
Using Walk-SAT and Rel-SAT for Cryptographic Key Search

Fabio Massacci∗

Dip. di Informatica e Sistemistica
Univ. di Roma I “La Sapienza”

via Salaria 113, I-00198 Roma, Italy
email:massacci@dis.uniroma1.it

url: http://www.dis.uniroma1.it/∼massacci

Abstract

Computer security depends heavily on the strength
of cryptographic algorithms. Thus, cryptographic
key search is often THE search problem for many
governments and corporations.
In the recent years, AI search techniques have
achieved notable successes in solving “real world”
problems. Following a recent result which showed
that the properties of the U.S. Data Encryption
Standard can be encoded in propositional logic,
this paper advocates the use of cryptographic key
search as a benchmark for propositional reasoning
and search. Benchmarks based on the encoding of
cryptographic algorithms optimally share the fea-
tures of “real world” and random problems.
In this paper, two state-of-the-art AI search algo-
rithms, Walk-SAT by Kautz & Selman andRel-
SAT by Bayardo & Schrag, have been tested on
the encoding of the Data Encryption Standard, to
see whether they are up the task, and we discuss
what lesson can be learned from the analysis on this
benchmark to improve SAT solvers.
New challenges in this field conclude the paper.

1 Introduction
Securing one’s data and communication from unauthorized
access in large open networks such as the Internet is of the
main issues for computer science today[Anderson & Need-
ham, 1996; G10, 1996; OECD, 1998].

Yet security depends heavily on the strength of crypto-
graphic algorithms: security protocols which have been for-
mally proved correct may be broken by the choice of a bad
cipher[Ryan & Schneider, 1998]. Thus, cryptographic key
search is often the search problem for many government and
large corporations; and the ability of law enforcement officers
to perform key search becomes the main concern behind the
licensing of encryption technology[OECD, 1998].

∗Supported by CNR fellowship 201-15-9. This work has been
partly supported by ASI, CNR and MURST grants. I would like to
thank L. Carlucci Aiello, P. Liberatore, and L. Marraro for useful
comments and discussions.

Search, although in different settings, has also been a prob-
lem at the heart of AI research for many years. Recently
propositional search has received attention for a number of
factors[Selmanet al., 1997]:

First new algorithms were discovered . . . based
on stochastic local search as well as systematic
search [. . . ]. Second, improvements in machine
speed, memory size and implementations extended
the range of the algorithms. Third, researchers be-
gan to develop and solve propositional encodings
of interesting, real-world problems [. . . ] Between
1991 and 1996 the size of hard satisfiability prob-
lems grew from ones involving less than 100 vari-
ables to ones involving over 10,000 variables.

Following a seminal proposal from[Cook and Mitchel,
1997], an application comes to one’s mind:can we encode
cryptographic key search as a SAT-problem so that AI search
techniques can solve it?

A recent result in automated reasoning makes this possi-
ble. In [Marraro & Massacci, 1999] it has been show that,
by combining clever reverse engineering, advanced CAD
minimization, and propositional simplification, it is possi-
ble to encode in propositional logic the properties of the
U.S. Data Encryption Standard, DES for short,[NIST, 1997;
Schneier, 1994]. An encoding whose size is within reach
of current AI search techniques: the encoding of a crypto-
graphic search problem (finding a model is equivalent to find-
ing a key) for the commercial version of DES requires slightly
more than 10,000 variables and 6 times many clauses.

Although DES is currently under review, it is still the most
widely used cryptographic algorithm within banks, financial
institutions, and governments. It is the algorithm on which
cryptanalysts tested the final success of their techniques (see
[Schneier, 1994] or Sect. 2 for further references). Even par-
tial successes with AI techniques can be relevant.

In this paper we claim that this problem should be one
of the reference SAT-benchmarks. In particular, it gives the
possibility of generating as many random instances as one
wants and still each instance is as “real-world” as any instance
that can be met in commercial cryptographic applications.
It provides a neat answer to the last challenge for proposi-
tional reasoning and search proposed by Selman, Kautz and
McAllester[1997] at IJCAI-97.



To check the potential effectiveness of AI techniques on
this problem, two state-of-the-art SAT solvers have been
tested for cryptographic key search using the propositional
encoding. The choices areWalk-SAT, a local search algo-
rithm proposed in[Selmanet al., 1994] as an improvement of
GSAT, andRel-SAT, a combination of the traditional Davis-
Putnam Algorithm with back-jumping and learning proposed
in [Bayardo & Schrag, 1997] to solve real-world problems.

In the experiments on the Data Encryption Standard, one
shouldn’t expect to be immediately competitive with twenty
years of advanced cryptanalysis techniques, especially be-
cause AI Labs are not equally well funded to afford a spe-
cialized hardware machine of 250.000 USD or the exclusive
use of a network of workstations for 50 days which have been
used to break DES in the last years. Still, general purpose
search algorithm using off-the-shelf hardware (Sparcs and
Pentium II) can crack limited versions of DES without be-
ing told any problem-dependent information. Ad-hoc crypto-
graphic techniques are still better since the first success with
the limited version of DES we can solve was obtained in 1982
[Andleman & Reeds, 1982] and modern cryptographic ap-
proaches[Biham & Shamir, 1991; Matsui, 1994a] obtain the
same results with better scaling properties. Still, the result
is promising and points out at weaknesses of AI search algo-
rithms that we need tackle to solve hard problems.

In the next section (§2) we introduce some basic prelim-
inaries on cryptography and the Data Encryption Standard.
Then we discuss the features of the encoding (§3). This is
followed by the experimental analysis withWalk-SAT (§4)
andRel-SAT (§5). Few lessons for SAT solvers we can learn
(§6) and new challenges (§7) conclude the paper.

2 Cryptography and DES
To make the paper self-contained for the non-security expert
we sketch some preliminaries about cryptography and DES
(for an introduction see[Schneier, 1994]).

Following [Schneier, 1994], we denote vector of bits by
P (the plaintext),C (the ciphertext), andK (the secret key).
At an abstract level, a cryptographic algorithm is simply a
functionC = EK(P) that transforms a sequence of bits (the
plaintext) into another sequence of bits (the ciphertext) with
certain (desirable) properties by using some additional (pos-
sibly secret) bitsK. To decrypt we use another function that
maps backC into P usingK (or its inverse).

The important property of the encryption algorithm is that
security of the algorithm must reside in the (secret) key. If
one does not knowK, it must be difficult to recoverP from
C, even if the algorithm has been public for years. In the
ideal case, the only way to recover the plaintext must be by
brute force “generate-and-test”: try out all possible keysand
see which yields an acceptable plaintext. The need to hinder
brute force attacks has therefore generated hot debates on the
minimum size of a key[Schneier, 1994].

Exhaustive search is not so impossible as it seems if one
can use (and pay for) specialized hardware: last year a ma-
chine costing 250.000 USD broke the Data Encryption Stan-
dard finding a 56 bits key in 56 hours[DES Search, 1998a].

Search can be cut down if the cryptanalyst knows a suf-

PLAINTEXT

IP

L0 R0

f

R1L1

K1

Figure 1: DES Algorithm

ficient number of blocks of plaintext with the corresponding
ciphertext (known plaintext attack). This is a reasonable hy-
pothesis: almost all messages and files have fixed parts. Us-
ing a network of 12 workstation and247 (randomly gener-
ated) plaintexts, Matsui[1994a] broke DES in 50 days.

As the reader might now want to know how DES works,
we start by saying that DES is a block cipher, which encipher
blocks(sequences) of 64 bits into blocks of 64 bits using a
key of 56 bits1. DES and almost all symmetric ciphers are
built following an architecture which is due to Feistel and his
group[Feistelet al., 1975]. After some initial preprocessing,
the following operations are executed:

1. break the plaintext in two halves,

2. combine one half with the key using a clever function,

3. XOR the combination with the other half

4. swap the two parts.

These 4 operations constitutes aroundand are repeated a suit-
able number of times. Figure 1 exemplifies the idea.

DES has 16 rounds which are almost identical except for
the way in which the key is fed into thef function (Fig. 1): for
each round a different subset of the 56 keybits is selected and
combined with the input of the previous round. The strength
of the cipher depends on the number of rounds and onf . Its
design is, to quote Ron Rivest, “part art, part science”.

As we have mentioned already, the basic way to break DES
is by exhaustive search but there are other techniques.

Differential cryptanalysiswas introduced by Biham and
Shamir[1991]. It assumes that the cryptanalyst can choose
ciphertext and plaintext pairs presenting particular fixeddif-
ferences. Then, it analyzes the evolution of these differences
through the rounds of DES. Using the differences resulting
from ciphertexts, different probabilities are assigned todif-
ferent keys. By analyzing a large number of ciphertext and
plaintext pairs (247 for the commercial version), a key will
emerge as the most probable. This attack is only practical for
less than 12 rounds. After that, it requires too many resources.

1The key is usually expressed as a 64 bits number, in which every
eighth bit is a parity bit ignored by the algorithm.



Matsui’s linear cryptanalysis [Matsui, 1994a; 1994b]
works better. This method uses linear approximations (xor)
to describe the behavior of the round functionf (Fig. 1). By
xoring together some plaintext bits with some ciphertext bits,
one can get a bit that is the xor of some key bits. This is a lin-
ear approximation of a round that is true with a certain proba-
bility. Again, by analyzing a large number of plain/ciphertext
pairs (243 are needed for DES at 16 rounds), it is possible to
guess the value of some key bits with 80% success rate. A re-
finement of this method approximates the internal 14-round
and then guesses the results of the first and last round. It can
find 26 keybits and uses exhaustive search for the rest.

A key aspect of cryptanalytic attacks (beside brute force) is
that they are probabilistic. No deterministic method is known.

3 DES as a SAT Problem
Recently, an encoding of the U.S. Data Encryption Standard
in propositional logic has been proposed in[Marraro & Mas-
sacci, 1999]. Before discussing how the encoding can be used
to generate random problems, we sketch its functioning:
• each bit of the ciphertext, the plaintext, and the key is

encoded as a propositional variable;

• the operations corresponding to the round functionf
(Fig. 1) are transformed into boolean formulae and min-
imized off-line with CAD tools;

• then the encoding algorithm “runs” DES at the meta-
level, and generates formulae corresponding to each
DES operation on the way;

• since the straightforward application of this method
would generate a huge formula, clever optimizations are
used so that some operations are encoded as formulae
and some operations are computed.

For instance, operations corresponding to permutations of
bits are not encoded as formulae; rather the propositional
variables describing the inputs are permuted. Further details
can be found in[Marraro & Massacci, 1999].

The outcome2 of the algorithm is a formulaE(P, K, C)
which represent the logical relations between the key bitsK,
the plaintext bitsP and the ciphertext bitsC.

In a traditional plaintext attack we know the value of some
plaintext and ciphertext bits so, if we replace the variables
by the corresponding truth value, we have a formula whose
structure is shown in Fig. 2. TheKi are the key bits while
the other variablesMr

i , Sr
i , Xr

i are introduced to denote in-
termediate results and make the formula simpler. We use the
superscriptsr to denote the results produced at ther-th round
and the subscripti to the denote thei-th bit produced at corre-
sponding intermediate stage (i ranges from 1 to 64). Loosely
speaking, and looking at Fig. 1, we may say that eachXr

i

represents an output of ther-th round and thus an input of
the r + 1-th round of the algorithm. The valuelastr is the
number of rounds of DES for which the encoding has been
done. The actual formulae have more definitions to ease the
subsequent (polynomial) translation into CNF.

2The algorithm in[Marraro & Massacci, 1999] takes less than 1
sec (3rounds) up to 25 seconds (16 rounds) to generate the encoding.
Memory requires a peak of 135M for the full 16 rounds.

Figure 2: The Encoding for a known-plaintext attack

Definitions
Mr

i ⇔
∧

j ±Xr
j 2 ≤ r ≤ lastr − 1

Sr
i ⇔

∨
j Mr

j 2 ≤ r ≤ lastr

Xr+1
i ⇔ Sr

j ⊕ Kh 1 ≤ r ≤ lastr − 1

Constraints
M1

i ⇔
∧

j ±Kj

Mlastr
i ⇔

∧
j ±Kj

±Slastr−1
i ⇔

⊕
r Sr

j r even
±Slastr

i ⇔
⊕

r Sr r odd

Table 1: Formula size per single plain/ciphertext pair
R ⇔ ⊕ ∧ ∨ Clauses Vars C/V
1 520 0 504 16 1645 243 6.77
2 1042 0 1010 32 3304 489 6.75
3 1738 48 1609 80 9064 1430 6.34
4 2432 96 2208 128 14811 2368 6.25
5 3096 176 2760 160 18738 3032 6.18
6 3760 256 3312 192 22665 3696 6.13
7 4424 336 3864 224 26592 4360 6.10
8 5088 416 4416 256 30519 5024 6.07
9 5752 496 4968 288 34446 5688 6.06

10 6416 576 5520 320 38373 6352 6.04
11 7080 656 6072 352 42300 7016 6.03
12 7744 736 6624 384 46227 7680 6.02
13 8408 816 7176 416 50154 8344 6.01
14 9072 896 7728 448 54081 9008 6.00
15 9736 976 8280 480 58008 9672 6.00
16 10400 1056 8832 512 61935 10336 5.99

Table 1, taken from[Marraro & Massacci, 1999], shows
some quantitative data for the encoding of a single pair con-
stituted by a known block of plaintext and a block of cipher
text, for an increasing number of rounds (R).

For random formulae, the ratio ofc/v is an indicator of
the hardness of the formula. In this case, it is not so. For
instance, using the data of Table 1 for 3 rounds or more, we
can see that if we use one block or an “infinite” number of
blocks, the value ofc/v changes by less than 4%. This would
seem to imply that adding more blocks should not make the
problem neither much easier nor much harder. As we shall
see, the experimental results contradict this hypothesis.

In the introduction, it has been claimed that this encod-
ing can be used to combine the contrasting needs of using
“real-world” problems (possibly with lot of structure) and
of generating a huge number of instances which can only
be (pseudo)randomly generated. It might solve the dilemma
pointed out in[Bayardo & Schrag, 1997]:

Care must be taken when experimenting with real
world instances because the number of instances
available for experimentation is often limited

whereas[Crawford & Auton, 1996] noted that

[. . . ] random problems are readily available in
any given size and virtually inexhaustible numbers.
For example, . . . [their experiments] required sev-
eral million problems and it is hard to imagine col-
lecting that many problems any other way.



How do we generate a random SAT problem based on
cryptography? At first we generate a random keyvK and
a plaintext blockvP (just vectors of 0/1). Then we use the
cryptographic algorithm itself to getvC=EvK

(vP). Finally
we substitute inE(P, K, C) the corresponding boolean val-
uesvP andvC that we have so far generated. Then the pair
〈vK, E(vP, K, vC)〉 is asolved instanceof the SAT problem.
Notice thatE(vP, K, vC) might contain other variables than
K but the latter are the only independent variables. If we
haven blocks of plaintext (and the corresponding ciphertext)
we can constrain the search further by conjoining the corre-
sponding formulae

∧n

i=1 E(vi
P, K, vi

C).
So we have encoded cryptographic key search, a known

plaintext attack to DES, as a SAT problem. Since ciphers are
designed to be hard to break, this will provide us with the hard
solved instances asked for in[Cook and Mitchel, 1997]. We
can generate generic instances by randomly generating both
the plaintext and the ciphertext.

The main point here is that by changing the plaintext and
the key we can generate an endless stream3 of different solved
instances either with the same solution or with different solu-
tions. At 16 rounds, it would be exactly identical to an actual
plaintext and ciphertext used by a bank, financial institution
or government department.

4 Walk-SAT on DES
The first tested algorithm is a local search one:Walk-SAT
[Selmanet al., 1994]. It is only briefly recalled:

• the algorithm starts from a random assignment;

• then it flips the value of some propositional variables
(usually one) trying to increase the value of an objective
function (here the number of satisfied clauses);

• when a local minimum is reached, the algorithm restart
the search with another random assignment.

Variants of this basic approach include the possibility of mak-
ing random moves from time to time and of continuing the
search after a local minimum by using a tabu-list4. For more
details see[Selmanet al., 1994; 1997].

Experiments were run on a Pentium II running Linux (with
64MB) and a Sun Sparc running Solaris (with 64M) with
qualitatively and quantitatively similar results. To generate
an instance we simply follow the recipe above: generate ran-
domly a key (discarding weak keys[Schneier, 1994]) and
then some hundred blocks of plaintext. For each plaintext
block we generate the corresponding ciphertext and then sub-
stitute the value of the pair in the formula. An instance is
finally created by conjoining the formulae corresponding to
the desired number of plain/ciphertext pairs (or blocks).

The initial settings ofWalk-SAT were the recommend
standard: hill-climbing with some random perturbations. The
performance improved by using a random flip every 16 moves

3For DES we have256
×2

64 instances if we consider the encryp-
tion of binary data. If we restrict ourselves to ASCII plaintexts, the
number of different plaintexts only shifts from264 to 2

56.
4A tabu-list is a list of variables which have just been flippedand

which cannot be immediately re-flipped

Table 2: Performance ofWalk-SAT
R B % Succ Kbits Sec # Bad
1 1 100% 31.4 0.03 -
1 2 100% 46.8 0.53 -
1 4 100% 52 1.67 -
1 8 100% 52.4 7.24 -
2 1 100% 53.8 21.8 -
2 2 100% 55.8 2.63 -
2 4 100% 56 3.16 -
2 8 100% 56 4.29 -
3 1 0% - 1227.20 15.4
3 2 0% - 3695.23 35.7

and the final result is reported in Table 2. R denotes the num-
ber of rounds on which DES has been limited and B the num-
ber of blocks which have been conjoined to produce the in-
stance (to get the size of an instance, multiply the values of
Table 1 for the number of blocks). Sec. is the average running
time and Kbits tells on average how many bits of the solution
found byWalk-SAT coincided with the known solution. For
unsuccessful attempts we also report the lowest number of
unsatisfied clauses found.

Walk-SAT can crack DES up to 2 rounds, and compares
favorably with the results ofSATO andTABLEAU reported
in [Marraro & Massacci, 1999]. At three roundsWalk-SAT
cannot crack any instance, even with a number of flips hun-
dreds times the number of clauses and a few hundreds tries.
Moreover, adding more constraints (blocks) makes the search
harder and not easier.

Why doesn’tWalk-SAT solve the problem well?
The first problem has been already pointed out in[Selman

et al., 1997]: the difficulty of local search algorithms to run
arounddependentvariables. Recall that here almost all vari-
ables are dependent. The dagsat approach proposed in[Kautz
et al., 1997] might prove to be more successful.

The second problem is the presence of wide “rugged”
plateaus at the bottom of the search space: the number of
unsatisfied clauses goes quickly down from thousands to few
tens per block and stays there, withWalk-SAT flipping (in
vain) a lot of dependent variables and moving from a local
minima to the next. The lowest number of bad clauses was
decreased by re-engineeringWalk-SAT as follows:

• the first time a local minimum is reached, its value is
stored as a reference value and the search continues;

• after the search visitedn local minima with value higher
than the reference value, all keybits were randomly
flipped (with a probability1

n
all variables were flipped);

• each time a lower minimum was reached,n was reset
and that minimum considered the new reference value;

The idea was to escape the plateaus by exploiting the domain
knowledge that the keybits were the only independent vari-
ables. In this way, the search converges to a much lower value
of bad clauses (usually from 40-100 bad clauses per block to
less than 10), but we are still stuck there.



Table 3: Performance ofRel-SAT
General No Learning

R B Kbit Branch Sec Kbit Branch Sec
1 1 31 28 0.02 - - -
1 2 49 104 0.11 - - -
1 4 51 104 0.22 53 112 4.44
1 8 52 83 0.45 53 184 6.18
2 1 54 20841 32.43 - - -
2 2 56 40122 111.15 - - -
2 4 56 4050 18.39 56 157 4.98
2 8 56 57 0.81 56 103 8.00
3 1 - - ≥ 1h - -
3 2 56 173075 976.28 - -
3 4 56 19311 159.13 56 75538 ≥ 1h
3 8 56 3594 75.02 56 8153 822

5 Rel-SAT on DES

The second algorithm is a systematic one:Rel-SAT from
[Bayardo & Schrag, 1997]. It is a variant of the Davis-Putnam
algorithm, enhanced with conflict directed back-jumping and
learning. It works as follows:

• unit propagation is applied to the clause set;

• if no contradiction is found a new literal is selected and
added either positively or negatively to the clause set;

• if a contradiction is found then the algorithm backtracks
to the literal that caused the contradiction;

• the clause responsible for the contradiction is resolved
with a clause representing the temporary assignment; the
resolvent is thus learned as a reason to avoid the corre-
sponding assignment;

• the procedure is iterated until all literals have been as-
signed (SAT) or no backtrack is possible (UNSAT).

For more details see[Bayardo & Schrag, 1997].
The instance generation method, the architecture, and oper-

ating systems were the same used forWalk-SAT. Also in this
case, the experiment started with the recommend standard: a
small learning factor (4), using relevance-based learning.

Up to 2 rounds,Rel-SAT cracks DES only slightly faster
thanSATO andTABLEAU (see[Marraro & Massacci, 1999])
or Walk-SAT. However, it is the only algorithm which cracks
three round of DES in less than ten minutes. Its performance
is reported in Table 3. The success rate is omitted since either
all instances could be solved or none could (-).

Other settings were tried: no learning at all and learning
factors larger than 4. The analysis shows that learning is
essential if we have few constraints but it might be skipped
if enough constraints are around (Table 3). An intuitive ex-
planation could be that with few blocks the algorithm might
split on dependent variables and then discover that this was
not necessary. With many constraints, standard heuristicsse-
lect almost only independent variables and therefore learning
contribution to performance is diminished.

Note that the performance of the algorithm improves with
the number of blocks composing the instance. Adding more

constraints makes the search for the only (?) existing solu-
tion easier. This behavior is consistent with standard crypto-
graphic techniques[Biham & Shamir, 1991; Matsui, 1994a]
where having more data improves the chances of success.

Given this promising results, the algorithm has been en-
gineered to accept larger formulae with more variables and
tried on the full 16-round DES, also using 1, 2, and 4 blocks.
The algorithm didn’t return within 12 hours.

A small re-engineering of the algorithm was carried to ex-
ploit in a limited manner the knowledge of the domain. After
a first selection of potential branching variables, a threshold
is used in the original algorithm to reduce their number. The
modified algorithm didn’t check the threshold if the selected
variable was a keybit. In this way the algorithm gives pref-
erences to dependent variable with very good properties or
independent variables with medium properties. However, the
running time of the algorithm didn’t improved substantially.

6 Lessons for SAT Solvers
It is a promising result that SAT solvers can crack a limited
version of DES without using any problem-dependent heuris-
tics but this is not enough. We want to solve the full DES.

The first temptation is then to dismiss the SAT solvers
themselves: this problem has a non-clausal structure, so it
has to be expected that CNF provers perform badly; the right
tool should have been BDDs[Bryant, 1986]. Surprisingly, an
extensive experimentation reported in[Ascione, 1999] shows
that the BDDs cannot solve key search problems any better
than SAT-based approaches.

The second conclusion might be that the problem is too
constrained: at three rounds there is almost only one solu-
tion. This makes the problem harder for local search, but
should make it easier for complete algorithms. Indeed, the
very characteristics of DES with its avalanche effect (all key-
bits should affect all ciphertext bits, and a flip in the plain-
text should affect all ciphertext bits, etc.) should make this
problem easy: if the value of few keybits is wrongly chosen,
a cascade of unit propagations should immediately generate
an inconsistency. This would implies that formulae encoding
more rounds (and more defined variables) should be easier
and not harder. Since this is not the case, it seems that with
more rounds unit propagation is somehow hindered.

Finding an explanation (and a workaround) for this diffi-
culty is important because the structure of the encoding is
common in many hard real problems: the natural formula-
tion of a problem is usually structured in layers, makes use
of abbreviations and definitions, and often contains modulo-
2 arithmetics (xors). For instance see the parity bit problem
mentioned in[Selmanet al., 1997] and the IFIP benchmark
for hardware verification.

If we look again at the structure of the encoding, we may
notice that each round is separated by the next round by a
level of xors and that most constraints are in form of xors:
a large subpart of the problem is an affine problem, which
should be polynomially solvable by Schaefer’s theorem. It is
precisely this affine subproblem that make the problem hard
for current AI techniques. Look again at table 1: the problem
becomes difficult as soon as xors start to appear.



In contrast, cryptographic techniques exploits this affine
subproblem and even approximate the whole problem into an
affine problem[Matsui, 1994a]. Therefore, to crack DES or
similar real-word problema SAT solver needs the ability to
solve affine subproblems.

7 Conclusions and Future Challenges

In this paper we have seen an application of propositional
reasoning and search to a key security problem of industrial
relevance. We have also discussed how this approach can op-
timally provide “real-world” problems where many instances
can be randomly generated.

Thus we believe that the whole approach on encoding cryp-
tographic key search as propositional search can be a good an-
swer to the final challenge proposed in[Selmanet al., 1997]:

Develop a generator for problem instances that
have computational properties that are more simi-
lar to real world instances.

Moreover, the preliminary tests on using SAT-solvers to
crack the Data Encryption Standard are promising, although
SAT-solvers must be improved to meet the full challenge pro-
vided by this benchmark. Thus, a good conclusion of this pa-
per may just be the indication of the future challenges. They
are listed in order of feasibility.

The first challenge is to find a key for the commercial 16
rounds Data Encryption Standard in less than 56 hours using
off-the-shelf h/w and s/w but specialized search heuristics.
This might be the simplest and immediately rewarding chal-
lenge, assuming that the 10,000 USD prize of RSA Security
for breaking its DES challenges will be there in the year 2000.

Then we may wish to design SAT-solvers that work with
every Feistel-type cipher with data independent rounds like
DES. If we were able to cope with affine subproblems this
would not be a big extension. Since the operations are data
independent, a certain amount of preprocessing for the inter-
nal rounds could be done off-line.

The third challenge is to find efficient encodings into SAT
of data-dependent Feistel-type ciphers like RC5[Schneier,
1994]. A straightforward encoding is always possible: just
translate the cipher into a circuit and this into propositional
logic. Unfortunately this is already unworkable for DES.

Last but not least, we may wish to find efficient encod-
ings into propositional (or any) logic of public-key algorithms
such as RSA. This challenge, firstly proposed in[Cook and
Mitchel, 1997], might prove to be the hardest since number
theory is fairly remote from propositional logic.

As for all real problems, there might also be a darker side:
the final measure of success might well be the “privilege” (!?)
of successful SAT algorithms being denied export licenses as
dangerous weapons.

References
[Anderson & Needham, 1996] R. Anderson & R. Needham. Pro-

gramming satan’s computer. InComputer Science Today - Recent
Trends and Developments, LNCS 1000, pp. 426–440. Springer-
Verlag, 1996.

[Andleman & Reeds, 1982] D. Andleman & J. Reeds. On the crypt-
analysis of rotor machines and substitution-permutationsnet-
works. IEEE Trans. on Inf. Theory, 28(4):578–584, 1982.

[Ascione, 1999] M. Ascione. Validazione e benchmarking dei BDD
per la criptanalisi del DES. Master’s thesis, Facoltà di Ingegneria,
Univ. di Roma I “La Sapienza”, April 1999. In Italian.

[Bayardo & Schrag, 1997] R. Bayardo & R. Schrag. Using CSP
look-back techniques to solve real-world SAT instances. inProc.
of AAAI-97. pp. 203–208. AAAI Press/The MIT Press, 1997.

[Biham & Shamir, 1991] E. Biham & A. Shamir. Differential
cryptanalisis of DES-like cryptosystems.J. of Cryptology,
4(1):3–72, 1991.

[Bryant, 1986] R. Bryant. Graph-based algorithms for boolean
function manipulation.IEEE TOC, 35(8):677–691, 1986.

[Crawford & Auton, 1996] J. Crawford & L. Auton. Experimental
results on the crossover point in random 3SAT.AIJ, 81(1-2):31–
57, 1996.

[Cook and Mitchel, 1997] S. Cook & D. Mitchel. Finding hard in-
stances of the satisfiability problem: A survey. InSatisfiability
Problem: Theory and Applications, DIMACS Series in Discr.
Math. and TCS, 25:1–17. AMS, 1997.

[DES Search, 1998a] DES key search project information. Techni-
cal report, Cryptography Research Inc., 1998. Available onthe
web athttp://www.cryptography.com/des/.

[Feistelet al., 1975] H. Feistel, W. Notz, and L. Smith. Some cryp-
tographic techniques for machine-to-machine data communica-
tion. Proc. of the IEEE, 63(11):1545–1554, 1975.

[G10, 1996] Committee on Payment, Settelment Systems, and the
Group of Computer Experts of the Central Banks of the Group of
Ten countries.Security of Electronic Money. Bank for Interna-
tional Settlements, Basle, August 1996.

[Kautzet al., 1997] H. Kautz, D. McAllester, and & B. Selman. Ex-
ploiting Variable Dependency in Local Search Abstract inAb-
stracts of the Poster Sessions of IJCAI-97, 1997.

[Marraro & Massacci, 1999] L. Marraro & F. Massacci. A new
challenge for automated reasoning: Verification and cryptanaly-
sis of cryptographic algorithms. Tech. Rep. 5, Dip. di Informatica
e Sistemistica, Univ. di Roma “La Sapienza”, 1999.

[Matsui, 1994a] M. Matsui. The first experimental cryptanalysis of
the Data Encryption Standard. InProc. of CRYPTO-94, LNCS
839, pp. 1–11. Springer-Verlag, 1994.

[Matsui, 1994b] M. Matsui. Linear cryptanalysis method for des
cipher. In Proc. of Eurocrypt 93, LNCS 765, pp. 368–397.
Springer-Verlag, 1994.

[NIST, 1997] NIST. Data encryption standard. Federal Informa-
tion Processing Standards Publications FIPS PUB 46-2, National
(U.S.) Bureau of Standards, Dec 1997. Supersedes FIPS PUB
46-1 of Jan. 1988 and FIPS PUB 46 of Jan. 1977.

[OECD, 1998] OECD. Emerging market economy forum (EMEF):
Report of the ministerial workshop on cryptography policy.OLIS
SG/EMEF/ICCP(98)1, Organization for Economic Co-operation
and Development, Paris, Feb 1998.

[Ryan & Schneider, 1998] P. Ryan & S. Schneider. An attack
on a recurive authentication protocol: a cautionary tale.IPL,
65(15):7–16, 1998.

[Schneier, 1994] B. Schneier. Applied Cryptography: Protocols,
Algorithms, and Source Code in C. John Wiley & Sons, 1994.

[Selmanet al., 1994] B. Selman, H. Kautz, and B. Cohen. Noise
strategies for local search. InProc. of AAAI-94, pp. 337–343.
AAAI Press/The MIT Press, 1994.

[Selmanet al., 1997] B. Selman, H. Kautz, and D. McAllester. Ten
challenges in propositional resoning and search. InProc. IJCAI-
97, pp. n50-54. Morgan Kaufmann, 1997.


