of these configurators is responsible for detecting the failure or repair of the

single object it manages and, when such an event is detected, for making a request to alter the

configuration. A configurator is likely to be part of an existing client or state machine replica and

might be implemented in a variety of ways.

When elements are fail-stop, a configurator need only check the failure-detection mechanism of

that element. When elements can exhibit Byzantine failures, detecting failures is not always possible.

When it is possible, a higher degree of fault tolerance can be achieved by reconfiguration. A non-

faulty configurator satisfies two safety properties.

C1: Only a faulty element is removed from the configuration.

C2: Only a non-faulty element is added to the configuration.

However, a configurator that does nothing satisfies C1 and C2. Changing the configuration enhances

fault-tolerance only if F1 and F2 also hold. For F1 and F2 to hold, a configurator must also (1) detect

faults and cause elements to be removed and (2) detect repairs and cause elements to be added. Thus,

the degree to which a configurator enhances fault tolerance is directly related to the degree to which

(1) and (2) are achieved. Here, the semantics of the application can be helpful. For example, to infer

that a client is faulty, a state machine can compare requests made by different clients or by the same
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client over a period of time. To determine that a processor executing a state machine replica is faulty,

the state machine can monitor messages sent by other state machine replicas during execution of an

agreement protocol. And, by monitoring aspects of the environment being controlled by actuators, a

state machine replica might be able to determine that an output device is faulty. Some elements, such

as processors, have internal failure-detection circuitry that can be read to determine whether that ele-

ment is faulty or has been repaired and restarted. A configurator for such an element can be imple-

mented by having the state machine periodically poll this circuitry.

In order to analyze the fault-tolerance of a system that uses configurators, failure of a

configurator can be considered equivalent to the failure of the element that the configurator manages.

This is because with respect to the Combining Condition, removal of a non-faulty element from the

system or addition of a faulty one is the same as that element failing. Thus, in a t fault-tolerant sys-

tem, the sum of the number of faulty configurators that manage non-faulty elements and the number

of faulty components with non-faulty configurators must be bounded by t.

8.2. Integrating a Repaired Object

Not only must an element being added to a configuration be non-faulty, it also must have the

correct state so that its actions will be consistent with those of rest of the system. Define e[ri] to be

the state that a non-faulty system element e should be in after processing requests r 0 through ri . An

element e joining the configuration immediately after request r join must be in state e[r join] before it

can participate in the running system.

An element is self-stabilizing [Dijkstra 74] if its current state is completely defined by the previ-

ous k inputs it has processed, for some fixed k. Obviously, running such an element long enough to

ensure that it has processed k inputs is all that is required to put it in state e[r join]. Unfortunately, the

design of self-stabilizing state machines is not always possible.

When elements are not self-stabilizing, processors are fail-stop, and logical clocks are imple-

mented, cooperation of a single state machine replica smi is sufficient to integrate a new element e

into the system. This is because state information obtained from any state machine replica smi must

be correct. In order to integrate e at request r join , replica smi must have access to enough state infor-

mation so that e[r join] can be assembled and forwarded to e.

g When e is an output device, e[r join] is likely to be only a small amount of device-

specific set-up information—information that changes infrequently and can be stored

in state variables of smi .

g When e is a client, the information needed for e[r join] is frequently based on recent

sensor values read and can therefore be determined by using information provided to

smi by other clients.
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g And, when e is a state machine replica, the information needed for e[r join] is stored in

the state variables and pending requests at smi .

The protocol for integrating a client or output device e is simple—e[r join] is sent to e before the

output produced by processing any request with a unique identifier larger than uid(r join). The proto-

col for integrating a state machine replica smnew is a bit more complex. It is not sufficient for replica

smi simply to send the values of all its state variables and copies of any pending requests to smnew .

This is because some client request might be received by smi after sending e[r join] but delivered to

smnew before its repair. Such a request would neither be reflected in the state information forwarded

by smi to smnew nor received by smnew directly. Thus, smi must, for a time, relay to smnew requests

received from clients.10 Since requests from a given client are received by smnew in the order sent and

in ascending order by request identifier, once smnew has received a request directly (i.e. not relayed)

from a client c, there is no need for requests from c with larger identifiers to be relayed to smnew . If

smnew informs smi of the identifier on a request received directly from each client c, then smi can

know when to stop relaying to smnew requests from c.

The complete integration protocol is summarized in the following.

Integration with Fail-stop Processors and Logical Clocks. A state machine replica smi

can integrate an element e at request r join into a running system as follows.

If e is a client or output device, smi sends the relevant portions of its state variables to

e and does so before sending any output produced by requests with unique identifiers larger

than the one on r join .

If e is a state machine replica smnew , then smi

(1) sends the values of its state variables and copies of any pending requests to smnew ,

(2) sends to smnew every subsequent request r received from each client c such that

uid(r)<uid(rc), where rc is the first request smnew received directly from c after

being restarted.

The existence of synchronized real-time clocks permits this protocol to be simplified because

smi can determine when to stop relaying messages based on the passage of time. Suppose, as in §4,

there exists a constant ∆ such that a request r with unique identifier uid(r) will be received by every

(correct) state machine replica no later than time uid(r)+∆ according to the local clock at the receiv-

ing processor. Let smnew join the configuration at time τjoin . By definition, smnew is guaranteed to

receive every request that was made after time τjoin on the requesting client’s clock. Since unique
hhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhh

10Duplicate copies of some requests might be received by sm new .
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identifiers are obtained from the real-time clock of the client making the request, smnew is guaranteed

to receive every request r such that uid(r)≥τjoin . The first such a request r must be received by smi

by time τjoin +∆ according to its clock. Therefore, every request received by smi after τjoin +∆ must

also be received directly by smnew . Clearly, smi need not relay such requests, and we have the fol-

lowing protocol.

Integration with Fail-stop Processors and Real-time Clocks. A state machine replica smi

can integrate an element e at request r join into a running system as follows.

If e is a client or output device, then smi sends the relevant portions of its state vari-

ables to e and does so before sending any output produced by requests with unique

identifiers larger than the one on r join .

If e is a state machine replica smnew then smi

(1) sends the values of its state variables and copies of any pending requests to smnew ,

(2) sends to smnew every request received during the next interval of duration ∆.

When processors can exhibit Byzantine failures, a single state machine replica smi is not

sufficient for integrating a new element into the system. This is because state information furnished

by smi might not be correct—smi might be executing on a faulty processor. To tolerate t failures in a

system with 2t +1 state machine replicas, t +1 identical copies of the state information and t +1 ident-

ical copies of relayed messages must be obtained. Otherwise, the protocol is as described above for

real-time clocks.

Stability Revisited

The stability tests of §4 do not work when requests made by a client can be received from two

sources—the client and via a relay. During the interval that messages are being relayed, smnew , the

state machine replica being integrated, might receive a request r directly from c but later receive r ′,
another request from c, with uid(r)>uid(r ′), because r ′ was relayed by smi . The solution to this

problem is for smnew to consider requests received directly from c stable only after no relayed

requests from c can arrive. Thus, the stability test must be changed:

Stability Test During Restart. A request r received directly from a client c by a restarting

state machine replica smnew is stable only after the last request from c relayed by another

processor has been received by smnew .

An obvious way to implement this is for a message to be sent to smnew when no further requests from

c will be relayed.
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9. Related Work

The state machine approach was first described in [Lamport 78a] for environments in which

failures could not occur. It was generalized to handle fail-stop failures in [Schneider 82], a class of

failures between fail-stop and Byzantine failures in [Lamport 78b], and full Byzantine failures in

[Lamport 84]. These various state machine implementations were first characterized using the Agree-

ment and Order requirements and a stability test in [Schneider 85].

The state machine approach has been used in the design of significant fault-tolerant process con-

trol applications [Wensley et al 78]. It has also been used in the design of distributed

synchronization—including read/write locks and distributed semaphores [Schneider 80], input/output

guards for CSP and conditional Ada SELECT statements [Schneider 82]—and in the design of a fail-

stop processor approximation using processors that can exhibit arbitrary behavior in response to a

failure [Schlichting & Schneider 83] [Schneider 84]. A stable storage implementation described in

[Bernstein 85] exploits properties of a synchronous broadcast network to avoid explicit protocols for

Agreement and Order and employs Transmitting a Default Vote (as described in §7). The notion of ∆
common storage, suggested in [Cristian et al 85], is a state machine implementation of memory that

uses the Real-time Clock Stability Test. The decentralized commit protocol of [Skeen 82] can be

viewed as a straightforward application of the state machine approach, while the 2 phase commit pro-

tocol described in [Gray 78] can be obtained from decentralized commit simply by making restrictive

assumptions about failures and performing optimizations based on these assumptions. The Paxon

Synod commit protocol [Lamport 89] also can be understood in terms of the state machine approach.

It is similar to, but cheaper to execute, than the standard 3 phase commit protocol. Finally, the

method of implementing highly available distributed services in [Liskov & Ladin 86] uses the state

machine approach, with clever optimizations of the stability test and agreement protocol that are pos-

sible due to the semantics of the application and the use of fail-stop processors.

A critique of the state machine approach for transaction management in database systems

appears in [Garcia-Molina et al 84]. Experiments evaluating the performance of various of the stabil-

ity tests in a network of SUN Workstations are reported in [Pittelli & Garcia-Molina 89]. That study

also reports on the performance of request batching, which is possible when requests describe data-

base transactions, and the use of null requests in the Logical Clock Stability Test Tolerating Fail-stop

Failures of §4.

Primitives to support the Agreement and Order requirements for Replica Coordination have

been included in two operating systems toolkits. The ISIS Toolkit [Birman 85] provides ABCAST

and CBCAST for allowing an applications programmer to control the delivery order of messages to

the members of a process group (i.e. collection of state machine replicas). ABCAST ensures that all

state machine replicas process requests in the same order; CBCAST allows more flexibility in mes-

sage ordering and ensures that causally related requests are delivered in the correct relative order.

ISIS has been used to implement a number of prototype applications. One example is the RNFS
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(replicated NFS) file system, a network file system that is tolerant to fail-stop failures and runs on top

of NFS, that was designed using the state machine approach [Marzullo & Schmuck 88].

The Psync primitive [Peterson et al 89], which has been implemented in the x-kernel [Hutchin-

son & Peterson 88], is similar to the CBCAST of ISIS. Psync, however, makes available to the pro-

grammer the graph of the message "potential causality" relation, while CBCAST does not. Psync is

intended to be a low-level protocol that can be used to implement protocols like ABCAST and

CBCAST; the ISIS primitives are intended for use by applications programmers and, therefore, hide

the "potential causality" relation while at the same time including support for group management and

failure reporting.
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