
Alberi – Sopra e sotto

Scrivere un algoritmo che prende in input un albero binario T e
restituisca in output il numero di nodi di tale albero il cui numero di
ascendenti (il padre, il nonno (padre del padre), il bisnonno (padre del
nonno), etc) è uguale al numero di discendenti (i figli, i nipoti (figli dei
figli), i bisnipoti (figli dei nipoti), etc).
Discutere correttezza e complessità dell’algoritmo proposto.

Alberto Montresor (UniTN) 2025/12/18 1 / 29

Anagrammi

Un’anagramma è una parola o frase ottenuta riarrangiando le lettere di
un’altra parola o frase. Per esempio, "notremors" è un anagramma di
"montresor".
Si supponga di avere in input un vettore di n stringhe di lunghezza
massima k; si scriva un algoritmo che stampi in output tutti i gruppi di
anagrammi contenuti in queste n stringhe. Se ne discuta correttezza e
complessità.
Esempio di input: rosa, pippo, poppi, raso, orsa, giappone
Esempio di output:

rosa, raso, orsa
pippo, poppi
giappone

Alberto Montresor (UniTN) 2025/12/18 2 / 29

Esercizi di programmazione

Cerca la coppia - Versione 1

Dato un vettore A[1 . . . n] di interi e un intero v, scrivere un algo-
ritmo che determini se esistono due elementi in A la cui somma sia
esattamente v.

Cerca la coppia - Versione 2

Dato un vettore A[1 . . . n] di interi, scrivere un algoritmo che de-
termini se esistono due elementi in A la cui somma sia esattamente
17.

Cerca la coppia - Versione 3

Dato un vettore A[1 . . . n] di interi positivi, scrivere un algoritmo che
determini se esistono due elementi in A la cui somma sia esattamente
17.

Alberto Montresor (UniTN) 2025/12/18 3 / 29

Il gioco delle coppie (2-Partition)

Scrivere un algoritmo che, dato un vettore A di n interi distinti (n
pari), ritorna true se è possibile partizionare A in coppie di elementi
che hanno tutte la stessa somma (intesa come la somma degli elementi
della coppia), false altrimenti. Ad esempio:

7, 4, 5, 2, 3, 6

può essere partizionato in 7 + 2 = 4 + 5 = 3 + 6.

Discutere la complessità e la correttezza – per questo esercizio, la
dimostrazione di correttezza è importante e va scritta bene.

Confrontatelo con il problema 3-partition discusso a lezione.

Alberto Montresor (UniTN) 2025/12/18 4 / 29

Vito’s Family

The famous gangster Vito Deadstone is moving to New York. He has a
very big family there, all of them living on Lamafia Avenue. Since he
will visit all his relatives very often, he wants to find a house close to
them. Indeed, Vito wants to minimize the total distance to all of his
relatives and has blackmailed you to write a program that solves his
problem.
Input For each test case you will be given the integer number of
relatives r (0 < r < 500) and the street numbers (also integers)
s1, s2, ..., si, ..., sr where they live (0 < si < 30000). Note that several
relatives might live at the same street number.
Output For each test case, your program must write the minimal sum
of distances from the optimal Vito’s house to each one of his relatives.
The distance between two street numbers si and sj is di,j = |si − sj |.

Alberto Montresor (UniTN) 2025/12/18 5 / 29

Avanzati dalle volte precedenti

Alberto Montresor (UniTN) 2025/12/18 6 / 29

Shangai

Alberto Montresor (UniTN) 2025/12/18 7 / 29

Shangai

Nel gioco dello Shangai, un bastoncino può essere rimosso se
nessun altro bastoncino lo sovrasta.

Una volta rimosso, è possibile che i bastoncini che erano sovrastati
da esso possano essere rimossi.

È anche possibile tuttavia che ad un certo punto nessun bastoncino
possa essere rimosso, in quanto sovrastato da altri bastoncini.

L’input è dato dai vettori X e Y di dimensione m, contenenti
numeri da 1 a n. I vettori vanno interpretati in questo modo: per
ogni indice i, il bastoncino X[i] sovrasta il bastoncino Y [i].

Scrivere un algoritmo che prenda in input i vettori X, Y oltre alle
dimensioni n ed m, e restituisca true se e solo se è possibile
rimuovere tutti i bastoncini presenti, false altrimenti.

Alberto Montresor (UniTN) 2025/12/18 8 / 29

Alberi simmetrici

Scrivere un algoritmo boolean isSymmetric(Tree T) che prenda in
input un albero binario T non vuoto e restituisca true se T è
simmetrico, false altrimenti. Un albero binario è simmetrico se il
sottoalbero sinistro della radice è un’immagine speculare del sottoalbero
destro della radice. L’albero binario a sinistra non è simmetrico, mentre
lo è quello di destra.

Discutere correttezza e complessità computazionale dell’algoritmo
proposto.Alberto Montresor (UniTN) 2025/12/18 9 / 29

Difficili

Alberto Montresor (UniTN) 2025/12/18 10 / 29

Doppio mediano

Siano X[1 . . . n] e Y [1 . . . n] due vettori, ciascuno contenente n interi già
ordinati. Scrivere un algoritmo che trovi i valori mediani dei 2n
elementi dei vettori X e Y presi insieme. Usiamo il plurale perchè
essendo 2n pari, è possibile definire due valori mediani. Discutere
correttezza e complessità.

Alberto Montresor (UniTN) 2025/12/18 11 / 29

Grafi – Pozzo universale

Un pozzo universale è un nodo con out-degree uguale a zero e
in-degree uguale a n− 1.

Dato un grafo orientato G rappresentato tramite matrice di
adiacenza, scrivere un algoritmo che opera in tempo Θ(n) in grado
di determinare se G contiene un pozzo universale.

È possibile ottenere la stessa complessità con liste di adiacenza?

Alberto Montresor (UniTN) 2025/12/18 12 / 29

Spoiler alert!

Alberto Montresor (UniTN) 2025/12/18 13 / 29

Sopra e sotto

(int, int) countTreeRec(Tree t, int ancestors)

if t == nil then
return (0,0)

else
predL, countL = countTreeRec(t.left, ancestors + 1)
predR, countR = countTreeRec(t.right, ancestors + 1)
return (predL + predR + 1, countL + countR + iif(ancestors =
predL + predR, 1, 0))

L’algoritmo viene invocato dalla seguente funzione wrapper:

countTree(Tree t)

pred , count = countTreeRec(t, 0)
return count
Alberto Montresor (UniTN) 2025/12/18 14 / 29

Anagrammi – 2011/09/07

anagrams(Item [][] strings, int n)
Hash H = Hash()
for i = 1 to n do

sorted_key = sort(strings[i])
Set group = H.lookup(sorted_key)
if group ==nil then

group = Set()

group.insert(strings[i])
H.insert(sorted_key, group)

foreach k ∈ H do
Set group = H.lookup(k)
print group

Il costo di questo algoritmo è O(nk log k + nk) = O(nk log k).

Alberto Montresor (UniTN) 2025/12/18 15 / 29

Esercizi di programmazione

Cerca la coppia - Versione 1

Dato un vettore A[1 . . . n] di interi e un intero v, scrivere un algo-
ritmo che determini se esistono due elementi in A la cui somma sia
esattamente v.

Soluzione – O(n log n)

Si ordina il vettore. Per ogni elemento A[i], si cerca il valore v−A[i]
tramite ricerca dicotomica.

Codice lasciato per esercizio. Si consiglia di provare a implementarlo
nel proprio linguaggio preferito.

Alberto Montresor (UniTN) 2025/12/18 16 / 29

Esercizi di programmazione

Cerca la coppia - Versione 2

Dato un vettore A[1 . . . n] di interi, scrivere un algoritmo che deter-
mini se esistono due elementi in A la cui somma sia 17.

Soluzione – O(n log n)

Si richiama l’algoritmo precedente con v = 17.

Codice lasciato per esercizio. Si consiglia di provare a implementarlo
nel proprio linguaggio preferito.

Alberto Montresor (UniTN) 2025/12/18 17 / 29

Esercizi di programmazione

Cerca la coppia - Versione 3

Dato un vettore A[1 . . . n] di interi positivi, scrivere un algoritmo
che determini se esistono due elementi in A la cui somma sia 17.

Alberto Montresor (UniTN) 2025/12/18 18 / 29

Esercizi di programmazione

Soluzione – O(n)

boolean searchPair(int[] A, int n)
boolean[] present = new boolean[1 . . . n] = { false }
for i = 1 to n do

if 1 ≤ A[i] ≤ 16 then
present [A[i]] = true

int i = 1
int j = 16
while i ≤ 8 and not (A[i] and A[j]) do

i = i+ 1
j = j − 1

return i ≤ 8

Alberto Montresor (UniTN) 2025/12/18 19 / 29

Il gioco delle coppie – 2012/05/03 (O(n log n))

boolean checkPairs(int[] A, int n)
sort(A,n)
int pairSum = A[1] +A[n]
for i = 2 to n/2 do

if A[i] +A[n− i+ 1] ̸= pairSum then
return false

return true

Dimostrazione: supponiamo per assurdo che esista un insieme di coppie
che rispetti le condizioni per restituire true, in cui l’elemento maggiore
M sia associato ad un elemento M ′ diverso dal minore m (m < M ′).
Quindi il minore m è associato ad un elemento m′ diverso dal massimo
M (m′ < M). Allora m+m′ < M +M ′, il che contraddice l’ipotesi che
tale insieme di coppie rispetti le condizioni per restituire true.
Alberto Montresor (UniTN) 2025/12/18 20 / 29

Il gioco delle coppie - O(n), hash set

boolean checkPairs(int[] A, int n)
int tot = sum(A,n) % Sum all elements, O(n)
float pairSum = tot/(n/2)
if pairSum ̸= ⌊pairSum⌋ then

return false

Set set = Set() % Based on a hash table
for i = 1 to n do

set .insert(A[i])

for i = 1 to n do
if not set .contains(pairSum −A[i]) then

return false

return true

Alberto Montresor (UniTN) 2025/12/18 21 / 29

Vito

Il numero civico ottimale è la mediana.
Si consideri il caso di n dispari e quindi di una singola mediana m; m
ha una quantità (n− 1)/2 di numeri civici sia alla destra che alla
sinistra. Il caso con n pari e quindi due valori mediani è simile.
Si consideri ogni altra soluzione m′ diversa dalla mediana e assumiamo
che m < m′ (il caso m > m′ è simmetrico).
Sia d = m′ −m la differenza fra questi due numeri civici. Nella
soluzione in cui abbiamo scelto m′, tutti i civici che si trovano a sinistra
di m′ costano d unità in più rispetto alla soluzione in cui abbiamo
scelto m. Tutti i civici a destra di m′ (m′ incluso) costano d unità in
meno rispetto alla soluzione in cui abbiamo scelto m.
Poiché i numeri civici a sinistra di m′ sono di più dei numeri civici a
destra di m′ (m′ incluso), la soluzione m′ costa più della soluzione m.
Complessità: O(n) per il calcolo della mediana

Alberto Montresor (UniTN) 2025/12/18 22 / 29

Shangai

boolean shangai(int[] X, int[] Y , int n, int m)
Graph G = Graph()
for i = 1 to n do

G.addNode(i)

for i = 1 to m do
G.addEdge(X[i], Y [i])

return not hasCycle(G)

Complessità: O(m+ n)

Alberto Montresor (UniTN) 2025/12/18 23 / 29

Shangai

boolean hasCycle(Graph G)
int clock = 0
int[] dt = new int[1 . . . G.n] = {0}
int[] ft = new int[1 . . . G.n] = {0}
for u = 1 to G.n do

if dt [u] == 0 and hasCycleRec(G, u,&clock , dt , ft) then
return true

return false

Alberto Montresor (UniTN) 2025/12/18 24 / 29

Alberi simmetrici (24/07/20)

Un sottalbero è simmetrico se i suoi sottoalberi destro e sinistro sono
speculari.

Due sottoalberi t1, t2 sono speculari se e solo se:
il sottoalbero sinistro di t1 è speculare al sottoalbero destro di t2
il sottoalbero destro di t1 è speculare al sottoalbero sinistro di t1.

Il caso base è dato due nodi nil (si ritorna true) o da uno nodo nil e
un nodo non nil (si ritorna false).

La procedura effettua una visita su entrambi gli alberi, e quindi ha
complessità Θ(n).

Alberto Montresor (UniTN) 2025/12/18 25 / 29

Alberi simmetrici (24/07/20)

boolean isSymmetric(Tree T)
return isMirror(T.left, T.right)

boolean isMirror(Tree tl, Tree tr)
if tl ==nil and tr ==nil then

return true
else if tl ̸= nil and tr ̸= nil then

return isMirror(tl.right, tr.left) and isMirror(tl.left, tr.right)
else

return false

Alberto Montresor (UniTN) 2025/12/18 26 / 29

Doppio mediano

mediana(int[] X, int[] Y , int bx, ex, by, ey)

if ex − bx = 1 then return mediana4(X,Y, bx, ex, by, ey)

int mx = ⌊(bx + ex)/2⌋
int my = ⌈(by + ey)/2⌉
if X[mx] < Y [my] then return mediana(X,Y,mx, ex, by,my)

if Y [my] < X[mx] then return mediana(X,Y, bx,mx,my, ey)

return (X[mx], Y [my])

Alberto Montresor (UniTN) 2025/12/18 27 / 29

Pozzo universale – Esercizio 1.9 degli esercizi su grafi

Dati due vertici i, j:
se A[i][j] = 1, allora i non è un pozzo universale (c’è un arco uscente
da i);
se A[i][j] = 0, allora j non è un pozzo universale (manca arco entrante
in j).

Si noti inoltre che può esistere un solo pozzo universale.
Partiamo dalla prima riga: i = 1.

1 Cerchiamo il minore indice j tale j > i e A[i][j] = 1.
2 Se tale vertice non esiste, i non ha archi uscenti ed è l’unico candidato

per essere un pozzo universale
3 Se invece tale j esiste, tutti i vertici h tali che 1 ≤ h < j non possono

essere pozzi universali, perché manca un arco da i. Quindi ci
spostiamo nella riga i = j, e torniamo al passo 1.

Si noti che un possibile candidato viene trovato sempre; al limite è dato
dall’ultima riga. A quel punto, si verifica che sia effettivamente un pozzo
universale.
Il costo dell’algoritmo è pari a Θ(n).
Alberto Montresor (UniTN) 2025/12/18 28 / 29

Pozzo universale – Esercizio 1.9 degli esercizi su grafi

boolean universalSink(int[][] A, int n)
int i = 1
int candidate = −1
while i < n and candidate < 0 do

j = i+ 1
while j ≤ n and A[i][j] == 0 do

j = j + 1

if j > n then
candidate = i

else
i = j

rowtot =
∑

j∈{1...n}A[candidate][j]

coltot =
∑

j∈{1...n}A[j][candidate]

return rowtot == 0 and coltot ==n− 1

Alberto Montresor (UniTN) 2025/12/18 29 / 29

