
Journal of Automated Reasoning24: 319–364, 2000.
© 2000Kluwer Academic Publishers. Printed in the Netherlands.

319

Single Step Tableaux for Modal Logics
Computational Properties, Complexity and Methodology

FABIO MASSACCI
Dipartimento di Informatica e Sistemistica, Università di Roma “La Sapienza”, via Salaria 113,
00198 Roma, Italy, e-mail: massacci@dis.uniroma1.it

(Received: 24 april 1996; accepted: 9 November 1998)

Abstract. Single Step Tableaux (SST) are the basis of a calculus for modal logics that combines
different features of sequent and prefixed tableaux into a simple, modular, strongly analytic, and
effective calculus for a wide range of modal logics.

The paper presents a number of the computational results about SST (confluence, decidability,
space complexity, modularity, etc.) and compares SST with other formalisms such as translation
methods, modal resolution, and Gentzen-type tableaux. For instance, it discusses the feasibility and
infeasibility of deriving decision procedures for SST and translation-based methods by replacing
loop checking techniques with simpler termination checks.

The complexity of searching for validity and logical consequence with SST and other methods
is discussed. Minimal conditions on SST search strategies are proven to yield PSPACE(and NPTIME

for S5 and KD45) decision procedures. The paper also presents the methodology underlying the
construction of the correctness and completeness proofs.

Key words: modal logics, prefixed tableaux, confluence, complexity, decision procedures, direct and
translation methods.

1. Introduction

Modal logics are widely used in AI and computer science. Their applications range
from modeling knowledge and belief [10, 22] or distributed systems [21] to non-
monotonic formalisms [31]. Thus, a major objective is the design ofeffective and
simple-to-usedecision procedures.

At one side of the spectrum,direct deductionmethods use modal formulae
and enhance classical deduction mechanism with rules for modal connectives. For
instance, Hilbert axiomatizations can be found in [22, 25], Fitch- or Gentzen-type
calculi and tableaux in [3, 13, 14, 20, 35], and modal resolution in [9, 35]. Direct
systems are closer to the epistemic properties (omniscience, introspection, etc.)
a user would like to model. However, they have computational limitations. For
instance, Hilbert systems are not analytic and thus cannot be thoroughly automated.
Gentzen-type calculi and tableaux [13, 20, 41] are usually analytic. Nevertheless,
the reduction of modal connectives requires processing sets of formulae at once (or

320 FABIO MASSACCI

whole tableau branches). The absence of a confluence theorem? makes deduction
heavily dependent on the search methods [8]. Moreover, logical consequence for
symmetric and Euclidean logics, which play a major role in nonmonotonic rea-
soning [31], is still unsatisfactory. Gentzen calculi treat these logics in an entirely
nondeterministic way, since cut has been eliminated only forK45 by Schwartz [45].
For S5 the most effective way is still the explicit construction of Kripke models
[25, 22] or the (possibly exponential) reduction to a suitable normal form followed
by a specialized calculus [25, 9, 41]. With symmetric logics, the elimination of cut
is still an open problem for logical consequence [13, 20].

On the other side,indirect deductionmethods translate modal formulae into
first-order logic, “add” the properties of the underlying Kripke model, and apply
a (suitably modified) classical deduction technique [39]. The same process can be
carried out with a simplified set theory as the target logic [6]. Some translations,
for example, the relational translation plus theory reasoning [18, 42], reflect the
underlying semantics of Kripke models but are often inefficient. The use of set
theory [6] may also prove to be hard for automated reasoning. Functional transla-
tion performs much better and can be easily applied either to matrix proof methods
[47] or resolution [38, 39]. This approach requires either a strong equality-handling
mechanism or the compilation of logic dependent unification procedures in the
prover to cope with the terms corresponding to possible worlds [39]. To overcome
this limitation, a mixed approach has been proposed in [36], which captures the
most common logics with simple Horn clauses and maintains the original structure
of the formula (at least for deontic logics). A common limitation of these proposals
is that they seem to need a “user-friendly” interface for proof presentation (see [47]
for further references). As we shall see, they also have computational drawbacks,
although the presence of effective resolution implementations does not make this
immediate.

In the middle of the field we findlabeled deductive systems[16], such as pre-
fixed tableaux [13, Chapter 8] or [32, 7, 20]. In prefixed tableaux, formulae are
labeled with a prefix, to “name” the world where each formula is supposed to
hold and rules take into account both formulae and labels. Proofs and proof search
presentations are simple, since they closely reflect the Kripke semantics. Yet, we
need to understand and use an algebraic or a relational theory of prefixes.

Single Step Tableaux[32], SST for short, lie between Gentzen-type and prefixed
tableaux and try to combine user-friendly presentation with effective computational
properties. The intuition is to label modal formulae with prefixes, use rules for
labels and formulae but without any equational theory. We follow an intuition of
Kripke [29, §4]: structure prefixes as a tree, label each node of the tree with a for-
mula, encode the properties of Fitch-style tableaux into rules for single formulae,

? Loosely speaking, confluence means that we can always “converge” to a proof without back-
tracking. In confluent systems, a systematic strategy for proof search may be computationally bad
but not incomplete.

SINGLE STEP TABLEAUX FOR MODAL LOGICS 321

and use rules involving only the immediate predecessor or the successors of each
node. The resulting calculus has a number of useful features:

− it is cumulative as Hilbert-style axiomatizations? and can be used in a modular
way for a wide range of modal logics;

− it has good computational characteristics;
− can be used to derive results about other systems;
− it can be easily implemented using free variables tableaux [1];
− it can still be used for doing proofs by hand.

1.1. RESULTS PRESENTED IN THIS PAPER

In this paper we focus mainly on themethodologyunderlying the construction of
the calculus and itscomputational propertiesin comparison with other formalisms.

From the methodological perspective, we show how SST can be viewed as a
smart combination of some aspects of prefixed tableau calculi à la Fitting [13,
42] and modal Gentzen-type calculi [13, 14, 20, 40]. We show how the algebraic
properties of the underlying Kripke model need to be reconstructed only in the
completeness proof.

Computational properties of different calculi can be compared in two ways: by
extensive experiments on large sets of (possibly random) instances or by theoretical
analysis. Both techniques are necessary because experiments may test only the
relative efficiency of implementations or be misled by flawed test suites,?? whereas
theoretical results may not tell us enough about practical cases.

Among computational properties, we focus on complexity theoretic properties
such as space requirements, confluence, and decidability.

For the construction of decision procedures, we show howloop checking for
transitive logics can be replaced by a simple and effective termination checkin
SST and how this result can be generalized to other systems.‡ We focus on transla-
tion methods and give the conditions for using resolution as a decision procedure
with functional and mixed translation methods. We also show that any polyno-
mial local check is impossible for logical consequence in nontransitive logics.
A general remark can be made w.r.t. the complexity of satisfiability (validity)
checking for the logicsK45, KD45, and S5 [22]: this problem is known to be
NPTIME(CO-NPTIME)-complete but the corresponding proof systems are often
based on extension of the logicsK or S4 by adding further rules [13, 20, 22, 45], by
strengthening the equational constraints [38], or by embeddingS5 in S4 [13, 40].

? Note that there is not a 1-1 correspondence between rules and axioms. See Section 6.
?? For instance, see how the claims in [19] have been rebutted in [26].
‡ Similar results have been shown independently by [5, 23].

322 FABIO MASSACCI

In other cases [25, 41, 9] a potentially? exponential preprocessing step is necessary
to avoid cut and prove termination. Simpler in theory, they are harder in practice.

We show two natural SST extensions ofK4 for the logicsK45, KD45, andS5
that can be used to achieve the complexity lower bound for satisfiability checking
[30]. For the other logics, we discuss the design of PSPACE search strategies for
validity-checking algorithms.

1.2. PLAN OF THE PAPER

First, we discuss the main computational problems in the design of modal calculi
(Section 2). Then, we introduce some preliminaries on modal logics (Section 3)
and the proof theory of SST (Section 4) and discuss the intuitions behind the
construction of SST from Gentzen-type and prefixed tableaux (Section 5).

Next, we present some computational results about SST and compare SST with
translation methods, modal resolution, and Gentzen-type tableaux. We focus on
modularity (Section 6), proof confluence (Section 7), decision procedures for SST
and translation methods (Section 8), computational complexity, and search strate-
gies (Section 9). Last, we prove SST sound and complete (Section 10) and conclude
(Section 11).

The first appendix summarizes some notions about complexity classes, and the
second appendix contains the details of the longest proofs.

2. Computational Problems and Objectives

The design of a flexible calculus (with a related theorem prover) for many modal
logics faces a number of problems in the attempt to obtain something that is simple,
effective, and efficient.

Beside soundness and completeness, other computational properties are impor-
tant but receive less attention than deserved. We postpone the issue of correctness
until Section 10 to discuss these properties first.

With many modal logics, the first objective may bemodularity and cumulativity,
in the same fashion of Hilbert-style axiomatizations:

PROBLEM 1. Can we switch from logic to logic by simply adding or deleting
axioms or inference rules in a modular way?

We also want a general methodology for completeness and soundness proofs so
that we do not have to make them from scratch for each logic.

Once a logicL is fixed, and soundness and completeness are proved, we must
search for a proof, and a calculus may have many rules to choose from. We expect
the search strategy to affect time and space complexity, but we would like to avoid
more substantial losses.
? Unless one uses the nontrivial definitional translation into CNF by Mints [35].

SINGLE STEP TABLEAUX FOR MODAL LOGICS 323

PROBLEM 2. Does the order in which we select rules or formulae matter for
completeness?

The property we are looking for isproof confluence(see Section 7 for formal
definitions). Loosely speaking, confluence means that the order in which we select
the rules does not substantially matter: we can always “converge” to the same result
without backtracking. We can waste resources, but we cannot lose the possibility
of finding a proof. Proof confluence is one of the advantages of resolution in first-
order theorem proving.

The propositional modal logics considered in this paper are decidable, and
hence our next problem is the following.

PROBLEM 3. Can we devise techniques for blocking the selection of rules and
formulae, thus yielding a decision procedure?

Proving that suitable techniques give adecision methodis the first step (Sec-
tion 8), but it is not enough. Termination checks can be expensive and may require
to handle the whole proof constructed so far [8].

PROBLEM 4. Can we devise termination checks that consider each formula (or
each rule) in isolation and require only polynomial time?

Here we ask for alocal termination check. For validity, we have a positive result:
such checks are possible for SST and can be transferred directly to functional and
mixed translation methods (Section 8). Unfortunately, this is impossible for logical
consequence (Section 9).

The last problem is thecomputational complexityof various search strategies
and algorithms for validity and logical consequence (Section 9). Validity checking
is “only” CO-NPTIME-complete for the logicsK45 andS5, whereas it is PSPACE-
complete for the modal logics betweenK and S4 [30]. Logical consequence is
EXPTIME-complete [22]. These facts should be reflected into efficient strategies
for theorem proving.

PROBLEM 5. Can we design restrictions on the proof search in the calculus so
that the algorithms for checking validity will match the corresponding (optimal)
worst-case complexity?

Some calculi may fail to match the lower bounds, and others can be very sensi-
tive to the search strategy. For instance, translation methods based on generic first-
order resolution use exponential space rather than polynomial space? for validity
checking.

? The superior performance of translation methods with generic resolution provers shown in [26]
may be due to better implementation.

324 FABIO MASSACCI

3. Preliminaries on Modal Logics

Some familiarity with the language and the semantics of propositional modal logics
is assumed (an introduction can be found in [15, 22, 25]). We constructmodal
formulaeA,B,C from propositional lettersp ∈ P with the connectives∧,¬, and2 as follows:

A,B ::= p | ¬A | A ∧ B | 2A.
Other connectives may be seen as abbreviations, e.g.,3A ≡ ¬2¬A. Formulae
of the kind2A are referred asν-formulae (from necessity) whereas¬2A asπ -
formulae (from possibility).

The semantics of modal logic is based onKripke models, that is, triples
〈W,R, V 〉, whereW is a nonempty set, whose elements are calledworlds, R is a
binaryaccessibility relationoverW , andV () is a function, calledvaluation, from
propositional letters to subsets of worlds. Intuitively the worlds inV (p) ⊆ W are
those wherep is true.

Different modal logics are obtained by different properties ofR. In Table I we
list the most common properties and the corresponding axiom schema. The com-
bination of the axiom schemata fromK to 5 (or the properties of the accessibility
relation) generates the logicsK, KB, K4, K5, K45, KD, KDB, KD4, KD5, KD45, KB4,
T, B, S4, S5 [15, 22], whereasCxt is McCarthy’s logic for contextual reasoning [2].
Our aim is to provide a modular calculus for these logics, and therefore we refer to
L-models,L-tableaux, etc., when referring to models, tableaux, etc., for one of the
logicsL above. Other logics are discussed in [32].

If M is anL-model,w is a world, andA is a formula, the entailment relation
M, w
 A is defined in the following way:

M, w
 p iff w ∈ V (p),
M, w
 A ∧ B iff M, w
 A andM, w
 B,

M, w
 ¬A iff M, w 1 A,

M, w
 2A iff ∀v ∈ W : wRv impliesM, v
 A.

WhenM, w
 A holds, we say thatw satisfiesA in M. If S is a set of formulae,
then a worldw satisfiesS iff for all A ∈ S one hasM, w
 A. For sake of read-
ability, we omitM whenever it is clear from the context. AnL-model〈W,R, V 〉
validatesS iff every world inW satisfiesS. A formulaA is L-valid if everyL-model
validatesA.

For logical consequence we need two sets of modal formulae [13, 15]: global
assumptionsG and local assumptionsU . Intuitively the former are true in every
world and the latter in the current world.

DEFINITION 3.1. A formulaA is anL-logical consequenceof global assump-
tionsG and local assumptionsU (in symbolsG |=L U ⇒ A) iff in every L-model
〈W,R, V 〉 that validatesG if a world w satisfiesU , thenw satisfiesA. It is L-
satisfiablefor the global assumptionsG and the local assumptionsU if there is an
L-model〈W,R, V 〉 that validatesG and a worldw ∈ W that satisfiesU ∪ {A}.

SINGLE STEP TABLEAUX FOR MODAL LOGICS 325

Table I. Axioms and accessibility relations

Axiom Accessibility relation

K : 2(A ⊃ B) ⊃ (2A ⊃ 2B) any

D : 2A ⊃ 3A ∀w∃v : wRv

T : 2A ⊃ A ∀w : wRw

4 :2A ⊃ 22A ∀w, v, u : wRv & vRu ⊃ wRu

B : 32A ⊃ A ∀w, v : wRv ⊃ vRw
5 :32A ⊃ 2A ∀w, v, z : wRv & wRz ⊃ vRz
Cxt : 32A ⊃ 22A ∀w,u, v, z : wRv & wRu & vRz ⊃ uRz

We speak of local (global) logical consequence whenG = ∅ (G 6= ∅).
Local logical consequence is semantically and computationally identical to va-

lidity: G |=L U ⇒ A is equivalent toG |=L ∅ ⇒ (
∧
U) ⊃ A. It can make a

difference for the proof theory: the Gentzen calculus for logicB in [13, 20] requires
cut whenU is used instead of

∧
U .

Global assumptions make a difference [22]: the decision problem for validity is
PSPACEbut is EXPTIME for logical consequence.

4. Single Step Tableaux

SST useprefixed formulae, that is, pairsσ : A, where theprefix σ is a non-
empty sequence of integers andA is a modal formula. Intuitivelyσ “names” a
world that satisfiesA. In the sequel,σ is a prefix,σ0.σ1 the concatenation of
the sequenceσ0 with the sequenceσ1 andσ.n the concatenation ofσ with n. If
σ = n1.n2. . . . nk−1.nk is a prefix, the length of the prefixσ is k and is denoted by
|σ |.

4.1. SINGLE STEP RULES

A L-tableauT is a (binary) tree whose nodes are labeled with prefixed formulae.
A L-branchB is a path from the root to a leaf. Nodes are added and labeled in the
usual way by applying the rules [13, 20]: if the antecedent of a rule appears in a
branch, we extend the branch (and possibly split it), labeling the new node(s) with
the consequent(s). A prefix isL-presentin a branchB if there is a prefixed formula
in B with that prefix, and it isnewif it is not present.

Propositional tableau rules are shown in Figure 1a. Figure 1b shows the rules
that do not depend on the particular logicL. The rules that vary from logic to logic
are in Figure 1c. They are mostly forν-formulae.

The prefixes present in a branch form atree, spanning from 1 to 1.1, 1.1.1
and 1.1.2, etc. Loosely speaking, the proof search can be seen as a backward and

326 FABIO MASSACCI

α : σ : A ∧ B
σ : A
σ : B

β : σ : ¬(A ∧ B)
σ : ¬A σ : ¬B

dneg: σ : ¬¬A
σ : A

Figure 1a. Propositional tableaux rules.

Loc : ...

1 : B
if B ∈ U

Glob : ...

σ : B
if σ is present in the branch andB ∈ G

π : σ : ¬2A
σ.n : ¬A

with σ.n new in the branch

Figure 1b. SST rules common to all logics.

K : σ : 2A
σ.n : A

D : σ : 2A
σ : ¬2¬A T : σ : 2A

σ : A

4 : σ : 2A
σ.n : 2A 4R : σ.n : 2A

σ : 2A B : σ.n : 2A
σ : A

4π : σ.n : ¬2A
σ : ¬2A 4D : σ.n : 2A

σ.n.m : 2A Cxt : σ.n : 2A
σ : 22A

Whereσ , σ.n andσ.n.mmust be present in the branch.

Figure 1c. SST-rules characterizing logics.

forward visit of this tree until a contradiction is found: create a node (π -rule), work
inside a node (propositional,Glob or Loc rules), add a formulaforward from a
parentσ to a childσ.n or backwardfrom child to parent (ν-rules). For instance,
rule (4), if we have in mind the knowledge interpretation of2, corresponds to
positive introspection and allows us to “inherit knowledge forward”.

The logics mentioned in Table I are captured by different sets of SST rules as
shown in Table II. LogicCxt is captured by rulesK +Cxt . In the sequel SST-rules
are in italics and between parentheses; for example,K is the logic whereas(K) is
theν-rule. Square-bracketed rules are derivable from the others; for example, rule
(K) can be simulated by rules(T) and(4):

SINGLE STEP TABLEAUX FOR MODAL LOGICS 327

Table II. Modal logics and SST-rules

Logic SST-rules Logic SST-rules Logic SST-rules

K K KD K,D T K, T

KB K, B KDB K, B,D B K, T , B

K4 K, 4 KD4 K,D, 4 S4 [K], T , 4

K5 K, 4D , 4R , Cxt KD5 K,D, 4D , 4R , Cxt KB4 K, B, 4π , 4R

K45 K, 4, 4R KD45 K,D, 4, 4R S5 [K], T , 4, 4R

K45 K, 4π , 4R KD45 K,D, 4π , 4R S5 K, T , 4π , 4R

σ : 2A 4−−→ σ.n : 2A T−−→ σ.n : A
K−−−−−−−−−−−−−−→

Remark. For the logicsK5 andKD5 we only need to apply rule(Cxt) to prefixes
σ.n with σ = 1.

We have two possible sets of rules for the logicsK45, KD45, S5. The first can
be seen as the standard cumulative extension ofK4 with the addition of extra rules.
The second dispatched forward rules in favor of backward ones.? The difference is
the way in which rules encode the transitivity axiom. Rule(4) encodes2A ⊃ 22A
while rule (4π) encodes33A ⊃ 3A. Although the combinationK + 4π is not
complete forK4, the addition of(4R) is enough forK45. Surprisingly, the proof
search in both calculi has the same computational complexity (Section 9).

4.2. TABLEAU PROOFS AND SATISFIABILITY WITNESSES

DEFINITION 4.1. A branchB is closedif there is aσ such that, for someA,
bothσ : A andσ : ¬A are present inB. A tableauis closedif every branch is
closed.

DEFINITION 4.2. AnL-tableau prooffor the formulaAwith global assumptions
G and local assumptionsU is the closedL-tableau forG andU starting with 1:
¬A.

For any logicL amongK, KB, K4, K5, K45, KD, KDB, KD4, KD5, KD45, KB4, T,
B, S4, S5, Cxt, the calculus is correct (proofs in Section 10):

THEOREM 4.1 (Strong Soundness).If A has anL-tableau proof with local as-
sumptionsU and global assumptionsG, thenG |=L U ⇒ A.

? This calculus has been found independently by Goré [20].

328 FABIO MASSACCI

THEOREM 4.2 (Strong Completeness).If G |=L U ⇒ A, thenA has anL-
tableau proof with local assumptionsU and global assumptionsG.

To provide a counterexample for the validity ofA, we need a branchB without
contradictions. We need some preliminary definitions.

DEFINITION 4.3. A prefixed formulaσ : A is reducedfor rule (r) in B

– if (r) has the formσ : A⇒ σ ′ : A′ andσ ′ : A′ is in B;
– if (r) has the formσ : A⇒ σ1 : A1 | σ2 : A2 and at least one ofσ1 : A1 and
σ2 : A2 is in B.

The formulaσ : A is fully reducedin B if it is reduced for all applicable rules. A
prefixσ is (fully) reduced if all prefixed formulaσ : A are (fully) reduced.

For instance, reduction w.r.t. rule(4R) is σ.n : 2A ∈ B impliesσ : 2A ∈ B.
Notice that a formula may be reduced even if no rule has been applied to that
particular formula.?

DEFINITION 4.4. AbranchB is completedif all prefixes inB are fully reduced
for B; it is openif it is completed and not closed. Atableauis openif at least a
branch is open.

Soundness and completeness can be reformulated as follows.

THEOREM 4.3. The formulaA is L-satisfiable for local assumptionsU and global
assumptionsG iff there is an openL-tableau forU andG starting with1 : A.

With Definition 4.4, open branches may well be infinite, as in first-order logic.
For instance, if3A ∈ G, then rules(Glob) and (π) can generate an infinite
sequence of prefixes. Rules(π), (K), and (4) generate an infinite branch when
applied to formulae like 1: 3B ∧23A.

If the focus is provability and not decision procedures, a completed branch
is simply the result of any systematic and fair search strategy [13, 20]. To ob-
tain decision procedures, we must restrict the applicability of tableau rules. Some
techniques are obvious.

Technique 4.1.Apply rule (r) to a prefixed formulaσ : A in B only if the
formula is not already reduced according to Definition 4.3.

? For instance, there are two cases in which aπ-formulaσ : ¬2A can be the reduced for rule(π).
The obvious way is to apply the rule toσ : ¬2A and introduce a new prefixed formulaσ.n : ¬A.
However, some other rule may have already introduced a formulaσ.n : ¬A. In this case there is no
need to apply rule(π).

SINGLE STEP TABLEAUX FOR MODAL LOGICS 329

This is not enough to tame the examples mentioned above. A solution is a more
or less smart form of “loop-checking” [30, 7, 13, 20, 22, 25, 23, 32]: loosely speak-
ing, never reduce aset of formulaeif we have met and reduced this set beforehand.
We discuss this issue in Section 8.

5. From Gentzen-type and Prefixed Tableaux to SST

We can see a tableau proof as a failed attempt to find a countermodel for a valid
formula. Loosely speaking, the proof search is a “journey” through a tentative
Kripke model, jumping from world to world, chasing a contradiction. The differ-
ence between Gentzen-type, prefixed, and single step tableaux is precisely the way
they journey.

5.1. FORWARD RULES IN GENTZEN-TYPE AND PREFIXED TABLEAUX

The main intuition behind SST is inherited from Kripke [29].

Intuition . SST views the prefixes within a branch as a tree, labels nodes with a
single formula, reduces formulae one by one, and moves formulae only toward a
child or a parent node in the tree of prefixes.

Gentzen-type tableauxreduce modal connectives by transforming a whole set
of modal formulaeS into another setS#. For instance, the logicK4 is characterized
by the following rule:

{¬2A} ∪ S
{¬A} ∪ S#

whereS# ·= {B,2B | 2B ∈ S}.

In this way tableaux are trees where each node is labeled by a set of formulae. If
we arrange deduction in a way that a single formula labels a node of the tree, then
we must use aglobal branch modification rule: delete all nodes in a branch and
replace them with others [13].

Intuition . Such transformation corresponds to a jump forward from the world
described byS to the world described byS#. It is a jump along one arc of the
accessibility relation. We never look back again. SST decompose such a “large”
jump into many “leaner” steps that take only one formula as input.

The difference between such a global rule and the SST rules is shown in Fig-
ure 2. We can simulate theK4 jump with many subsequent applications of the(K)
and(4) SST rules. We delete formulae in the Gentzen calculus while the SST rule
α can still be applied to 1: C ∧D.

Soundness is at stake: a complex rule can be globally sound, but its “stepwise
computations” may not be such. The key point is that the correctness proofs of
Gentzen-type tableaux [12, 13, 20] are stepwise. In a nutshell, ifwRv, we pick

330 FABIO MASSACCI

K4 Gentzen-type reduction
{¬2A,2B,C ∧D}
{¬A,B,2B}

The first set describes world 1 the
second describes world 1.1.

K4 single step reduction
1 : ¬2A (a)

1 : 2B (b)

1 : C ∧D
1.1 : ¬A (π) to a
1.1 : B (K) to b

1.1 : 2B (4) to b

Figure 2. Gentzen-type tableau vs SST forK4.

eachA# ∈ S# and show that its truth value inv is forced by the truth value inw of
a correspondingA ∈ S.

Prefixed tableauxà la Fitting [13] introduce prefixes to “name” worlds and
mimic the behavior of Kripke semantics with a syntactic relation� between pre-
fixes. For instance, in the case ofK4, if 1 �K4 1.1 and 1.1�K4 1.1.1, then we have
1�K4 1.1.1. Deduction is performed by considering a single formulaσ : 2A and
addingσ ∗ : A for everyσ ∗ such thatσ � σ ∗.
Intuition . This deduction steps corresponds to a jump from the world namedσ

to another (possibly far away) world, namedσ ∗. SST break “long” jumps into
sequences of “shorter” steps.

The difference between prefixed tableaux and SST is shown in Figure 3. SST
“emulates” the effect of transitivity by first moving to world 1.1 aν-formula and
then using rule(K).

Completeness is under siege: in a prefixed tableau we can jump far away, and
in a single step tableau we may lack the intermediate worlds needed to fill the gap.
Again, the analysis of the completeness proof for prefixed tableaux [13] reveals
that all intermediate worlds are there.

5.2. BACKWARD RULE AND ANALYTIC CUT

Euclidean and symmetric logics have accessibility relations where an arc between
two worlds in one direction (“forward”) imposes the existence of another arc in the
opposite direction (“backward”).

Intuition . In these logics, “discovering” a formula in the future forces constraints
on the past. For logical consequence Gentzen-type tableaux must use cut? to guess
the formulae that will be discovered.

? The cut rule is defined as S
S∪{A} S∪{¬A} . The rule makes it possible to guess the truth value of

the formulaA. See [13] for a discussion.

SINGLE STEP TABLEAUX FOR MODAL LOGICS 331

K4 prefixed tableau
1 : 2A
|

1.1.1 : A
Since 1�K4 1.1.1

K4 single step tableau
1 : 2A
11 : 2A (4)
111 : A (K)

Figure 3. Prefixed rule vs SST forK4.

Gentzen-type deduction forKB Single step tableau
{¬2¬2A}

{¬2¬2A,¬A}
{¬¬2A,¬2¬¬A}
{2A,¬2¬¬A}

{¬¬¬A,A,¬2¬2A}
{¬A,A,¬2¬2A}

⊥

{¬2¬2A,A} 1 : ¬2¬2A
1.1 : ¬¬2A (π)

1.1 : 2A (dneg)

1 : A (B)

For the Gentzen-type derivation we apply first the cut rule and branch
the search. On the left branch we applydneg rules (not marked) andKB
rules. The initial set corresponds to world 1; the firstKB step leads to
world 1.1 and the next in 1.1.1.
Figure 4. Backward rule rather than cut forK45.

SST use backward rules to bring back newly discovered formulae in previous
worlds. We gain some of the computational power of cut without its branching
factor

In Figure 4 we compare the Gentzen-type rule forKB with the corresponding
backward rule in SST. For the Gentzen calculus theKB-rule transforms{¬2A}∪S
into {¬A} ∪ {B,¬2¬C | 2B,C ∈ S} [13, 20].

Notice that cut is necessary for the completeness of local logical consequence
in KB. An example is|=KB {A,B} ⇒ 2¬2¬(A ∧ B) [13].

6. Modularity

The first property of interest ismodularity. Hilbert axiomatizations are modular
“par excellence”: once we fix the set of rules and axioms that we want to use, it
is clear that the logicKD4 is an extension of (has more theorems than)K. Transla-
tion methods based on the relational translation [18] or the functional translation
with an explicit equality theory [39] are modular: change the first-order (equality)
axioms representing the accessibility relation and change the logic.

Gentzen calculi and the corresponding tableaux [13, 20] are much less modular
since the logic dependent part is compiled into one single rule forπ -formulae. To

332 FABIO MASSACCI

change the logic, we must change the whole rule. The only modular part is the
presence of a single rule for reflexivity.

SST have the same cumulative flavor of Hilbert-style axiomatizations: the set
of available rules is given in Table II, and by taking different subsets we obtain
different logics. The calculus with rule(K) and(4) is clearly an extension of the
calculus using only rule(K).

Notice that there is not a 1-1 mapping between axioms and SST-rules. For
instance SST can simulate the effect of three axiomsK + T + 4 with two rules
(T)+ (4). On the other hand, rule(4R) alone cannot simulate the power of axiom
5. In a similar way(K) + (T) + (4) + (B) is not enough to get completeness for
S5. Overlooking this fact leads to incomplete formalizations. For instance the rules
for K5 are not complete in [32], and the rules forS5 are not complete in [29].

7. Proof Confluence

The study of confluence (Problem 2) has a long tradition in rewrite systems, and
we refer to [24] for an introduction.

7.1. PRELIMINARY DEFINITIONS AND COMPARISONS

In the sequelx, y, z, u will be stages of the computation and→ will be a rela-
tion between them. Here, the computation is the proof search, and its stages are
tableaux, sets of clauses, etc. For tableaux,x → y if the tableauy is obtained from
x with an application of a tableau rule. For resolution,x is set of clauses andy
the same set plus a resolvent of two clauses inx or minus a subsumed clause. The
relation→∗ is the reflexive, transitive closure of→ whereas→ε is the reflexive
closure.

DEFINITION 7.1 [24, p. 779]. The relation→ is strongly confluentiff

∀xyz. if x → y andx → z then∃u. y →∗ u and z→ε u.

This form of confluence is too strict, and it is satisfied only bymodal resolution
[9]. We are usually interested in confluence modulo an equivalence relation. For
instance, in first-order resolution we want confluence up to renaming of bound
variables. If∼ is an equivalence relation between stages of the computation, we
have (see [24, page 802]) the following definition.

DEFINITION 7.2. The relation→ is strongly confluent modulo∼ iff

∀x1x2y1y2 if x1 ∼ x2 andx1→ y1 andx2→ y2

then ∃u1u2. u1 ∼ u2 andy1→∗ u1 andy2→ε u2.

Clearly thefunctional and relational translation methodsbased on resolution
[18, 36, 38, 39] are strongly confluent modulo isomorphic renaming of bound
variables. They remain so using subsumption.

SINGLE STEP TABLEAUX FOR MODAL LOGICS 333

Among direct methodsFitch-style tableaux or Gentzen calculi are not conflu-
ent. The culprit is theπ rule (e.g., in Section 5): replace the setS∪{¬2A} with the
setS#∪{¬A}, whereS# is obtained fromS by considering a subset of the formulae
of S. Typically one focuses on2B ∈ S (or ¬2B) and deletes the other formulae
[12, 13, 20].

Backtracking becomes the only choice, and the search strategy becomes critical
[8]. We have a partially negative answer to Problem 2: being a systematic strategy is
not enough to be a fair (and hence complete) one. Consider the following selection
technique.

Technique 7.1.Select formulae that have been reduced the least number of
times; then selectπ formulae, thenβ formulae.

This strategy is clearly systematic but is not complete for Gentzen-type tableau:
try {2A∨2B,¬2(A∨B)}. On the contrary, it is complete for SST. More examples
of systematic yet incomplete strategies for Gentzen-type tableaux are discussed in
[8].

The practical consequence is that we must do a lot of (maybe pointless) case
analysis withβ-rules before trying anyπ -rules. This substantially hinders the
effectiveness of the proof search [26].

7.2. SST CONFLUENCE

Single step tableauxare strongly confluent modulo a renaming of prefixes. To prove
this result, we need some preliminary definitions.

DEFINITION 7.3. An injective and surjective functionh from the set of prefixes
onto itself is arenamingiff h(1) = 1 andh(σn) = h(σ)m for some integerm.

Intuitively, a renaming permutes the integers and leaves the structures of pre-
fixes unchanged.

DEFINITION 7.4. The sets of prefixed formulaeB1 andB2 are equivalent mod-
ulo a renaming of prefixes iff there are two renamingsh12 and h21 such that
hij (hji(σ)) = σ and ifσ : A ∈ Bi thenhij (σ) : A ∈ Bj for i, j = 1,2.

This definition can be extended to tableaux as sets of branches.

THEOREM 7.1. If ν-formulae can be reduced more than once, SST rules are
strongly confluent modulo isomorphic renaming of prefixes.

We discuss the key steps of the proof, leaving details in the appendix. The dif-
ficulties are due to rules with side conditions, for example, theπ -rule (Figure 1b)
and theν-rules (Figure 1c), since conditions impose an ordering.

334 FABIO MASSACCI

The first case is when a prefix must be introduced by a (π) rule before we can
apply rule (K) to it. This also happens for matrix-based methods (e.g.,K-admissible
substitution [47, page 113]).

Still, confluence does not require an arbitrary shuffling of rules: it requires that
if we can choose which rule to apply,then the choice is irrelevant. With rules (π)
and (K) we cannot choose: if we can apply (K) to a prefixσ.m present inB, this
prefix is not new. Dually, if we apply a (π)-rule to a branchB and introduce a new
prefixσ.n, this prefix is not present inB. So we cannot apply (K) to σ.n in B.

The other case is when twoπ -formulae,σ : ¬2A andσ : ¬2B can be reduced
in a branchB. After the reduction ofσ : ¬2A the prefixσ.n1 is no longer new.
Thus the reduction ofσ : ¬2B needs to introduce another new prefixσ.m1. By
changing the order we do not get the same result. The partial computationB1 =
B ∪ {σ.n1 : ¬A, σ.m1 : ¬B} is potentially different fromB2 = B ∪ {σ.n2 :
¬A, σ.m2 : ¬B}.

We introduce the following renamingsh12 andh21 and we are done.

hij (s) =
 σ.nj if s = σ.ni,
σ.mj if s = σ.mi,
s otherwise.

Remark. For the logicsK45, KD45 andS5, we can choose the calculus with rule
(4π). Thenπ -formulae must also be reducible more than once.

8. Decision Procedures

There are a number of ways in whichdecision procedurescan be designed using a
logical calculus. The traditional way is to keep the original calculus and constrain
the applicability of rules (e.g., [8]). An alternative approach is to revise the cal-
culus, embedding the constraints in the proof theory (e.g., [23]). Both approaches
have their advantages and limitations: the former uses a simple calculus by keeping
implicit the termination conditions. The second makes termination and the search
strategy explicit features of the (new) calculus at the expenses of its clarity and
flexibility.

As mentioned in Section 2, we would like some simple (local) conditions that
prevent the application of the rules in theoriginal calculus.

This objective seems difficult fortranslation methods, since first-order logic is
not decidable: for functional translations [36, 39, 47], the mapping of worlds into
terms containing variables makes it possible to generate infinite sets of resolvents
even with simple modal formulae. In Figure 5 we show a simple (Horn) satisfiable
formula with Nonnegart’s translation [36]. The prolog termsi, i:f , i:f :g are called
world paths [39]. The corresponding intuition is that there is a anR path in the
model such thatwiRwi:fRwi:f :g and so on.

SINGLE STEP TABLEAUX FOR MODAL LOGICS 335

Formulap ∧2(p ∨3¬p)∧3¬p in KD45

Translation clauses
r(U, V : X).
p(i).

p(W)← r(i,W), p(W : g)
← p(i : f).

SLD resolvents
← p(i : f)
← p(i : f : g)
← p(i : f : g : g)
← p(i : f : g : g : g)
. . .

Figure 5. Infinite resolvents for translation methods.

We shall see how a simple technique, a local restriction on first-order terms
corresponding to worlds, makes translation methods decidable.

To design decision procedures fordirect methodssuch as modal resolution [9]
or Gentzen-type calculi or tableau [13, 20], one typically uses the property of
analyticity. The basic idea is that a calculus isanalytic iff its rules and axioms
use subformulae only of the formula we want to prove [46]. In the case of logical
consequence we may need to use also subformulae of the set of local and global
assumptions.

If every analytic rule introduces in the consequents only proper subformulae
of the formulae of the antecedent, then technique 4.1 is the only thing we need to
terminate. This is the case for Gentzen-type calculi and the related tableau methods
for the logicK, if we restrict ourselves to validity, that is, with an empty set of global
assumptions.

In the general case, we must useloop checking[8, 13, 20, 25]: before applying
any rule we check whether we haven’t applied it already to the same antecedent; if
this is the case we block the application of the rule. If the calculus is analytic, this
technique guarantees the termination of the proof search [8, 20].

A weaker property corresponds to the notion of Fischer–Ladner closure for
dynamic logics [11]: we can define afinite supersetof subformulae ofU , G and
the formula we want to prove. Then a calculus issuper-analyticiff the consequent
of any rule contains only formulae in that superset [20]. When loop checking is
used, this is sufficient for termination.

Implementations must store the trace of previous computations and, more or
less often, verify whether a rule has been already applied. This process may be
extremely expensive [8].

It is possible to compile the loop-checking technique into the rules of the calcu-
lus, as done in [23]: we add a constraint corresponding to previous application of a
rule and then modify the rules so that they propagate both formulae and constraints.
This approach doesn’t avoid the problem of storing previous computations: it sim-
ply stores this information in the constraints, although this is done in clever way to
store only the minimal relevant information.

336 FABIO MASSACCI

An alternative approach [5] is to translate each logic intoK, for which blind
search always terminates. The difficult part of this techniques is crafting a polyno-
mial translation, which may vary from logic to logic.

Designing decision procedures forprefixed tableaux, either à la Fitting or SST,
is easier than translation methods (there are no variables) but harder than direct
methods (we have “extra” prefixes).

If we neglect prefixes, Fitting’s tableaux [13, Chap. 8] are analytic, and SST are
also analytic with the exception of the logics with the rule(Cxt). For validity, if
the rule(Cxt) is not coupled with rule(4) or (4D), then it is easy to prove that
SST are super-analytic w.r.t. the setS∗ = S ∪ 2S ∪ · · ·2dS, whereS is the set of
subformulae ofU ∪ {¬A} andd is the maximum modal nesting of formulae inS.
In case ofK5 the calculus remains super-analytic if we prove theonce-offproperty
as in [13]: rule(Cxt) can be applied only once. Indeed this is the case after we
have restricted ruleCxt to prefixesσ.n with σ = 1. The superset we are looking
for is S∗ = S ∪2S (see also [20] for a discussion).

8.1. INCORPORATING“ LOOP CHECKING” IN SST

The intuition behind loop checking is stopping the search whenever two prefixes
are “a different name for the same state”. We change the definition of completed
branches (Def. 4.3) to incorporate this idea.

We say that a prefixσ is acopyof a prefixσ0 for branchB if for every formula
A one hasσ : A ∈ B if and only if σ0 : A ∈ B.

DEFINITION 8.1. A prefix isπ -reduced inB if it is reduced for all rules except
rule (π). A branchB is π -completedif (i) all prefixes areπ -reduced inB, and (ii)
for everyσ that is not fully reduced there is a fully reduced copyσ0 shorter thanσ .

The intuition is that to avoid infinite computations,π -rules should not be ap-
plied to formulae belonging to copies. Any complete search strategy must now
prove that it always leads to aπ -completed branch. A simple strategy that works
together with technique 4.1 is the following.

Technique 8.1.Select prefixed formulae with the shortest prefix.

The final outcome is aπ -completed branch although the proof search may not
terminate: we only guarantee completion “ad infinitum”. To guarantee termination,
we may use the following technique.

Technique 8.2.Before reducing aπ -formula, check whether the corresponding
prefix is not a copy of a shorter prefix.

This is exactly the loop-checking method in [8].

SINGLE STEP TABLEAUX FOR MODAL LOGICS 337

Remark. The difference between SST and Gentzen-type tableaux is that SST
are proof confluent. We do not need to backtrack once we find a loop; we leave the
“copies” and focus on other parts of the branch.

Strategies that guaranteeπ -completeness are complete.

THEOREM 8.1. If the L-tableau with local assumptionsU and global assump-
tions G starting with 1 : A terminates with aπ -completed branch, thenA is
L-satisfiable forU andG.

For logicsK4 andS4 it is useful to sharpen the notion ofπ -completeness by
using the notion ofmodal copy: σ is a modal copy ofσ0 in B if it has the sameν
formulae.

DEFINITION 8.2. A branchB is π -modal-completedif (i) all prefixes areπ -
reduced forB, and (ii) for every prefixed formulaσ : ¬2A that is not reduced
there is a shorter modal copyσ0 of σ such thatσ0 : ¬2A is reduced.

For K4 or S4 Theorem 8.1 can be extended? to π -modal-completeness.
Once a branch is eitherπ -completeness orπ -modal-completed, we can “shorten”

it without losing this property. First we introduce theforward treeof prefixes
rooted atσ in branchB:

Ftree(σ) = {σ ∗ : A | σ ∗ : A ∈ B andσ is an initial subsequence ofσ ∗}.
The prefixσ is in Ftree(σ), sinceσ is an initial subsequence of itself.

Second, we say that a branchB is prunedinto B \Ftree(σ) if the set of prefixed
formulaeB \ Ftree(σ) is obtained fromB by deleting all prefixed formulae in
Ftree(σ).

Third, the prefixed formulaσ : ¬2A is fulfilled by σ.n in B if σ : ¬2A is
reduced for rule(π) in B becauseσ.n : ¬A is in B (see Def. 4.3).

The result we are looking for is the following.

LEMMA 8.2. (Pruning Lemma).LetB be a branch andσ.n a prefix such that for
everyσ : ¬2A that is fulfilled byσ.n there is shorter copy(resp. modal copy)
σ0 such thatσ0 : ¬2A is reduced inB. If B is π -completed(resp.π -modal-
completed), thenB \ Ftree(σ.n) is π -completed(resp.π -modal-completed).

Proof. This operation only changes the status of theπ -formulaeσ : ¬2A in
B \ Ftree(σ.n). By definition of π -(modal)-completeness, eitherσ0 : ¬2A is
reduced or there is a shorter (modal) copyσ00 such thatσ00 : ¬2A is reduced.
By hypothesisσ is a (modal) copy ofσ0, and in either case we have a reduced
(modal) copy of the prefixσ . 2
? This is not the case for logicsKB andB. For instance, useG = {3(2B∧33¬B)} andA = >.

338 FABIO MASSACCI

Table III. Input size parameters

Par. Definition

d maximum nesting of modal operators innnf (U ∪ {¬A})
n number ofν-subformulae innnf (U ∪ {¬A})
p number ofπ-subformulae innnf (U ∪ {¬A})
dp the maximum nesting of possibility operators3

not under the scope of any2 operators innnf (U ∪ {¬A})
pG number ofπ-subformulae innnf (G)

nG number ofν subformulae innnf (G)

fG number of formulae ofnnf (G).

The intuition is thatπ -completeness (modal or not) is a minimal requirement:
when pruning a branch that satisfies the preconditions of the pruning lemma, we
are just deleting useless reductions.

8.2. DECIDABILITY WITHOUT LOOP CHECKING

Loop checking is a very expensive method and does not match our second objective
(Problem 4): a simple technique on the original rules of the calculus that checks
only the formula to be reduced.

In the rest of the section, we identify such simple techniques when the set of
global assumptions is empty and extend it to translation methods. We focus on
validity or at most local logical consequence.

For sake of simplicity, we assume that all formulae inG, U , and the initial
formula 1 : ¬A have been reduced to negation normal form with standard trans-
formations such asnnf (¬2A) 7→ 3(nnf (¬A)). All rules are also transformed in
the obvious way. For example, in rule(π) in Figure 1b we replaceσ : ¬2A with
σ : 3A andσ.n : ¬A with A.

We introduce some parameters to evaluate the size ofG, U , andA in Table III.
The measured is also called the “modal depth” of the formula. In2(A∧33B)∨3C we have thatd = 3, n = 1, p = 3, anddp = 1. It isp = 3 because we must
count both33B and3B.

Intuition . For each logicL, there is a height boundhbL on the length of prefixes
in a branch after which either there are no more modal operators or formulae just
repeat themselves with a longer prefix.

Technique 8.3.For every logicL the application of the single step tableauπ -
rule is limited to prefixes whose length is less thanhbL.

SINGLE STEP TABLEAUX FOR MODAL LOGICS 339

Table IV. Bounds for decidability checks

Logic L BoundhbL

K, D, T, KB, KDB, B 1+ d
K4, KD4, S4 2+ dp + p × n

This is exactly the kind oflocal termination checkwe are looking for: it requires
to look only at single formulae and, ifhbL is polynomial in the size of the input
formula, it is also efficient. In Table IV we give the upper bound for a first set of
logics. The first result is easy.

LEMMA 8.3. For local L-logical consequence|=L U ⇒ A in the logicL every
strategy that applies techniques4.1and8.3with the bounds in TableIV terminates.

The difficult part is proving that we preserve completeness. This proof is ex-
tremely difficult for Gentzen-type tableaux (see, e.g., [5, 23]). The major problem
is that we cannot universally quantify over strategies because the calculus is not
proof confluent and there are incomplete strategies (Section 7). As a consequence,
termination proofs have an existential flavor “if there is a proof, then there is a
proof such that. . . ”.

Thanks to proof confluence, we prove something more general.

THEOREM 8.4. For local L-logical consequence|= U ⇒ A every strategy which
applies techniques4.1and8.3with the bound of TableIV terminates in one of the
following conditions:

(1) a tableau proof has been found, or
(2) in every branch some rule is still applicable, or
(3) at least one branch can be pruned into aπ -completed branch(π -modal-

completed forK4 andS4).

Proof [Sketch, details in the appendix]. The difficult case is when the strategy
terminates and no rule is applicable in at least a branchB. We have to prove that
the branchB can be pruned into aπ -(modal)-completed branch. The proof goes
through the following steps:

− prove that ifσ : 3A is not reduced, thenσ must be longer thanhbL (all other
π -formulae are reduced);

− prune subtrees of prefixes until a branchB ′ is found that no longer satisfies
the preconditions of the pruning lemma;

− show that the longest chain of prefixes 1, 1.n1 up to 1.n1 . . . nk that does not
trigger the pruning lemma is such thatk ≤ hbL.

340 FABIO MASSACCI

The logicsK, D, T, KB, KDB, andB can be treated without difficulty whereas
K4 andS4 require more work, especially for the third step. We use the following
properties of branches reduced for rule(4).

PROPOSITION 8.1. If the prefixσ0 is an initial subsequence ofσ in the branch
B, thenσ0 : 2A ∈ B impliesσ : 2A ∈ B.

PROPOSITION 8.2.Let all prefixesσ , σ.n1 up toσ.n1nk have the sameν-
formulae; then eachσ.n1ni has been generated by a differentπ -formula3A.

Then, a counting argument shows that the longest sequence that does not trigger
the pruning lemma has lengthhbL = 2+ d + n× p. 2

We do not need to prune the branch after the proof search terminates. It is
enough to know that we can do it. The calculus in [23] corresponds to a visit of
the tree of prefixes directly in the pruned branchB ′.

We havereplaced loop checkingfor SST with a simple local check.

8.3. DECIDABILITY FOR TRANSLATION METHODS

This result can be easily extended to thefree variables SSTproposed by Beckert
and Goré [1] and to other methods. It gives a direct decidability check for functional
[38, 39] and mixed [36] translation methods.

Observe that there is a 1-1 mapping between prefixes in (single step) prefixed
tableaux and ground terms with functional or mixed translation methods [43, 47]
for the logicsK, KD, T, K4, KD4, andS4. Use the following technique.

Technique 8.4.Delete resolvents with terms corresponding to worlds paths lon-
ger thanhbL for a logicL amongK, KD, T, K4, KD4, andS4.

This is particularly effective for methods that directly employ resolution. It is
also much simpler to implement than the exponential upper bound on multiplicity
derived in [5].

We can extend the decidability result to translation methods by combining The-
orem 8.4 with the mapping in [43, 47, 5]. We need factoring and condensing;
otherwise the number of literals in not subsumed clauses can grow without limits.
A direct proof can be found in [44].

THEOREM 8.5. Resolution with factoring, condensing, and technique8.4 is a
decision procedure for the modal logicsK, KD, T, K4, KD4, S4, with the functional
and mixed translation methods.

An S4 model is also anS5 model. So, this technique also works forK45 andS5.
In the example at the beginning of the section, we have thathbS4 = 2+1+2×1=
5, and thus we can terminate after few resolvents.

SINGLE STEP TABLEAUX FOR MODAL LOGICS 341

9. Complexity and Search Strategies

The next step is proving (or trying to prove) that we can efficiently upgrade this
procedure to solve global logical consequence. A further step is finding further
restrictions on the proof search to match the theoretical complexity bounds.

In this section we assume a basic knowledge of complexity theory. An intro-
duction can be found in [28, 27], and some concepts of complexity classes are
recalled in the appendix. Recall that deciding validity is a PSPACE-complete prob-
lem for modal logics betweenK andS4 [30] and deciding logical consequence is
EXPTIME-complete [22] forK. ForK45, KD45, andS5, deciding validity is “only”
CO-NPTIME-complete [22].

We need some preliminary observations on the size of the smallest model that
can satisfy a given formula.

Fact 9.1. If decidingL-satisfiability is NPTIME-complete, for everyL-satisfiable
formula A there is anL-model 〈W,R, V 〉 for A such that its size (number of
worlds) is polynomially bounded in the size ofA.

Fact 9.2. If decidingL-satisfiability is PSPACE-complete, there areL-satisfiable
formulaeA such that the size (number of worlds) of the smallestL-model forA is
exponential in the size ofA.

Fact 9.3. If decidingL-satisfiability is PSPACE-complete, for everyL-satisfiable
formulaA there is anL-model 〈W,R, V 〉 for A where the length of the longest
simpleR-path? is bounded by a polynomial in the size ofA.

The termination check in Section 8 is a reformulation of this property. Theo-
rem 8.4 simply says that the length of the longestR-path ishbL.

Fact 9.4. If deciding L-logical consequence is EXPTIME-complete, there are
formulaeA such thatG 6|=L A and that the length of the longest simpleR-path in
the smallestL-countermodel forA is exponential in the size ofA andG.

These facts have a direct impact on the complexity of the proof search, in par-
ticular for calculi that work by refuting the theorem, that is, by trying to construct
a countermodel.

With an NPTIME-complete problem we can generate directly the countermod-
els: we “know” that some of them are small (although it may take exponential time
to find one or prove that there are none).

With a PSPACE-complete problem we cannot generate whole models, since
there are formulae that have exponentially large models. Still, we “know” that we
can visit some of them using polynomial space.
? A model 〈W,R, V 〉 is simply a directed graph. A simple path is a sequence of worlds

w1, . . . , wn without repetitions such thatwiRwi+1.

342 FABIO MASSACCI

Remark. If the completeness of our proof procedure requires the generation of
the whole model, the corresponding algorithm will takeexponential spacerather
than polynomial space in the size of the input.

9.1. DEALING WITH LOGICAL CONSEQUENCE

The extension of technique 8.3 and 8.4 to logical consequence seems fairly easy
using the following procedure:

(1) keep the rules and the strategy of the calculus for validity (whether direct or
based on translation into first-order logic);

(2) apply the modal deduction theorem and transform (global) logical consequence
into validity (local logical consequence);

(3) recompute the upper bounds for the resulting problem;
(4) use the decision procedure with the new bounds.

The key question is, how efficient is this procedure? Reconsider again the modal
deduction theorem [13, 15]:

G |=L U ⇒ A iff for somen one has|=L U ∪
n⋃
i=0

2iG⇒ A, (1)

where20 = G and2i+1G = {2A | A ∈ 2iG}.
We can reformulate the question in terms of the value ofn. If the value ofn

is polynomially bounded in the size ofG, U andA, then this can be a feasible
approach. Ifn is not polynomially bounded, then the decision procedure could
receive an intermediate input with anexponential blow-upw.r.t. the original input.

One may argue that the translation used in the deduction theorem is too naive.
For instance, the decision procedure forS4 proposed in [5] translatesS4 into K us-
ing two steps: first it generates anS4-satisfiability preserving modal CNF with the
techniques of Mints [35] and then uses a naive translation ofS4 into K. The naive
translation would yield an exponential blow-up but the preprocessing guarantees a
polynomial translation. Unfortunately, clever translations are not possible.

THEOREM 9.1. For the logicsK, KD, T, KB, KDB, andB the existence of a polyno-
mial translation of logical consequence into validity impliesPSPACE= EXPTIME .

This is an obvious consequence of the fact that validity forK is PSPACE-comple-
te whereas logical consequence is EXPTIME-complete.

COROLLARY 9.2. For the logicsK, KD, T, KB, KDB, andB the value ofn in (1)
cannot be bounded by any polynomial inn.

Proof. Suppose thatn is bounded by a polynomial in the size ofG, U andA,
that is,n ≤ poly(|G |, |U |, |A |).

SINGLE STEP TABLEAUX FOR MODAL LOGICS 343

Then observe that the modal deduction theorem is monotone inn: if (1) holds
for somen, then it holds for allm ≥ n. Indeed,|=L U ∪⋃n

i=02iG ⇒ A implies
|=L U ∪⋃n

i=02iG ∪⋃m
i=n+12iG⇒ A by monotonicity of the underlying modal

logic L.
For eachG, U andA we use directly the upper boundnmax = poly(|G |,

|U |,|A |) and apply the deduction theorem withn = nmax. The generation of⋃nmax
i=0 2iG can be done in polynomial time in the value ofnmax and the size of

G. This would yield a polynomial time transformation of logical consequence into
validity. 2

These negative results can be extended to the decision procedures for SST and
functional/mixed translation methods:

COROLLARY 9.3. For logical consequenceG |=L U ⇒ A in the logicsK, KD,
T, KB, KDB, andB the value ofhbL cannot be bounded by any polynomial in the
size ofG, U andA.

If a polynomial upper boundhbL existed, we could setn = hbL in the modal
deduction theorem (1).

The situation is better forK4, KD4, andS4.

THEOREM 9.4. For global logical consequenceG |=L U ⇒ A in logicsK4 and
S4 every strategy that applies techniqueT.8.3with hbL = 2+ (dp + pG) + (p +
pG)× (n+ nG + fG) terminates in one of the following conditions:

(1) a tableaux proof has been found, or
(2) in every branch some rule is still applicable, or
(3) at least one branch can be pruned into aπ -modal-completed branch.

Proof. Logics includingK4 satisfy a particular form of the deduction theorem
[25, 13, 15]:G |=L U ⇒ A if and only if |=L G∪2G∪U ⇒ A. Apply Theorem 8.4
to the new setU ′ = G ∪2G ∪U . 2

9.2. NPTIME-SEARCH STRATEGIES FORK45 AND S5 WITH SST

From the preliminary facts we have recalled, proof search for logics likeK45 and
S5 should be much simpler than for other logics.

Yet, the presence of symmetry makes things harder for most direct methods,
either Gentzen-type tableaux or modal resolution. Cut is necessary when faced
with local logical consequence for arbitrary formulae. The prototypical example
is |=S5 {A,B} ⇒ 23(A ∧ B). The common solution [9, 25, 40, 41] is to use an
equivalence-preserving preprocessing step that reduces the depth of the modal con-
nectives. Then cut-free calculi for the reduced formula can be found. The problem
is that the preprocessing step leads to an exponential blow-up. This can be avoided

344 FABIO MASSACCI

by using a further preprocessing with the definitional translation into modal CNF
by Mints [35]. The immediacy of the translation is now lost, and this procedure
requires at least a quadratic increase in size.

An alternative approach is the translation intoS4 [14, 8]. This means translating
a simpler problem into a harder one.

For translation methods, the main result is in [47]. It gives a linear upper bound
on the multiplicities? of every first-order variable.

In Section 4 we proposed two sets of rules for each ofK45, KD45, andS5. A
simple technique to restrict ruleπ yields the NPTIME-bound.

Technique 9.1.With the calculus using rule(4) for K45, KD45, andS5, apply
rule (π) once to eachπ -formula¬2A (no matter its prefix).

Technique 9.2.With the calculus using rule(4π) for K45, KD45, andS5, apply
rule (π) only to the prefixσ = 1.

Each technique gives a decision procedure when combined with technique T. 4.1
and provides an equivalent of Theorem. 8.4. We can also weaken the condition on
modal completeness: in aπ -weakly-modal-completedbranch the modal copyσ0 of
Definition 8.2 may be longer thanσ and may have moreν-formulae thanσ .

LEMMA 9.5. For logical consequenceG |= U ⇒ A in logics K45, KD45, and
S5 every strategy that applies techniqueT.4.1andT.9.1 (T.9.2)terminates in one
of the following conditions:

(1) a tableaux proof has been found, or
(2) in every branch some rule is still applicable, or
(3) at least a branch isπ -weakly-modal-completed branch.

Proof. Reduction wrt rules(4) and (4R) forces all prefixes to have the same
ν-formulae. Every prefix is a modal copy of all other prefix.

For the calculus with rule(4π), all prefixes are reduced w.r.t. rule(4R), and
hence the prefix 1 contains allν-formulae and allπ -formulae. 2

We can also show that this is optimal.

THEOREM 9.6. For logical consequenceG |= U ⇒ A in logicsK45, KD45, and
S5 every strategy with techniqueT.9.1 (T.9.2)generates SST branches with size
polynomial in the size ofG, U andA.

Proof.We can generate at mostp+pG+1 different prefixes, which have length
at most 1+ p+ pG + 1. Each prefix can have a number of formulae equal at most

? Loosely speaking, the number of times we need to instantiate each variable that is generated by
the translation of modal formulae into first-order ones.

SINGLE STEP TABLEAUX FOR MODAL LOGICS 345

to the number of subformulae ofG,U , andA, and this number is linearly bounded
by their respective sizes. The theorem follows with a simple multiplication.2

Notice that the number of worlds islinearly bounded by the number ofπ -
formulae. This corresponds to the lowest possible bound.

We can extend this technique to translation methods.

Technique 9.3.Let L be one of the logicsK45, KD45, andS5; the first-order
terms corresponding to worlds must contain at most one occurrence of each Skolem
function/constant corresponding to aπ -formula.

In Figure 5, we can now stop after the generation of one resolvent. Resolution
with technique 9.3 is a decision procedure forK45, KD45, S5.

9.3. SPACE COMPLEXITY OF DIFFERENT CALCULI

The case for the logicsK, KD, T, K4, KD4, and S4 is more interesting because
deciding validity is PSPACE-complete and therefore we may have formulae only
with “large” models.

Gentzen-type calculirequire only polynomial space if we use loop checking
with backtracking as in [8, 30, 22]. This works if the calculus actuallydeletes
the formulae before backtracking to a previous stage. Loosely speaking, we can
describe this depth-first search as follows:

(1) start from a set of formulae;
(2) reduce propositional connectives (possibly creating new branches);
(3) if we get an inconsistent set, then stop and pass to a new branch;
(4) choose aπ -formula, and save the remaining choices in the stack;
(5) reduce theπ -formula, generating a new starting set;
(6) if the same set was already generated, then delete all sets generated after the

latest choice point and backtrack; otherwise go to (1).

This strategy guarantees the use of polynomial space but has its disadvantages.
The worst problem is the reduction of disjunctions beforeπ -formulae to retain
completeness (see Section 7). In practice, this forces a lot of (likely pointless) case
analysis [26].

More space, but still a polynomial amount, is required by the calculus in [23].
Indeed the major difference is that the loop-checking mechanism is compiled into
the rules. We can now check for loops without looking back in the stack. However,
we are simply encoding a part of the stack in each node, so nodes are bigger.

Remark. The usage of polynomial space is not a characteristic of Gentzen sys-
tems. It is simply the fact that we are used to consider depth-first search as the
“natural” way to search for a proof in Gentzen-type calculi. If we use a breadth-first
search for visiting choice points ofπ -formulae, then we need exponential space.

346 FABIO MASSACCI

Tableau methods that use an explicit accessibility relation [3, 29] are bound to
take exponential space: for the “bad formulae” they create the exponential models
(Fact 9.2).

For the same reasons,relational translation methodsbased on resolution or
similar saturation methods [18] require exponential space. The key observation is
that the completeness of first-order resolution forces the addition of (nonsubsumed)
resolvents to the current set of clauses. If no contradiction is found, the final set of
clauses describes the accessibility relation between worlds of the (counter)model.
This model may have exponential size (see Fact 9.2 above).

Functional translation methodsare slightly better, since the accessibility re-
lation between worlds is embedded in the unification theory. Therefore, we do
not need to store (and not even generate) the clauses describing the accessibility
relation. This is also true for the mixed translation method [36] where all literals
describing the accessibility relation can be resolved away.

Yet, we have the literals describing properties of worlds (recall that a term is just
a name for a world). Again, the saturated set of clauses for satisfiable formulae must
describe all these worlds and these may be in exponential number. The conclusion
is the following.

Fact 9.5.Any first-order complete resolution strategy for relational, functional,
and mixed translation methods requires worst-case exponential space.

This may seem strange given the experimental results in [26] where resolution
outperforms tableaux. The caveat is that we may be comparing the efficiency of
implementations or using benchmarks that are not PSPACE-hard.

It is, of course, possible to recover polynomial space by ad hoc mechanisms
for deduction in modal logics. At a guess, this may be done by a combination of
specialized rules for deleting (not-subsumed) clauses and selection functions for
the next resolvent. In such a way we could mimic the search strategy of Gentzen-
type tableaux.

Yet, this would be the very negation of the motivation behind translation meth-
ods [37, page 513]: “there is no need to develop specialized theorem provers for
modal logic.”

Modal resolution [9] also requires exponential space.
The worst-case complexity of the matrix proof method [47] is unclear. An ex-

ponential upper bound for the calculus has been found in [4] but it is not possible to
derive (straightforward) conclusions regarding its worst-case space requirements.

The algorithms forprefixed(single step) tableauxin [13, 20, 32] require expo-
nential space. This is not by chance: being a saturation method, prefixed tableaux
suffer from the same illness of resolution.

Fact 9.6.Any complete strategy for prefixed (single step) tableaux that never
deletes formulae requires worst-case exponential space.

SINGLE STEP TABLEAUX FOR MODAL LOGICS 347

9.4. PSPACE-SEARCH STRATEGIES WITH SST

To recover a PSPACEalgorithm for validity, we need two techniques:

− delete formulae as soon as they are no longer needed;
− do not generate new prefixes if too many formulae are unreduced.

We know that this is possible: we can always fall back on a depth-first traversal of
the tree of prefixes and simulate the depth-first strategy of Gentzen-type tableaux.
We would like to exploit proof confluence for a more flexible strategy.

At first, we focus on the logics betweenK andS4, and then extend the tech-
niques to logicsKB, KDB, B. As in Section 8 we assume that formulae are in
negation normal form. Some preliminary notions are also needed: thebackward
treeof a prefix in branchB is the set

Btree(σ) = {σ0 : A | σ0 : A ∈ B andσ0 is an initial subsequence ofσ }.
We need to introduce the concept ofconfined formula.

Intuition . A confined formula with prefixσ does not interfere with the consistency
of formulae having different prefixes. So we can delete the formulae of a confined
prefix as soon as they are saturated.

Let B ′ be a set of prefixed formulae. A prefixed formulaσ : 3A ∈ B ′ is
confinedin B ′. Prefixed formulaeσ : A ∧ B andσ : A ∨ B are confined inB ′ if
they are reduced inB ′ (Definition 4.3) or no formula2C is a subformula of either
A or B. The prefixed formulaσ : 2A is confined inB ′ iff it is reduced inB ′. A
formulaA ∈ U is confined inB ′ iff 1 : A is confined inB ′.

DEFINITION 9.1. A prefix isconfinedin a branchB if all formulae inU and all
prefixed formulae in Btree(σ) are confined in Btree(σ).

LEMMA 9.7 (Local Stability). Let σ be a confined prefix inB. No sequence of
rules (α), (β), (Loc), (D), (K), (T), (4), (4D) applied to formulae with prefixes
different fromσ can introduce a new prefixed formulaσ : A in B.

Proof.The proof is by a double induction on the length of the prefixσ and the
length of the sequence. The case for prefix 1 is immediate.

For the first induction, suppose thatσ.n is confined but there is a sequence of
rules that introduces a new prefixed formulaσ.n : A.

The sequence of length 1 can be composed only by aν-rule. Then, there should
be an unreducedσ : 2A′ in B. This formula is also in Btree(σ.n), and therefore
σ.n could not be confined.

For longer sequences, we apply the induction hypothesis toσ : if σ is confined,
no sequence of rules applied to prefixes different fromσ can introduce a new
prefixedσ : 2A in B. Onlyα andβ rules are left, and the corresponding formulae
are confined by hypothesis. 2

348 FABIO MASSACCI

We use this lemma for proving that confined prefixes are preserved by the
techniques we have used for decidability.

PROPOSITION 9.1.A strategy using techniquesT.4.1andT.8.3cannot introduce
a new prefixed formulaσ : A in a branchB if σ is a confined and reduced prefix
in B.

Now, choose a parameterwb ≥ 1 (width bound) equal to some fixed constant?

and apply the following technique.

Technique 9.4.For every integern and every prefixσ of lengthn, do not apply
rule (π) to prefixed formulaeσ : 3A if there are more thanwb unreduced prefixes
of lengthn+ 1.

The next step is proving that the unreduced part of each branch has only a
polynomial size.

THEOREM 9.8. For the logicsK, KD, T, K4, KD4, and S4 every strategy using
techniquesT.4.1, T.8.3, andT.9.4 the number of unreduced prefixes in a branch is
bounded by a polynomial in the size ofU andA.

Proof. By technique T.4.1 the number of (unreduced) prefixed formulae is lin-
early bounded by the number of subformulae ofU andA. By technique T.8.3 the
maximum length of prefixes ishbL, which is polynomially bounded in the size of
U andA (Thm. 8.4). By technique T.9.4 we have at mostwb unreduced prefixes of
lengthn for eachn ≥ 1. The claim follows by a multiplication. 2

The polynomial space algorithm we are looking for must use this additional
technique (beyond T.4.1, T.8.3, T.9.4) for each branchB.

Technique 9.5.Delete all prefixed formulae of every confined and reduced pre-
fix in B. If a prefixed formulaσ.n : A is deleted in this process, then consider the
correspondingσ : 3A as still reduced.

We may keep deleted prefixes somewhere to exhibit the model, but then the
auxiliary storage is bound to take exponential space (Fact 9.2).

The combination of these techniques preserves soundness (using Th. 9.1 and
7.1) and completeness (Th. 7.1, 8.1, 8.4), provides a decision procedure (Th. 8.4)
and guarantees the use of polynomial space in each branch (Theorem 9.8) — this
without dropping, but rather exploiting, proof confluence.

We are free to reduce a polynomial number of3A formulae before reducing a
single disjunctiveβ-formula. Still we do not lose completeness nor the polynomial
space bound for the size of a branch.

? In general, we could also use a functionwb ≤ poly(|U |, |A |).

SINGLE STEP TABLEAUX FOR MODAL LOGICS 349

Moreover, technique T.9.5 is so liberal that the part of the branch we keep in
memory may resemble a “tree with gaps”. For example, the part of the branch we
keep in memory can be composed only by the prefixes 1, 1.1.1, 1.1.2, and 1.1.2.1,
because the prefix 1.1 has been deleted. Theorem 9.1 guarantees that such gaps are
harmless.

For logics with rule(B) these techniques are not sufficient. To be precise, reck-
less deletion of prefixes may lead to incomplete search strategies, sinceσ.n : A
can be introduce byσ : 2A and by σ.n.m : 2A. To prove that a prefix can be
safely deleted, it is not enough to look only to shorter prefixes; we must also look
to longer ones.

At first we need to revise the technique 9.5.

Technique 9.6.Delete all prefixed formulae of every confined and reduced pre-
fix σ in B such that for everyσ.n the forward tree Ftree(σ.n) is empty (has been
previously deleted).

Second, use the following trick.

Technique 9.7.If a new prefixed formulaσ : 2A is introduced inB, then for
everyσ : 3B if the correspondingσ.n : B has been deleted, thenσ : 3B must be
reduced again.

10. Soundness and Completeness for SST

As a preliminary result we can prove that SST satisfy a proof theoretical analogue
of the Generation theorem by Segerberg [15].

DEFINITION 10.1. A set of prefixes6 is tree generatediff

(1) the prefix 1∈ 6 and it is the only prefix of length 1;
(2) if prefix n0.ni−1.ni ∈ 6 then alson0.ni−1 ∈ 6.

By induction on the rules used to construct a branch, one has the following.

THEOREM 10.1. Let B be a branch of a single step tableau; the set of prefixes
occurring in the branch{σ | σ : A ∈ B} is tree generated.

This explains why theπ -rule requires prefixes to be new rather than unrestricted
as in [13]. Suppose thatσ.n is new and yet it is the initial part of another prefix
σ.n.n1 . . . nk. By Theorem 10.1,σ.nmust also be present, contradiction.

350 FABIO MASSACCI

Table V. SST-rules and model properties

Rule form Semantic property

σ : A⇒ σ : B w
 A impliesw
 B

σ : A⇒ σ.n : B wRv andw
 A impliesv
 B

σ.n : A⇒ σ : B wRv andv
 A impliesw
 B

σ.m : A⇒ σ.m : B ∃w0.w0Rw andw
 A impliesw
 B

σ.m : A⇒ σ.m.n : B ∃w0.w0Rw andwRv andw
 A impliesv
 B

σ.m.n : A⇒ σ.m : B ∃w0.w0Rw andwRv andv
 A impliesw
 B

All variables except forw0 are universally quantified.

10.1. STRONG SOUNDNESS

To prove the correctness of prefixed and labeled systems [13, 16], one establishes
a mapping between “names” (prefixes) and “things” (possible worlds) and shows
that the mapping is indeed an homomorphism preserved by tableau rules. To prove
the soundness of Gentzen-type tableaux [13, 20, 22], one shows that if a set of
formulae holds in a world, then a related set holds in a world one step away.

Intuition . The soundness proof of SST is a combination of both techniques: set a
mapping between prefixes and worlds, do not worry about homomorphisms, and
use the stepwise proof of Gentzen-type tableaux.

We need to establish some properties of the logics at hand, in a natural corre-
spondence with its SST rules.

We focus onν rules (the others can be found in [13]) and divide them into three
main classes, according the form of the prefixes that is used in the antecedent or in
the consequent of each rule. Instatic rulesboth the consequent and the antecedent
formula have the same prefix. For example, rules(D) and(T) are static. Inforward
rules the prefix of the consequent formula is one step longer than the prefix of the
antecedent. Rules(K), (4D), and(4) are examples of forward rules. Inbackward
rules the prefix of the consequent formula is one step shorter than the prefix of the
antecedent. Rules(4R), (B), or (Cxt) are backward rules.

Rules can bedelayed. This classification is orthogonal to the previous one. It
refers to rules applicable only to prefixes longer than two.

Table V identifies the correspondence between rules and properties ofL-models
needed for the proof (see appendix) of the following lemma.

LEMMA 10.2. Let σ : A ⇒ σ ∗ : B be an SST rule for logicL; everyL-model
verifies the conditions in TableV.

The next step is defining a mapping between names and things and introduce
the notion of satisfiable branch.

SINGLE STEP TABLEAUX FOR MODAL LOGICS 351

DEFINITION 10.2. LetB be a branch and〈W,R, V 〉 an L-model; anSST-
interpretation is a mapping from prefixes to worldsı(σ) ∈ W such that for all
σ andσ.n present onB, one hası(σ)Rı(σ.n).

SST interpretations do not depend on the logicL, in contrast with prefixed
tableaux interpretation [13], which are logic dependent. Loosely speaking, SST
interpretations are justK-interpretations.

DEFINITION 10.3. A tableau branchB with local assumptionsU and global as-
sumptionsG is L-SAT iff there is anL-model〈W,R, V 〉 and an SST-interpretation
ı() such that

(1) theL-model〈W,R, V 〉 validatesG;
(2) the worldı(1) satisfiesU in 〈W,R, V 〉;
(3) for every prefixed formulaσ : A in B, the worldı(σ) satisfiesA.

A tableau isL-SAT if at least one branch is such.

Now we have the machinery to prove asafe extension lemma.

THEOREM 10.3. Let T be anL-SAT tableau; the tableauT ′ obtained by an
application of an SST rule forL is alsoL-SAT.

Proof.If T is L-SAT, there is a branchB that isL-SAT with an SST-interpretation
ı() and a model〈W,R, V 〉. The cases whereT ′ has been obtained by applying a
rule to a branch different fromB, or the rule applied to a prefixed formula inB is
anα, β, Loc orGlob rule are standard [13]. The different cases areν-rules and the
π -rule.

For SST-rules characterizingL, consider whether they are static, backward, or
forward. If a static rulehas been applied, then the prefixσ is present inB and
ı() is defined on it. By inductive hypothesisı(σ)
 A and by Lemma 10.2 we are
done.Forward and backward rulesinvolve prefixes of the formσ andσ.n both
already present on the branch. By Definition 10.2 one hası(σ)Rı(σn), and the
claim follows by Lemma 10.2.

Delayed rulesrequire an “ancestor” worldw0: by Theorem 10.1, ifσ.n and
σ.n.m are in the branch, thenσ is there too. Henceı() is defined on all three
prefixes and by inductive hypothesisı(σ)Rı(σ.n) and ı(σ.n)Rı(σ.n.m). Apply
Lemma 10.2.

Theπ -rule introduces a new prefix, andı() must be extended. By hypothesis
the original branchB is L-SAT and thusı(σ)
 ¬2A. The semantics forces the
existence of a worldw ∈ W such thatı(σ)Rw andw
 ¬A. Then extendı() as
follows:

 (s) =
{
w if s = σ.n,
ı(s) otherwise.

352 FABIO MASSACCI

Table VI. Conditions on the syntactic relation�
Logic Conditions on the accessibility relation over prefixesσ � σ ∗
K σ � σ.n

KB σ � σ.n andσ.n� σ
K4 σ � σ.σ ′ with |σ ′ | ≥ 1

K5 σ � σ.n andσ.σ ′ � σ.σ ′′ with |σ ′ | ≥ 1 and|σ ′′ | ≥ 1

K45 σ.σ ′ � σ.σ ′′ with |σ ′′ | ≥ 1

KD-logics asK-logics provided that either there is ann such thatσ � σ.n
or σ � σ

T σ � σ.n andσ � σ
B σ � σ.n andσ.n� σ andσ � σ
S4 σ � σ.σ ′
S5 σ.σ ′ � σ.σ ′′
Cxt |σ ∗ |= |σ | +1

We must prove that () is an SST-interpretation. On every prefixs different from
σ.n the mapping (s) coincides withı(s), which is an SST-interpretation. More-
over, (σ)R (σ.n) by construction. Sinceσ.n is new, there is no prefixσ.n.m in
the branch that requires us to prove (σ.n)R (σ.n.m). The branch isL-SAT on the
sameL-model with SST-interpretation (). 2

The soundness theorem (Theorem 4.1) is now standard [13, 20].

10.2. STRONG COMPLETENESS

The completeness proof follows the general ideas of [13] adapted to “shorter rules”.
For simplicity, we give the proof using completed branches (Section 4). The exten-
sion toπ -(modal)-completed branches (Section 8) can be done along the same lines
of the completeness proofs in [7] for prefixed tableaux or in [20] for completeness
via model graphs.

Intuition . Apply a systematic strategy to the tableau and use an open branch to
build a model for the initial formula¬A, that is, a countermodel forA. Identify
prefixes present in the branch with worlds (so thatı() is the identity function), and
show that ifσ : A occurs in the branch, then alsoσ
 A.

The “easy” part is the construction of a syntactic relation� between prefixes
with the properties of the semantic relationR in L-models. Each logicL has its
relation�L as shown in Table VI.

THEOREM 10.4. For every logicL, the syntactic relation� over prefixes has the
same properties of the semantic relationR over worlds.

SINGLE STEP TABLEAUX FOR MODAL LOGICS 353

1.1.31.1

��
��

1PPPP
1.2 1.2.1 1.2.1.4 1.2.1.4.1

2A2A
22A

2A 2A 2A A

�����)
PPPPq - - -

4R
Cxt

K 4 4 K

Figure 6. Traveling throughout prefixes inK5.

The proof is long but easy: replace possible worlds with prefixes in the proper-
ties ofR (Table I), use for� the conditions of Table VI, and reason by cases? (see
appendix).

The “hard” part is the proof ofcomplete reduction; that is, ifσ : 2A is in the
branch andσ � σ ∗, thenσ ∗ : A is also there.

Intuition . Prefixed tableaux [13, 42] use� in the calculus and have only oneν-
rule: if σ : 2A is present andσ � σ ∗ with σ ∗ also present, then addσ ∗ : A. The
proof procedure itself grants complete reduction.

However, complete reduction is too powerful because a set can be completely
reduced without being the result of a tableau proof; for example,{1 : 2p,1.1.1.1 :
p} is completely reduced forK4 but doesn’t correspond to any tableaux proof.

Intuition . SST can recover complete reduction from SST-reductions by letting a
formula “travel” along prefixes.

A simple example is shown in Figure 6 forK5, where{1.1.3.1}�K5 {1.2.1.4.1}
and thus we should have{1.1.3.1 : 2A} implies{1.2.1.4.1 : A}.

We classify each logic according the “ability” of its syntactic accessibility rela-
tion�. The relation� connects

immediate neighbors if � connects prefixes that are one integer shorter or longer
(logicsK, KB, and their serial, or reflexive variants);

far forward prefixes where the relation� can link a prefixσ with a another prefix
σ ∗ that can be longer thanσ but still σ must be an initial subsequence ofσ ∗
(logic K4 or its variants);

far backward prefixes � can link a long prefixσ with a shorterσ ∗ such thatσ ∗
is the initial subsequence ofσ (logic K5 or its variants).

A logic can also satisfy a combination of these properties, for example,K45.
Hence, we need to prove acomplete reduction lemma(see the appendix):

LEMMA 10.5. LetB be a branch of a tableau, ifB is completed for the logicL,
then it is also completely reduced.
? Note that the relation� for K5 in [32] is incorrect and thus the original system is incomplete.

See also [20] for a detailed proof ofK5 completeness.

354 FABIO MASSACCI

Proof.If the syntactic relation� can access onlyclose neighbors, then complete
reduction coincides with SST reduction.

If � accessesforward prefixes, use rule(4) for copying2A from σ to σ.n and
forward. Repeat until we arrive at the immediate predecessor ofσ ∗. Then apply
rule (K).

For logics whose syntactic relation accessesbackward prefixes, use rule(4R)
for copying2A from σ.n to σ and backward. Repeat the process until we are at
the immediate predecessor ofσ ∗ and then apply(K).

Other logics combine these techniques; for example, forCxt, apply(Cxt) down
to 1 and(K) up toσ ∗. 2

A further requirement is thatB should be an open branch, that is, for everyσ
and everyA, there is no pairσ : A andσ : ¬A in B. Then we can prove astrong
model existence theorem.

THEOREM 10.6. If B is open branch for the rules of logicL, then there is an
L-model forG andU whereB is satisfiable.

Proof.Construct the model as follows:

W
.= {σ : σ is present inB},

σRσ ∗ iff σ � σ ∗,
V (p)

.= {σ | σ : p ∈ B}.

If L is serial, extendR by settingσRσ if there are no formula of the form
σ : ¬2A in B. This guarantees thatσ : 2B 6∈ B. Otherwise, sinceσ is reduced
for (D), we would have hadσ : ¬2¬A ∈ B, contradiction.

By Theorem 10.4,R satisfies the properties ofL-accessibility relations. We
must show thatB is L-SAT on model〈W,R, V 〉 with an SST-interpretationı()
(hereı() is the identity function): for everyA we must prove that ifσ : A ∈ B,
thenσ
 A by induction on the construction ofA.

We focus on modal connectives. Ifσ : ¬2A ∈ B, we haveσ.n : ¬A ∈ B for
someσ.n, sinceσ : ¬2A must be reduced for rule(π). By inductive hypothesis
σ.n
 ¬A andσRσ.n by construction. Thereforeσ
 ¬2A. If σ : 2A ∈ B,
then, by Lemma 10.5, for everyσ ∗ present inB such thatσ � σ ∗, one hasσ ∗ :
A ∈ B. By inductive hypothesisσ ∗
 A andσRσ ∗ by construction. Therefore
σ
 2A.

For everyA ∈ G and everyσ in B, the prefixed formulaσ : A is present in the
branchB becauseσ is reduced for the(Glob)-rule in B. Thenσ
 A. With the
same argument, ifA ∈ U , then 1
 A. 2

Thestrong completeness theorem(Theorem 4.2) is now standard [13].

SINGLE STEP TABLEAUX FOR MODAL LOGICS 355

11. Conclusions

As pointed out by Catach [3, page 508]:

. . . the most interesting features of modal logics are theexpressivityandmod-
ularity and also theirpossible-world semanticswhich is both general and
intuitive.

From this viewpoint Single Step Tableaux provide a calculus that reflects these
characteristics: modularity, simplicity, and intuitive rules that “pass” knowledge
(or necessity) between worlds.

A further advantage is their effectiveness. SST are proof confluent and can be
transformed into decision procedures that use polynomial space (nondeterministic
time forK45 andS5). The use of SST makes also possible to derive simple bounds
and termination checks for translation methods based on resolution [36, 39].

Given their modularity, as pointed out in [20], SST can be extended to multi-
modal logics and, with more work, to dynamic logics [7].

In the quest for effective implementations, a version of SST based on free
variables, as proposed in [1], which simulates the techniques for yielding PSPACE

decision methods of Sections 8 and 9, may be one of the most effective modal
provers. We leave this open for future investigations.

Appendix

A. Terminology about Complexity Classes

PTIME(NPTIME) is the class of decision problems solvable in polynomial time
by a deterministic (nondeterministic) Turing machine. For instance, satisfiability
for the propositional calculus [27] and the modal logicsS5 andK45 is NPTIME-
complete [22, 30] together with the logicCxt which remains in NPTIME also for
the multi-modal case [33].

Problems in EXPTIME can be solved by a deterministic Turing machine using
exponential time, that is, time bounded byO(2poly(n)), wherepoly(n) is a poly-
nomial in the sizen of the input. Deciding logical consequence forKm and for
S4m for m ≥ 2 is EXPTIME-complete; validity for propositional dynamic logic is
EXPTIME-complete [22].

As for PSPACE and EXPSPACE, the machine is deterministic and works in
polynomial (exponential) space. For instance, deciding satisfiability and validity
for all modal logics betweenK and Section four and for all multimodal logics
betweenKm andS5m with m ≥ 2 is PSPACE-complete [30, 22].

It is known that PTIME ⊆ NPTIME ⊆ PSPACE⊆ EXPTIME ⊆ EXPSPACE.
All containment relations are conjectured strict [27].

356 FABIO MASSACCI

Table VII. Reduction rules for SST

Reduction precondition Reduction relation

σ : A ∧ B ∈ B B
α−→ B ∪ {σ : A, σ : B}

σ : ¬(A∧ B) ∈ B B
β−→ B ∪ {σ : ¬A}|B ∪ {σ : ¬B}

σ : 2A ∈ B and∃C σ.n : C ∈ B B
K−→ B ∪ {σ.n : A}

σ : ¬2A ∈ B and∀C σ.n : C 6∈ B B
π−→ B ∪ {σ.n : ¬A}

B. Proofs

B.1. PROOFS OF SECTION7

Proof (Theorem 7.1). We show a stronger claim, namely

∀x, x′yz if x ∼ x′ & x → y & x′ → z

then ∃u, ue y → u & z→ ue & u ∼ ue.
In words, if we apply a rule to the tableaux yielding y or another rule yielding

z, then we can apply another rule toy to obtainu and similarly toz obtainingue.
The two possible resultsu andue must be identical up to renaming of prefixes.

The standard Knuth–Bendix method for proving confluence [24, page 797] is to
prove that each critical pair satisfies the above mentioned claim. For SST, a critical
pair can only be formed when we reduce two formulae in the same branch, since
reductions in different branches do not interact.?

For clarity of exposition, we consider first the basic logicK and the case where
x = x′. This is also the most difficult case.

The cases of superpositions can be seen more easily if we reformulate the rules
as in Table VII, whereB is a branch (set of prefixed formulae).

At first, formulae with different prefixes do not interact.

PROPOSITION B.1.Let σ1 : A1 andσ2 : A2 be prefixed formulae withσ1 6= σ2

and letB ′ be the reduction ofB using rule(r1) on σ1 : A1. If rule (r2) can be
applied toσ2 : A2 in B, then it can be applied inB ′.

This reduces the cases of superposition to the following four:

(1) the prefixed formulaeσ : 2A, σ.n : C andσ.m : D are inB;
(2) the prefixed formulaeσ : 2A, σ : 2B andσ.n : C are inB;
(3) the prefixed formulaeσ : 2A, σ : ¬2B andσ.n : C are inB but no prefixed

formulaσ.m : D is present inB (σ.m is new);

? This is quite different from free variables tableaux where variables span over branches and
therefore the reduction (unification) in a branch affects other branches.

SINGLE STEP TABLEAUX FOR MODAL LOGICS 357

(4) the prefixed formulaσ : ¬2A andσ : ¬2B are inB and the prefixesσ.n and
σ.m are new.

For case (1) we apply rule(K) either forσ.n or for σ.m. Suppose we apply first
(K) to σ.n yielding B → B ∪ {σ.n : A}. Sinceσ.m : C is still present in the new
branch andν formulae can be reused, we apply(K) and obtainB∪{σ.n : A, σ.m :
A}. If we apply(K) first toσ.m and then toσ.n, we obtainB ∪ {σ.m : A.σ.n : A}.
The result is the same.

For case (2), use the same argument. The final outcome of both reduction paths
is equal toB ∪ {σ.n : A, σ.n : B}.

For (3) we can use rule(K) on σ.n or introduce a new prefix with(π). If we
reduce the branch using rule(K), we do not introduce new prefixes andσ.mwould
still be new inB∪{σ.n : A}. In other words, if for noC we haveσ.m : C ∈ B, then
σ.m : C 6∈ B∪{σ.n : A}. Thus we use rule(π) and obtainB∪{σ.n : A, σ.m : ¬B}.

If we apply (π) first, we obtainB ∪ {σ.m : ¬B}. By hypothesis, for allD one
hasσ.m : D 6∈ B. Sinceσ.n : C ∈ B, one hasσ.m 6= σ.n . We can apply rule(K)
obtaining the same branchB ∪ {σ.n : A, σ.m : ¬B}.

For case (4) we must use a renaming to prove confluence. Suppose we reduce
first σ : ¬2A and obtainB ∪ {σ.n1 : ¬A}. In the new branch, the prefixσ.n1 is
no longer new. So the next reduction forces the use ofσ.m1. The final result is the
branchB1 = B ∪ {σ.n1 : ¬A, σ.m1 : ¬B}.

If we reduceσ : ¬2B with σ.n2, we obtain the branchB ∪ {σ.n2 : ¬B}.
A further (π)-reduction yieldsB2 = B ∪ {σ.n2 : ¬B, σ.m2 : ¬A}. At this
stage we know only that there are two new prefixesσ.n andσ.m. It can be that
n1 = n 6= m = n2 andA 6= B and thusB1 6= B2.

Then we define two renamingsh12 andh21:

hij (s) =
 σ.nj if s = σ.ni,
σ.mj if s = σ.mi,
s otherwise.

Now we can prove thatσ : A ∈ Bi implieshij (σ) : A ∈ Bj , and thathij (hji(σ)) =
σ .

The proof for logics other thanK is a repetition of arguments (1), (2), and (3) for
the variousν-rules; just replace the prefixed formulaeσ : 2A andσ.n : A of rule
(K) with the antecedent and the consequent of eachν-rule. Eachν-formula must
be reducible more than once because each logic requires more than oneν-rule and
all rules must be applicable.

The proof of the general case,x ∼ x′, follows the same pattern, and it is simply
notationally heavy, since we have two branchesB1 ∼ B2 and two renamingsh12

(from B1 to B2) andh21 (in the other direction).
The first step is the following.

PROPOSITION B.2.A rule (r) can be applied toσ : A in Bi if and only if it can
be applied tohij (σ) : A in Bj .

358 FABIO MASSACCI

Second, we reformulate Proposition B.1 as follows.

PROPOSITION B.3.Letσ1 : A ∈ B1 andσ2 : B ∈ B2 be prefixed formulae such
that h12(σ1) 6= σ2. Let Br

1 be the reduction ofB1 using rule(r) on σ1 : A and
Br

2 be the reduction ofB2 using(r) onh12(σ1) : A. If rule (r2) can be applied to
σ2 : B in B2, then it can be applied inBr

2.

The cases of superposition can be reformulated along the same lines. The proof
is substantially unchanged. Case (4) is the only difficult one.

For B1 we have the prefixed formulaeσ1 : ¬2A, σ1 : ¬2B and the prefixes
σ1.n1 andσ1.m1 are new. The same conditions (changing subscript) hold forB2.
We also havehij (σi) = σj . We have no constraints onσi.ni andσi.mi because they
are new.

As in the proof forx = x′, renamings must be updated when the branchB1

reduces toB1 ∪ {σ1.n1 : ¬A, σ1.m1 : ¬B} and the branchB2 reduces toB2 ∪
{σ2.n2 : ¬A, σ2.m2 : ¬B}.

h′ij (s) =
 hij (σi).nj if s = σi.ni,
hij (σi).mj if s = σi.mi,
hij (s) otherwise.

By hypothesis, one hashij (σi) = σj and the new mappingsh′ij gives the desired
renamings. 2

B.2. PROOFS OF SECTION8

Proof (Theorem 8.4). If a tableau proof is found, Theorem 4.1 does the job. If
some rules are still applicable, then the strategy itself was not systematic or pos-
sibly incomplete. In this case continue the reduction of the applicable rules with a
systematic strategy. By proof confluence (Theorem 7.1) we must end up in one of
the remaining cases.

Finally, if the strategy terminates and no rule is applicable in at least one branch
B, then we must prove that the branchB can be pruned into aπ -completed branch
(π -modal-completed forK4 andS4).

At first, aπ -formulaσ : 3A may not be reduced according to Definition 8.2
only if |σ | = hbL. Indeed, suppose thatσ : 3A is not reduced but there is no
shorter modal copyσ0 where it is reduced. If|σ | < hbL, then ruleπ would be still
applicable according to technique T.8.3 and this contradicts the assumption that no
rule is applicable inB.

The case for logicsK, D, T, KB, KDB, andB is simple: every rule that increases
the length of the prefix strictly reduces the number of modal connectives. So any
prefix with length equal tohbL = 1 + d has no modal connectives. We obtain
directly aπ -completed branch.

SINGLE STEP TABLEAUX FOR MODAL LOGICS 359

The case forK4 andS4 is more interesting, because rule(4) increases the length
of the prefix without decreasing the number of modal connectives. The first obser-
vation is that the number ofν-formulae increases monotonically with the length of
the prefix:

PROPOSITION 8.1If the prefixσ0 is an initial subsequence ofσ in the branchB,
thenσ0 : 2A ∈ B impliesσ : 2A ∈ B.

If σ : 2A is not present, then we could apply rule(4) a suitable number of times
until σ : 2A is introduced. This is against the hypothesis that no rule is applicable
to branchB.

Now, we start pruning the tree: delete from the branch all members of Ftree(σ.n)

such that for everyσ : 3A that is fulfilled byσ.n there is a shorter modal copyσ0

whereσ0 : 3A is reduced for rule(π).
Denote byB ′ the final set of prefixed formulae that cannot be pruned any-

more. Proposition 8.1 still holds forB ′, and the Pruning Lemma 8.2 guarantees the
following property:

PROPOSITION B.4.Letσ : 3A be a prefixed formula inB ′. Then either|σ | =
hbL or σ : 3A is reduced for rule(π) in B ′ or there is a shorter modal copyσ0 of
σ such thatσ0 : 3A is reduced for rule(π) in B ′.

The onlyπ -formulae that may violate the definition ofπ -modal-completeness
are those with lengthhbL.

SinceB ′ cannot be pruned anymore, we have the following.

PROPOSITION B.5.Letσ : 3A be a prefixed formula inB ′ that is not reduced
for (π). For everyσ0 shorter thanσ , eitherσ0 is not a modal copy ofσ , or σ0 : 3A
is not present inB ′.

Then we only have to prove that the longest prefixσ on theB ′ that can satisfy
Proposition B.5 has lengthhbL − 1 = 1+ dp + p × n. We need the following
preliminary results.

PROPOSITION 8.2.If every prefix fromσ0, σ0.n1 up to σ0.n1 . . . nk is a modal
copy ofσ0, then eachσ0 . . . ni fulfills a differentπ -formula3A in B ′.

Otherwise we could apply the pruning lemma toσ.n1 . . . ni and delete the whole
subtree generated by it. This contradicts the hypothesis thatB ′ is the final result of
the pruning.

Given Propositions 8.1 and 8.2 the worst-case longest sequence of prefixes we
can build without violating Proposition B.5 is shown below:

1� 1.n1��1.n1 . . . np−1︸ ︷︷ ︸
0 ν−formulae

�1 . . . np−1np � 1 . . . np.np+1��1 . . . n2p−1︸ ︷︷ ︸
1 ν−formula

�

�1 . . . np+p ��1 . . . np+2p︸ ︷︷ ︸
2 ν−formulae

� � �1. . . . np+(n−1)p+1��1 . . . np+np︸ ︷︷ ︸
n ν−formulae

360 FABIO MASSACCI

Consider the first sequence with zeroν formulae: they are clearly modal copies
of each other. Each time we pass from 1. . . ni to 1. . . ni.ni+1 there is a different
π -formula that is fulfilled (Prop. 8.2). We have at mostp differentπ -subformulae,
and we can arrive only till 1. . . np before triggering the pruning lemma. Suppose
that noν-formula is present in 1. . . np. Then, for every 1. . . np : 3A there is a
shorter modal copy 1. . . ni where 1. . . ni : 3A is reduced. By Proposition B.5,
there is no longer prefix 1. . . np.np+1 in B ′.

In the worst case, only oneν-formula will be freshly introduced in 1. . . np. This
formula will continue to be present from now on. Again, before finding another
ν-formula we can arrive at most to 1. . . . np+p.

We can continue this reasoning until we arrive at 1. . . np+np. This prefix is the
longest prefix that respects Proposition B.5 (the length is 1+ p + n × p because
of the initial 1). If we add a new prefix it will have the same modal formulae of
1 . . . np+(n−1)p+1 and everyπ -formula will be already reduced in one of the prefixes
between 1. . . np+(n−1)p+1 andσ1+(n+1)p. Any further reduction would trigger the
pruning lemma.

For every prefixσhb of length 1+p+n×p+1, and every unreducedπ -formula
σhb : 3A, there is a shorter modal copyσ0 such thatσ0 : 3A is reduced. Hence the
pruned branchB ′ is π -modal-completed.

The first part of the sequence, with zeroν-formulae, can be generated only by
π -formulae not under the scope of a necessity operator. Hence the modal depth
decreases after each rule application and the first part can be bounded bydp. This
yields the final upper bound ofhbL = 2+ dp + n× p. 2

B.3. PROOFS OF SECTION10

Proof (Lemma 10.2). The case for(K), (D) and(T) is immediate.
Rule(4) is used for transitive models. Assume thatw
 2A andwRv. Then,

for anyu ∈ W such thatvRu one haswRu, by transitivity. Henceu
 A. Since
u is arbitrary, alsov
 2A. For rule (4π) suppose thatwRv and v
 ¬2A.
The semantics forces the existence of a worldu such thatvRu andu 1 A. By
transitivitywRu and thusw
 ¬2A.

Rule(4R) is used for Euclidean relations. Suppose thatw
 2A andwRv. For
anyu such thatwRu, one hasvRu, sinceR is Euclidean. Thus, ifv
 2A, one
hasu
 A and thenw
 2A.

For rule(B), assume thatwRv andv
 2A. By symmetry one hasvRw and
thereforew
 A.

Rule (Cxt) can be used for Euclidean and contextual models. Suppose the
model is Euclidean and thatwRv with v
 2A. Then letwRu anduRt . The
properties ofR forcesuRv and thenvRt . Thust
 A. Sincet is arbitrary, one
hasu
 2A andw
 22A.

SINGLE STEP TABLEAUX FOR MODAL LOGICS 361

If the L-model is a contextual model (see [2] or Table I), then we have directly
vRt and the same reasoning applies.

Delayed rules require the same arguments plusw0Rw. 2
Proof (Theorem 10.4 (Cxt)). For the logic of contextual reasoning we must

prove the following property [2]: “ifσ �σa andσ �σb andσa �σc, thenσb�σc”.
The conditions on� for Cxt are the following:

σ � σa iff |σa | =|σ | +1
σ � σb iff |σb | =|σ | +1
σa � σc iff |σc | =|σa | +1

By substitution one has|σc | = |σa | + = |σ | +2= |σb | +1. 2
Proof (Theorem 10.4 (K4)). Transitivity equals “σa � σb andσb � σc implies

σa � σc”. The two initial conditions impose the properties below on� (Table VI):

σa � σb iff σb = σa.σ ′ with |σ ′ | ≥ 1
σb � σc iff σc = σb.σ ′′ with |σ ′′ | ≥ 1

By concatenation one hasσc = σa.σ ′.σ ′′ and|σ ′.σ ′′ |≥ 1. 2
Proof (Theorem 10.4 (K5)). An Euclidean relation is characterized by the prop-

erty “σa � σb andσa � σc impliesσb � σc”. The conditions forK5 impose that

σa � σb iff σa = σ.σ ′ andσb = σ.σ ′′ with |σ ′ | ≥ 1 and |σ ′′ | ≥ 1
σa � σc iff σa = σ1.σ

′
1 andσc = σ1.σ

′′
1 with |σ ′1 | ≥ 1 and |σ ′′1 | ≥ 1

By definition bothσ1 andσ are longer than 1. Since bothσ andσ1 are initial parts
of the same prefixσa then we only have three cases:σ = σ1 or σ1 = σ.τ or
σ = σ1.τ for some prefixτ such that|τ | ≥ 1.

σ = σ1: this condition impliesσb = σ.σ ′′ andσc = σ.σ1. Since| σ ′′ | ≥ 1 and
|σ ′′1 | ≥ 1 we have directlyσb � σc;

σ1 = σ.τ : we substituteσ1 in the equation ofσc and obtainσb = σ.σ ′′ together
with σc = σ.τ.σ1. Since|σ ′′ | ≥ 1 and|τ.σ1 | ≥ 1, we obtainσb � σc.

The remaining case is similar. 2
Proof (Lemma 10.5). If the syntactic relation� accesses onlyclose neighbors,

the proof is trivial: complete reduction coincides with SST reduction. For instance,
for the logic B there are three cases:σ �B σ , σ �B σ.n, andσ.n �B σ . Apply
respectively SST reduction for rule(T), (K), and(B).

If � connectsforward prefixes, then σ � σ ∗ implies thatσ ∗ has the form
σ.n1 . . . nk for k ≥ 1 (ork ≥ 0 if the logic is reflexive). By Theorem 10.1, for every

362 FABIO MASSACCI

i = 1 . . . k alsoσ.n1 . . . ni is present. Apply reduction w.r.t.(4) or (4D) to construct
the chainσ : 2A ∈ B impliesσ.n1 : 2A ∈ B, impliesσ.n1.n2 : 2A ∈ B etc.
Once we haveσ.n1 . . . nk−1 : 2A ∈ B, apply SST reduction w.r.t.(K) to obtain
σ ∗ : A ∈ B.

When backward prefixesare connected by�, thenσ � σ ∗ implies that for
some prefixσ0 we haveσ = σ0.n1 . . . nk and σ ∗ = σ0.m (or σ ∗ = σ0 if the
logic is reflexive). By Theorem 10.1, for everyi = 1 . . . k alsoσ0.n1 . . . ni is in
B. For everyi, if σ0.n1 . . . ni+1 : 2A ∈ B thenσ0.n1 . . . ni : 2A ∈ B, because
σ0.n1 . . . ni+1 : 2A ∈ B is reduced for rule(4R) by hypothesis. Therefore,σ0 : 2A
is present inB. Then we apply the reduction for rule(K) and obtainσ0.m : A ∈ B.

For K5 we combine these technique: we apply reduction for rule(4R) until we
can conclude that 1.n : 2A is present. Ifσ ∗ = 1.m then we use reduction for rule
(4R) followed by (K). Otherwise, first(Cxt) obtaining 1: 22A, and then(K).
From 1.m : 2A ∈ B, the reasoning is identical to that for syntactical relations� connecting forward prefixes: first we consider reduction for rule(4D) and last
reduction for rule(K).

For the logicCxt apply reduction for rule(Cxt) until we have shown that 1:2nA ∈ B; then apply reduction for(K) up toσ ∗.
The tableaux forK45, KD45, S5 with rule (4π) have prefixes of the form 1 and

1.n, since we restricted the application of theπ -rule. For moving2A we apply
(4R) once and then either(K) or (T). 2

Acknowledgments

I thank L. Carlucci Aiello and F. Pirri for their encouragement and support. I ben-
efited from an ongoing discussion on tableau methods with R. Goré and F. Donini.
The precise comments of two referees greatly improved the quality of this paper.
This work has been supported by ASI, CNR, and MURST grants.

References

1. Beckert, B. and Goré, R.: Free variable tableaux for propositional modal logics, in [17], 1997,
pp. 91–108.

2. Buvǎc, S., Buvǎc, V. and Mason, I.: Metamathematics of contexts,Fundamenta Inform.23(3)
(1995), 263–301.

3. Catach, L.: TABLEAUX, a general theorem prover for modal logics,J. Automated Reasoning
7 (1991), 489–510.

4. Cerrito, S. and Cialdea Mayerm M.: Hintikka multiplicities in matrix decision methods for
some propositional modal logics, in [17], 1997, pp. 138–152.

5. Cerrito, S. and Cialdea Mayer, M.: A polynomial translation of S4 into T and contraction-free
tableaux for S4,J. Interest Group in Pure Appl. Logic5(2) (1997), 287–300.

6. D’Agostino, G., Montanari, A. and Policriti, A.: A set-theoretic translation method for
polymodal logics,J. Automated Reasoning15 (1995), 317–337.

SINGLE STEP TABLEAUX FOR MODAL LOGICS 363

7. De Giacomo, G. and Massacci, F.: Tableaux and algorithms for propositional dynamic logic
with converse, in [34], 1996, pp. 613–628.

8. Demri, S.: Uniform and non uniform strategies for tableaux calculi for modal logics,J. Appl.
Non-Classical Logics5(1) (1995), 77–96.

9. Enjalbert, P. and Fariñas del Cerro, L.: Modal resolution in clausal form,Theoret. Comput. Sci.
65 (1989), 1–33.

10. Fagin, R., Halpern, J., Moses, Y. and Vardi, M.:Reasoning about Knowledge, The MIT Press,
1995.

11. Fischer, N. and Ladner, R.: Propositional dynamic logic of regular programs,J. Comput. System
Sci.18 (1979), 194–211.

12. Fitch, F.: Tree proofs in modal logic,J. Symbolic Logic31 (1966).
13. Fitting, M.:Proof Methods for Modal and Intuitionistic Logics, Reidel, 1983.
14. Fitting, M.: First-order modal tableaux,J. Automated Reasoning4 (1988), 191–213.
15. Fitting, M.: Basic modal logic, in D. Gabbay, C. Hogger, and J. Robinson (eds),Handbook of

Logic in Artificial Intelligence and Logic Programming, Volume 1, Oxford Univ. Press, 1993,
pp. 365–448.

16. Gabbay, D.: Labelled deductive systems, Technical Report MPI-I-94-223, Max Plank Institute
für Informatik (MPII), Saarbrüken, Germany, 1994. To appear as a book by Oxford Univ. Press.

17. Galmiche, D. (ed.):Proc. of the Internat. Conf. on Analytic Tableaux and Related Methods
(TABLEAUX-97), LNAI 1227, Springer-Verlag, 1997.

18. Gent, I.: Theory matrices (for modal logics) using alphabetical monotonicity,Studia Logica52
(1993), 233–257.

19. Giunchiglia, F. and Sebastiani, R.: Building decision procedures for modal logics from propo-
sitional decision procedures – the case study of modal K, in M. McRobbie and J. Slaney
(eds.),Proc. of the 13th Internat. Conf. on Automated Deduction (CADE-96), LNAI 1104,
Springer-Verlag, 1996, pp. 583–597.

20. Goré, R.: Tableaux method for modal and temporal logics, Technical Report TR-ARP-15-5,
Australian Nat. University, 1995. To appear as chapter on theHandbook of Tableau Methods
by Kluwer.

21. Halpern, J. and Fagin, R.: Modelling knowledge and action in distributed systems,Distrib.
Comput.3(4) (1989), 159–177.

22. Halpern, J. and Moses, Y.: A guide to completeness and complexity for modal logics of
knowledge and belief,Artif. Intell. 54 (1992), 319–379.

23. Heuerding, A., Seyfried, M. and Zimmermann, H.: Efficient loop-check for backward proof
search in some non-classical logics, inProc. of the 5th Workshop on Theorem Proving with
Analytic Tableaux and Related Methods (TABLEAUX-96), LNAI 1071, Springer-Verlag, 1996,
pp. 210–225.

24. Huet, G.: Confluent reductions: Abstract properties and applications to term rewriting systems,
J. ACM27(4) (1980), 797–821.

25. Hughes, G. and Cresswell, M.:An Introduction to Modal Logic, Methuen, 1968.
26. Hustadt, U. and Schmidt, R.: On evaluating decision procedure for modal logic, in M. Pollack

(ed.),Proc. of the 15th Internat. Joint Conf. on Artificial Intelligence (IJCAI-97), 1997, pp. 202–
207.

27. Johnson, D.: A catalog of complexity classes, in J. van Leeuwen (ed.),Handbook of Theoretical
Computer Science, Elsevier Science Publishers (North-Holland), Amsterdam, 1990, pp. 67–
162.

28. Johnson, D. and Garey, M.:Computers and Intractability: A Guide to the Theory of NP-
Completeness, Freeman, San Francisco, 1979.

29. Kripke, S.: Semantical analysis of modal logic I: normal propositional calculi,Z. Math. Logik
Grundlag. Math.9 (1963), 67–96.

364 FABIO MASSACCI

30. Ladner, R.: The computational complexity of provability in systems of modal propositional
logic, SIAM J. Comput.6(3) (1977), 467–480.

31. Marek, W., Schwarz, S. and Truszczynski, M.: Modal nonmonotonic logics: Ranges, charac-
terization, computation,J. ACM40(4) (1993), 963–990.

32. Massacci, F.: Strongly analytic tableaux for normal modal logics, in A. Bundy (ed.),Proc. of the
12th Internat. Conf. on Automated Deduction (CADE-94), LNAI 814, Springer-Verlag, 1994,
pp. 723–737.

33. Massacci, F.: Contextual resoning is NP-complete, in W. Clancey and D. Weld (eds.),Proc. of
the Nat. (US) Conf. on Artificial Intelligence (AAAI-96), AAAI/MIT Press, 1996, pp. 621–626.

34. McRobbie, M. and Slaney, J. (eds.):Proc. of the 13th Internat. Conf. on Automated Deduction
(CADE-96), LNAI 1104, Springer Verlag, 1996.

35. Mints, G.: Gentzen-type systems and resolution rules, inInternat. Conf. on Computer Logic
(COLOG), LNCS 417, Springer-Verlag, 1988, pp. 198–231.

36. Nonnengart, A.: First-order modal logic theorem proving and functional simulation, inProc. of
the 13th Internat. Joint Conf. on Artificial Intelligence (IJCAI-93), Morgan Kaufmann, 1993,
pp. 80–85.

37. Ohlbach, H.: A resolution calculus for modal logic, inProc. of the 9th Internat. Conf. on
Automated Deduction (CADE-88), LNCS 310, Springer-Verlag, 1988, pp. 500–516.

38. Ohlbach, H.: Semantic-based translation methods for modal logics,J. Logic Comput.1(5)
(1991), 691–746.

39. Ohlbach, H.: Translation methods for non-classical logics – an overview,J. Interest Group in
Pure Appl. Logic1(1) (1993), 69–89.

40. Ohnishi, M. and Matsumoto, K.: Gentzen method in modal calculi,Osaka Math. J.9 (1957),
113–130.

41. Ohnishi, M. and Matsumoto, K.: Gentzen method in modal calculi, II,Osaka Math. J.11
(1959), 115–120.

42. Russo, A.: Generalising propositional modal logic using labelled deductive systems, inPro-
ceedings of the Internat. Workshop on Frontiers of Combining Systems (FroCoS-96), LNAI,
Springer-Verlag, 1996.

43. Schmitt, S. and Kreitz, C.: Converting non-classical matrix proofs into sequent-style systems,
in [34], 1996, pp. 418–432.

44. Schmidt, R.: Resolution is a decision procedure for many propositional modal logics, in
M. Kracht, M. de Rijke, H. Wansing, and M. Zakharyaschev (eds.),Advances in Modal Logic,
Vol. 1, Lecture Notes 87, CSLI Publications, Stanford, pp. 189–208.

45. Schwarz, G.: Gentzen style systems for K45 and KD45, in A. Meyer and M. Taitslin (eds.),
Logic at Botik ’89, Symposium on Logical Foundations of Computer Science, LNAI 363,
Springer-Verlag, 1989.

46. Smullyan, R.:First Order Logic, Springer-Verlag, 1968. Republished by Dover, New York, in
1995.

47. Wallen, L.:Automated Deduction in Nonclassical Logics, The MIT Press, 1990.

