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Une solution au probleme de consensus
fondée sur les quorums

Résumé : Cet article traite du probléme de consensus dans les systémes répartis (n étant le nombre
de processus et f le nombre maximum de défaillances possibles) munis de suspecteurs de défaillances
de Chandra et Toueg. Il propose un méme protocole pour deux classes de suspecteurs de défaillances :
la classe S (dans ce cas f <n —1) et la classe ©S (dans ce cas f < n/2).

La simplicité du protocole alliée & sa dimension générique permet de mieux comprendre les fonde-
ments algorithmiques des protocoles de consensus utilisant des suspecteurs de défaillances.

Mots clés : Consensus, quorum, propriété d’exactitude perpétuelle/inéluctable, suspecteur de
défaillances, systéme réparti asynchrone.
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1 Introduction

The Consensus problem is now recognized as being one of the most important problems to solve
when one has to design or to implement reliable applications on top of an unreliable asynchronous
distributed system. Informally, the Consensus problem is defined in the following way. Each process
proposes a value, and all non-crashed processes have to agree on a common value which has to be one
of the proposed values. The Consensus problem is actually a fundamental problem. This is because
the most important practical agreement problems (e.g., Atomic Broadcast, Atomic Multicast, Weak
Atomic Commitment) can be reduced to it (see, for example, [2], [5] and [6] for each of the previous
problems, respectively). The Consensus problem can be seen as their “greatest common denominator”.

Solving the Consensus problem in an asynchronous distributed system where processes can crash
is far from being a trivial task. More precisely, it has been shown by Fischer, Lynch and Paterson [4]
that there is no deterministic solution to the Consensus problem in those systems as soon as processes
(even only one) may crash. The intuition that underlies this impossibility result lies in the inherent
difficulty of safely distinguishing a crashed process from a “slow” process, or from a process with which
communications are “very slow”. This result has challenged and motivated researchers to find a set of
minimal properties that, when satisfied by the runs of a distributed system, allows to solve Consensus
despite process crashes.

The major advance to circumvent the previous impossibility result is due to Chandra and Toueg
who have introduced [2] (and studied with Hadzilacos [3]) the Unreliable Failure Detector concept.
A failure detector can be seen as a set of modules, each associated with a process. The failure de-
tector module attached to a process provides it with a list of processes it suspects to have crashed.
A failure detector module can make mistakes by not suspecting a crashed process or by erroneously
suspecting a correct process. In their seminal paper [2] Chandra and Toueg have introduced several
classes of failure detectors. A class is defined by a Completeness property and an Accuracy property.
A completeness property is on the actual detection of crashes. The aim of an accuracy property is to
restrict erroneous suspicions. Moreover an accuracy property is Perpetual if it has to be permanently
satisfied. It is Fventual if it is allowed to be permanently satisfied only after some time.

In this paper, we are interested in solving the Consensus problem in asynchronous distributed
systems equipped with a failure detector of the class & or with a failure detector of the class ©S8.
Both classes are characterized by the same completeness property, namely, “Eventually, every crashed
process is suspected by every correct process”. They are also characterized by the same basic accuracy
property, namely, “There is a correct process that is never suspected”. But these two classes differ
in the way (modality) their failure detectors satisfy this basic accuracy property. More precisely, the
failure detectors of S perpetually satisfy the basic accuracy property, while the failure detectors of ©S
are allowed to satisfy it only eventually.

Several Consensus protocols based on such failure detectors have been designed. Chandra and
Toueg have proposed a Consensus protocol that works with any failure detector of the class S [2].
This protocol tolerates any number of process crashes. Several authors have proposed Consensus
protocols based on failure detectors of the class ¢S: Chandra and Toueg [2], Schiper [9] and Hurfin
and Raynal [8]. All these ©S-based Consensus protocols require a majority of correct processes. It
has been shown that this requirement is necessary [2]. So, these protocols are optimal with respect to
the number of crashes they tolerate. Moreover, when we consider the classes of failure detectors that
allow to solve the Consensus problem, it has ben shown that &S is the weakest one [3].

S-based Consensus protocols and ©S-based Consensus protocols are usually considered as defining
two distinct families of failure detector-based Consensus protocols. This is motivated by (1) the fact
that one family assumes perpetual accuracy while the other assumes only eventual accuracy, and (2)
the fact that the protocols of each family (and even protocols of a same family) are based on different
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4 A. Mostefaoui € M. Raynal

algorithmic principles. In this paper, we present a generic failure detector-based Consensus proto-
col which has several interesting characteristics. The most important one is of course its “generic”
dimension: it works with any failure detector of the class S (provided f < n) or with any failure
detector of the class ¢S (provided f < n/2) (where n and f denote the total number of processes and
the maximum number of processes that may crash, respectively). This protocol is based on a single
algorithmic principle, whatever is the class of the underlying failure detector. Such a generic approach
for solving the Consensus problem is new (to our knowledge). It has several advantages. It favors a
better understanding of the basic algorithmic structures and principles that are needed to solve the
Consensus problem with the help of a failure detector. It also provides a better insight into the “perpe-
tual/eventual” attribute of the accuracy property, when using unreliable failure detectors to solve the
Consensus problem. (So, it allows to provide a single proof, where the use of this attribute is perfectly
identified.) Moreover, the algorithmic unity of the protocol is not obtained to the detriment of its effi-
ciency. Last but not least, the design simplicity of the protocol is also one of its noteworthy properties.

The paper is composed of seven sections. Section 2 presents the distributed system model and the
failure detector concept. Section 3 defines the Consensus problem. The next two sections are devoted
to the generic protocol: it is presented in Section 4 and proved in Section 5. Section 6 discusses the
protocol and compares it with previous failure detector-based Consensus protocols. Finally Section 7
concludes the paper.

2 Asynchronous Distributed System Model

The system model is patterned after the one described in [2, 4]. A formal introduction to failure
detectors is provided in [2, 3].

2.1 Asynchronous Distributed System with Process Crash Failures

We consider a system consisting of a finite set II of n > 1 processes, namely, II = {p1,p2,... ,pn}-
A process can fail by crashing, i.e., by prematurely halting. It behaves correctly (i.e., according to
its specification) until it (possibly) crashes. By definition, a correct process is a process that does
not crash. Let f denote the maximum number of processes that can crash (f < n — 1). Processes
communicate and synchronize by sending and receiving messages through channels. Every pair of
processes is connected by a channel. Channels are not required to be FIFO, they may also duplicate
messages. They are only assumed to be reliable in the following sense: they do not create, alter or
lose messages. This means that a message sent by a process p; to a process p; is assumed to be
eventually received by p;, if p; is correct’. The multiplicity of processes and the message-passing
communication make the system distributed. There is no assumption about the relative speed of
processes or the message transfer delays. This absence of timing assumptions makes the distributed
system asynchronous.

2.2 Unreliable Failure Detectors

Informally, a failure detector consists of a set of modules, each one attached to a process: the module
attached to p; maintains a set (named suspected;) of processes it currently suspects to have crashed.
Any failure detector module is inherently unreliable: it can make mistakes by not suspecting a crashed
process or by erroneously suspecting a correct one. Moreover, suspicions are not necessarily stable: a
process p; can be added to or removed from a set suspected; according to whether p;’s failure detector

!The “no message loss” assumption is required to ensure the Termination property of the protocol. The “no creation
and no alteration” assumptions are required to ensure its Validity and Agreement properties (see Sections 3 and 4).
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module currently suspects p; or not. As in papers devoted to failure detectors, we say “process p;
suspects process p;” at some time, if at that time we have p; € suspected,;.

As indicated in the introduction, a failure detector class is formally defined by two abstract pro-
perties, namely a Completeness property and an Accuracy property. In this paper, we consider the
following completeness property [2]:

e Strong Completeness: Eventually, every process that crashes is permanently suspected by every
correct process.

Among the accuracy properties defined by Chandra and Toueg [2] we consider here the two follo-
wing ones:

e Perpetual Weak Accuracy: Some correct process is never suspected.

e Eventual Weak Accuracy: There is a time after which some correct process is never suspected by
correct processes.

Combined with the completeness property, these accuracy properties define the following two
classes of failure detectors [2]:

e S: The class of Strong failure detectors. This class contains all the failure detectors that satisfy
the strong completeness property and the perpetual weak accuracy property.

e OS: The class of Eventually Strong failure detectors. This class contains all the failure detectors
that satisfy the strong completeness property and the eventual weak accuracy property.

Clearly, § C ©8§. Moreover, it is important to note that any failure detector that belongs to S or to
S8 can make an arbitrary number of mistakes.

3 The Consensus Problem

3.1 Definition

In the Consensus problem, every correct process p; proposes a value v; and all correct processes have
to decide on some value v, in relation to the set of proposed values. More precisely, the Consensus
problem is defined by the following three properties [2, 4]:

e Termination: Every correct process eventually decides on some value.
e Validity: If a process decides v, then v was proposed by some process.

e Agreement: No two correct processes decide differently.

The agreement property applies only to correct processes. So, it is possible that a process decides on
a distinct value just before crashing. Uniform Consensus prevents such a possibility. It has the same
Termination and Validity properties plus the following agreement property:

e Uniform Agreement: No two processes (correct or not) decide differently.

In the following we are interested in the Uniform Consensus problem.
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6 A. Mostefaoui € M. Raynal

3.2 Solving Consensus with Unreliable Failure Detectors

The following important results are associated with the Consensus problem when one has to solve it
in an asynchronous distributed system, prone to process crash failures, equipped with an unreliable
failure detector.

e In any distributed system equipped with a failure detector of the class S, the Consensus problem
can be solved whatever the number of crashes is [2].

e In any distributed system equipped with a failure detector of the class ©S, at least a majority
of processes has to be correct (i.e., f < n/2) for the Consensus problem to be solvable [2].

e When we consider the classes of failure detectors that allow to solve the Consensus problem, ©§
is the weakest one [3]. This means that, as far as failure detection is concerned, the properties
defined by ©S constitute the borderline beyond which the Consensus problem can not be solved?.

¢ Any protocol solving the Consensus problem using an unreliable failure detector of the class S
or ¢8, solves also the Uniform Consensus problem [6].

4 The General Consensus Protocol

4.1 Underlying Principles

The algorithmic principles that underly the protocol are relatively simple. The protocol shares some
of them with other Consensus protocols [2, 8, 9]. Each process p; manages a local variable est; which
contains its current estimate of the decision value. Initially, est; is set to v;, the value proposed by
p;. Processes proceed in consecutive asynchronous rounds. Each round r (initially, for each process
pi, i = 0) is managed by a predetermined process p. (e.g., ¢ can be defined according to the round
robin order). So, the protocol uses the well-known rotating coordinator paradigm?.

Description of a round A round (r) is basically made of two phases (communication steps).
First phase of a round. The current round coordinator p. sends its current estimate (est.) to all
processes. This phase terminates, for each process p;, when p; has received an estimate from p. or
when it suspects p.. In addition to est;, p; manages a local variable est_from_c; that contains either
the value it has received from p,, or the default value —. So, est_from_c; = — means that p; has
suspected p., and est_from_c; # — means that est_from_c; = est.. If we assumed that all non-
crashed processes or none of them have received p.’s estimate and they all have the same perception
of crashes, then they would get the same value in their est_from_c; local variables. Consequently,
they could all “synchronously” either decide (when est_from_c; # —) or proceed to the next round
(when est_from_c; = —).

Second phase of a round. Unfortunately, due to asynchrony and erroneous failure suspicions, some
processes p; can have est_from_c; = est., while other processes p; can have est_from_c; = — at the
end of the first phase. Actually, the aim of the first phase was to ensure that V p;: est_from_c; = est,
or —. The aim of the second phase is to ensure that the Agreement property will never be violated.
This prevention is done in the following way: if a process p; decides v = est, during r and if a process
p; progresses to r + 1, then p; does it with est; = v. This is implemented by the second phase that

*The “weakest class” proof is actually on the class OW of failure detectors [3]. But, it has been shown that GV and
&S, that differ in the statement of their completeness property, are actually equivalent: the protocol that transforms
any failure detector of the class GW in a failure detector of the class ¢S is based on a simple gossiping mechanism [2].

3Due to the completeness property of the underlying failure detector, this paradigm can be used without compromising
the protocol termination. More precisely, the completeness property can be exploited by a process to not indefinitely
wait for a message from a crashed coordinator.
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requires each process p; to broadcast the value of its est_from_c; local variable. A process p; finishes
the second phase when it has received est_from_c values from “enough” processes. The meaning of
“enough” is captured by a set ();, dynamically defined during each round. Let rec; be the set of
est_from_c values received by p; from the processes of ;. We have: rec; = {—} or {v} or {v,—}
(where v is the estimate of the current coordinator). Let p; be another process (with its Q; and rec;).
If Q; NQ; # 0, then there is a process p, € Q; N Q; that has broadcast est_from_c, and both p; and
p;j have received it. It follows that rec; and rec; are related in the following way:
rec; ={v} = (Vpj: (rec;j={v}) VvV (rec; ={v,—}

)
rec; ={—} = (Vp;: (rec;={=}) vV (rec; ={v,—}))
rec; ={v,—} = (Vp;: (rec;={v}) Vv (rec;={-}) V (rec; ={v,—}))

The behavior of p; is then determined by the content of rec;:

e When rec; = {v}, p; knows that all non-crashed processes also know v. So, p; is allowed to
decide on v provided that all processes that do not decide consider v as their current estimate.

e When rec; = {—}, p; knows that any set rec; includes —. In that case, no process p; is allowed
to decide and p; proceeds to the next round.

e When rec; = {v, —}, according to the previous items, p; updates its current estimate (est;) to
v to achieve the Agreement property. Note that if a process p; decides during this round, any
process p; that proceeds to the next round, does it with est; = v.

Definition of the ; set As indicated previously, the definition of the (); sets has to ensure that
the predicate Q; N Q; # 0 holds for every pair (p;,p;). The way this condition is realized depends on
the class to which the underlying failure detector belongs.

Let us first consider the case where the failure detector belongs to the class S. In that case, there
is a correct process that is never suspected. Let p, be this process. If (); contains p,, then p; will
obtain the value of est_from_c,. If follows that if (V p;) Q; is such that II = Q; U suspected;, then,
V (pi, pj), we have p, € Q; N Q.

Let us now consider the case where the failure detector belongs to the class ©&. In that case,
f < n/2 and there is a time after which some correct process is no longer suspected. As we do not
know the time from which a correct process is no longer suspected, we can only rely on the majority of
correct processes assumption. So, by taking (V p;) Q; equal to a majority set, it follows that, ¥ (p;, p;).
dp; such that, p, € Q; N Q;.

Note that in both cases, (); is not statically defined. In each round, its actual value depends on
message receptions and additionally, in the case of S, on process suspicions.

On the quorum-based approach The previous principles actually define a quorum-based ap-
proach. As usual, (1) each quorum must be live: it must include only non-crashed processes (this
ensures processes will not block forever during a round). Furthermore, (2) each quorum must be safe:
it must have a non-empty intersection with any other quorum (this ensures the agreement property
cannot be violated). As indicated in the previous paragraph, the quorum safety requirement is gua-
ranteed by the “perpetual” modality of the accuracy property (for S), and by the majority of correct
processes assumption (for ©8).

Other combinations of eventual weak accuracy (to guarantee eventual termination) and live and
safe (possibly non-majority) quorums would work*. Bringing a quorum-based formulation to the fore

*As an example, let us consider quorums defined from a \/n * \/n grid (with n = ¢*). This would allow the protocol
to progress despite n — (2 * /n — 1) crashes or erroneous suspicions in the most favorable case. Of course, in the worst
case, the use of such quorums could block the protocol in presence of only y/n crashes or erroneous suspicions. Details
on quorum definition can be found in [1].
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8 A. Mostefaoui € M. Raynal

is conceptually interesting. Indeed, the protocol presented in the next section works for any failure
detector satisfying strong completeness, eventual weak accuracy and the “quorum” conditions.

4.2 The Protocol

The protocol is described in Figure 1. A process p; starts a Consensus execution by invoking
Consensus(v;). It terminates it when it executes the statement return which provides it with the
decided value (lines 12 and 16).

It is possible that distinct processes do not decide during the same round. To prevent a process
from blocking forever (i.e., waiting for a value from a process that has already decided), a process
that decides, uses a reliable broadcast [7] to disseminate its decision value (similarly as protocols
described in [2, 8, 9]). To this end the Consensus function is made of two tasks, namely, T'1 and T°2.
T'1 implements the previous discussion. Line 12 and T2 implement the reliable broadcast.

Function Consensus(v;)
cobegin
(1) task T1: r; « 0; est; + vi; %o vi # — %
(2) while true do
(3) ¢4+ (rimod n)+1; est_fromec; < —;ri+ri+1; % round r =r; %
(4) case (i =c) then est_from_c; < est;
(5) (i # ¢) then wait ((EST(7;,v) is received from p.)V(c € suspected;));
(6) if (EST(r;, v) has been received) then est_from_c; < v
(7) endcase; % est_from_c; = est. or — %
(8)  Vj do send EST(ri, est_from_c;) to p; enddo;
(9)  wait until (Vp; € Q;: EST(r;,est_from_c) has been received from p;);
% Qi has to be a live and safe quorum %
% For S: Q); is such that Q; U suspected; = II %
% For ©8: Q) is such that |Q;| =[(n+1)/2] %
(10) let rec; = {est_from_c | EST(r;, est_from_c) is received at line 5 or 9};
% est_from_c = — or v with v = est. %

% rec; = {—} or {v}or {v,-} %

(11) case (rec; = {—}) then skip

(12) (rec; = {v}) then Vj # i do send DECIDE(v) to p; enddo; return(v)
(13) (reci = {v,—}) then est; + v

(14) endcase

(15) enddo

(16) task T'2: upon reception of DECIDE(v):
Vj # i do send DECIDE(v) to p; enddo; return(v)
coend

Figure 1: The Consensus Protocol
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5 Correctness Proof

5.1 Validity

Lemma 1 Let us consider a round r and a process p;. The round r is coordinated by p.. We have:
(1) If p. participates in round r, then est. is equal to an initial value proposed by a process.

(2) If p; computes rec; during round r, then: rec; = {—} or rec; = {v} or rec; = {v, =}, where v is
equal to est.. Moreover, if v € rec;, p. has participated in round r.

(8) If p; starts round r + 1, it does it with an estimate (est;) whose value is equal to an initial value.

Proof The proof is by induction on the round number.

e Base case. Let us consider the round » = 1. It is coordinated by p. = pi, and est. is equal
to v. (p.’s proposal, line 1). The local variable est_from_c; of any process p; that (during this
round) executes line 8, is equal either to est. (if p; has received an estimate from p,. -line 4- or
if pj = p -line 6-) or to — (if p; has suspected p,, line 5). So, if p; executes line 8, it broadcasts
either the value of est, (= v.) or —. It follows that any p; that computes rec; during the first
round, can only receive v, or — at line 9. Consequently, we have: rec; = {—} or rec; = {v.} or
rec; = {ve, —}.

Now, let us first note that, initially, est; = v; (line 1). Due to lines 11-13, if p; starts r + 1, it
does it either with the value of est; left unchanged (line 11) or with est; = v, (line 13). So, the
lemma is true for r = 1.

e Assume the lemma is true until #, » > 1. This means that if p. (the round r + 1 coordinator)
participates in 7 + 1, then we had (at the end of r) rec, = {—} or rec, = {v} or rec, = {v, -},
where v is an initial value. Due to the induction assumption and to the case statement (lines
11-14) executed by p. at the end of r, it follows that p. starts » + 1 with est. equal to an initial
value proposed by a process. Now, the situation is similar to the one of the base case, and
consequently, the same argument applies to the round r + 1 case, which proves the lemma.

DLemma 1

Theorem 1 If a process p; decides v, then v was proposed by some process.

Proof If a process decides at line 16, it decides the value decided by another process at line 12. So
we only consider the case where a value that has been decided at line 12. When a process p; decides v
at line 12, it decides on the value (# —) of the rec; singleton. Due to the items (1) and (2) of Lemma
1, v is an initial value of a process. OTheorem 1

5.2 Termination

Lemma 2 If no process decides during v’ < r, then all correct processes start r + 1.

Proof The proof is by contradiction. Suppose that no process has decided during a round r’ < r,
where r is the smallest round number in which a correct process p; blocks forever. So, p; is blocked
at line 4 or at line 9.

Let us first examine the case where p; blocks at line 4. Let p. be the round r coordinator. If
Pi = Pe, it cannot block at line 4, as it does not execute this line. Moreover, in that case, it executes
the broadcast at line 8 or crashes. If p; # p., then:
- Either p; suspects p.. This is due to an erroneous suspicion or to the strong completeness property
of the failure detector.
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10 A. Mostefaoui € M. Raynal

- Or p; never suspects p.. Due to the strong completeness property, this means that p. is correct. From
the previous observation, p. has broadcast its current estimate at line 8, and p; eventually receives it.
It follows that p; cannot remain blocked at line 4.

Let us now consider the case where p; blocks at line 9. For this line there are two cases to consider,
according to the class of the underlying failure detector.

e The failure detector belongs to S and f < n — 1. In that case, the set (); of processes from
which p; is waiting for messages is such that Q; U suspected; = I1. As, no correct process blocks
forever at line 4, each of them executes a broadcast at line 8. It follows from these broadcasts
and from the strong completeness property that, V p;, p; will receive a round r estimate from p;
or will suspect it. Consequently, p; cannot block at line 9.

e The failure detector belongs to the class ¢S and f < n/2. In that case Q); is defined as the first
majority set of processes p; from which p; has received a EST(r, est_from_c) message. As there
is a majority of correct processes, and as (due to the previous observation) they do not block
forever at line 4, they broadcast a round r estimate message (line 8). It follows that any correct
process receives a message from a majority set of processes. Consequently, p; cannot block at
line 9.

Finally, let us note that, due to the item (2) of Lemma 1, a correct process p; terminates correctly
the execution of the case statement (lines 11-14). It follows that if p; does not decide, it proceeds to
the next round. A contradiction. OLemma 2

Theorem 2 If a process p; is correct, then it decides.

Proof If a (correct or not) process decides, then, due to the sending of DECIDE messages at line 12
or at line 14, any correct process will receive such a message and decide accordingly (line 14).

So, suppose that no process decides. The proof is by contradiction. Due to the accuracy property
of the underlying failure detector, there is a time ¢ after which there is a correct process that is never
suspected. Note that ¢t = 0 if the failure detector belongs to S, and ¢ > 0 if it belongs to ¢S (assuming
the protocol starts executing at time ¢ = 0).

Let p; be the correct process that is never suspected after ¢. Moreover, let » be the first round
that starts after ¢ and that is coordinated by p,. As by assumption no process decides, due to Lemma,
2, all the correct processes eventually start round r.

The process p, starts round r by broadcasting its current estimate value (est,), which, due to
Lemma 1, is equal to an initial value. Moreover, during r, p, is not suspected. Consequently, all
processes p; that participate in round r (this set includes the correct processes) receive est, at line 4,
and adopt it as their est_from_c; value. If follows that no value different from est, can be broadcast
at line 8; consequently, est, is the only value that can be received at line 9. Hence, for any correct
process p;, we have rec; = {est,} at line 10. It follows that any correct process executes line 12 and
decides accordingly. OTheorem 2

The following corollary follows from the proof of the previous theorem.

Corollary 1 If the underlying failure detector belongs to the class S, the mazimum number of rounds
is n. Moreover, there is no bound on the round number when the underlying failure detector belongs
to the class ©S.
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5.3 Uniform Agreement

Lemma 3 If two processes p; and p; decide at line 12 during the same round, they decide the same
value.

Proof If both p; and p; decide during the same round r, at line 12, we had rec; = {v} and rec; = {v'}
at line 10. Moreover, from item (2) of Lemma 1, we have v = v’ = est, (where est. is the value
broadcast during r by its coordinator). O7emma 3

Theorem 3 No two processes decide differently.

Proof Let r be the first round during which a process p; decides. It decides at line 12. Let v be the
value decided by p;. Let us assume another process decides v during a round 7’ > r. If ' = r, then
due to Lemma 3, we have v = v'. So, let us consider the situation where ' > r. We show that the
estimate values (est;) of all the processes p; that progress to r 4+ 1 are equal to v. This means that no
other value can be decided in a future round®.

Let us consider any process pi that terminates the round r. Let us first note that there is a process
pz such that p, € Q; N Qk. This follows from the following observation:

- If the failure detector belongs to S, then by considering p,, the correct process that is never suspected,
we have p, € Q; N Q.

- If the failure detector belongs to the class ¢S, as @); and @}, are majority sets, we have Q; N Q. # 0,
and there is a p; such that p, € Q; N Q.

As p; has decided v at line 12 during r, we had during this round rec; = {v}. This means that p;
has received v from all the processes of ();, and so from p,. Thus, p; has also received v from p,, and
consequently, recy, = {v} or recy, = {v,—}. It follows that if p; proceeds to the next round, it executes
line 13. Consequently, for all processes p; that progress to r + 1, we have est; = v. This means that,
from round r + 1, all estimate values are equal to v. As no value different from v is present in the
system, the only value that can be decided in a round > r is v. O7heorem 3

6 Discussion

6.1 Cost of the Protocol

Time complexity of a round As indicated in Corollary 1, the number of rounds of the protocol
is bounded by n, when used with a failure detector of the class S. There is no upper bound when it
is used with a failure detector of the class ¢S. So, to analyze the time complexity of the protocol, we
consider the length of the sequence of messages (number of communication steps) exchanged during
a round. Moreover, as on one side we do not master the quality of service offered by failure detectors,
but as on the other side, in practice failure detectors can be tuned to very seldom make mistakes, we do
this analysis considering the underlying failure detector behaves reliably. In such a context, the time
complexity of a round is characterized by a pair of integers. Considering the most favorable scenario
that allows to decide during the current round, the first integer measures its number of communication
steps. The second integer considers the case where a decision can not be obtained during the current
round and measures the minimal number of communication steps required to progress to the next
round. Let us consider these scenarios.

SWhen we consider the terminology used in ©S-based protocols, this means the value v is locked. This proof shows
that the “value locking” principle is not bound to the particular use of &S§. With §, a value is locked as soon as it has
been forwarded by the (first) correct process that is never suspected. With ©8, a value is locked as soon as it has been
forwarded by a majority of processes.
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e The first scenario is when the current round coordinator is correct and is not suspected. In
that case, 2 communication steps are required to decide. During the first step, the current
coordinator broadcasts its value (line 8). During the second step, each process forwards that
value (line 8), waits for “enough” messages (line 9), and then decides (line 12). So, in the most
favorable scenario that allows to decide during the current round, the round is made of two
communication steps.

e The second scenario is when the current round coordinator has crashed and is suspected by all
processes. In that case, as processes correctly suspect the coordinator (line 5), they actually
skip the first communication step. They directly exchange the — value (line 8) and proceed to
the next round (line 11). So, in the most favorable scenario to proceed to the next round, the
round is made of a single communication step.

So, when the underlying failure detector behaves reliably, according to the previous discussion, the
time complexity of a round is characterized by the pair (2,1) of communication steps.

Message complexity of a round During each round, each process sends a message to each process
(including itself). Hence, the message complexity of a round is upper bounded by n?.

Message type and size There are two types of message: EST and DECIDE. A DECIDE message
carries only a proposed value. An EST message carries a proposed value (or the default value —) plus
a round number. The size of the round number is bounded by logs(n) when the underlying failure
detector belongs to S (Corollary 1). It is not bounded in the other case.

6.2 Related Work

Several failure detector-based Consensus protocols have been proposed in the literature. We compare
here the proposed protocol (in short MR) with the following protocols:

- The S-based Consensus protocol proposed in [2] (in short, CTg).

- The ©S-based Consensus protocol proposed in [2] (in short, CTos).

- The ©S-based Consensus protocol proposed in [9] (in short, SCog).

- The ©S-based Consensus protocol proposed in [8] (in short, HRes).

As MR, all these protocols proceed in consecutive asynchronous rounds. Moreover, all, but CTg,
are based on the rotating coordinator paradigm. It is important to note that each of these protocols
has been specifically designed for a special class of failure detectors (either S or ©S§). Differently from
MR, none of them has a generic dimension. Let us also note that only MR and both CT protocols
cope naturally with message duplications (i.e., they do not require additional statements to discard
duplicate messages).

Let V={ initial values proposed by processes } U {—}. Table 1 compares CTs and MR (when
used with S). Both protocols use n? messages during each round. A round is made of one or two
communication steps in MR, and of a single communication step in CTgs. The first column indicates
the total number (k) of communication steps needed to reach a decision. For MR, this number depends
on the parameter f. As indicated, CTs does not allow early decision, while MR does. The second
column indicates the size of messages used by each protocol. As the current round number is carried
by messages of both protocols, it is not indicated.

Table 2 compares MR (when used with ¢8§) with CT¢s, SCos and HRes. In all cases, there is no
bound on the round number and all protocols allow early decision. So, the first column compares the
time complexity of a round, according to the previous discussion (Section 6.1). The second column is
devoted to the message size. As each protocol uses messages of different size, we only consider their
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| | # communication steps | Message size |
CTs k=n An array of n values € V
MR with § 2<kE<2(f+1) A single value € V

Table 1: Comparing MR with CTg

biggest messages. Moreover, as in all protocols, each of those messages carries its identity (sender id,
round number) and an estimate value, the second column indicates only their additional fields. Let
us additionally note that, differently from SCys and HRos, MR does not require special statements
to prevent deadlock situations.

| | Time complexity of a round | Message size |
CTos (3,0) An integer timestamp
SCos (2,2) A boolean and a process id
HRos (2,1) A boolean
MR with ¢S (2,1) No additional value

Table 2: Comparing MR with CT¢g, SCos and HRos

Finally, let us note that MR provides a (factorized) proof, that is shorter and simpler to understand
than the proofs designed for the other protocols.

7 Conclusion

This paper has presented a generic Consensus protocol that works with any failure detector belonging
to the class S (provided that f < n — 1) or to the class ¢S (provided that f < n/2).

The proposed protocol is conceptually simple, allows early decision and uses messages shorter than
previous solutions. It has been compared to other Consensus protocols designed for specific classes of
unreliable failure detectors. Among its advantages, the design simplicity of the proposed protocol has
allowed the design of a simple (and generic) proof. The most noteworthy of its properties lie in its
quorum-based approach and in its generic dimension.

It is important to note that a Consensus protocol initially designed to work with a failure detector
of the class S will not work when S is replaced by ¢S. Moreover, a Consensus protocol initially
designed to work with a failure detector of ©S requires f < n/2; if OS is replaced by S, the protocol
will continue to work, but will still require f < m/2 which is not a necessary requirement in that
context. Actually, modifying a ¢S-based Consensus protocol to work with S and f < n — 1 amounts
to design a new protocol. The generic dimension of the proposed protocol prevents this drawback.
In that sense, the proposed protocol is the first failure detector-based Consensus protocol that is not
bound to a particular class of failure detectors.

Last but not least, the design of this generic protocol is a result of our effort to understand the
relation linking S on one side, and &S plus the majority requirement on the other side, when solving
the Consensus problem with unreliable failure detectors.

Acknowledgments

The authors are grateful to Jean-Michel Hélary who made insightful comments on a first draft of this
paper.

PIn"1254



14

A. Mostefaoui € M. Raynal

References

[1]

2]

Agrawal D. and El Abbadi A., Exploiting Logical Structures in Replicated Databases. Information Pro-
cessing Letters, 33:255-260, 1990.

Chandra T. and Toueg S., Unreliable Failure Detectors for Reliable Distributed Systems. Journal of the
ACM, 43(2):225-267, March 1996.

Chandra T., Hadzilacos V. and Toueg S., The Weakest Failure Detector for Solving Consensus. Journal of
the ACM, 43(4):685-722, July 1996.

Fischer M.J., Lynch N. and Paterson M.S., Impossibility of Distributed Consensus with One Faulty Process.
Journal of the ACM, 32(2):374-382, April 1985.

Fritzke U., Ingels P., Mostefaoui A. and Raynal M., Fault-Tolerant Total Order Multicast to Asynchronous
Groups. Proc. 17th IEEE Symposium on Reliable Distributed Systems, Purdue University, pp. 228-235,
October 1998.

Guerraoui R., Revisiting the Relationship between Non-Blocking Atomic Commitment and Consensus.
Proc. 9th Int. Workshop on Distributed Algorithms (WDAG95), Springer-Verlag LNCS 972 (J.M. Hélary
and M. Raynal Eds), pp. 87-100, September 1995.

Hadzilacos V. and Toueg S., Reliable Broadcast and Related Problems. In Distributed Systems, ACM Press
(S. Mullender Ed.), New-York, pp. 97-145, 1993.

Hurfin M. and Raynal M., A Simple and Fast Asynchronous Consensus Protocol Based on a Weak Failure
Detector. Distributed Computing, 12(4), 1999.

Schiper A., Early Consensus in an Asynchronous System with a Weak Failure Detector. Distributed Com-
puting, 10:149-157, 1997.

Irisa



