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Abstract

In the quest for expressive description logics for
real-world applications, a powerful combination of
constructs has so far eluded practical decision pro-
cedures: intersection and composition of roles.
We propose tableau-based decision procedures for
the satisfiability of logics extendingALC with the
intersectionu, composition◦, uniont, converse·−
of roles and role identityid(·). We show that

1. the satisfiability ofALC(u,◦,t), for which a
2-EXPTIME upper bound was given by tree-
automata techniques, is PSPACE-complete;

2. the satisfiability ofALC(u,◦,t, ·−, id(·)), an
open problem so far, is in NEXPTIME.

1 Introduction and Motivations
Description Logics (DLs) are a popular knowledge represen-
tation formalism based onconceptsandroles, where concepts
model classes of individuals, and roles model relationships
between individuals[Baaderet al., 2001, Chap. 1-2].

In the last years, the investigation on DLs has been driven
by the modeling needs of applications ranging from semi-
structured data to planning[Baaderet al., 2001, Part III],
which have stimulated the usage of expressive constructs. For
instance, to model semi-structured data one needs to repre-
sent arbitrary relations (graphs with labeled edges), and use
constructs for stating irreflexivity of relations, their transitive
closure, or their intersection. For reasoning about actions,
one may want to express the fact that two long sequences of
actions (roles) must be completed in parallel.

These applications have called for decision procedures
to make reasoning services up to the modeling duties (see
[Baaderet al., 2001, Chap. 2] or Sec. 6). Yet, a power-
ful combination of constructs has so far eluded this quest:
composition and intersection of roles. There is only an in-
volved automata-based algorithm by Danecki[1984] giving a
2-EXPTIME upper bound.
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Decision procedures are hard to find because DLs with in-
tersection and composition (even without converse and role
identity1) haven’t the tree model property. With composition
and intersection, we can write concepts whose models are di-
rected acyclic graphs. Adding role identity, we can force a
relation to be well-founded or a model to be a cyclic graph.

For instance, suppose we want to model the tangled web of
corporate ownerships by using the rolesowns, app-board,
app-CEO (denoting that a corporation owns another com-
pany, appoints the company’s board of directors, or its CEO).
We can represent the corporations having a doubly indirectly
controlled subsidiary with the concept

corpu∃(app-board◦owns)u(owns◦app-CEO).corp

If regulators forbid corporations to be owners of themselves,
we can forbid it too, without ad-hoc well-founded constructs:

∀ownsuid(corp).⊥
We can also model, self-owned “Chinese-box” corporations:

∃(owns◦has-shares◦app-board)uid(corp).>
These models are not representable with the “classical” ex-
pressive DLs such asALCreg orDLR.

Here, we consider the DLALC(u,◦,t, ·−, id(·)) which,
in addition to the constructs ofALC, provides intersec-
tion, composition, union, converse of rolesandrole identity.
ALC(u,◦,t) is the fragment without inverse and identity.

These logics are siblings of three extensions ofALC:
ALCreg with composition and transitive/reflexive closure of
roles but without intersection[Baaderet al., 2001, Chap.2];
ALB with intersection, union and negation[Lutz and Sattler,
2000], and possibly converse[Hustadt and Schmidt, 2001];
DLR [Calvaneseet al., 1998] with intersection and role dif-
ference but only on atomic roles and with additional limi-
tations. In the correspondence with PDL by Schild[1991],
ALC(u,◦,t) corresponds to the the *-free and test-free frag-
ment of IPDL andALC(u,◦,t, ·−, id(·)) is the *-free frag-
ment of Converse-IPDL[Harel, 1984].

In the next sections we recall some preliminaries. Then
we present our tableau calculus (Sec.3), transform it into al-
gorithms (Sec.4), sketch the complexity results (Sec.5), and
discuss related works (Sec.6).

1Role identity is the construct which, given a conceptC, allows
one to build a role connecting each instance ofC to itself.



2 Preliminaries
LetA andP denote atomic concepts and atomic roles respec-
tively. ConceptsC,D and rolesR, S are formed as follows:

C,D ::= A | ¬C | CuD | CtD | ∀R.C | ∃R.C
R, S ::= P | RtS | R◦S | RuS | id(C) | R−

A TBoxT is a finite set ofinclusionsC v D. In the sequel
we focus on the satisfiability of concepts wrt empty TBoxes.
However, we will build non-empty TBoxes of inclusions with
a special form during the proof search itself.

An interpretationI = 〈∆I , ·I〉 consists of a non-empty set
∆I , thedomainof I — whose members are calledelements
— and a function·I , the interpretation functionof I, that
maps every concept to a subset of∆I and every role to a
subset of∆I ×∆I . We refer to Borgida[1996] or Baader et
al. [2001, Chap. 2] for details.

An interpretationI satisfies a conceptC if there exists an
elementd ∈ ∆I such thatd ∈ CI , i.e. if CI 6= ∅.

3 A Tableau Calculus
Taming intersection and composition requires the novel com-
bination of a number of intuitions from the literature and
some new features. They are highlighted here, for the reader
familiar with the literature.

• We use thegraph-based representation of rulesfor
tableau-structures originally due to Kripke and used by
Castillo et al.[1997] and Horrocks and Sattler[1999].

• We borrow the idea by Danecki[1984] of pebble games
to mark elements linked by bothR andS roles so that
the labeling an element with both pebbles marks the in-
tersection, triggering the insertion of suitable concepts;

• We internalize pebbles in the calculus by introducing
new propositional constantsas done by De Giacomo and
Massacci[1997] for eventualities in CPDL.

• We useskolemization for generating “new” nodes and
atomic conceptsin the proof search, exploiting the re-
sults from DL translations into first-order logics[Hus-
tadt and Schmidt, 2001].

• Weexploit some semantical properties of intersectionby
Balbiani and Vakarelov[2001] to show we are sound.

• We use the idea ofon-the fly modification of TBoxespro-
posed by Massacci[1998] for the universal modality.

• We borrow the idea oflazy unfolding of axiomsproposed
by Horrocks and Tobies[2000] for plainALC.
• We use anew role name to denote equivalence of indi-

vidualsbut only for the proof search.

We usetableau-structuresi.e. labeled graphs:

S = 〈N , E , C(·),R(·, ·)〉

whereN is a finite nonempty set of nodes denoted byx, y, z
possibly with indices;E ⊆ N ×N is a set of oriented edges;
C(·) maps nodes to sets of concepts, andR(·, ·) maps edges
to sets of roles. We also use an initially empty TBoxT . In-
clusions of the formAx,RuAx,S v C are added on-the-fly.

Axiom: If x:A1 ∈S, x:A2 ∈S, andA1uA2 v C ∈ T then
S ⇒ S ∪ {x:C}.

Conjunction: If x:CuD∈S thenS ⇒ S ∪ {x:C, x:D}.
Disjunction: If x:CtD ∈S then non-deterministically either
S ⇒ S ∪ {x:C} or S ⇒ S ∪ {x:D}.

Universal atomic roles: If x : ∀P .C ∈S, 〈x, y〉 :P ∈S then
S ⇒ S ∪ {y:C}.

Universal role concatenation: If x :∀R◦S.C ∈S thenS ⇒
S ∪ {x:∀R.∀S.C}.

Universal role intersection: If x : ∀R u S.C ∈ S then
let Ax,R and Ax,S be new atomic concepts and
S ⇒ S ∪ {x:∀R.Ax,R, x:∀S.Ax,S} and T ⇒ T ∪
{Ax,RuAx,S v C}.

Universal role union: If x : ∀RtS.C ∈ S then S ⇒ S ∪
{x:∀R.C, x:∀S.C}.

Existential restriction: If x:∃R.C∈S then lety be a new node
andS ⇒ S ∪ {〈x, y〉:R, y:C}.

Role concatenation: If 〈x, y〉 :R◦S ∈S then letz be a new
node andS ⇒ S ∪ {〈x, z〉:R, 〈z, y〉:S}.

Role intersection: If 〈x, y〉 : R u S ∈ S then S ⇒ S ∪
{〈x, y〉:R, 〈x, y〉:S}.

Role union: If 〈x, y〉 :RtS ∈S then non-deterministically
eitherS ⇒ S ∪ {〈x, y〉:R} or S ⇒ S ∪ {〈x, y〉:S}.

Figure 1: The reduction rules forALC(u,◦,t).

We start with a structure with a single node labeled with
an input conceptC, and apply the tableau rules to build a
reduced structures without contradictions that can be used as
a model forC. If none can be build,C is unsatisfiable.

The reduction rulesin Fig. 1 are applicable to a tableau-
structureS and a set of inclusionsT for ALC(u,◦,t).
W.l.o.g. we assume that negation and converse are pushed
down to atomic concepts and roles. We also abuse the DL
syntax for tableau systems[Buchheitet al., 1993]: we write
x : C ∈ S to indicate thatC ∈ C(x), and 〈x, y〉 : R ∈ S
whenR ∈ R(x, y). Thus, byS ⇒ S ∪ {x:C} we mean
that we obtain a new structureS ′ such thatN ′ = N ∪ {x},
E ′ = E , C′(y) = C′(y) if y 6= x andC′(x) = C(x) ∪ {C},
R′(·, ·) = R(·, ·). Similarly for roles.

Most rules are close to other tableau approaches[Buchheit
et al., 1993; Castilhoet al., 1997; De Giacomo and Massacci,
1997; Horrocks and Sattler, 1999]. A difference is that they
only label edges with atomic roles whereas we also use com-
plex roles. So, we have rules for reducing these roles.

The role ofpebblesis played by the new atoms introduced
by theuniversal role intersection rule. The idea is that since
Ax,R is new, it can label a nodey only by reducing∀R.Ax,R.
thusy must be anR-successors ofx. If bothAx,R andAx,S
label nodey, theny is linked tox by anRuS role. Then we
can addC to y.

Since we cannot forecast whereAx,R andAx,S will ap-
pear, we must potentially check every node. To internalize
this check into the calculus, we use the idea ofon-the-fly mod-
ification of TBoxesby [Massacci, 1998]. With the intersection



rule we “update”T with the inclusionAx,RuAx,S v C and
then we use theAxiom rule to addC to nodes on demand.

Notice that we apply theAxiom rule only when bothAx,R
and Ax,S are present in the same node. This technique,
borrowed from the lazy unfolding of Horrocks and Tobies
[2000], works because our inclusions are acyclic.

Notice also that the new conceptAx,R introduced by the
reduction ofx : ∀RuS.C must depend on the node where
the concept is located. Following Danecki[1984, Pag. 44],
one may think that it suffices to make them dependent only
on the subformula (e.g.AR,∀RuS.C), possibly distinguishing
between occurrences. This would be unsound. The concept

(∀R.∀RuS.C)u(∃(R◦R)u(R◦S).¬C)

is satisfiable but introducing the same “new” concepts at
different nodes for the reduction of the only occurrence of
∀RuS.C would result in a “clash”. By applying the rules of
Fig. 1, one can see that the pebblesAR,∀RuS.C andAS,∀RuS.C
would propagate along the “wrong” path.

The generation of new nodes and new atomic concept sym-
bols may clearly lead to redundant rule applications or even to
a non-terminating process. However, we do not need to gen-
erate really “new” nodes or atomic concepts. We can use the
equivalent of skolemization(or Hilbert’s ε-terms) introduced
by Ohlbach and later refined by Hustadt and Schmidt[2001]
for the translations of DLs into first-order logic.

The generation of skolem functions is stan-
dard and we assume that for “new” concepts we
use the function GENCONCEPT(x,R), and for
“new” nodes we use GENNODECONCEPT(x,C) and
GENNODEROLE(x, y,R). So, when reducingx :∃R.C, we
call y = GENNODECONCEPT(x,∃R.C) and addy :C and
〈x, y〉:R to the structure.

Definition 1 A tableau structureS and a set of inclusionsT
are reduced for a ruleR if the application ofR mapsS and
T into themselves. A structure and a set of inclusions are
reducedif they are reduced for all rules.

Definition 2 A tableau-structure contains a clash if there is
a nodex and a conceptC such that{C,¬C} ⊆ C(x).

Theorem 1 A conceptC of ALC(u,◦,t) is satisfiable iff
there is a non-deterministic application of the rules in Fig. 1
to an initially empty TBox and a structure with only one node
labeled withC leading to a reduced and clash-free structure.

For every feature, the proof cleverly combines the techniques
from the cited works in the literature. The twist is the sound-
ness of theuniversal role intersection rule. To this extent, we
setAIx,R =

{
y| 〈x, y〉 ∈ RI

}
and similarly forS. In words,

the newly introduced concepts are fulfilled by the appropriate
individualsR-reachable, orS-reachable, fromx. Due to lack
of space, details are left to the full paper.

Next, we define the tableau rules for the full language. Be-
side converse, the tricky bit is the presence of the intersection
between role identity and complex roles:id(C)uR is a self-
loop describing individuals in the classC that are in relation
R with themselves (e.g. the self-owned companies). To this
extent we employ an atomic role symbol (not occurring in the
input concept) for equality of nodes·≈·.

Universal converse of roles: If y :∀R−.C ∈S, 〈x, y〉 :R ∈S
thenS ⇒ S ∪ {x:C}.

Universal role identity: If x : ∀id(D).C ∈S thenS ⇒ S ∪
{x:¬DtC}.

Role converse: If 〈x, y〉:R−∈S thenS ⇒ S ∪ {〈y, x〉:R} .

Role identity: If 〈x, y〉:id(C)∈S thenS ⇒ S ∪ {x≈y, x:C}
Role identity distribution: If x≈ y ∈ S andx :C ∈ S then
S ⇒ S ∪ {y:C}.

Role identity symmetry: If x≈y ∈ S thenS ⇒ S ∪ {y≈x}.
Role identity transitivity: If x≈y ∈ S andy≈z ∈ S for then
S ⇒ S ∪ {x≈z}.

Figure 2: The additional reduction rules for·− andid(·)

Algorithm WORLDS;
input nodex0; set of conceptsC; set of inclusionsT ;
output sat if C is satisfiable,unsat otherwise;
variablesnodex; labeled graphS;
begin

N= {x0}; E= ∅; C(·)= {〈x0, C〉};R(·, ·) = ∅;
if CLASH(S) then return (unsat);
while x=CHOOSENODE(S,T )=/=none do

R=CHOOSERULE(x,S,T );
“Apply R to x, S, T updatingS andT ”
if CLASH(S) then return (unsat);

forall x ∈ N \ {x0} do
if WORLDS(x,C(x),T )==unsat
then return (unsat);

return sat
end;

Figure 3: The algorithm forALC(u,◦,t)

The reduction rulesin Figure 1 and the additional rules in
Figure 2 are applicable to a tableau-structureS and a set of
inclusionsT for the logicALC(u,◦,t, ·−, id(·)).

The rules for·≈· might be eliminated if the rule forid(·)
collapses nodes. However, this would complicate the algo-
rithms, as we would need a unique way for collapsing nodes.

Theorem 2 A conceptC ofALC(u,◦,t, ·−, id(·)) is satisfi-
able iff there is a non-det. application of the rules in Fig. 1,2
to an initially empty TBox and a structure with only one node
labeled withC yielding a reduced and clash-free structure.

4 From Calculi to Algorithms
The PSPACE-algorithm forALC(u,◦,t) is called WORLDS
after Ladner’s WORLD for modal logicK. It is plural because
each call works on a fragment of a Kripke model and not just
on a set of concepts true for an individual. It is in Fig. 3.

To check the satisfiability of a conceptC one calls
WORLDS(0,{C},∅) and applies the rules from Fig. 1.

In the algorithms, we use the symbol “=” for assignment,
and “==” for equality testing. We assume all functionalities
for working with labeled direct graphs, an auxiliary function
CLASH(S) which detects clashes, and auxiliary procedures
for selecting objects:CHOOSENODE selects a node to be re-
duced;CHOOSERULE selects an applicable rule for a node.



Algorithm CWORLDS;
input nodex0; set of conceptsC;
output set of conceptsD⊃C if C is satisfiable,unsat otherwise;
variablesnodex; S labeled graph;D set of concepts;
global variablesset of inclusionsT ;
begin

N= {x0}; E= ∅; C(·)= {〈x0, C〉};R(·, ·) = ∅;
if CLASH(S) then return unsat ;

start:while x=CHOOSENODE(S,T )=/=none do
R=CHOOSERULE(x,S,T )
“Apply R to x, S andT updatingS andT ”
if CLASH(S) then return unsat ;

forall x ∈ N \ {x0} do
D=CWORLDS(x,C(x));
if D==unsat then return unsat ;
else ifC(x)=/=D;

then C(x)=D;
gotostart;

return (C(x0))
end;

Figure 4: The CWORLDS algorithm

These procedures must work in time polynomial in the size
of the input and respect the following constraints:

Search Criteria 1 A rule is not selected if the structure is
already reduced for it. A node is not selected if the structure
is already reduced for all rules applicable to the node.

Search Criteria 2 TheExistential restriction rule is selected
only for reduction of concepts labeling the initial nodex0.

If the procedures cannot select anything respecting the above
constraints they return the valuenone.

The tricky bit is showing that the algorithm is in PSPACE
(Sec. 5). We just highlight the differences from trace-based
methods used forALC by Ladner[1977], Schmidt-Schauss
and Smolka[1991] or Tobies[2001].

The classical tableau-based algorithm forALC would have
been identical to ours except for the lastfor cycle:

for all ∃R.C ∈ C(x0) do
if WORLD({C} ∪ {D | ∀R.D ∈ C(x0)})==unsat
then return (unsat)

In words, forALC we explore the one-stepR-successors of
x0 by recursively calling the procedure. So, we only examine
one node (x0) at every call.

The WORLDS algorithm examines the initial nodex0 and
reduces all existential concepts labelingx0, i.e. all one step
R-successors ofx0. Thus, it builds a fragment of the Kripke
structure. However, thereduction of existential-concepts la-
beling successors nodes is deferredto recursive calls. The
rules for intersection and composition may transform a “one-
step”R-successors into “many-steps” atomicP -successors.
Still, the number of intermediateP -steps is linearly bounded
by the size of the input concept.

The full algorithm is called CWORLDS because it returns
a set of concepts. It is shown on Figure 4. The rules that can
be applied to the algorithm are those from Fig. 1,2. It must
respect an additional search constraint:

Search Criteria 3 If x1 ≈ x2, x2 ≈ x3,. . .xn−1 ≈ xn are
present in the structure thenonly one nodexi ∈ {x1, . . . xn}
can be selected for the recursive call ofCWORLDS in the
forall cycle. Ifx0 is among them, none can be selected.

We must return a set of concepts rather than justsat to cope
with converse and role identity. The idea is borrowed from
modal logics with symmetric relations[Massacci, 2000] and
DLs with converse[Tobies, 2001].

For example, the concept∃R◦id(∃id(∀R.C).>)◦R.¬C is
unsatisfiable. If we used algorithm WORLDS with the full set
of rules it would returnsat. The explanation is that we would
introduce a nodey labeled by∃id(∀R.C).> and would eval-
uate the existential concept in the next recursive call. In the
recursive call we would add∀R.C to the initial node (which
would correspond toy) but we could not use this information
to derive a clash in the initial call.

The use of skolemization, rather than truly fresh names,
is necessary to guarantee that CWORLDS is both correct and
terminating. For instance, if fresh names are used in the recur-
sive calls following a restart, the concept∃R.∃S.∀S−uT .C
would make CWORLDS non-terminating.

5 Complexity Analysis
We denote byn thesize of the input conceptC which must be
proved (un)satisfiable, measured as the number of symbols.

We first prove that WORLDS requires only polynomial
space inn. The idea is thatALC(u,◦,t) lost the tree-model
property but kept the cactus-model property.

Loosely speaking, our models can be arranged into the
shape of a cactus, i.e. a tree in which the edge connecting two
nodes of the tree is not a slim branch but a “fat”, cactus-like
stem. This fat stem is made by other nodes and edges, but
its size is polynomially bounded byn. Many stems sprout
from each stem, as in a real cactus, but their number is still
polynomially bounded. Since the height of the cactus is also
polynomially bounded we are done.

Concepts labeling nodes can be seen as spikes. We must
also prove that they aren’t exponentially many. For most DLs
this is obvious: we only introduce subconcepts of the input
concept. Here, we introduce new atomic concepts.

The next tree lemmata make these intuitions precise. At
first, we say that the cactus height is polynomially bounded:

Lemma 1 The call stack ofWORLDS is at mostO(n) deep.

Then the size of each cactus stem is bounded:

Lemma 2 Each invocation ofWORLDS generate a structure
with at mostO(n) nodes.

Finally, we say that the the number of spikes is bounded.

Lemma 3 The number of new atoms occurring as
(sub)concepts in the the labels of the nodes of an invo-
cation ofWORLDS is bounded byO(n3).

To prove Lemma 1 we cannot use the standard proof that
each interaction reduces the modal depth (nesting of universal
and existential roles) of the set of concepts labeling a node
because of theAxiom rule. We need a new notion of modal
depth: we associate different depths to atomic concepts from
the input concept and to “invented” atomic concepts.



• if A is from input concept then d(A) = 0
• if Ax,R is an atomic concept introduced by the reduction

of one or morex : ∀RuS.C then d(Ax,R) is equal to
maxS,C{d(C)|x:∀RuS.C}

• d(∀R.C) = |R|+ d(C) where|R| is the size ofR, mea-
sured as the number of symbols.

Now by induction on the number of applied rules we can
show that for all nodesx 6= x0 and all conceptsC ∈ C(x),
there is a conceptD ∈ C(x0) such d(D) > d(C). Since the
depth of every concept, and hence the maximal depth of a set
of concepts, is bounded byn we are done.

For the proof of Lemma 2, observe that new nodes in the
structureS can only be created by two rules: the rules reduc-
ing existential and the rules reducing composition of roles.
The first rule can only be applied tox0, thus bounding the
nodes so introduced byO(n). For the second rule, the num-
ber of nodes thus introduced is bounded byO(n).

For Lemma 3, observe that two “new” concepts are intro-
duced only when we reduce an universally quantified role in-
tersection. The newly generated concepts depend on the same
node and on the roles which are immediate subroles of an in-
tersection of roles occurring in the input concept. Hence, by
Lemma 2, for each invocation we can create at mostO(n · n)
different new concepts. By Lemma 1 the number of nested
recursive calls of WORLDS is at mostO(n). When a leaf call
is reached we generated at mostO(n2 ·n) different concepts.

Theorem 3 WORLDS can be implemented using only poly-
nomial space inn.

For the proof observe that the stack is at mostO(n) deep by
Lemma 1 and for each call of WORLDS at depthi we have

• O(n) +O(n) new nodes and at mostO(n2) edges,

• O(n4) concepts for each node and each concepts taking
at mostO(n) space,

• O(n) roles labeling each edge and each role taking at
mostO(n) space

• O(i · n5) inclusions, which can be added by reducing
a conceptx : ∀RuS.C where the number of different
xs is bounded by Lemma 2,RuS occurs in the input
concept andC either occurs in the input concept or is
one ofO(n3) new concepts invented at anyj ≤ i steps.

PSPACE-hardness follows fromALC.
Corollary 4 The satisfiability ofALC(u,◦,t) concepts is
PSPACE-complete.

The NEXPTIME-upper bound ofALC(u,◦,t, ·−, id(·))
satisfiability, has a more involved proof. The analogous of
Lemma 1 and Lemma 2 can be proved with a similar argu-
ment. The only twist is observing that, by Criteria 3, we
only reduce the existential concepts in one of the node linked
by the equality predicate. Thus, we never recursively call
CWORLDS on the nodes “equal” to the root nodex0 (as for
them the induction would fail). The equivalent of Lemma 3
fails and we only have a global bound:

Lemma 4 The total number of new atoms occurring as
(sub)concepts in the the labels of the nodes throughout the
execution ofWORLDS is bounded byO(nn) = 2O(n logn).

Using Lemma 4, we bound the number of concepts label-
ing a formula toO(n) · 2O(n logn) = 2O(n logn) and the num-
ber of inclusions by doubling the multiplicative constant in
theO(n log n) expression at the exponent.

Theorem 5 CWORLDS terminates after2O(n2 logn) time.

For the proof observe that CWORLDS can be “restarted”
at most finitely many times. More precisely, (i) the set
of concepts returned by CWORLDS is larger or equal to
the initial set upon which CWORLDS is called (in sym-
bols C(x0) ⊇ C), and (ii) the total number of concepts is
bounded by2O(n logn). Then the total number of restarts for
a structure in a single invocation of CWORLDS is bounded by
O(n) · 2O(2n logn). The bound on the stack does the rest.

Corollary 6 The satisfiability ofALC(u,◦,t, ·−, id(·)) con-
cepts is inNEXPTIME.

An intriguing questionis why the standard technique for
giving PSPACE-bounds for DLs with converse[Tobies, 2001]
or symmetric modal logics[Massacci, 2000] fails here. Ac-
cording this technique, we take the “converse-free” algorithm
and add some “restarts” (this is what CWORLDS does). For
the bound, we observe that (i) restarts add a bounded number
of new concepts (indeed subconcepts of the input concept)
and (ii) the time wasted by restarts doesn’t matter.

The argument fails here because converse or role identity
and intersection plus composition can force CWORLDS to
label a node with exponentially many new atomic concepts.

To force this exponential generation of concepts, we start
by constructing a conceptGn whose model is a cyclic graph
with edges labeled by two rolesR andS. Looking only at role
R, the graph is a binary tree with heightn, with Gn labeling
its root. EachS-edge connects the child node of anR-edge
to its parent. The key feature ofGn is that we canstart at
the root, traverse forward a path ofR-edges, reach a leaf and
then continue totraverseS-edges forward to the root. Once
there, we cantake anotherR-path, and so on. The model of
Gn has a path whose length is exponential inn. Pictorially,
Gn can be seen as a daisy with exponentially many petals.

This construction is impossible inALC, ALC with con-
verse, orALC(u,◦,t) because there are always acyclic mod-
els. In ALC we can keep on traversing edges (roles) on
one pathuntil we arrive at dead-end. Since the depth of the
longest path is linear in the size of the concept to be verified
we are done. InALC with converse, edges can be oriented
forward or backward: we get a two-ways path but still it ter-
minates into a dead-end. With intersection we must check
thattwo pathsmeet at certain points but the idea is the same.

Still, CWORLDS only uses polynomial space for visiting
Gn. The problems start when we add toGn one or more con-
cepts that ask to verify the intersection of two paths. Loosely
speaking, one path reaches the top of a petal, the other goes
back to center, then round another petal and back to the top
of the first petal. The problem is that we don’t know a pri-
ori which petal we must visit among the exponentially many
that are available. We can put one of these concepts in each
leaf. Then, the number of pebbles that accumulate in the root,
restart after restart, will be exponential inn.



6 Related Methods
A number of decision procedures and complexity results for
logics extendingALC (or multimodalK) can be found in the
literature. Yet, none of them fully tackle our results.

With respect to complexity results based on encodings,
De Giacomo and Lenzerini[1995] proved the EXPTIME-
completeness of a DL with composition, converse and inter-
section restricted to atomic roles with additional limitations.
Calvanese et al.[1998] proved the EXPTIME-completeness
ofDLR, where intersection, union and difference of roles are
allowed but composition is not permitted. Baader and Sattler
[1999] proved the undecidability of a number of combination
of expressive DLs with number restrictions and intersection.

With respect to decision procedures, Horrocks et al.
[1999; 2000] tamed expressive DLs with converse and role-
hierarchies where intersection between atomic roles can be
simulated. They do not allow for composition of roles.
Baader and Sattler[1999] have proposed an EXPTIME-
calculi forALC with number restrictions with composition,
intersection and union of role chains. However, concepts are
restricted to plainALC. Lutz and Sattler[2000] give a deci-
sion procedure forALB (ALC plus intersection, union, and
negation of roles but without composition). Tobies[2001]
gives a PSPACE-algorithm for DLs with number restrictions,
converse and intersection of atomic relations.

In the realm of modal and dynamic logic, Danecki[1984]
has shown, using automata-based techniques, that IPDL
(PDL with Intersection) can be decided in 2-EXPTIME. IPDL
strictly extends the logicALC(u,◦,t) allowing for the transi-
tive and reflexive closure of roles and for role identity. How-
ever, Danecki claims that it is possible to use pebbles which
depends only on the occurrence of the subformula. For our
calculus, this is unsound and Danecki’s involved construc-
tion may need to be checked against our counterexample. For
Converse-PDL automata theoretic techniques have been pro-
posed by Vardi and Wolper[1986] and a tableau calculus has
been given by De Giacomo and Massacci[1997].

Hustadt and Schmidt[2001] have shown a decision proce-
dures for boolean modal logic with converse. Their procedure
is based on a clever translation into first-order logic of modal
formulae followed by a decision procedure for the guarded
fragment. They only prove decidability results. The possi-
bility of a PSPACE-algorithm for the extension ofALC with
intersection, converse and union is just claimed.

Decision procedures for first order logic with two variables
(see the survey by Grädel and Otto[1999]) can be used for
DLs with intersection but without composition, via first-order
translations. One could also use the decision procedures by
Ganzinger and De Nivelle[1999] for the guarded fragment.
Current methods based on translations into decidable frag-
ments of first order logic cannot treat intersection and com-
position at the same time, as this requires to have at least three
variables and does not allows for guards in predicate clauses.

References
[Baader and Sattler, 1999] F. Baader and U. Sattler. Expressive

number restrictions in description logics.JLC, 9:319–350, 1999.
[Baaderet al., 2001] F. Baader, D. McGuinness, D. Nardi, and

P. Patel Schneider, editors.The Description Logic Handbook:

Theory, implementation and applications. Cambridge Univ.
Press. 2001. To appear.

[Balbiani and Vakarelov, 2001] P. Balbiani and D. Vakarelov.
Iteration-free PDL with intersection: a complete axiomatization.
Fundamenta Informaticae, 2001. To appear.

[Borgida, 1996] A. Borgida. On the relative expressiveness of de-
scription logics and predicate logics.AIJ, 82:353–367, 1996.

[Buchheitet al., 1993] M. Buchheit, F. Donini, and A. Schaerf. De-
cidable reasoning in terminological knowledge representation
systems.JAIR, 1:109–138, 1993.

[Calvaneseet al., 1998] D. Calvanese, G. De Giacomo, and
M. Lenzerini. On the decidability of query containment under
constraints. InProc. of PODS’98, pp.149–158, 1998.

[Castilhoet al., 1997] M. Castilho, L. Farĩnas del Cerro, O. Gas-
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