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Abstract Decision procedures are hard to find because DLs with in-
) . . tersection and composition (even without converse and role
In the quest for expressive description logics for identity!) haven't the tree model property. With composition
real-world applications, a powerful combination of and intersection, we can write concepts whose models are di-
constructs has so far eluded practical decision pro-  rected acyclic graphs. Adding role identity, we can force a
cedures: intersection and composition of roles. relation to be well-founded or a model to be a cyclic graph.
We propose tableau-based decision procedures for For instance, suppose we want to model the tangled web of
the satisfiability of logics extendind £LC with the corporate ownerships by using the rosns, app-board,
intersectiom, compositiorp, unionLl, converse app-CEO (denoting that a corporation owns another com-
of roles and role identityd(-). We show that pany, appoints the company’s board of directors, or its CEO).
1. the satisfiability ofALC(M,0, L), for which a We can represent the corporations having a doubly indirectly
2-EXPTIME upper bound was given by tree- controlled subsidiary with the concept

automata techniques, isPACEcomplete;
2. the satisfiability ofALC(M,o L, -7, 4d(+)), an
open problem so far, is in NEXPME. If regulators forbid corporations to be owners of themselves,
we can forbid it too, without ad-hoc well-founded constructs:

1 Introduction and Motivations Vownsrlid(corp). L

Description Logics (DLs) are a popular knowledge represenwe can also model, self-owned “Chinese-box” corporations:
tation formalism based cconceptsandroles where concepts J(ownsohas-sharesoapp-board)rid(corp). T
model classes of individuals, and roles model relationships ] .
between individualfBaaderet al, 2001, Chap. 1} These models are not representable with the “classical” ex-
In the last years, the investigation on DLs has been driveressive DLs such adLC;.., or DLR. . _
by the modeling needs of applications ranging from semi- Here, we consider the DIALC(M,o L, -, id(-)) which,
structured data to planninBaaderet al, 2001, Part 1), in addition to the constructs aflLC, providesintersec-
which have stimulated the usage of expressive constructs. F§PN, composition, union, converse of rolasdrole identity.
instance, to model semi-structured data one needs to reprélCC (M, L) is the fragment without inverse and identity.
sent arbitrary relations (graphs with labeled edges), and use These logics are siblings of three extensions.A£C:
constructs for stating irreflexivity of relations, their transitive “ALCrcg With composition and transitive/reflexive closure of
closure, or their intersection. For reasoning about actiondoles but without intersectiofBaaderet al, 2001, Chap.;
one may want to express the fact that two long sequences gf£3 with intersection, union and negatigiutz and Sattler,
actions (roles) must be completed in parallel. 2004, and possibly conversgHustadt and Schmidt, 20D1
These applications have called for decision procedure® LR [Calvaneset al, 1999 with intersection and role dif--
to make reasoning services up to the modeling duties (sefgrence but only on atomic roles and with additional limi-
[Baaderet al, 2001, Chap. Ror Sec. 6). Yet, a power- tations. In the correspondence with PDL by ScHil®91,
ful combination of constructs has so far eluded this questA£C(M,0 L) corresponds to the the *-free and test-free frag-
composition and intersection of roles. There is only an in-ment of IPDL andALC(M,e U, -, id(-)) is the *-free frag-
volved automata-based algorithm by Danddigi84 givinga  ment of Converse-IPD[Harel, 1984. o
2-EXPTIME upper bound. In the next sections we recall some preliminaries. Then
we present our tableau calculus (Sec.3), transform it into al-

“This work was done while the author was on leave at IRIT -gorithms (Sec.4), sketch the complexity results (Sec.5), and
Toulouse partly supported by CNR grant 203-7-27. | am greatly in-jiscuss related works (Sec.6).

debted to P. Balbiani for directing my attention to logics with inter-
section and for countless suggestions and discussions. Discussions 'Role identity is the construct which, given a concéjtallows
with F. M. Donini, |. Horrocks and U. Sattler were helpful. one to build a role connecting each instanc€'db itself.

corpn3(app-boardoowns)r(ownsoapp-CEO).corp



2 Prellmlnarles Axiom: If r:A1 €S, x:A5 €S, a.ndAl MNA, C C € T then

. . S = Su{zC}.
Let A andP denote atomic concepts and atomic rolesrespec-
tively. Concepts”, D and rolesR, S are formed as follows: ~ Conjunction: If z:CMDeS thenS = S U {x:C, 2:D}.

Disjunction: If x:C'UD €S8 then non-deterministically either

RS w= P | RUS | RoS | RNS | id(C) | R Universal atomic roles: If z:VP.C €S, (x,y): P €8 then
A TBoxT is a finite set ofinclusionsC C D. In the sequel S = Su{yC}.
we focus on the satisfiability of concepts wrt empty TBoxes.ynjversal role concatenation: If z: VR0 S.C' €S thenS =
However, we will build non-empty TBoxes of inclusions with SU{zVRVS.C}.
a special form during the proof search itself.

fxn interpretationZ = (AZ, -Z) consists of a non-empty set
A*, thedomainof Z — whose members are calletements )
— and a function?, the interpretation functionof Z, that S = S U{aVRAy R aV5.Ass}t andT = T U
maps every concept to a subsetdf and every role to a {Az,rNAs s E CF
subset ofAZ x AZ. We refer to Borgidd1996 or Baader et  Universal role union: If z:VRUS.C € S thenS = S U

Universal role intersection: If =z : VRN S.C € S then
let A, r and A, s be new atomic concepts and

al. [2001, Chap. Pfor details. {xVR.C,zNS.C}.
An interpretatiorl satisfies a concef'if there exists an  gyistential restriction: If z:3R.C €S then lety be a new node
elementd € A” suchthatl € C7, i.e. if C* # 0. andS = S U {(z,y):R, y:C}.

Role concatenation: If (z,y): RoS €8 then letz be a new
3 A T.ableau.Calcqus - _ node andS = S U {(z, 2):R, (z,y):S}.
Taming intersection and composition requires the novel comg o i ¢ (z,y) : RNS € S thenS = SU
bination of a humber of intuitions from the literature and

some new features. They are highlighted here, for the reader {(@, y):R, (2, )51 o
familiar with the literature. Role union: If (x,y): RUS €S then non-deterministically

e We use thegraph-based representation of rulder eltherS = SUile, yﬂ_%} orS = SU {{z,y):5}
tableau-structures originally due to Kripke and used by Figure 1: The reduction rules fot £C(M,o,U).
Castillo et al.[1997 and Horrocks and Sattl¢t999.

o We borrow the idea by Danecki984 of pebble games  \yg start with a structure with a single node labeled with
to mark elements linked by both and S roles so that 4 input concept, and apply the tableau rules to build a
thelabeling an element with both pebbles marks the in-reqyced structures without contradictions that can be used as
tersection triggering the insertion of suitable concepts; 5 model forC. If none can be build(' is unsatisfiable.

e We internalize pebbles in the calculus by introducing  The reduction rulesin Fig. 1 are applicable to a tableau-
new propositional constangs done by De Giacomo and structureS and a set of inclusiong for ALC(M,o ).
Massacc[1997 for eventualities in CPDL. W.l.o.g. we assume that negation and converse are pushed

e We useskolemization for generating “new” nodes and down to atomic concepts nd roles. We also abuse the DL
atomic conceptin the proof search, exploiting the re- Syntax for tableau systeniBuchheitet al., 1993: we write

sults from DL translations into first-order logislus-  # : €' € S to indicate thatC' € C(z), and (z,y): R € S

tadt and Schmidt, 2001 whenR € R(z,y). Thus, byS = S U {:C'} we mean

_ _ _ _ _ that we obtain a new structu® such that\/ = N U {z},

 Weexploit some semantical properties of intersecbgn o/ _ ¢ C'ly) = C'y) if y # = andC’(z) = C(z) U {C},
Balbiani and Vakarelo}2001] to show we are sound. R'(-,-) = R(-,-). Similarly for roles.

 We use the idea ain-the fly modification of TBoxeso- Most rules are close to other tableau approa¢Beshheit
posed by Massac€i999 for the universal modality. etal, 1993; Castilheet al,, 1997; De Giacomo and Massacci,

« We borrow the idea dézy unfolding of axiomproposed ~ 1997; Horrocks and Sattler, 1999 difference is that they
by Horrocks and Tobie200d for plain ALC. only label edges with atomic roles whereas we also use com-

di plex roles. So, we have rules for reducing these roles.
" The role ofpebbleds played by the new atoms introduced
by theuniversal role intersection rule. The idea is that since
We usetableau-structurege. labeled graphs: A, r is new, it can label a nodgonly by reducing/R. A, x.
. thusy must be ank-successors of. If both A, r and A, ¢

S=WN,EC(),R() label nodey, theny is linked tox by an RS role. Then we
whereN is a finite nonempty set of nodes denotediyy, = can add” to y.
possibly with indices C NV x N is a set of oriented edges; ~ Since we cannot forecast wherk,  and A, s will ap-
C(-) maps nodes to sets of concepts, &, -) maps edges pear, we must potentially check every node. To internalize
to sets of roles. We also use an initially empty TBbx In-  this check into the calculus, we use the ideamthe-fly mod-
clusions of the form4,, rMA, s C C are added on-the-fly. ification of TBoxeby [Massacci, 1998 With the intersection

e \We use anew role name to denote equivalence of in
vidualsbut only for the proof search.



rule we “update”T with the inclusiond,. zMA, s C C and Universal converse of roles: If y:VR™.C' €S8, (x,y):R €S
then we use théxiom rule to addC' to nodes on demand. thenS = S U {z:C}.
Notice that we apply théxiom rule only when bothd, r  universal role identity: If z:Vid(D).C €S thenS = S U
and A, ¢ are present in the same node. This technique, {z:=DUC}.
borrowed from the lazy unfolding of Horrocks and Tobies i e ]
[200d, works because our inclusions are acyclic. Role converse: If (z,y):R™ €5 thenS = SU {(y, z):R} .
Notice also that the new concegt,  introduced by the Role identity: If (z,y):d(C) €S thenS = S U {z~y, :C'}
reduction ofz: VR S.C' must depend on the node where goje igentity distribution: If 7~y € S andz:C €S then
the concept is located. Following Daned¢kB84, Pag. 44 S= SU{yC).
one may think that it suffices to make them dependent onl
on the subformula (e.94 r vrs.c), possibly distinguishing
between occurrences. This would be unsound. The conceptRole identity transitivity: If z~y € S andy=z € S for then

(VRYRMNS.CYM(I(RoR)MN(RoS).~C) S = SuU{zrz}.

Figure 2: The additional reduction rules for andid(-)

is satisfiable but introducing the same “new” concepts at
different nodes for the reduction of the only occurrence ofAlgorithm WORLDS;
VRMNS.C would result in a “clash”. By applying the rules of input nodez,; set of concept§; set of inclusions;
Fig. 1, one can see that the peblesy gs.c andAs vas.c output sat if C is satisfiableunsat otherwise;
would propagate along the “wrong” path. variables nodez; labeled grapls;

The generation of new nodes and new atomic concept synbegin
bols may clearly lead to redundant rule applicationsorevento  N={z,}; £=0; C(-)={(zy,C)}; R(-,*) =0;

)ﬁole identity symmetry: If zay € S thenS = S U {y=x}.

a non-terminating process. However, we do not need to gen-  if CLASH(S) then return (unsat);

erate really “new” nodes or atomic concepts. We can use the  while z=cHOOSENODE(S,7)=/=none do
equivalent of skolemizatiofor Hilbert’s e-terms) introduced R=CHOOSERULE(z,S,7T);

by Ohlbach and later refined by Hustadt and Schi2601] “Apply Rto z, S, T updatingS and7”
for the translations of DLs into first-order logic.

; ; . if CLASH(S) then return (unsat);
The generation of skolem functions is stan- forall 2 € '\ {z,} do

dard and we assume that for “new” concepts we . __
use the function GENCONCEPTx,R), and for i WORLDS(x’C(x)_’T)"unsat
“new” nodes we useGENNODECONCEPT(z,C) and then return (unsat);
GENNODEROLE(z, y, R). So, when reducing : 3R.C, we ~retumn sat
call y = GENNODECONCEPT(x, 3R.C) and addy:C and ~ €N9:

(z,y):R to the structure Figure 3: The algorithm foALC (7,0, L)

Definition 1 A tableau structureS and a set of inclusion®
are reduced for a rul® if the application ofR mapsS and

7 into themselves. A structure and a set of inclusions ar
reducedf they are reduced for all rules.

Thereduction rulesn Figure 1 and the additional rules in
é:igure 2 are applicable to a tableau-structSrand a set of
inclusions? for the logic ALC(M,0, L, -, id(-)).

The rules for-~- might be eliminated if the rule foid(-)
Definition 2 A tableau-structure contains a clash if there is collapses nodes. However, this would complicate the algo-
a nodezx and a concep€ such that{ C, -C} C C(z). rithms, as we would need a unique way for collapsing nodes.

Theorem 1 A conceptC of ALC(M,o L) is satisfiable iff Theorem 2 A conceptC of ALC(M,o U, -, id(+)) is satisfi-
there is a non-deterministic application of the rules in Fig. 1 able iff there is a non-det. application of the rules in Fig. 1,2
to an initially empty TBox and a structure with only one nodeto an initially empty TBox and a structure with only one node
labeled withC leading to a reduced and clash-free structure. labeled withC' yielding a reduced and clash-free structure.

For every feature, the proof cleverly combines the technique . .
from the cited works in the literature. The twist is the sound—z From Calculi to Algorithms
ness of theuniversal role intersection rule. To this extent, we The Pspacealgorithm for ALC(M,0 L) is called WORLDS
setA? , = {y|(z,y) € R} and similarly forS. In words, after Ladner's VORLD for modal logicK. It is plural because
the newly introduced concepts are fulfilled by the appropriateeach call works on a fragment of a Kripke model and not just
individuals R-reachable, o6-reachable, fromx. Due to lack  on a set of concepts true for an individual. It is in Fig. 3.
of space, details are left to the full paper. To check the satisfiability of a concegf’ one calls
Next, we define the tableau rules for the full language. Be WoRLDS(0,{C'},0) and applies the rules from Fig. 1.
side converse, the tricky bit is the presence of the intersection In the algorithms, we use the symbol “=" for assignment,
between role identity and complex roled{C)M R is a self- and “==" for equality testing. We assume all functionalities
loop describing individuals in the clagsthat are in relation  for working with labeled direct graphs, an auxiliary function
R with themselves (e.g. the self-owned companies). To thi€CLASH(S) which detects clashes, and auxiliary procedures
extent we employ an atomic role symbol (not occurring in thefor selecting objectscHOOSENODE selects a node to be re-
input concept) for equality of nodes:. duced;cHOOSERULE selects an applicable rule for a node.



Algorithm CWORLDS; Search Criteria 3 If 21 & zo, T2 &~ T3,...Tp_1 ~ T, Al

input nodez,; set of concepts; ~ presentin the structure theamly one noder; € {z1,...2,}
output set of concept®C if C is satisfiableynsat otherwise; can be selected for the recursive call GWORLDS in the
V?“giblms Doglez; S Ia?gle;j g_rapsgp set of concepts; forall cycle. Ifz, is among them, none can be selected.
%ggiﬁ variablesset of inclusionsz We must return a set of concepts rather thangatsto cope
— e (- - . — (- with converse and role identity. The idea is borrowed from
N'= (o} €2 05 C()= {{20,C) i R(,) = 0; b4

modal logics with symmetric relatioi#lassacci, 2000and
DLs with conversdTobies, 2001

For example, the concepiRoid(Fid(VR.C').T)oR.~C'is
unsatisfiable. If we used algorithm & LDs with the full set

if CLASH(S) then return unsat;
start: while xz=CHOOSENODE(S,7)=/=none do
R=CHOOSERULE(x,S,7)

"Apply Rto z, S and7 updatingS and7” of rules it would returrsat. The explanation is that we would
if CLASH(S) then return unsat; introduce a nodg labeled by3id(VR.C).T and would eval-
forall = € N\ {z,} do uate the existential concept in the next recursive call. In the
D=CWOoRLDS(z,C(x)); recursive call we would addR.C' to the initial node (which
if D==unsat then return unsat; would correspond tg) but we could not use this information
else ifC(x)=/=D; to derive a clash in the initial call.
then C(z)=D; The use of skolemization, rather than truly fresh names,
gotostart; is necessary to guarantee that ©RLDsis both correct and
return (C(z,)) terminating. FO( instance, if fresh names are used in the recur-
end: - sive calls following a restart, the concepR.3S.VS—NT.C
Figure 4: The CVORLDS a|gorithm W0u|d make CVORLDS non'terminaﬂng.

5 Complexity Analysis

These procedures must work in time polynomial in the size . ] .
of the input and respect the following constraints: We denote by thesize of the input concefit which must be
Search Criteria 1 A rule is not selected if the structure is proved (un)satisfiable, measured as the number of symbols.

: : . We first prove that VBRLDS requires only polynomial
already reduced for it. A node is not selected if the structure : . ' \
is already reduced for all rules applicable to the node. space im. The idea is thatl£C(r.o L) lost the tree-model

property but kept the cactus-model property
Search Criteria 2 TheExistential restriction rule is selected Loosely speaking, our models can be arranged into the
only for reduction of concepts labeling the initial nogdg shape of a cactus, i.e. a tree in which the edge connecting two

If the procedures cannot select anything respecting the aboy?des of the tree is not a slim branch but a “fat”, cactus-like
constraints they return the valuene. stem. This fat stem is made by other nodes and edges, but

The tricky bit is showing that the algorithm is insPace IS Size is polynomially bounded by. Many stems sprout

(Sec. 5). We just highlight the differences from trace-based'om ach stem, as in a real cactus, but their number is still
methods used far£C by Ladner[1977, Schmidt-Schauss polynomially bounded. Since the height of the cactus is also

and Smolkd 1991 or Tobies[2001]. polynomially bour_lded we are done. .
The classical tableau-based algorithm.f£C would have Concepts labeling nodes can be seen as spikes. We must

been identical to ours except for the l&mt cycle: also prove that they aren’t exponentially many. For most DLs
this is obvious: we only introduce subconcepts of the input

forall 3R.C' € C(z,) do concept. Here, we introduce new atomic concepts.
if WORLD({C'} U{D | VR.D € C(z,)})==unsat The next tree lemmata make these intuitions precise. At
then return (unsat) first, we say that the cactus height is polynomially bounded:

In words, for ALC we explore the one-stefi-successors of Lemma 1 The call stack ofWORLDsis at mostO(n) deep.

z, by recursively calling the procedure. So, we only examin . . )
one node,) at every call. ®rhen the size of.each c.actus stem is bounded:
The WoORLDS algorithm examines the initial node, and ~ Lemma 2 Each invocation ofVORLDS generate a structure

reduces all existential concepts labeling, i.e. all one step  With at mostO(n) nodes.

R-successors of,. Thus, it builds a fragment of the Kripke Fjnally, we say that the the number of spikes is bounded.
structure. However, theeduction of existential-concepts la- :
Lemma 3 The number of new atoms occurring as

beling successors nodes is defertedrecursive calls. The . .
rules for intersection and composition may transform a “one{Sub)concepts in the the labels 0; the nodes of an invo-
step” R-successors into “many-steps” atonfiesuccessors. Cation of WORLDS s bounded by (n*).
Still, the number of intermediatB-steps is linearly bounded To prove Lemma 1 we cannot use the standard proof that
by the size of the input concept. each interaction reduces the modal depth (nesting of universal
The full algorithm is called CMWRLDS because it returns and existential roles) of the set of concepts labeling a node
a set of concepts. It is shown on Figure 4. The rules that cabecause of théxiom rule. We need a new notion of modal
be applied to the algorithm are those from Fig. 1,2. It mustdepth: we associate different depths to atomic concepts from
respect an additional search constraint: the input concept and to “invented” atomic concepts.



e if Aisfrom input concept then(dl) =0 Using Lemma 4, we bound the number of concepts label-

o if A, r is an atomic concept introduced by the reductioning @ formula toO(n) - 20( 18 ) = 29(1¢ ™) and the num--
of one or morer : VRMS.C then d A, r) is equal to  Per of inclusions by doubling the multiplicative constant in
maxg o {d(C)|z:VRMNS.C} ’ theO(nlogn) expression at the exponent.

e d(VR.C) = |R| +d(C) where|R| is the size ofR, mea-  Theorem 5 CWORLDS terminates aftee®(®” 1027 time.
sured as the number of symbols.

Now by induction on the number of applied rules we can
show that for all nodes # z, and all concept&’ € C(x),
there is a concepb € C(z,) such dD) > d(C). Since the

For the proof observe that C®RLDS can be “restarted”
at most finitely many times. More precisely, (i) the set

of concepts returned by CWRLDS is larger or equal to
depth of every concept, and hence the maximal depth of a stg%?slgl(t;al) s:e>t Cu)po;n&/v Z:;:r:hg\gi;l)r?ulrib%?”gf Cg?ngtg is

of concepts, is bounded bywe are done. d_dob_o("l:’g”) Then the total ber of restarts f
For the proof of Lemma 2, observe that new nodes in thé)Oun ed b= *8™ . Then the total number of restarts for

a structure in a single invocation of CA®LDSis bounded by

structureS can only be created by two rules: the rules reduc-

O(2nlogn
ing existential and the rules reducing composition of roles () - 2 (2nlosm). The bound on the stack does the rest.

The first rule can only be applied tg,, thus bounding the ‘<Fiahili R .
nodes so introduced b9 (n). For the second rule, the num- gggglg)i/nﬁlE‘I’)?STslzt:Esﬁablhty OMLL(Ma L, -~ id()) con
ber of nodes thus introduced is bounded®). '

For Lemma 3, observe that two “new” concepts are intro- An intriguing questionis why the standard technique for
duced only when we reduce an universally quantified role ingiving PsPACEbounds for DLs with converddobies, 2001
tersection. The newly generated concepts depend on the samesymmetric modal logicBMassacci, 2000fails here. Ac-
node and on the roles which are immediate subroles of an ircording this technique, we take the “converse-free” algorithm
tersection of roles occurring in the input concept. Hence, byand add some “restarts” (this is what @A&LDS does). For
Lemma 2, for each invocation we can create at nijgt-n)  the bound, we observe that (i) restarts add a bounded number
different new concepts. By Lemma 1 the number of nesteaf new concepts (indeed subconcepts of the input concept)
recursive calls of WBRLDSis at mostO(n). When a leaf call and (i) the time wasted by restarts doesn’t matter.

is reached we generated at moXt.? - n) different concepts. The argument fails here because converse or role identity
Theorem 3 WORLDS can be implemented using only poly- and intersection plus composition can force ©RLLDS to
nomial space im. label a node with exponentially many new atomic concepts.

. To force this exponential generation of concepts, we start
For the proof observe that the stack is at mogt) deep by constructing a concept,, whose model is a cyclic graph
Lemma 1 and for each call of @RLDs at depthi we have with edges labeled by two rolégands. Looking only at role

e O(n) + O(n) new nodes and at moét(n?) edges, R, the graph is a binary tree with height with G, labeling

e O(n*) concepts for each node and each concepts takin?s root. EachS-edge connects the _child node of &redge
at mostO(n) space, o0 its parent. The key feature 6#, is that we carstart at

. . he root traverse forward a path oR-edgesreach a leaf and
e O(n) roles labeling each edge and each role taking aEhen continue tdraverseS-edges forward to the rootOnce
mostO(n) space there, we cartake anotherkR-path and so on. The model of
e O(i - n°) inclusions, which can be added by reducing G,, has a path whose length is exponentiahinPictorially,
a conceptr : YRMS.C where the number of different G, can be seen as a daisy with exponentially many petals.
s is bounded by Lemma 22115 occurs in the input  This construction is impossible id£C, ALC with con-
concept and”' either occurs in the input concept or is verse, orAL£C(M,0, L) because there are always acyclic mod-
one ofO(n”) new concepts invented at apy< i steps.  els. In.ALC we can keep on traversing edges (roles) on
PspacEhardness follows fromdLC. :)ne pathun';]il_w? arrivg a;c]dead-er;dh Since the detr))th of_;hed
e . ongest path is linear in the size of the concept to be verifie
ggrollary 4 The satisfiability ofALC(M,o L) concepts is we are done. InALC with converse, edges can be oriented
PACEcomplete. ] o
forward or backward: we get a two-ways path but still it ter-
The NEXPriMe-upper bound ofALC(M,oU,-7,id(-))  minates into a dead-end. With intersection we must check
satisfiability, has a more involved proof. The analogous ofthattwo pathsmeet at certain points but the idea is the same.
Lemma 1 and Lemma 2 can be proved with a similar argu-  ggjll, CwoRrLDs only uses polynomial space for visiting
ment. The only twist is observing that, by Criteria 3, we .. The problems start when we add one or more con-
only reduce the existential concepts in one of the node ””kegepts that ask to verify the intersection of two paths. Loosely
by the equality predlcate“. ThU”S= we never recursively calkpeaking, one path reaches the top of a petal, the other goes
CWOoRLDS on the nodes “equal” to the root nodg (as for  pack to center, then round another petal and back to the top
thgam the induction would fail). The equivalent of Lemma 3 f the first petal. The problem is that we don’t know a pri-
fails and we only have a global bound: ori which petal we must visit among the exponentially many
Lemma 4 The total number of new atoms occurring as that are available. We can put one of these concepts in each
(sub)concepts in the the labels of the nodes throughout thieaf. Then, the number of pebbles that accumulate in the root,
execution of/WORLDS is bounded by) (n™) = 20(nlogn), restart after restart, will be exponentiakin
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