Cassandra: Principles and Application

Dietrich Featherston
fthrstn2@illinois.edu
d@dfeatherston.com

Department of Computer Science

University of Illinois at Urbana-Champaign

Abstract

Cassandra is a distributed database designed to be
highly scalable both in terms of storage volume and
request throughput while not being subject to any
single point of failure. This paper presents an archi-
tectural overview of Cassandra and discusses how its
design is founded in fundamental principles of dis-
tributed systems. Merits of this design and practical
use are given throughout this discussion. Addition-
ally, a project is supplied demonstrating how Cassan-
dra can be leveraged to store and query high-volume,
consumer-oriented airline flight data.

1 Introduction

Cassandra is a distributed key-value store capable of
scaling to arbitrarily large sets with no single point
of failure. These data sets may span server nodes,
racks, and even multiple data centers. With many
organizations measuring their structured data stor-
age needs in terabytes and petabytes rather than gi-
gabytes, technologies for working with information at
scale are becoming more critical. As the scale of these
systems grow to cover local and wide area networks,
it is important that they continue functioning in the
face of faults such as broken links, crashed routers,
and failed nodes. The failure of a single component in
a distributed system is usually low, but the probabil-
ity of failure at some point increases with direct pro-
portion to the number of components. Fault-tolerant,
structured data stores for working with information

at such a scale are in high demand. Furthermore,
the importance of data locality is growing as systems
span large distances with many network hops.

Cassandra is designed to continue functioning in
the face of component failure in a number of user
configurable ways. As we will see in sections 1.1 and
4.3, Cassandra enables high levels of system availabil-
ity by compromising data consistency, but also allows
the client to tune the extent of this tradeoff. Data in
Cassandra is optionally replicated onto N different
peers in its cluster while a gossip protocol ensures
that each node maintains state regarding each of its
peers. This has the property of reducing the hard
depends-on relationship between any two nodes in
the system which increases availability partition tol-
erance.

Cassandra’s core design brings together the data
model described in Google’s Bigtable paper [2] and
the eventual consistency behavior of Amazon’s Dy-
namo [3]. Cassandra, along with its remote Thrift
APIT [5] (discussed in section 5), were initially devel-
oped by Facebook as a data platform to build many
of their social services such as Inbox Search that scale
to serve hundreds of millions of users [4].

After being submitted to the Apache Software
Foundation Incubator in 2009, Cassandra was ac-
cepted as a top-level Apache project in March of 2010
[22].

In sections 1.1 and 4.3 we will see how Cassan-
dra compensates for node failure and network par-
titioning. More specifically, section 1.1 discusses the
fundamental characteristics distributed systems must
sacrifice to gain resiliency to inevitable failures at suf-



Cassandra: Principles and Application

ficiently large scale. Section 2 presents the basic data
model Cassandra uses to store data and contrasts
that model against traditional relational databases.
Section 3 discusses distributed hash table (DHT) the-
ory with section 3.1 going into more detail on how
Cassandra’s implementation of a DHT enables fault
tolerance and load balancing within the cluster.

Section 4 builds on previous sections with a deeper
discussion of Cassandra’s architecture. Section 4.3
discusses Cassandra’s tunable consistency model for
reading and writing data while section 4.2 gives cov-
erage to data replication within a cluster. Sec-
tion 4.5 covers cluster growth and section 4.4 further
contrasts the consistency and isolation guarantees
of Cassandra against traditional ACID-compliant
databases. Finally, section 6 adds to the breadth of
available case studies by showing how Cassandra can
be used to model worldwide commercial airline traf-
fic.

1.1 CAP Theorem and PACELC

Cassandra is one of many new data storage systems
that makes up the NoSQL movement. NoSQL is a
term often used to describe a class of non-relational
databases that scale horizontally to very large data
sets but do not in general make ACID guarantees.
NoSQL data stores vary widely in their offerings and
what makes each unique. In fact, some have observed
that the entire movement is a way to group together
fundamentally dissimilar systems based on what they
do not have in common [19]. However CAP, first
conceived in 2000 by Eric Brewer and formalized into
a theorem in 2002 by Nancy Lynch [11], has become a
useful model for describing the fundamental behavior
of NoSQL systems. A brief overview of this theorem
is given, as well as a model which attempts to refine
CAP as it relates to popular NoSQL systems. This
overview will help support discussion of the tradeoffs
made by the Cassandra data store in later sections.

The CAP Theorem states that it is impossible for
a distributed service to be consistent, available, and
partition-tolerant at the same instant in time. We
define these terms as follows.

Consistency means that all copies of data in the

system appear the same to the outside observer
at all times.

Availability means that the system as a whole con-
tinues to operate in spite of node failure. For
example, the hard drive in a server may fail.

Partition-tolerance requires that the system con-
tinue to operate in spite of arbitrary message
loss. Such an event may be caused by a crashed
router or broken network link which prevents
communication between groups of nodes.

Depending on the intended usage, the user of Cas-
sandra can opt for Availability + Partition-tolerance
or Consistency + Partition-tolerance. These terms
should not be interpreted as meaning the system is
either available or consistent, but that when there is
a fault one or the other becomes more important for
the system to maintain. As a simple tool to grasp
a complex subject, the CAP Theorem has rapidly
become a popular model for understanding the nec-
essary tradeoffs in distributed data systems. How-
ever, this simplicity leaves room for potentially incor-
rect interpretation of the theorem. Daniel Abadi of
Yale University’s Computer Science department has
described a refining model referred to as PACELC
which he uses to clarify some of the tradeoffs buried
within the CAP Theorem. [12].

<— partition? 4@7 else —»

Figure 1: PACELC Tradeoffs for Distributed Data
Services

Figure 1 diagrams the distributed data service
tradespace as described by PACELC. PACELC re-
formulates and clarifies CAP in a way that applies to
many popular NoSQL systems—Cassandra included.
It states that when a system experiences partition-
ing P, it tends to require that tradeoffs be made



Cassandra: Principles and Application

between availability A and consistency C. Else F,
under normal operation it must make tradeoffs be-
tween consistency C and latency L. This conjec-
ture describes the real-world operation of Cassandra
very well. Under normal conditions, the user may
make tradeoffs between consistency, sometimes re-
ferred to as replication-transparency, and latency of
operations. However, when the system experiences
partitioning, Cassandra must sacrifice consistency to
remain available since write durability is impossible
when a replica is present on a failed node. The rea-
sons behind these tradeoffs are made more clear in
section 4.3.

2 Data Model

Cassandra is a distributed key-value store. Unlike
SQL queries which allow the client to express arbi-
trarily complex constraints and joining criteria, Cas-
sandra only allows data to be queried by its key. Ad-
ditionally, indexes on non-key columns are not al-
lowed and Cassandra does not include a join engine—
the application must implement any necessary piec-
ing together of related rows of data. For this rea-
son the Cassandra data modeler must choose keys
that can be derived or discovered easily and ensure
maintenance of referential integrity. Cassandra has
adopted abstractions that closely align with the de-
sign of Bigtable [2, 15]. While some of its terminology
is similar to those familiar with relational databases,
the reader should be careful not to think of how its
abstractions map onto Cassandra. The primary units
of information in Cassandra parlance are outlined as
follows. This vernacular is used throughout the pa-
per and is especially important to understanding the
case study in section 6.

Column: A column is the atomic unit of information
supported by Cassandra and is expressed in the
form name : value.

Super Column: Super columns group together like
columns with a common name and are useful for
modeling complex data types such as addresses
other simple data structures.

Row: A Row is the uniquely identifiable data in the
system which groups together columns and super
columns. Every row in Cassandra is uniquely
identifiable by its key. Row keys are important
to understanding Cassandra’s distributed hash
table implementation.

Column Family: A Column Family is the unit of
abstraction containing keyed rows which group
together columns and super columns of highly
structured data. Column families have no de-
fined schema of column names and types sup-
ported. All logic regarding data interpretation
stays within the application layer. This is in
stark contrast to the typical relational database
which requires predefined column names and
types. All column names and values are stored
as bytes of unlimited size and are usually inter-
preted as either UTF-8 strings or 64-bit long
integer types. In addition, columns within a
column family can be sorted either by UTF-8-
encoded name, long integer, timestamp, or using
a custom algorithm provided by the application.
This sorting criteria is immutable and should be
chosen wisely based on the semantics of the ap-
plication.

Keyspace: The Keyspace is the top level unit
of information in Cassandra. Column fami-
lies are subordinate to exactly one keyspace.
While variations exist, all queries for infor-
mation in Cassandra take the general form
get(keyspace, column_family, row_key).

This data model provides the application with a
great deal of freedom to evolve how information is
structured with little ceremony surrounding schema
design. An exception to this rule is the definition
of new keyspaces and column families which must be
known at the time a Cassandra node starts !. In addi-
tion, this configuration must be common to all nodes
in a cluster meaning that changes to either will re-
quire an entire cluster to be rebooted. However, once

IThis limitation is current as of the released version of Cas-
sandra 0.6.3. The current development version allows configu-
ration of additional keyspaces and column families at runtime.



Cassandra: Principles and Application

the appropriate configuration is in place, the only ac-
tion required for an application to change the struc-
ture or schema of its data, is to start using the de-
sired structure. When applications require evolving
their information structure in Cassandra, they typ-
ically implement a process of updating old rows as
they are encountered. This means applications may
grow in complexity by maintaining additional code
capable of interpreting this older data and migrat-
ing it to the new structure. While in some circum-
stances this may be advantageous over maintaining
a strictly typed data base, it underscores the impor-
tance of choosing a data model and key strategy care-
fully early in the design process.

3 Distributed Hash Tables

A distributed hash table is a strategy for decentral-
ized, keyed data storage offering get and put oper-
ations: get(key) : value,put(key,value). Reliable
decentralized lookup of data has been a popular re-
search topic in the internet age. Specifically, the area
began to receive a great deal of attention during the
rise and fall of Napster which maintained a listing file
locations on a central server [14, 17]. Users would
connect to the central server, browse for the data
they want, and request that data over a point-to-
point connection with the server containing the ref-
erenced data. However, there are a few problems with
this approach. Any sufficiently large distributed sys-
tem with a central coordinating node will experience
bottlenecks at that node. Large amount of strain in
terms of processing power and bandwidth can arise
at the central node which can make the entire system
appear unavailable. DHTs offers a scalable alterna-
tive to the central server lookup which distributes
lookup and storage over a number of peers with no
central coordination required.

Any read or write operation on a DHT must lo-
cate the node containing information about the key.
This is done through a system of key-based routing.
Each node participating in a DHT contains a range of
keys stored along with information about the range
of keys available at 0 or more other nodes in the sys-
tem. Any node contacted for information regarding

a key will forward that request to the next nearest
node according to its lookup table. The more in-
formation each node maintains about its neighbors,
the fewer hops required to get to the correct node.
While maintaining more state at each node means
lower latency lookups due to a reduced number of
hops, it also means nodes must exchange a greater
amount of information about one other. The tradeoff
between lookup latency and internal gossip between
nodes is a fundamental driver behind DHT design.
Many DHT systems such as Chord exhibit O(logn)
routing and interconnectedness complexity [13, 10].
This is the case with many earlier DHT implemen-
tations which attempt at balance between network
churn and lookup latency. Figure 3 shows some pair-
ings of interconnectedness and lookup complexity of
common DHT solutions [17].

Connections NumberofHops
o(1) O(n)

O(logn) O(logn)

O(v/n) o)

3.1 Balanced Storage

Cassandra’s DHT implementation achieves O(1)
lookup complexity and is often referred to as a one-
hop DHT. This is a function of the gossip architec-
ture in Cassandra which ensures each node eventually
has state information for every other node. This in-
cludes the range of keys it is responsible for, a listing
of other nodes and their availability, and other state
information discussed in section 4.2 [16].

Like other DHT implementations, nodes in a Cas-
sandra cluster can be thought of as being arranged
in a ring. Servers are numbered sequentially around
a ring with the highest numbered connecting back to
the lowest numbered. In Cassandra each server is as-
signed a unique token which represents the range keys
for which it will be responsible for. The the value of
a token t may be any integer such that 0 <t < 2127,
Keys in Cassandra may be a sequence of bytes or a
64-bit integer. However, they are converted into the
token domain using a consistent hashing algorithm.
MD5 hashing is used by default but an application
may supply its own hashing function to achieve spe-



Cassandra: Principles and Application

cific load balancing goals. If a node n in a token ring
of size N has token t,, it is responsible for a key k
under the following conditions.

<N
Sty

0< n
th—1 < md5(k)

Completing the token domain is the node with the
lowest token value, n = 0, which is responsible for
all keys & matching the following criteria (1). This
is often referred to as the wrapping range since it
captures all values at or below the lowest token as
well as all values higher than the highest.

md5(k) > tn-—1

As a result of employing the MD5 hashing algorithm
for distributing responsibility for keys around the
token ring, Cassandra achieves even distribution of
data and processing responsibilities within the clus-
ter. This is due to the domain and range character-
istics of the MD5 algorithm [18]. Even when given
similar but unique input, MD5 produces uniform out-
put. This even distribution of data within a cluster is
essential to avoiding hotspots that could lead to over-
burdening a server’s storage and capacity to handle
queries. The hashing algorithm applied to keys acts
works to naturally load-balance a Cassandra cluster.

4 Architecture

Our discussion of DHTSs is central to understand-
ing Cassandra’s architecture. In the following sec-
tions we build on this understanding with discussions
of how Cassandra implements reliable, decentralized
data storage over DHT internals.

4.1 Anatomy of Writes and Reads

To the user, all nodes in a Cassandra cluster appear
identical. The fact that each node is responsible for
managing a different part of the whole data set is
transparent. While each node is responsible for only

a subset of the data within the system, each node is
capable of servicing any user request to read from or
write to a particular key. Such requests are automat-
ically proxied to the appropriate node by checking
the key against the local replica of the token table.
Once a write request reaches the appropriate node,
it is immediately written to the commit log which is
an append-only, crash recovery file in durable stor-
age. The only I/O for which a client will be blocked
is this append operation to the commit log which
keeps write latency low. A write request will not
return a response until that write is durable in the
commit log unless a consistency level of ZERO is
specified (see section 4.3 for details). Simultaneously
an in-memory data structure known as the memtable
is updated with this write. Once this memtable (a
term originating from the Bigtable paper [2]) reaches
a certain size it too is periodically flushed to durable
storage known as a SSTable.

Reads are much more I/O intensive than writes and
typically incur higher latency. Reads for a key at one
of the replica nodes will first search the memcache
for any requested column. Any SSTables will also
be searched. Because the constituent columns for
a key may be distributed among multiple SSTables,
each SSTable includes an index to help locate those
columns. As the number of keys stored at a node
increases, so do the number of SSTables. To help keep
read latency under control, SSTables are periodically
consolidated.

4.2 Replication

As discussed in sections 3 and 3.1, Cassandra’s stor-
age engine implements a MD5-keyed distributed hash
table to evenly distribute data across the cluster. The
DHT itself does not provide for fault-tolerance how-
ever since its design only accounts for a single node at
which information regarding a key resides. To allow
keys to be read and written even when a responsible
node has failed, Cassandra will keep N copies dis-
tributed within the cluster. N is also known as the
replication factor and is configurable by the user.
The hashing function provides a lookup to the
server primarily responsible for maintaining the row
for a key. However each node keeps a listing of N —1



Cassandra: Principles and Application

alternate servers where it will maintain additional
copies. This listing is part of the information gos-
siped to every other node as described in sections 3.1
and 4.5. When a live node in the cluster is contacted
to read or write information regarding a key, it will
consult the nearest copy if the primary node for that
key is not available. Higher values of N contribute
to availability and partition tolerance but at the ex-
pense of read-consistency of the replicas.

Cassandra provides two basic strategies for deter-
mining which node(s) should hold replicas for a each
token. Each strategy is provided both the logical
topology (token ring ordering) and physical layout
(IP addresses) of the cluster. For each token in the
ring, the replication strategy returns N — 1 alternate
endpoints.

Rack unaware is the default strategy used by Cas-
sandra and ignores the physical cluster topology.
This option begins at the primary node for a to-
ken and returns the endpoints of the next N —1
nodes in the token ring.

Rack aware strategy attempts to improve avail-
ability by strategically placing replicas in dif-
ferent racks and data centers. This design al-
lows the system to continue operating in spite
of a rack or whole data center being unavailable.
Nodes are assumed to be in different data centers
if the second octet of their IPs differ and in dif-
ferent racks if the third octet differs. This repli-
cation strategy attempts to find a single node
in a separate data center, another on a differ-
ent rack within the same data center, and finds
the remaining N — 1 endpoints using the rack
unaware strategy.

Users may also implement their own replica place-
ment strategy to meet the specific needs of the sys-
tem. For example, a strategy may take physical
node geography, network latency, or other specific
characteristics into account. The ability to tailor
replica placement is an important part of architecting
a sufficiently large Cassandra cluster, but by target-
ing replicas for certain nodes it is possible to intro-
duce unwanted patterns into the distribution of data.
While this may be perfectly desirable in many cases,

it is important to understand whether or not a given
replica strategy will infect the cluster with unwanted
hotspots of activity.

4.3 Consistency

Cassandra is often communicated as being an even-
tually consistent data store. While this is true for
most cases in which Cassandra is suitable, in real-
ity Cassandra allows the user to make tradeoffs be-
tween consistency and latency. It does so by requir-
ing that clients specify a desired consistency level—
ZERO,ONE, QUORUM, ALL, or ANY with each
read or write operation. Use of these consistency lev-
els should be tuned in order to strike the appropriate
balance between consistency and latency for the ap-
plication. In addition to reduced latency, lowering
consistency requirements means that read and write
services remain more highly available in the event of
a network partition.

A consistency level of ZE RO indicates that a write
should be processed completely asynchronously to
the client. This gives no consistency guarantee but
offers the lowest possible latency. This mode must
only be used when the write operation can happen
at most once and consistency is unimportant since
there is no guarantee that write will be durable and
ever seen by another read operation. A consistency
level of ON E means that the write request won'’t re-
turn until at least one server where the key is stored
has written the new data to its commit log. If no
member of the replica group for applicable token is
available, the write fails. Even if the server crashes
immediately following this operation, the new data
is guaranteed to eventually turn up for all reads af-
ter being brought back online. A consistency level
of ALL means that a write will fail unless all repli-
cas are updated durably. QUORUM requires that
% + 1 servers must have durable copies where N is
the number of replicas.

A write consistency of ANY has special properties
that provide for even higher availability at the ex-
pense of consistency. In this consistency mode Cas-
sandra nodes can perform what is known as hinted
handoff. When a write request is sent to a node in the
cluster, if that node isn’t responsible for the key of the



Cassandra: Principles and Application

write, then the request is transparently proxied to a
replica for that token. In the other synchronous write
consistency modes ONE, QUORUM, and ALL,
writes must be committed to durable storage at a
node responsible for managing that key. Hinted
handoff allows writes to succeed without blocking the
client pending handoff to a replica. The fist node con-
tacted, even if it is not a replica for that token, will
maintain a hint and asynchronously ensure that the
write eventually gets to a correct replica node.

Reads on the other hand require coordination
among the same number of replicas but have some
unique properties.  First, consistency modes of
ZERO and ANY are special and only apply to
writes. The remaining consistency levels ONE,
QUORUM, ALL, simply indicate the number of
replicas that must be consulted during a read. In
all cases, if any replicas are in conflict the most
recent is returned to the client. In addition, any
copies that are in conflict are repaired at the time
of the read. This is known in Cassandra parlance as
read-repair. Whether this read-repair happens syn-
chronously with the caller or asynchronously depends
on the stringency of the consistency level specified. If
the specified number of replicas cannot be contacted,
the read fails without fails based on the static quorum
rules of the system.

Understanding how to tune the consistency of each
read and write operation, we can now better un-
derstand how to balance between consistency and
the combination of latency and fault-tolerance. To
achieve the lowest latency operations, the most le-
nient consistency levels may be chosen for reads and
writes. If R is given as the number of replicas con-
sulted during a read, and W as the number consulted
during a write, Cassandra can be made fully consis-
tent under the following condition. Note that this is
consistent with basic replication theory.

R+W >N (2)

QUORU M on reads and writes meets that require-
ment and is a common starting position which pro-
vides consistency without inhibiting performance or
fault-tolerance. If an application is more read or
write heavy, then the consistency level can be tuned

for that performance profile while maintaining total
consistency as long as R+ W > N. If lower la-
tency is required after exploring these options, one
may choose R+ W <= N.

As of this writing, Cassandra does not support the
notion of a dynamic quorum in which new quorum
criteria are selected when the cluster is partitioned
into two or more separate parts unable to communi-
cate with one another [1, 15]. If a partition occurs
that prevents the specified number of replicas from
being consulted for either a read or write operation
that operation will fail until the partition is repaired
[25].

4.4 Isolation and Atomicity

It is important to mention that for many reliable
data-intensive applications such as online banking or
auction sites, there are portions of functionality for
which consistency is only one important factor. Fac-
tors such as atomicity of operations and isolation
from other client updates can be critical in many
cases and are often encapsulated within a transac-
tion construct for relational databases. In Cassandra
there is no way to achieve isolation from other clients
working on the same data. Some atomicity is offered,
but it is limited in scope. Cassandra guarantees a
reads or writes for a key within a single column fam-
ily are always atomic. There is no notion of a check-
and-set operation that executes atomically and batch
updates within a column family for multiple keys are
not guaranteed atomicity [15]. Application designers
choosing a data store should consider these criteria
carefully against their requirements while selecting a
data store. In some cases applications designers may
choose to put some subset of data that should be sub-
ject to ACID guarantees in a transactional relational
database while some other data resides in a data store
like Cassandra.



Cassandra: Principles and Application

4.5 Elastic Storage

Up to this point, discussion has focused on Cas-
sandra’s behavior in the context of a statically de-
fined group of nodes. However one of the attractions
of Cassandra is that it allows scaling to arbitrarily
large data sets without rethinking the fundamental
approach to storage. Specifically, hardware require-
ments and costs scale linearly with storage require-
ments. Cassandra clusters scale through the addition
of new servers rather than requiring the purchase of
ever more powerful servers. This is often referred to
as horizontal versus vertical scaling. To understand
how a cluster can grow or shrink over time, we will
revisit the topic of distributed hash tables as imple-
mented by Cassandra. Recall that nodes are arranged
in a logical ring where each node is responsible for a
range of keys as mapped to the token domain using
consistent hashing.

The process of introducing a new node into a Cas-
sandra cluster is referred to as bootstrapping and is
usually accomplished in one of two ways. The first
is to configure the node to bootstrap itself to a par-
ticular token which dictates its placement within the
ring. When a token is chosen specifically, some data
from the node with the next highest token will begin
migration to this node. Figure 2 shows a new node
tn, being bootstrapped to a token between t,_1 and
tn.

Figure 2: Node t,,, during bootstrap into token ring

The approximate fraction of data that will be mi-
grated from node ¢, to t,, can be calculated as given
in equation 3. This calculation can be used in select-
ing a token value that achieves specific load balancing
goals within the cluster. For example if a particular
node has limited storage, bandwidth, or processing
capability, it may make sense to assign it responsibil-
ity for a smaller slice of the token range.

A second common way to bootstrap a new node is
for the cluster to select a token dictating this nodes
placement in the ring. The goal of the election is to
choose a token for the new node that will make it
responsible for approximately half of the data on the
node with the most data that does not already have
another node bootstrapping into its range [1, 15].
While this process is technically an election in dis-
tributed systems vernacular, nodes are not contacted
in an ad-hoc way to initiate this election. Rather,
the new node unilaterally makes this decision based
on storage load data gossiped from other nodes peri-
odically [1, 16].

tnl - tn—l (3)

tn —tn—1

5 Client Access

Client interaction with a decentralized distributed
system like Cassandra can be challenging. One of
the more obvious problems is for the client to decide
which host it will send requests to. In the case of
Cassandra, each node is capable of responding to any
client request [15]. However, choosing a node with a
replica of the data to be read or written to will result
in reduced communication overhead between nodes
to coordinate a response. It follows that routing all
requests to a single client can be the source of bot-
tlenecks in the system. In addition, if that node has
failed or is otherwise unreachable, the entire cluster
may be perceived as being unavailable.

The Cassandra data store is implemented in Java.
However there is no native Java API for communi-
cating with Cassandra from a separate address space.
Instead Cassandra implements services using Thrift
[5, 15]. Thrift is a framework that includes a high
level grammar for defining services, remote objects



Cassandra: Principles and Application

and types, and a code generator that produces client
and server RMI stubs in a variety of languages. As
of this writing, many languages are supported includ-
ing Java, Ruby, Python, and Erlang. Each Cassandra
node starts a Thrift server exposing services for inter-
acting with data and introspecting information about
the cluster.

At this time, the Thrift API to Cassandra exhibits
all of the challenges discussed thus far; it leaves open
the possibility of a perceived single point of failure
and does not intelligently route service invocations
to replica nodes. Because of Thrift’s generic nature,
it is unlikely these issues will be addressed the future.
On the other hand, Hector is a native Java client for
Cassandra which has begun to tackle the challenges
associated with accessing this decentralized system.
Hector itself is actually a layer on top of the Thrift
API and as such it depends on its client and server
side bindings [7]. It introspects data about the state
of the ring in order to determine the endpoint for each
host. This information is then used to implement
three modes of client-level failover [7].

FAIL_FAST implements classic behavior of failing
a request of the first node contacted is down

ON_FAIL_TRY_ONE_NEXT_AVAILABLE
attempts to contact one more node in the ring
before failing

ON_FAIL_TRY_ALL_AVAILABLE will  con-
tinue to contact nodes, up to all in the cluster,
before failing

As of this writing, no client could be found which
intelligently routes requests to replica nodes. Cas-
sandra’s Thrift API supports introspection of the to-
ken range for each ring [1], but this would not help
in identifying nodes where replicas are located as
that would require knowledge of the replica place-
ment strategy discussed in section 4.2. A truly intelli-
gent client requires up-to-date information regarding
replica locations, token ranges, and the availability
status of nodes in the cluster. This being the case,
it stands to reason that such a client would need to
become a receiver of at least a subset of the gossip
passed between nodes and thus an actual member

of the cluster. Depending on an application’s pur-
pose, it may make sense to distribute a number of
clients throughout the cluster with different respon-
sibilities. This may also be a strategy for balancing
the workload for a number of different clients oper-
ating on data retrieved from the Cassandra cluster.
In this style, clients become not passive users of the
cluster, but active members of it. It is expected that
best practices for client interaction with Cassandra
and similar decentralized data stores will experience
significant attention in the near future.

6 Case Study: Modeling Air-
line Activity

To illustrate the architectural principles discussed
this far, this paper attempts to model a problem do-
main familiar to the audience (or at least the regular
traveler). The largest known users of Cassandra in
the industry are social networking sites such as Face-
book, Twitter, and Digg [15, 23]. The most readily
available examples of Cassandra usage focus on so-
cial networking applications. It is the goal of this
paper to contribute to the breadth of examples in
the community by studying an unrelated use case—
modeling commercial airline activity. More specifi-
cally, a simple study is presented which models air-
line activity and allows searching for flights from one
airport to another with a configurable number of con-
nections. Following this study, a discussion is held
regarding the merits and drawbacks of applying Cas-
sandra to this problem domain. The author has made
all source code for data manipulation and search dis-
cussed in this section available on github [26] in a
project named Brireme .

In this example we largely ignore the possibilities
of inconsistent data that could arise when using an
eventually consistent store such as Cassandra. It is
assumed that the likelihood of a user deciding on a
flight that will change over the course of their search
is acceptably low. In the event that a particular flight
is invalidated over the course of a search, it is as-

LA brireme is a ship used in Ancient Greece during the time
of Cassandra



Cassandra: Principles and Application

sumed that, for example, a purchasing system would
alert the user requiring them to begin their search
again. As demonstrated by the CAP Theorem in sec-
tion 1.1, such risks cannot be completely mitigated
when working with changing data at sufficiently large
scale.

In order to model airline activity in a way that
allows searching for flights on a given day, we must
carefully select a data model and system of unique
keys supporting required searches. All examples are
in the context of a single keyspace. Each query will
contain four pieces of information: a date, departure
airport, arrival airport, and total number of flights
allowed, or hops. Because we are interested in follow-
ing a linked list of flights from the departure airport,
a lookup is required that easily finds lists of flights
departing an airport on a given day. For this reason,
a column family is introduced which we call Flight-
Departure that, given a key of day and departure
airport, provides a listing of flights. For example, the
following map data structure shows an abbreviated
list of flights departing Washington Reagan Airport
on July 20, 2010. The key is 20100720-DCA and the
list of flight ids are contained within the value.

20100720-DCA =>
(201007200545-DCA-CLT-US-1227,
201007200545-DCA-MBJ-US-1227,
201007200600-DCA-ATL-DL-2939,
201007200600-DCA-ATL-FL-183,
201007200600-DCA-DCA-DL-6709,

201007200600-DCA-DFW-AA-259)

To model this data structure we introduce a new col-
umn family named FlightDeparture. The departure
date and airport are combined to create a unique
key for each row that contains a complete listing of
flights. Each of these flights are represented as single
columns within the the row. Note that the column
identifier itself contains all the information this col-
umn family is designed to store. This is by design
to limit the amount of data contained in a row and
thus helping minimize bandwidth usage and latency
during searches.

A separate column family we call Flight contains
detailed information regarding flights. The column

10

name of a row in the FlightDeparture column family
(e.g. 201007200730 — DCA— SEA— AA—1603) is a
row key which may be used to look up the columns
comprising that flight in the Flight column family.
The Flight column family holds more detailed infor-
mation regarding a flight in question.

201007200730-DCA-SEA-AA-1603 =>
(takeoff,201007200730)
(landing,201007201200)
(flight,1603)
(departureCountry,US)
(departureCity,WAS)
(departureAirport,DCA)
(carrier,AA)
(arrivalCountry,US)
(arrivalCity,SEA)
(arrivalAirport,SEA)

In addition to these primary column families, aux-
iliary column families Carrier and Airport, are main-
tained for looking up further details for a given flight.
The row keys for these column families can be found
in the respective columns from rows in the Flight col-
umn family. This information could be stored as su-
per columns within a single Flight row, and such de-
normalization is often a good strategy for minimizing
bandwidth and protocol overhead between the client
and nodes in the cluster as it reduces the need to is-
sue additional requests. Such a strategy trades disk
usage for speed of information retrieval which, for a
single node, would present storage problems for a suf-
ficiently large number of flights or details regarding
the carrier and airports involved.

Source data for this demonstration was obtained
from OAG [24]. Flight data is given in schedule for-
mat which is a compact representation of the flights
an airline intends to fly. This includes the carrier,
start day, end day, days of week, departure and ar-
rival airport, and flight number along with other
fields not used here. In order to efficiently search
this data for flights on a particular day it must be
mapped onto our data model. The source data is ex-
panded from flight schedules to flight instances and
stored in Cassandra. A small subset of data is chosen
for this paper which captures activity at a selection



Cassandra: Principles and Application

of airports over the course of a few weeks. Even this
small data set represents nearly 22 million flights and
2 gigabytes of source data. If all data is captured
and denormalized to further improve query perfor-
mance, this data volume can be expected to grow by
orders of magnitude. A similar data set stored in a
relational database with secondary indexes necessary
for temporal search will be larger still, due to the
additional storage requirements and other relational
storage overhead.

With future planned flights loaded into Cas-
sandra, an algorithm for searching flights over a
number of hops is developed and shown in Ap-
pendix A with a Java implementation given in Ap-
pendix B 1. The procedures get_flights_by_origin
and get_flight_by_id are taken to be simple imple-
mentations that look up single rows of data using the
respective FlightDeparture and Flight column fami-
lies using the provided key.

The algorithm given is straightforward to under-
stand and its data access pattern of single object
lookups lends itself well to implementation over a
key-value store. In addition, experience running this
algorithm shows that, in many cases, flight combina-
tions covering three hops can be calculated in under
a minute on a single Cassandra node. Two-hop flight
routes can be calculated in just a few seconds. The
primary latency is the communication overhead in-
volved in making repeated requests for flights and, as
long as nodes are connected by high bandwidth cable,
it is expected that these algorithms would maintain a
similar performance profile as the cluster grows to en-
compass many nodes. This hypothesis is made based
on the one-hop DHT substrate underlying Cassandra
discussed in section 3.1. Further research is needed
to understand how well this model scales with sys-
tem and data growth. Were this data modeled in a
traditional normalized relational database, a single
table would likely be used to represent flight data.
Indexes supporting constraints on airport and flight
times without full table scans would also need to be in
place for efficient queries. The above algorithm could
implement its data access through interaction with a

1The full Java implementation from the author may be
found at [26]

11

relational database, but such an approach would not
scale gracefully as data set growth requires multi-
ple nodes. As indexes supporting these queries grow
ever larger to support larger data sets, partitioning
across additional nodes would preset a challenge. The
data designer would be faced with dropping depen-
dencies on database features, such as joins, secondary
indexes, and other features that do not scale well
to multi-node, multi-master environments. One ap-
proach would be to implement a database schema in
which the key for a particular flight, or other piece
of information, indicates the node on which it is run-
ning. Such a pattern closely resembles a key-value
store like Cassandra but begins to abandon the rela-
tional features it was designed for.

Conclusions

This paper has provided an introduction to Cassan-
dra and fundamental distributed systems principles
on which it is based. The concept of distributed
hash tables has been discussed both in general and
as a substrate for building a decentralized, evolvable
key-value data store. Cassandra’s model for trad-
ing consistency for availability and latency has been
founded by referencing the CAP Theorem and an
alternate, lesser-known model known as PACELC.
We have seen how data can be distributed across a
wide-area network with intelligent replica placement
to maximize availability in the event of node failure
and network partitioning. Throughout this discus-
sion we have contrasted this distributed key-value
design with the traditional relational database and
provided a formula for working with data at internet
scale. Lastly, an example modeling a real world prob-
lem domain with large data requirements has been
used to illustrate important principles in this paper.
In doing so, the goal has been to add to the breadth of
examples in the community for working with sparse
column data stores like Cassandra.



Cassandra: Principles and Application

A Flight Search Algorithm

begin Algorithm for finding flights over a given number of hops
proc get_flights(date, dep_airport, dest_airport, hops) =
options = ();
legs = ();
comment: get all flights leaving airport;
comment: on date using Flight Departure CF;
flight_keys := get_flights_by_origin(concat(date, airport));
for flight_keys.each() = flight_key do
arr_airport ;= get_arr_airport(flight_key);
if arr_airport = dep_airport
comment: capture this one hop flight;
options.add(get_flight_by_id(flight_key));
elsif hops > 1
comment: look up flight details from the Flight CF;
flight := get_flight_by_id(flight_key);
comment: recursively search for flights over;
comment: the requested number of hops;
legs.push(flight);

traverse_flights(options, legs, date, dest_airport, 2, hops);

legs.pop();

fi
od
comment: Return a list of flight routes matching;
comment: our criteria. Each element of this list;
comment: is a list of connecting flights from;
comment: dep_airport to dest_airport
return(options);

recursive portion of algorithm
performs a depth-first traversal of flight options
proc traverse_flights(options, legs, date, dest_airport, level, hops)
last_leg = legs.peek();
arrival := last_leg.arrival _airport();
flight_keys := get_flights_by_origin(concat(date, arrival));
for flight_keys.each() = flight_key do
flight := get_flight by _id( flight_key);
comment: see if flight is to destination airport and departs;
comment: after the last leg lands at connecting airport;
if flight.happens_after(lastleg)
if arrival = dest_airport
route = ();
route.add_all(legs);

12



Cassandra: Principles and Application

route.add(flight);
options.add(route);
else
if level < hops
legs.push(flight);
traverse_flights(
options,legs, date, dest_airport,
level + 1, hops);
legs.pop();
fi
fi
fi
od

end

13



Cassandra: Principles and Application

B Flight Search Algorithm
(Java Implementation)

List<List<FlightInstance>> getFlights(String day, String dep, String dest,
boolean sameCarrier, int hops) throws Exception {

// holds all verified routes
List<List<FlightInstance>> options = new ArrayList<List<FlightInstance>>();

// temporary data structure for passing connecting information
Stack<FlightInstance> legs = new Stack<FlightInstance>();

List<String> flightIds = getFlights(day, dep);
for (String flightId : flightIds) {
String arrivalAirport = getArrivalAirport(flightId);
if (arrivalAirport.equals(dest)) {
// build new connection list with only this flight
List<FlightInstance> flights = new ArrayList<FlightInstance>();
flights.add(getFlightById(flightId));
options.add(flights);
b
else if(hops > 1) {
// look at possible destinations connecting from this flight
legs.push(getFlightById(flightId));
traverseFlights(options, legs, day, dest, sameCarrier, 2, hops) ;
legs.pop();
b
b
return options;

}

void traverseFlights(List<List<FlightInstance>> optionList,
Stack<FlightInstance> legs,
String day, String arr,
boolean sameCarrier, int level, int hops) throws Exception {

// get the connection information from the last flight and
// search all outbound flights in search of our ultimate destination
FlightInstance lastLeg = legs.get(legs.size()-1);
String arrivingAt = lastleg.getArrivalAirport();
List<String> flightIds = getFlights(day, arrivingAt);
for (String flightId : flightIds) {

FlightInstance flight = getFlightById(flightId);

if (flight.happensAfter(lastleg)) {

if (canTerminate(flight,arr,sameCarrier,lastleg)) {

14



Cassandra: Principles and Application 15

// build new route with all prior legs, adding this flight to the end
List<FlightInstance> route = new ArrayList<FlightInstance>(legs.size()+1);
route.addAll(legs);
route.add(flight) ;
// copy this route to the verified set that go from dep -> arr
optionList.add(route);

}

else if (level < hops) {
legs.push(flight);
traverseFlights(optionList,legs,day,arr,sameCarrier,1eve1+1,hops);
legs.pop();

}

}
}
}

boolean canTerminate(FlightInstance flight,
String arr, boolean sameCarrier,
FlightInstance lastLeg) {
return flight.getArrivalAirport().equals(arr) &&
(!sameCarrier || flight.hasSameCarrier(lastleg));



Cassandra: Principles and Application

References
[1] Misc. Authors Apache Cassandra 0.6.3
Java Source Code Available from

http://cassandra.apache.org

F. Chang, J. Dean, S. Ghemawat, W. C. Hsieh,
D. A. Wallach, M. Burrows, T. Chandra,
A. Fikes, and R. E. Gruber, Bigtable: A Dis-
tributed Storage System for Structured Data
OSDI'06: Seventh Symposium on Operating
System Design and Implementation, 2006, Seat-
tle, WA, 2006.

G. DeCandia, D. Hastorun, M. Jampani,
G. Kakulapati, A. Lakshman, A. Pilchin,
S. Sivasubramanian, P. Vosshall, and W. Vo-
gels, Dynamo: Amazons Highly Available Key-
value Store In Proceedings of twenty-first ACM
SIGOPS symposium on Operating systems prin-
ciples (2007), ACM Press New York, NY, USA,
pp- 205220

A. Lakshman, P. Malik, Cassandra - A De-
centralized Structured Storage System, Cornell,
2009

M. Slee, A. Agarwal, M. Kwiatkowski, Thrift:
Scalable Cross-Language Services Implementa-
tion Facebook, Palo Alto, CA, 2007

R. Tavory, Hector a Java Cassandra client
http://prettyprint.me/2010/02/23/hector-a-
java-cassandra-client February, 2010

R. Tavory, Hector Java Source Code Available
from http://github.com/rantav/hector

Thrift Wiki http://wiki.apache.org/thrift

F. Cristian, Understanding Fault-Tolerant Dis-
tributed Systems University of California, San
Diego, La Jolla, CA, May 1993

A. Gupta, B. Liskov, and R. Rodrigues, Efficient
Routing for Peer-to-Peer Overlays, Proceedings
of the 1st Symposium on Networked Systems De-
sign and Implementation, MIT Computer Sci-
ence and Artificial Intelligence Laboratory, 2004

[11]

[12]

[13]

[14]

[15]

16

N. Lynch, S. Gilbert, Brewer’s Conjecture
and the Feasibility of Consistent, Available,
Partition-Tolerant Web Services ACM SIGACT
News, v. 33 issue 2, 2002, p. 51-59.

D. Abdi, Problems with CAP, and
Yahoo’s  little  known  NoSQL  system
http://dbmsmusings.blogspot.com/2010/04 /problems-
with-cap-and-yahoos-little.html, Yale Univer-

sity, April, 2010

I. Stoica, R. Morris, D. Liben-Nowell, D. Karger,
M. F. Kaashoek, F. Dabek, and H. Balakrish-
nan, Chord: A scalable peer-to-peer lookup ser-

vice for internet applications Technical report,
MIT LCS, 2002

K. Nagaraja, S. Rollins, M. Khambatti, Looking
Beyond the Legacy of Napster and Gnutella

J.  Ellis, et. al, Cassandra ~ Wiki
http://wiki.apache.org/cassandra/FrontPage,
2010

J. Ellis, et. al., Cassandra Gossiper Architecture
http://wiki.apache.org/cassandra/ArchitectureGossip,
2010

Distributed Hash Table
http://en.wikipedia.org/wiki/Distributed _hash_table

MD5 http://en.wikipedia.org/wiki/MD5

M. Loukides, What is data science? Anal-
ysis:  The future belongs to the compa-
nies and people that turn data into prod-
ucts. http://radar.oreilly.com/2010,/06/what-is-
data-science.html, June 2010

Apache Software Foundation, Apache License
Version 2.0 http://www.apache.org/licenses/,
January, 2004

J. Peryn, Database Sharding at Netlog Pre-
sented at FOSDEM 2009, Brussels, Belgium,
February, 2009

Apache Software Foundation, The
Apache Software Foundation An-
nounces New Top-Level Projects



Cassandra: Principles and Application 17

https://blogs.apache.org/foundation/entry/the apache_software_foundation_announces4,
Forest Hill, MD, May 4, 2010

[23] 1. Eure, Looking to the future with Cassan-
dra http://about.digg.com/blog/looking-future-
cassandra, September, 2009

[24] OAG Aviation http://www.oag.com/

[25] G. Coulouris, J. Dollimore, T. Kindberg, Dis-
tributed Systems: Concepts and Design Addison
Wesley, 2005

[26] D. Featherston (the author) Brireme project on
Github http://github.com/dietrichf/brireme



