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Abstract

Recent experimental results have shown that
the strength of resolution, the propositional
DPLL procedure, the KSAT procedure for de-
scription logics, or related tableau-like imple-
mentations such as DLP, is due to reduction
rules which propagate constraints and prune
the search space.

Yet, for first order logic such reduction rules
are only known for resolution. The lack of
reduction rules for first order tableau calculi
(DPLL can be seen as a tableau calculus with
semantic branching) is one of the causes be-
hind the lack of efficient first order DPLL-like
procedures.

The difficulty is that first order splitting rules
force tableau and DPLL calculi to use rigid
variables which hinder reduction rules such
as unit subsumption or unit propagation.

This paper shows how reduction and simpli-
fication rules can be lifted to a first order
tableau-like calculus using universal variables
and a new rule called renaming. It also shows
how to optimize the calculus for exploiting
universal variables and reduction rules when
semantic branching aka split DPLL-style is
chosen as the inference rule with DFS-search.

1 Introduction

The last years have shown a clear trend in the de-
velopment of efficient and effective procedures for au-
tomated reasoning. The renewed interest for experi-
mental analysis and competition between systems has
shown that what really makes a practical difference
between theorem provers or satisfiability checkers is
their ability of pruning the search space.

The importance of rules for reducing the search space
has been stressed since the very beginning in the design
of the Davis-Putnam-Loveland-Procedure [11, 10] and
in the early Russian studies in automated deduction
[28]. The ability of performing fast and effective unit
propagation has been a key for the successes in finite
algebra of the theorem prover SATO by Zhang [33].

In the realms of modal and description logics, a major
qualitative advance has been the introduction of the
same pruning techniques of DPLL in the KSAT decision
procedure for modal logic K by Giunchiglia and Sebas-
tiani [16]. Further experimental analysis by Hustadt
and Schmidt [20] has confirmed the importance of re-
duction rules over inference rules: once reduction rules
were added to the tableau system KRIS its performance
increased by orders of magnitude. The DLP system by
Patel-Schneider, “winner” of the recent TANCS com-
petition of modal logics [24], uses many reduction rules
such as boolean constraint propagation [19].

In first order logic, the importance of reduction rules
for resolution (such as subsumption) has been stressed
since its inception by Robinson [27] and its implemen-
tation has been the subject of an intense study (see
e.g. [14, 30]). The competitive results by Hustadt and
Schmidt [20] for the translation of modal logic into first
order logic are also due to the subsumption routines of
the prover SPASS. The performance of Vampire at the
last CASC competition is mainly due to its sophisti-
cated subsumption architecture by Voronkov [30]

If we were allowed to condense these experimental find-
ings in one sentence we could just say that reduction
rules are more effective than inference rules. In prac-
tice, the most (if not the only) effective reduction rules
are those which act locally, affect one or few formulae
at the time and do not require to compare whole parts
of the proof search tree. The locality of the rules makes
then possible optimized implementations in which such
rules are applied to all formulae at once [30, 33].



The practical importance of local reduction rules also
explains one surprising duality in experimental re-
sults: in the propositional and modal realms, tableau-
like systems (DPLL can be seen as a tableau calcu-
lus using semantic branching) are the undisputed front
runners; in the first-order domain, systems based on
hyper-resolution or superposition (e.g. Vampire, Gan-

dalf, SPASS) take the front stage.

Indeed, for propositional, modal, and description log-
ics, local, formula-wise reduction rules are well studied
and go along with different forms of tableau calculi (i.e.
branching rules) and can fully exploit the features of
the underlying logic [16, 18, 19, 23].

In contrast, for first order logic, a key formalisms for
knowledge representation, there is only one competitor
which fully exploits first order features: the subsump-
tion rule for resolution (and superposition). Tech-
niques for search pruning in tableau-based approach
such as factoring and merging do exist but they require
considering whole parts of the proof tree [1, 21, 32].
In other cases, such as the first order version of the
DPLL procedure [11], reduction rules are gained only
by grounding formulae to propositional logic.

The major problem is that first order branching rules
force tableau, model elimination, and DPLL-like cal-
culi to use rigid variables1 and this substantially hin-
ders the ability of performing first order local reduction
rules such as unit subsumption or unit propagation.

This paper proposes a general solution based on the
observation that in the resolution framework all vari-
ables are “implicitly quantified”. We propose a modi-
fied tableau calculus in which all variables are also im-
plicitly universally quantified unless we explicitly mark
them as rigid. Then, we introduce a rule called renam-
ing which generalizes the use of universal variables pro-
posed by Beckert et al. [6, 7] and by Baumgarten [4],
and the use of conjunctive superformulae proposed by
Degtyarev and Voronkov [13].

In this new framework we can now introduce full first
order reduction rules for tableau-like calculi and prove
them sound (and sometimes invertible). We also show
how the calculus can be optimized to fully exploit
universal variables and reduction rules when semantic
branching aka split DPLLstyle is chosen as the main
inference rule with a depth-first-search strategy and
discuss how a lean implementation in sicstus prolog

1Loosely speaking, when we split the search in two
branches with P (x) on one side and and ¬P (x) on the
other, the variable x in P (x) is called rigid because choos-
ing its value affects another branch. As a consequence,
P (x) cannot be used to unit-subsume P (b) ∨ Q, because
we are not free to let x range over all possible values.

can be done for this calculus.

The introduction of first order reduction rules provides
also an unifying perspective of many (tableau based)
deduction techniques and “explains away” the stand-
alone (inefficient) nature of the classical first order
DPLL.

2 Notation and Terminology

We assume a basic knowledge of first order syntax and
semantics [15, 29]. First order terms, denoted by t, are
constructed from constants a, b, c ∈ Con and variables
x, y, z ∈ Var using functions f, g ∈ Fun. The usual
definition of ground terms (terms without variables) is
adopted.

We construct formulae A, B, C from predicate sym-
bols P (t1, . . . , tn) and Q(t1, . . . tn) and the boolean
constants ⊤ and ⊥ with the propositional connectives
∧, ∨, ¬, and the first order connectives ∀ and ∃: e.g.
A ∧ B, ∀x.A, ∃x.A. Other connectives can be seen as
abbreviations, e.g. A ⊃ B

.
= ¬A ∨ B.

If A is a formula, its conjugate A is obtained in the
standard way: ¬A = A and A = ¬A if the main con-
nective of A is not a negation.

By FV (A) we denote the set of free variables occurring
in the formula A. By A(x) we mean that the variable
x may occur free in the formula A and A(t) denotes
the simultaneous substitution of t in all (if any) occur-
rences of x in A. FV (·)is extended to set of formulae
or set of terms in the obvious way. A sentence is a
formula A such that FV (A) = ∅.

By {t1/x1, . . . , tn/xn} we denote the substitution
which simultaneously replaces all occurrences of each
variable xi with the corresponding term ti. Substitu-
tions are usually denoted by σ. A renaming, denoted
by η, is a particular substitution {y1/x1, . . . , yn/xn}
where all yi are fresh variables.

By Aσ we denote result of the application of the sub-
stitution σ to the formula A. We employ the usual
concept of substitution free for a formula A, i.e. the
variables of ti do not get bound after the substitution
of ti for xi. To this extent we rename, if necessary,
bound variables in a formula before applying a substi-
tution. In the sequel substitutions are assumed free.

The domain of a substitution {t1/x1, . . . , tn/xn} is the
set of variables {x1, . . . , xn}. If R is a set of variables
we denote by σ

R
the restriction of the domain of σ to

variables which are not in R, i.e. domain(σ
R

)∩R = ∅.



3 A First Order Calculus with

Renaming

Before introducing first order reduction rules, we need
a calculus which can keep track of rigid and universal
(i.e. implicitly universally quantified) variables. Stan-
dard free-variables tableau calculi use only rigid vari-
ables [26, 15, 13, 31]; more advanced methods make a
limited use of universal variables [6, 7, 5, 4]. Here all
variables are assumed to be universal ones unless we
explicitly consider them rigid.

Definition 1 A prefixed formula is a pair R:A where
A is a first order formula and R is a set of variables.
A prefixed sequent, denoted by S, is a set of prefixed
formulae.

The variables in R are the only rigid variables whose
value may affect other parts of the proof search tree.
All free variables in A which are not in R are implicitly
universally quantified. In the sequel we use S,R:A as
a short-cut for S ∪ {R:A} and R, x as a shortcut for
R∪ {x}.

The definition of search tree is standard [15, 29]:

Definition 2 A proof search tree T for a formula A
is a dyadic tree where each node is labelled by a prefixed
sequent so that

• the root is labelled by the prefixed sequent
{FV (A) : ¬A};

• if a node is labelled by a sequent its children are
labelled with the corresponding consequents of a
rule of the calculus from Fig. 1 and Fig. 2.

Intuitively, we may say that a child of a node is actu-
ally labelled by replacing one formula in the sequent
of its parents by the consequence of a rule applied to
that formula, and then copying the other formulas in
the sequent unchanged.

Remark. For what regard visual presentation, the
proof search tree grows upward, with the sentence to
be proved at the bottom and the leaves (axioms) at
the top.

In the sequel we use the notion of a frontier of a proof
search tree T : it is the collection of all leaves of the
tree and is denoted by S1 | . . . | Sn. If we view the
proof search tree as a tableau, the frontier is simply
the collection of the current branches of the tableau
[7, 13, 15].

Figure 1 contains rules which do not introduce new
branches in the proof search tree. A general observa-
tion is that we assume formulae to be “definitively”

S ,R:A,R:B

S ,R:A ∧ B
α∧

S ,R:¬A,R:¬B

S ,R:¬(A ∨ B)
α∨

S ,R:A

S ,R:¬¬A
α¬

S ,R:A(y)

S ,R:∀x.A(x)
γ∀

S ,R:¬A(y)

S ,R:¬∃x.A(x)
γ∃

S ,R:¬A(fA(x1 . . . xn))

S ,R:¬∀x.A(x)
δ∀

S ,R:A(fA(x1 . . . xn))

S ,R:∃x.A(x)
δ∃

S ,R:Aη
R

S ,R:A
(ren)

S ,R∩ FV (A):A

S ,R:A
(norm)

Where y is a fresh variable in the γ-rules; fA is a skolem
function symbol and {x1, . . . xn} is the set of free variables
of A in the δ-rules.

Figure 1: First order calculus with renaming

reduced after an application of a rule, unless they are
not explicitly duplicated in the consequent(s). So we
only have duplication in the β-rules of Fig. 2.

There are various ways to optimize the generation of
skolem functions in the δ rules for the existential quan-
tifiers. This topic is orthogonal to the one we are treat-
ing here, and we refer to the literature for discussion
[17, 3].

The key rule is the (ren) rule, which we use to boost
the usage of universal variables. Indeed its task is to
minimize the number of variables that are shared be-
tween formulae. In this way, the substitution of a term
for a variable in a formula will not affect other formu-
lae, unless the variable is rigid. Notice that the re-
naming η

R
is local to the formula A: it is not applied

to the whole sequent S nor, a fortiori, to the whole
search tree. This renaming rule is such that the stan-
dard soundness proof of rigid and universal variables
tableau calculi fails for it, so we will use a novel tech-
nique to prove its soundness.

In general, renaming and normalization should be im-
mediately applied to the formulae newly introduced by
other rules.

Figure 2 contains two alternative set of rules for
branching. The first set is a variant of the classical β-
rule of tableau calculi whereas the second set of rules is
usually called semantic branching (see e.g. the modal
optimizations by Horrocks and Patel-Schneider [19]).

Branching rules are responsible for the introduction of
rigid variables. Indeed if we have A(x) ∨ B(x) and
found out that A(x) is contradictory for some substi-
tution t/x, we have to propagate this substitution also
to the branch of the search tree containing the disjunct
B(x). This operation is costly and, if the implemen-
tation does not guarantee proof-confluence as in [4]



Rules for symmetric branching:

S ,R:A ∨ B,RA∗B:A S ,R:A ∨ B,RA∗B:B

S ,R:A ∨ B
β∨

S ,R:¬(A ∧ B),RA∗B:¬A S ,R:¬(A ∧ B),RA∗B:¬B

S ,R:¬(A ∧ B)
β∧

Rules for semantic branching:

S ,R:A ∨ B,RA:A S ,R:A ∨ B,RA∗B:B,RA:¬A

S ,R:A ∨ B
sβ∨

S ,R:¬(A ∧ B),RA:¬A S ,R:¬(A ∧ B),RA∗B:¬B,RA:A

S ,R:¬(A ∧ B)
sβ∧

where RA∗B = R ∪ (FV (A) ∩ FV (B)) and RA = R∪ FV (A)

Figure 2: Symmetric and semantic branching rules for the first order calculus with renaming

we might be forced to backtrack over previous unifica-
tions. Thus, a major task is to minimize the number
of rigid variables introduced after a branching point.

Symmetric branching allows for a good minimization
of rigid variables in both branches: the rigid variables
introduced by the symmetric branching rule are only
the free variables of A and B which occur in both
conjuncts. We shall see that we can do better once
a depth-first strategy is assumed. Unfortunately, se-
mantic branching is not equally well suited. To retain
soundness we are forced to keep rigid all variables of
the first disjunct A. An alternative is to introduce new
skolem terms in the ¬A added on the right branch and
we have not pursued it here.

The differences between branching rules can be
intuitively explained by considering the formula
∀xyz.P (x, y)∨Q(y, z). This formula is logically equiv-
alent to the following three formulae:

1. ∀y. (∀x.P (x, y)) ∨ (∀z.Q(y, z))
2. ∀yx.P (x, y) ∨ (¬P (x, y) ∧ ∀z.Q(y, z))
3. ∀y.(∀x.P (x, y)) ∨ ((∃x.¬P (x, y)) ∧ (∀z.Q(y, z)))

Loosely speaking, the first alternative is what our rule
for symmetric branching does. The second alternative
is what we have chosen for semantic branching and
the third one is what we decided to discard, because
the optimized version of the semantic branching rule
makes it possible to simulate its effects without intro-
ducing new skolem terms (see section 5).

One may also wonder why we do not just pre-process
the input following the intuition above: after all this
is a variant of a technique known as mini-scoping
which is used for skolemization by theorem provers
like SPASS. The problem is that mini-scoping is static,
whereas in with an explicit representation of rigid vari-
ables we can benefit from the universal variables that
are introduced during the search.

We can now state what a proof is:

Definition 3 A sequent S is closed by a substitution
σ iff either R :¬⊤ ∈ S, R :⊥ ∈ S, or there are two
formulae RA :A ∈ S and RB :B ∈ S such that Aσ =
Bσ.

Definition 4 A pair 〈T , σT 〉, where T is a search tree
and σ a substitution, is a proof for the sentence A if

• {∅:¬A} labels the root of the tree T ;
• each Si in the frontier of T is closed by σT

We refer to σT as a closing substitution for T . We
have chosen this formulation so that one can apply
the substitution σT to the whole tableau and obtain
a result close to a standard proof search tree of the
ground version of tableaux [15] or DPLL [11].

In alternative, if we choose to represent only the fron-
tier of the tree, as done by Beckert and Possega [7] or
Degtyarev and Voronkov [13], we could have described
the proof as a sequence of tableau and substitutions as
in [7] or the sequent elimination rule (abc) as in [13].
For instance, the (abc) rule allows to reduce the fron-
tier of not-closed sequents S1 | S2 | . . . | Sn into the
frontier S2σ | . . . | Snσ provided that σ is a closing
substitution for S1.

Since the definition of proof is fairly close to the clas-
sical one, we may wonder where renaming plays a
role. The key observation is that, if we apply re-
naming to all formulae of a leaf then the only shared
variables between two leaves will be the rigid variable
introduced at some branching points. After renam-
ing we can use the same formula for closing different
branches. For instance, one may consider the formula
(∀x.P (x)) ∧ (¬P (a) ∨ P (b)). We have two branches
{∅:¬P (a), ∅:P (x)} and {∅:¬P (b), ∅:P (x)} and we can
close them simultaneously rename x into x1 in the first
branch and into x2 in the second one.

Renaming makes us available as many instances of
non-rigid variables as we want. Thus, if new rigid vari-
ables are not introduced, an optimization is possible:



Proposition 1 In the branching rules of Figure 2, the
disjunction A∨B can be deleted from both consequents
if it is a ground formula.

The first result of this paper is then the following:

Theorem 1 A sentence A is valid iff there is a proof
for A.

So far we have not tackled the issue of fairness or ter-
mination. The simplest (but least effective) technique
is to use a bound on the number of times that a dis-
junction can be duplicated by the β-rules and then use
backtracking over all possible unifications for a given
bound. Mutatis mutandis, this strategy is employed
by the standard prolog implementation of first order
tableau calculi [15, 7].

Advanced implementations, such as the Hyper-
tableaux calculus [5], use a bound on the depth of
terms that are used by the unification σT for clos-
ing each branch. This technique can be lifted to this
framework by introducing a notion of reduced formula
(modulo renaming), using depth first search and for-
bidding substitutions that, when applied to the current
sequent to close it, generate two instances of the same
disjunction. We sketch its implementation in section 6.

4 First Order Reduction Rules

The next step is the definition of the reduction rules.

The basic operation is boolean reduction. This opera-
tion, sometimes called lexical normalization or boolean
constraint propagation, is one of the strength of de-
scription logic theorem provers such as DLP [19], KSAT

[16] or FaCT [18]. Advanced modal and propositional
reductions have been also proposed by Massacci [23].

We denote the result of boolean reduction of a for-
mula A by A ↓, and the corresponding rules are shown
in Fig. 3. Although this reduction already yields a
substantial simplification of a formula, it is still not
sufficient as it does not fully exploit the power of first
order logic.

For first order reductions we must take care of rigid
variables. Thus, if R is a set of rigid variables, we
denote the result of the first order reduction modulo R
of a formula A as (A) ⇓R. Corresponding rules are in
Fig. 4.

The main intuition is that we cannot use rigid vari-
ables for unification and therefore we must keep track
of which variable is rigid and which is (implicitly) uni-
versal. This explains the treatment of the existentially
quantified variables, which are added to the set of rigid

variables as the reduction proceeds down to the sub-
formulae, and the treatment of disjunction, in which
we must add the set of variables shared between the
two disjuncts to the set of rigid variables. Once rigid
variables are set aside, we can exploit the fact that all
other variables are implicitly universally quantified.

For example, in the replacement of two conjuncts
by ⊤, suppose we have the formula ∀xyz.(P (x, a) ∧
¬P (f(y), y))∨Q(z). Clearly, the variables x, y are im-
plicitly universally quantified. So, whenever this for-
mula is introduced in the proof search tree we can
apply a γ rule, a β and then an α rule. The resulting
formulae P (x, a) and ¬P (f(y), y), thanks to renaming,
can immediately close the sequent without affecting
any other part of the search tree with the substitution
{f(a)/x, a/y}. Thus, we can gain from this knowledge
and immediately replace our subformula with ⊥.

For the merging of two conjuncts into one formula,
suppose that we have the formula ∀xy.P (f(x))∧P (y).
Whenever this formula is added to the proof search
tree we obtain ∅ : P (f(x)) and ∅ : P (y). Now the
second formula obviously subsumes the first. With
renaming we can generate fresh instances of P (y) in
different sequent leaves of the proof search tree and
we never need to use P (f(x)). Thus, we keep only the
most general conjunct.

Disjunction is subtler. At first we have not used uni-
fication but only identity for the ⊤ clause of the dis-
junction. If we had used unification the calculus would
have been incomplete. Consider the formula

(¬P (a)∨¬P (b))∧(P (c)∨P (d))∧(∀x.∀y.P (x)∨¬P (y)).

This formula is unsatisfiable but if we had applied first
order reduction using unification we would have “re-
duced” it to a satisfiable formula.

Remark. The conditions for merging two disjuncts
into one disjunct is the dual of the condition used for
conjunction: we keep only the most specific disjunct.
This is the only place where we must give away equiva-
lence preserving rules in favor of satisfiability preserv-
ing rules.

Finally we can devise the last and most important re-
duction rule: simplification. The intuition is that once
a subformula is added to a sequent, we commit to con-
sider it true and then we may simplify other formulae
using this information. We denote the simplification
of a formula A using another prefixed formula R:B as
A [R : B] and show its working in Fig. 5. The formula
A is sometimes referred to as the simplified formula
and the formula B as the simplifying formula.

Notice that the substitution σ
R

is not applied to the



(A ∧ B) ↓ =







⊥ if A ↓= ⊥ or B ↓= ⊥ or A ↓= B ↓
A ↓ if A ↓= B ↓
A ↓ ∧B ↓ otherwise

(A ∨ B) ↓ =







⊤ if A ↓= ⊤ or B ↓= ⊤ or A ↓= B ↓
A ↓ if A ↓= B ↓
A ↓ ∨B ↓ otherwise

¬¬A ↓ = A ↓

¬(A ∧ B) ↓ =







⊤ if ¬A ↓= ⊤ or ¬B ↓= ⊤ or ¬A ↓= ¬B ↓
¬A ↓ if ¬A ↓= ¬B ↓
¬(A ↓ ∧B ↓) otherwise

¬(A ∨ B) ↓ =







⊥ if ¬A ↓= ⊥ or ¬B ↓= ⊥ or ¬A ↓= ¬B ↓
¬A ↓ if ¬A ↓= ¬B ↓
¬(A ↓ ∨B ↓) otherwise

Figure 3: Boolean reduction rules

(¬¬A) ⇓R = (A) ⇓R

(∀x.A) ⇓R =

{

(A) ⇓R if x 6∈ FV ((A) ⇓R)
∀x.(A) ⇓R otherwise

(∃x.A) ⇓R =

{

(A) ⇓R,x if x 6∈ FV ((A) ⇓R,x)
∀x.(A) ⇓R,x otherwise

(¬∀x.A) ⇓R =

{

(¬A) ⇓R,x if x 6∈ FV ((¬A) ⇓R,x)
¬∀x.¬((¬A) ⇓R,x) ↓ otherwise

(¬∃x.A) ⇓R =

{

(¬A) ⇓R if x 6∈ FV ((¬A) ⇓R)
¬∃x.¬((¬A) ⇓R,x) ↓ otherwise

((A ∧ B)) ⇓R =























⊥ if (A) ⇓R= ⊥ or (B) ⇓R= ⊥

or ((A) ⇓R)σ
R

= ((B) ⇓R)σ
R

for some substitution σ
(A) ⇓R if ((A) ⇓R)σ

R
= (B) ⇓R

(B) ⇓R if (A) ⇓R= ((B) ⇓R)σ
R

(A) ⇓R ∧(B) ⇓R otherwise

((A ∨ B)) ⇓R =























⊤ if (A) ⇓RA∗B
= ⊤ or (B) ⇓RA∗B

= ⊤

or (A) ⇓RA∗B
= (B) ⇓RA∗B

(A) ⇓RA∗B
if (A) ⇓RA∗B

= ((B) ⇓RA∗B
)σ

RA∗B

(B) ⇓RA∗B
if ((A) ⇓RA∗B

)σ
RA∗B

= (B) ⇓RA∗B

(A) ⇓RA∗B
∧(B) ⇓RA∗B

otherwise

Figure 4: First order reduction

A [R : B] =































⊤ if A = Bσ
R

for some σ

⊥ if A = Bσ
R

for some σ
¬(C [R : B]) if A = ¬C
(C [R : B]) ∧ (D [R : B]) if A = C ∧ D
(C [R : B]) ∨ (D [R : B]) if A = C ∨ D
∀x(C [R : B]) if A = ∀xC
∃x(C [R : B]) if A = ∃xC

Figure 5: First order simplification



S ,R:A ↓

S ,R:A
bool − red

S ,R:(A) ⇓R

S ,R:A
fo − red

S ,RA:A [RB : B] ,RB:B

S ,RA:A,RB:B
simp

Figure 6: First order reduction rules

tableau nor the simplified formula, nor it modifies the
rigid variables in B. This is in common to many tech-
niques used by clausal tableaux [5, 21]. We go further
than that since different substitutions can be used for
different occurrences of a subformula. So the substi-
tution is local to the subformula.

For instance, if we apply simplification as follows

∀y.((¬P (x, a)∨Q(y))∧(Q(b)∨¬P (x, b))) [{x} : P (x, y)]

we can use the substitution a/y for P (x, a) and the
substitution b/y for P (x, b). Then we get the formula
∀y.(⊥∨Q(y))∧(Q(b)∨⊥)) and by first order reduction
we get just ∀y.Q(y).

The proper reduction rules for our first order calculus
with renaming are shown in Fig. 6.

Then we can state the other main results of this paper:

Theorem 2 The boolean reduction rule is a sound
and invertible rule for the first order calculus with re-
naming.

Theorem 3 The first order reduction rule is a sound
rule for the first order calculus with renaming.

Theorem 4 The first order simplification rule is a
sound and invertible rule for the first order calculus
with renaming.

5 Optimizations for Branching Rules

The usage of universal variables in the branching rules
presented in Fig. 2 can be further optimized if a depth
first strategy is used. The optimization is also neces-
sary for semantic branching since we have only a lim-
ited number of universal variables in one branch due
to the presence of RA:A on one branch and RA:¬A on
the other of branch the search tree.

The intuition is that with a depth first strategy the
amount of information that is available when the right
branch of a disjunct is considered is much more than
that actually expressed by the formulae introduced by
the rule. Indeed we already know that the left branch

labelled with S,RA : A can be closed by a certain
substitution σA. In many cases, the formula on the
right RA :¬AσA will not be ground. With the cur-
rent branching rule all remaining free variables will be
treated rigidly. The key of the optimization is how can
we transform (some of) them into universal variables.

We need a definition:

Definition 5 Let S = {R1:A1, . . . ,Rn:An} be
a sequent and σ be a substitution. The re-
sult of the application of σ to S is the sequent
{FV (R1σ):A1σ, . . . , FV (Rnσ):Anσ}.

It can be shown that if Ri contains the only free vari-
ables of Ai which are shared with some other Aj then
one also has that FV (Riσ) contains the only free vari-
ables of Aiσ which are shared with another Ajσ.

Then we can optimize the symmetric branching rules
of Fig. 2 as follows. Let S,R:A ∨ B be a sequent and
let σA be a closing substitution for the proof search
tree whose root is labelled by S,R :A ∨ B,RA∗B :A.
Then the right successor of S,R:A ∨ B in the proof
search tree can be SσA, FV (RσA):BσA. Notice that
we use FV (RσA) and not FV (RA∗BσA).

The optimization can be better understood if we rea-
son about the transformation of the active frontier of
the tree constituted by the leaves of the proof search
tree which are not (yet) closed by our procedure for
constructing the search tree in depth-first. Assume
that the frontier is the following:

SA,R:A ∨ B,RA∗B:A | SB ,R:A ∨ B,RA∗B:B | . . . | Sn

Suppose also that σA is a closing substitution for the
leftmost sequent SA,R:A∨B,RA∗B:A. Then, the stan-
dard branching rule used in a depth first visit of the
proof search tree would transform it into the following
active frontier:

SBσA, FV (RσA):(A ∨ B)σA, FV (RA∗BσA):BσA |
. . . | SnσA

Thus, the rigid variables of BσA in the next sequent to
be considered are those of FV (RA∗BσA) which means
FV (RσA) ∪ (FV (AσA) ∩ FV (BσA)).

In contrast, the optimized branching rule would yield
the following frontier (again deleting closed branches):

SBσA, FV (RσA):(A ∨ B)σA, FV (RσA):BσA |
. . . | SnσA

Thus, the rigid variables of BσA in the next sequent
considered by a DFS-algorithm for proof search are
only FV (RσA), usually a subset of the previous case.



For the semantic branching rules of Fig. 2 we can la-
bel the right successor of S,R : A ∨ B in the proof
search tree by SσA, FV (RσA):BσA, FV (RσA):¬AσA.
Again we used FV (RσA) and neither FV (RA∗BσA)
nor FV (RAσA).

With semantic branching we do not need to visit the
left branch containing RA :A first. The search pro-
cess could proceed through the right branch contain-
ing RA∗B :B and RA :¬A first. Indeed this could be
the best choice since B has more universal variables.
Then we can reformulate the branching rule as follows:
let S,R:A∨B be a sequent and let σB,¬A be a closing
substitution for the proof search tree whose root is la-
belled by S,R:A∨B,RA∗B:B,RA:¬A. Then the right
successor of S,R:A∨B in the proof search tree can be
SσB,¬A, FV (RσB,¬A):AσB,¬A.

6 An efficient yet lean implementation

The calculus with renaming, first order reduction and
simplification can be easily implemented in sicstus pro-
log. We only sketch key issues of the prover Beatrix,
which has been designed as a lean implementation of
the calculus along the line of Beckert and Possega [7].

The first tricky bit is the implementation of renam-
ing modulo rigid variables and of the “one-sided-
restricted-unification” denoted by A = Bσ

R
and used

extensively in the first order reduction and simplifica-
tion operations in Figure 4 and Figure 5.

In a lean prolog implementation we use prolog vari-
ables for first order variables and this makes it possible
a simple implementation of the operation of renaming
of a formula A modulo a set of rigid variables R:

rename_fml(A,R,NewA):- copy_term(A:R,NewA:R).

Restricted unification A = Bσ
R

are implemented us-
ing a predicate of the standard terms library of sicstus:

restricted-unify(A,B,R):- subsumes(B:R,A:R).

The first advantage of having universal variables is
that we can give precedence to closing substitutions
using only universal variables. Indeed, one of the dif-
ficulty faced by any depth-first-algorithm is the choice
of a closing substitution when considering sequents one
by one: for one sequent we may choose a “locally good
but globally wrong” closing substitution that may af-
fect negatively the proof search for another sequent.
This happens because the closing substitution may
bind the rigid variables shared between the two se-
quents to the “wrong” values. With closing substitu-
tions with domains of only universal variables, “locally

good” means “globally good”: by construction that
such substations do not affect other branches of the
proof search tree. It is therefore important to search
for such closing substitution first. This means that
given a sequent we look for two formulae RA : A and
RB : ¬B in the sequent such that Aσ

RA
= Bσ

RB
.

This is implemented with the prolog rule below:

unifiable(A:RA,[B:RB|_],_,_):-

copy_term([A:RA,B:RB],[AN:RAN,BN:RBN]),

unify_with_occurs_check(AN,BN),

subsumes_chk(RAN,RA),

subsumes_chk(RBN,RB).

All predicates used in the body come with the standard
sicstus distribution.

For the implementation of the main procedure, we
search for a proof of a not empty sequent by apply-
ing simplification first2, then first order reduction and
finally selecting a formula for reducing it according the
rules of the calculus. This can be implemented as

prove_seq([A:RA|Seq],Beta,Inst,Lits,Depth):-

simplify_all(Lits,[A:RA|Seq],SSeq),

reduce_seq(SSeq,[F:R|RSeq]),

prove_fml(F:R,RSeq,Beta,Inst,Lits,Depth).

where [A:RA|Seq] is the set of unprocessed formulae
in the sequent, Beta is the set of disjunction which
have been duplicated in the course of the proof search
by the branching rule, Inst is used to keep track
of the different instances of the disjunctions in Beta

which have been actually generated by various substi-
tutions, Lits is the number of literals so far collected
in the current sequent, and Depth is the maximum
term depth allowed for closing substitutions which
bind rigid variables. Instances and term depth are
necessary for fairness and termination. As usual, com-
pleteness is achieved by iterative deepening over the
term depth.

The last tricky bits are the branching rules:

prove_fml([or,A|B]:R,Seq,Beta,...):-

shared_rigid_vars(A,[or|B],R,RA,RB),

rename_fml(A,RA,NA),

rename_fml([or|B],RB,[or|NB]),

rename_fml([or,A|B],R,[or|D]),

prove_seq([NA:RA|Seq],[[or|D]:R|Beta],...),

normalise([[or|NB]:RB|Seq],NewSeq),

normalise([[or|D]:R|Beta],NewBeta),

...

prove_seq(NewSeq,NewBeta,...).

2The simplified formula might be arbitrary whereas we
have restricted the simplifying formula to be a literal.



An intuitive explanation of this prolog clause is that
the first predicate in the body constructs the set of
rigid variables for the left disjunct A and the right dis-
junct A. They will be different whether we use seman-
tic or symmetric branching, and then the optimized
or the unoptimized version. Then we rename immedi-
ately the formula A and B and the disjunction A∨B.
Then we try to prove the left sequent. Since this oper-
ation might bind some rigid variables shared between
the two sequents we need to Norma-Lise them before
going on with the search on the right.

7 Correctness

For the soundness proof we cannot use the standard
techniques, with a rigid assignment to all variables in a
proof tree: renaming and the β-rule would be unsound.
We must associate the frontier of a proof tree to a
formula:

fml(S1 | . . . | Sn) = fml(S1) ∨ . . . ∨ fml(Sn)
fml(S) = ∀x1 . . . xn.

∧

i Ai

where xk ∈ FV (S) \
⋃

i Ri and Ri:Ai ∈ S.

Then we must prove that, given the frontier of a proof
tree S1 | . . . | Sn and the new frontier due to some rule
application S′

1 | . . . | S′
n′ , for all interpretations I and

all assignments A if I,A |= fml(S1 | . . . | Sn) then for
all assignments A′ extending A it is I,A′ |= fml(S′

1 |
. . . | S′

n′).

The case for the ren-rule is then easy and the case for
β-rule stems from the observation that ∀x.(A ∨ B) is
equivalent to (∀x.A) ∨ B if x 6∈ FV (B). The sound-
ness of the simp-rule and the reduction rules is similar:
in the replacement steps we only unify universal vari-
ables.

The optimized version of either branching rules can
be proven sound by a cut and paste argument over the
unoptimized proof of a formula.

8 Comparison with related works

Already at the propositional level the calculus for sim-
plification subsumes a number of related works. Here
we just list some of them and refer to Massacci [23] for
further analysis.

For instance the DPLL-unit rule [12, 11], the βc
i rules

for KE by D’Agostino and Mondadori [9], modus po-
nens, tollens etc. of HARP [25] and the ∨ − simp0,1

rules in KRIS [2] or the boolean constraint propagation
operation in DLP [19] and KSAT [16] are all (restricted)
instances of the simplification rule (simp) immediately

followed by (bool−red). Propositional hyper-tableaux
[5] can be simulated by our rule.

The traditional way to lift the propositional framework
to first order logic is to use the ground version of the
calculus. We need a γ rule á la Smullyan [29]:

S,R:A(t)

S,R:∀x.A(x) where t is a ground term

With this rule, no fresh variable is introduced in the
proof search and hence we have no rigid variable. Sim-
plification is simply propositional simplification and
we can answer an interesting question: why first order
DPLL is so inefficient in comparison with its proposi-
tional version?

At first we observe that the first order DPLL procedure
is a calculus with off-line skolemisation, simplification,
boolean reduction, semantic branching restricted to
literals, and the ground γ-rule. Then, recall that using
the γ-rule à la Smullyan rather than those with unifi-
cation leads to a non-elementary slow down [3]. The
exponential speed-up due to propositional simplifica-
tion cannot compensate it.

The tableau calculus of Beckert and Possega [7] with
universal variables is an instance of the calculus with
renaming but without simplification where

1. in the β rule RA+B
.
= R∪ FV (A) ∪ FV (B),

2. renaming is applied only to the literals in S before
any β-rule.

This general technique also subsumes the use of con-
junctive super-formulae by Degtyarev and Voronkov
[13] which is based on restriction (1).

To ease the comparison, it is useful to consider the
following fragment of a proof tree in which we apply
a β rule and then immediately apply renaming to all
formulae of both branches.

S′′,:RA∗B:Bη
RA∗B

S′′,RA∗B:A
ren

S′,RA∗B:A
ren

S′, β2:RD

S′,R:A ∨ B
β

S,R:A ∨ B
ren

where S′ =
{

ϕiηiR
| ϕi ∈ S

}

is obtained by a sequence
of renaming steps and S′′ is obtained from S′ in a
similar way, using RA∗B rather than R.

This proof fragment can be “approximated” with the
following one:

Sη′

R
,RA∗B:Aη

RA∗B
S,RA∗B:B

S, A ∨ B:R
β + ren



In practice, we apply one renaming to the whole se-
quent rather than renaming each formula. Notice that
we apply η′

R
and not η′

RA∗B
.

The net effect is to separate the universal variables
of A ∨ B from those of S and the universal variables
of the two branches. In this way we avoid the po-
tential waste of an universal variable which may be
present in formulae like ∀x.P (x) ∧ (Q(x, y) ∨R(x, y)).
Clearly the x in P (x) is universal and so is the the x in
Q(x, y)∨R(x, y). However, without renaming, the ap-
plication of the β-rule makes x a rigid variable. This is
what happen if we use Beckert and Possega handling
of universal variables which limits renaming to literals.

A comparison with the first order hyper-tableau ex-
pansion step by Baumgarten et al. [5, 4] is interesting:
the idea of a purifying (grounding) substitution used
in the extension step of hyper-tableaux can be casted
in our framework with a particular search strategy and
a general constraint on the final frontier of our proof
tree: all rigid variables must be grounded by the clos-
ing substitution σT .

For sake of example, assume that we have a binary
clause A∨B and that we can apply to A∨B a substi-
tution σ such that FV (Aσ) and FV (Bσ) are disjoint.
Then the hyper-tableaux extension step would yield
two branches one with Aσ and one with Bσ, the in-
stantiated formula (A∨B)σ would be discarded and we
would only need to remember the initial clause A∨B.

This is also the case for our branching rule. Indeed,
we can strengthen proposition 1 as follows:

Proposition 2 In the symmetric branching rules of
Figure 2, the disjunction R : A ∨ B can be deleted
from both consequents if FV (A) ∩ FV (B) = ∅.

Non-clausal resolution by Manna and Waldinger [22]
or the recent version by Björner et al. [8] shares some
features of our proposal. Indeed, at propositional level
unit non-clausal resolution is a particular instance of
simplification. However, when performing a first-order
non-clausal resolution step between two subformulae,
the unifying substitution must be applied to the main
formulae (tableau in the terminology of Manna and
Waldinger). In contrast, our simplification rules allow
for local substitutions and even different substitutions
within the same formula.

The other close cousin of our approach is the FD-

PLL procedure developed by Baumgarten for the latest
CASC competition. However, there are no simplifica-
tion rules in his calculus which is limited to the CNF
format and the usage of universal variables is more
restricted.

9 Conclusion

In this paper we have presented a general framework
for the introduction of full first order reduction rules
for tableau and DPLL-like calculi which can make them
fully competitive with resolution in the first order the-
orem proving setting.

The reduction rules which have been proposed play the
same role of the unit rule for propositional DPLL, of
subsumption inferences for resolution, and of a num-
ber of boolean and modal constraint propagation tech-
niques applied in the description and modal logic com-
munities. Our uniform framework thus subsumes a
number of techniques for the improvement of tableau-
based methods. Moreover, a prototype implementa-
tion is easily implemented using sicstus prolog, along
the line of leanTAP [7].

Still, a doubt remains: the “beauty” of the tableau
calculi and DPLL is their simplicity, so by adding these
reduction rules for constraint propagation are not we
abandoning the very calculus we try to enhance?

The author believes that the best answer is probably
a question: is resolution with subsumption no longer
resolution?
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