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Abstract. Single Step Tableaux (SST) are the basis of a calculus for modal logics that combines
different features of sequent and prefixed tableaux into a simple, modular, strongly analytic, and
effective calculus for a wide range of modal logics.

The paper presents a number of the computational results about SST (confluence, decidability,
space complexity, modularity, etc.) and compares SST with other formalisms such as translation
methods, modal resolution, and Gentzen-type tableaux. For instance, it discusses the feasibility and
infeasibility of deriving decision procedures for SST and translation-based methods by replacing
loop checking techniques with simpler termination checks.

The complexity of searching for validity and logical consequence with SST and other methods
is discussed. Minimal conditions on SST search strategies are proven to giid Hand NPriMe
for S5 and KD45) decision procedures. The paper also presents the methodology underlying the
construction of the correctness and completeness proofs.

Key words: modal logics, prefixed tableaux, confluence, complexity, decision procedures, direct and
translation methods.

1. Introduction

Modal logics are widely used in Al and computer science. Their applications range
from modeling knowledge and belief [10, 22] or distributed systems [21] to non-
monotonic formalisms [31]. Thus, a major objective is the desigeffeictive and
simple-to-uselecision procedures.

At one side of the spectrundirect deductionmethods use modal formulae
and enhance classical deduction mechanism with rules for modal connectives. For
instance, Hilbert axiomatizations can be found in [22, 25], Fitch- or Gentzen-type
calculi and tableaux in [3, 13, 14, 20, 35], and modal resolution in [9, 35]. Direct
systems are closer to the epistemic properties (omniscience, introspection, etc.)
a user would like to model. However, they have computational limitations. For
instance, Hilbert systems are not analytic and thus cannot be thoroughly automated.
Gentzen-type calculi and tableaux [13, 20, 41] are usually analytic. Nevertheless,
the reduction of modal connectives requires processing sets of formulae at once (or
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whole tableau branches). The absence of a confluence thtearakes deduction
heavily dependent on the search methods [8]. Moreover, logical consequence for
symmetric and Euclidean logics, which play a major role in nonmonotonic rea-
soning [31], is still unsatisfactory. Gentzen calculi treat these logics in an entirely
nondeterministic way, since cut has been eliminated onlg48by Schwartz [45].

For S5 the most effective way is still the explicit construction of Kripke models
[25, 22] or the (possibly exponential) reduction to a suitable normal form followed
by a specialized calculus [25, 9, 41]. With symmetric logics, the elimination of cut
is still an open problem for logical consequence [13, 20].

On the other sideindirect deductionmethods translate modal formulae into
first-order logic, “add” the properties of the underlying Kripke model, and apply
a (suitably modified) classical deduction technique [39]. The same process can be
carried out with a simplified set theory as the target logic [6]. Some translations,
for example, the relational translation plus theory reasoning [18, 42], reflect the
underlying semantics of Kripke models but are often inefficient. The use of set
theory [6] may also prove to be hard for automated reasoning. Functional transla-
tion performs much better and can be easily applied either to matrix proof methods
[47] or resolution [38, 39]. This approach requires either a strong equality-handling
mechanism or the compilation of logic dependent unification procedures in the
prover to cope with the terms corresponding to possible worlds [39]. To overcome
this limitation, a mixed approach has been proposed in [36], which captures the
most common logics with simple Horn clauses and maintains the original structure
of the formula (at least for deontic logics). A common limitation of these proposals
is that they seem to need a “user-friendly” interface for proof presentation (see [47]
for further references). As we shall see, they also have computational drawbacks,
although the presence of effective resolution implementations does not make this
immediate.

In the middle of the field we finthbeled deductive systerfi$], such as pre-
fixed tableaux [13, Chapter 8] or [32, 7, 20]. In prefixed tableaux, formulae are
labeled with a prefix, to “name” the world where each formula is supposed to
hold and rules take into account both formulae and labels. Proofs and proof search
presentations are simple, since they closely reflect the Kripke semantics. Yet, we
need to understand and use an algebraic or a relational theory of prefixes.

Single Step Tableadg2], SST for short, lie between Gentzen-type and prefixed
tableaux and try to combine user-friendly presentation with effective computational
properties. The intuition is to label modal formulae with prefixes, use rules for
labels and formulae but without any equational theory. We follow an intuition of
Kripke [29, 84]: structure prefixes as a tree, label each node of the tree with a for-
mula, encode the properties of Fitch-style tableaux into rules for single formulae,

* Loosely speaking, confluence means that we can always “converge” to a proof without back-
tracking. In confluent systems, a systematic strategy for proof search may be computationally bad
but not incomplete.
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and use rules involving only the immediate predecessor or the successors of each
node. The resulting calculus has a number of useful features:

— itis cumulative as Hilbert-style axiomatizatidrend can be used in a modular
way for a wide range of modal logics;

— it has good computational characteristics;

— can be used to derive results about other systems;

— it can be easily implemented using free variables tableaux [1];
— it can still be used for doing proofs by hand.

1.1. RESULTS PRESENTED IN THIS PAPER

In this paper we focus mainly on theethodologyunderlying the construction of
the calculus and itsomputational properties comparison with other formalisms.

From the methodological perspective, we show how SST can be viewed as a
smart combination of some aspects of prefixed tableau calculi a la Fitting [13,
42] and modal Gentzen-type calculi [13, 14, 20, 40]. We show how the algebraic
properties of the underlying Kripke model need to be reconstructed only in the
completeness proof.

Computational properties of different calculi can be compared in two ways: by
extensive experiments on large sets of (possibly random) instances or by theoretical
analysis. Both techniques are necessary because experiments may test only the
relative efficiency of implementations or be misled by flawed test stritetiereas
theoretical results may not tell us enough about practical cases.

Among computational properties, we focus on complexity theoretic properties
such as space requirements, confluence, and decidability.

For the construction of decision procedures, we show lomp checking for
transitive logics can be replaced by a simple and effective termination dheck
SST and how this result can be generalized to other syst&iesfocus on transla-
tion methods and give the conditions for using resolution as a decision procedure
with functional and mixed translation methods. We also show that any polyno-
mial local check is impossible for logical consequence in nontransitive logics.
A general remark can be made w.r.t. the complexity of satisfiability (validity)
checking for the logick45, KD45, and S5 [22]: this problem is known to be
NPTIME (CO-NPTIME)-complete but the corresponding proof systems are often
based on extension of the logi€or S4 by adding further rules [13, 20, 22, 45], by
strengthening the equational constraints [38], or by embedsting S4 [13, 40].

* Note that there is not a 1-1 correspondence between rules and axioms. See Section 6.
** For instance, see how the claims in [19] have been rebutted in [26].

* Similar results have been shown independently by [5, 23].



322 FABIO MASSACCI

In other cases [25, 41, 9] a potentidligxponential preprocessing step is necessary

to avoid cut and prove termination. Simpler in theory, they are harder in practice.
We show two natural SST extensionskdf for the logicsK45, KD45, andS5

that can be used to achieve the complexity lower bound for satisfiability checking

[30]. For the other logics, we discuss the design sPACE search strategies for

validity-checking algorithms.

1.2. PLAN OF THE PAPER

First, we discuss the main computational problems in the design of modal calculi
(Section 2). Then, we introduce some preliminaries on modal logics (Section 3)
and the proof theory of SST (Section 4) and discuss the intuitions behind the
construction of SST from Gentzen-type and prefixed tableaux (Section 5).

Next, we present some computational results about SST and compare SST with
translation methods, modal resolution, and Gentzen-type tableaux. We focus on
modularity (Section 6), proof confluence (Section 7), decision procedures for SST
and translation methods (Section 8), computational complexity, and search strate-
gies (Section 9). Last, we prove SST sound and complete (Section 10) and conclude
(Section 11).

The first appendix summarizes some notions about complexity classes, and the
second appendix contains the details of the longest proofs.

2. Computational Problems and Objectives

The design of a flexible calculus (with a related theorem prover) for many modal
logics faces a number of problems in the attempt to obtain something that is simple,
effective, and efficient.

Beside soundness and completeness, other computational properties are impor-
tant but receive less attention than deserved. We postpone the issue of correctness
until Section 10 to discuss these properties first.

With many modal logics, the first objective mayinedularity and cumulativity
in the same fashion of Hilbert-style axiomatizations:

PROBLEM 1. Can we switch from logic to logic by simply adding or deleting
axioms or inference rules in a modular way?

We also want a general methodology for completeness and soundness proofs so
that we do not have to make them from scratch for each logic.

Once a logid. is fixed, and soundness and completeness are proved, we must
search for a proof, and a calculus may have many rules to choose from. We expect
the search strategy to affect time and space complexity, but we would like to avoid
more substantial losses.

* Unless one uses the nontrivial definitional translation into CNF by Mints [35].
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PROBLEM 2. Does the order in which we select rules or formulae matter for
completeness?

The property we are looking for igroof confluencésee Section 7 for formal
definitions). Loosely speaking, confluence means that the order in which we select
the rules does not substantially matter: we can always “converge” to the same result
without backtrackingWe can waste resources, but we cannot lose the possibility
of finding a proof. Proof confluence is one of the advantages of resolution in first-
order theorem proving.

The propositional modal logics considered in this paper are decidable, and
hence our next problem is the following.

PROBLEM 3. Can we devise techniques for blocking the selection of rules and
formulae, thus yielding a decision procedure?

Proving that suitable techniques givadecision methods the first step (Sec-
tion 8), but it is not enough. Termination checks can be expensive and may require
to handle the whole proof constructed so far [8].

PROBLEM 4. Can we devise termination checks that consider each formula (or
each rule) in isolation and require only polynomial time?

Here we ask for éocal termination check~or validity, we have a positive result:
such checks are possible for SST and can be transferred directly to functional and
mixed translation methods (Section 8). Unfortunately, this is impossible for logical
consequence (Section 9).

The last problem is theomputational complexitpf various search strategies
and algorithms for validity and logical consequence (Section 9). Validity checking
is “only” co-NPTIME-complete for the logic&45 andS5, whereas it is BPACE
complete for the modal logics betwe&hand S4 [30]. Logical consequence is
EXPTIME-complete [22]. These facts should be reflected into efficient strategies
for theorem proving.

PROBLEM 5. Can we design restrictions on the proof search in the calculus so
that the algorithms for checking validity will match the corresponding (optimal)
worst-case complexity?

Some calculi may fail to match the lower bounds, and others can be very sensi-
tive to the search strategy. For instance, translation methods based on generic first-
order resolution use exponential space rather than polynomial*sfmoealidity
checking.

* The superior performance of translation methods with generic resolution provers shown in [26]
may be due to better implementation.
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3. Preliminaries on Modal Logics

Some familiarity with the language and the semantics of propositional modal logics
is assumed (an introduction can be found in [15, 22, 25]). We constnodal
formulaeA, B, C from propositional letterp € & with the connectives,, —, and

O as follows:

A,B = p|—-A|AAB|DA.

Other connectives may be seen as abbreviations, ®4.= —0O—A. Formulae
of the kindOA are referred as-formulae (from necessity) whereagsiA asrn-
formulae (from possibility).

The semantics of modal logic is based HKmnipke models that is, triples
(W, R, V), whereW is a nonempty set, whose elements are calledds R is a
binary accessibility relatiorover W, andV () is a function, calledraluation from
propositional letters to subsets of worlds. Intuitively the world¥ip) € W are
those where is true.

Different modal logics are obtained by different propertiesRofin Table | we
list the most common properties and the corresponding axiom schema. The com-
bination of the axiom schemata from to 5 (or the properties of the accessibility
relation) generates the logigs KB, K4, K5, K45, KD, KDB, KD4, KD5, KD45, KB4,
T, B, S4, S5[15, 22], whereagxt is McCarthy’s logic for contextual reasoning [2].
Our aim is to provide a modular calculus for these logics, and therefore we refer to
L-models,L-tableaux, etc., when referring to models, tableaux, etc., for one of the
logicsL above. Other logics are discussed in [32].

If M is anL-model,w is a world, andA is a formula, the entailment relation
M, w IF A is defined in the following way:

M, wlFp iff weV(p),

M,wlF AAB iff M,wlF AandM, w I+ B,

M, wIF —A iff M,wl A,

M, wF OA iff YvoeW:wRvimpliesM, vl A.

WhenM, w I A holds, we say thab satisfiesA in M. If S is a set of formulae,
then a worldw satisfiesS iff for all A € S one hasm, w I A. For sake of read-
ability, we omit.M whenever it is clear from the context. Ammodel (W, R, V)
validatessS iff every world in W satisfiesS. A formula A is L-valid if everyL-model
validatesA.

For logical consequence we need two sets of modal formulae [13, 15]: global
assumptions5 and local assumptiond. Intuitively the former are true in every
world and the latter in the current world.

DEFINITION 3.1. A formulaA is anL-logical consequencef global assump-
tions G and local assumptions (in symbolsG =, U = A) iff in every L-model
(W, R, V) that validatesG if a world w satisfiesU, thenw satisfiesA. It is L-
satisfiablefor the global assumptions and the local assumptiords if there is an
L-model{W, R, V) that validates; and a worldw € W that satisfied/ U {A}.
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Table I. Axioms and accessibility relations

Axiom Accessibility relation
K:O(AD>B)D>(@MAD>OB) any

D:OADCA Ywav : wRv

T:-O0ADA Yw : wRw

4:0AD0O0A Yw,v,u: wRv & vRu D wRu
B:COoAD A Yw,v: wRv D vRw

5:004>0OA Yw,v,z: wRv & wRz D vRZ

Cxt: OOA D OOA Yw,u,v,z: wRv & wRu & vRz D uRz

We speak of local (global) logical consequence wies ¢ (G # 9).

Local logical consequence is semantically and computationally identical to va-
lidity: G =, U = Ais equivalent toG = ¥ = (/A\U) D A. It can make a
difference for the proof theory: the Gentzen calculus for I@®jie [13, 20] requires
cut whenU is used instead of\ U.

Global assumptions make a difference [22]: the decision problem for validity is
Pspacebut is EXPriME for logical consequence.

4. Single Step Tableaux

SST useprefixed formulagthat is, pairsc : A, where theprefix ¢ is a non-
empty sequence of integers addis a modal formula. Intuitivelyy “names” a
world that satisfiesd. In the sequelg is a prefix,oq.01 the concatenation of
the sequencey with the sequence; ando.n the concatenation of with n. If
o = ni.no....n_1.ny is a prefix, the length of the prefix is k and is denoted by
lo].

4.1. SINGLE STEP RULES

A L-tableau7 is a (binary) tree whose nodes are labeled with prefixed formulae.
A L-branch 8 is a path from the root to a leaf. Nodes are added and labeled in the
usual way by applying the rules [13, 20]: if the antecedent of a rule appears in a
branch, we extend the branch (and possibly split it), labeling the new node(s) with
the consequent(s). A prefixlispresentin a brancha if there is a prefixed formula
in 8 with that prefix, and it is1ewif it is not present.

Propositional tableau rules are shown in Figure 1a. Figure 1b shows the rules
that do not depend on the particular logicThe rules that vary from logic to logic
are in Figure 1c. They are mostly forformulae.

The prefixes present in a branch formree, spanning from 1 to 1, 11.1
and 11.2, etc. Loosely speaking, the proof search can be seen as a backward and
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a: 0:AANB fB: o:—m(AAB) dneg: o:——A
oA o:—-Ao:—-B oA
o:B

Figure la. Propositional tableaux rules.

Loc : : if BeU
1:B
Glob : : if o is present in the branch ale G
o:B
T o :—0OA with o.n new in the branch
o.n:—-A

Figure 1b. SST rules common to all logics.

K : o:0A D : o:0A T : o:0A
on:A o :-0-A oA
4. o:0OA 48 . on:0A B : on:0OA
o.n:0OA o:0A oA

47 . o.n:—-0OA 4° . o.n:0A Cxt: o.n:0OA
o :—0OA on.m:0OA o 0O0A

Whereo, o.n ando.n.m must be present in the branch.

Figure 1c. SST-rules characterizing logics.

forward visit of this tree until a contradiction is found: create a nadeule), work
inside a node (propositionad;lob or Loc rules), add a formuléorward from a
parento to a childo.n or backwardfrom child to parent §-rules). For instance,
rule (4), if we have in mind the knowledge interpretation ©f corresponds to
positive introspection and allows us to “inherit knowledge forward”.

The logics mentioned in Table | are captured by different sets of SST rules as
shown in Table Il. LogicCxt is captured by rulek + Cxt. In the sequel SST-rules
are in italics and between parentheses; for exaniple the logic whereask) is
thev-rule. Square-bracketed rules are derivable from the others; for example, rule
(K) can be simulated by ruleg’) and(4):
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Table Il. Modal logics and SST-rules

Logic SST-rules Logic SST-rules Logic SST-rules
K K KD K,D T K, T

KB K,B KDB  K,B,D B K,T,B

K4 K,4 KD4 K,D,4 sS4 [K], T,4

K5 K,4P 4R cxt KD5  K,D,4P 4R Cxt KB4  K,B,47,4R
K45 K, 4,48 KD45 K, D, 4, 4R S5 [K], T, 4, 4R
K45 K, 47 4R KD45 K, D, 4", 4R S5 K,T, 4" 4R

4 T
o:0A —omn:0A—— on:A
K

Remark For the logick5 andkD5 we only need to apply ruléCxt) to prefixes
onwitho = 1.

We have two possible sets of rules for the logi@s, KD45, S5. The first can
be seen as the standard cumulative extensia ofith the addition of extra rules.
The second dispatched forward rules in favor of backward biiée difference is
the way in which rules encode the transitivity axiom. RifleencodesiA D OOA
while rule (4™) encodesO<CA O OA. Although the combinatiork + 47 is not
complete fork4, the addition of(4%) is enough fork45. Surprisingly, the proof
search in both calculi has the same computational complexity (Section 9).

4.2. TABLEAU PROOFS AND SATISFIABILITY WITNESSES

DEFINITION 4.1. Abranch 8 is closedif there is ac such that, for some,
botho : A ando : —A are present inB. A tableauis closedif every branch is
closed.

DEFINITION 4.2. AnL-tableau prooffor the formulaA with global assumptions
G and local assumptiond is the closed.-tableau forG andU starting with 1:
—A.

For any logicL amongK, KB, K4, K5, K45, KD, KDB, KD4, KD5, KD45, KB4, T,
B, S4, S5, Cxt, the calculus is correct (proofs in Section 10):

THEOREM 4.1 (Strong Soundnes#$f).A has anL-tableau proof with local as-
sumptiondJ and global assumption§, thenG = U = A.

* This calculus has been found independently by&3a0].
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THEOREM 4.2 (Strong Completenes$).G = U = A, then A has anL-
tableau proof with local assumptiorig and global assumptions.

To provide a counterexample for the validity 4f we need a branci® without
contradictions. We need some preliminary definitions.

DEFINITION 4.3. A prefixed formula : A is reducedfor rule () in 8

— if (r) hasthe formy : A = o’ : A’ando’ : A’ isin B;
— if (r) hasthefornv : A = o1 : A1 | 02 : Ay and at least one af; : A; and
o2 Ao isin B.

The formulao : A is fully reducedin 8 if it is reduced for all applicable rules. A
prefix o is (fully) reduced if all prefixed formula : A are (fully) reduced.

For instance, reduction w.r.t. ru{@®) iso.n : OA € 8 implieso : OA € B.
Notice that a formula may be reduced even if no rule has been applied to that
particular formula.

DEFINITION 4.4. AbranchB is completedf all prefixes in8 are fully reduced
for B; it is openif it is completed and not closed. #ableauis openif at least a
branch is open.

Soundness and completeness can be reformulated as follows.

THEOREM 4.3. The formulaA is L-satisfiable for local assumptiorig and global
assumptiongs iff there is an open-tableau forU and G starting withl : A.

With Definition 4.4, open branches may well be infinite, as in first-order logic.
For instance, ifCA € G, then rules(Glob) and (;r) can generate an infinite
sequence of prefixes. Rulés), (K), and (4) generate an infinite branch when
applied to formulae like 1 OB A OCA.

If the focus is provability and not decision procedures, a completed branch
is simply the result of any systematic and fair search strategy [13, 20]. To ob-
tain decision procedures, we must restrict the applicability of tableau rules. Some
techniques are obvious.

Technique 4.1Apply rule (r) to a prefixed formulas : A in 8 only if the
formula is not already reduced according to Definition 4.3.

* Forinstance, there are two cases in whieh-formulac : =0OA can be the reduced for rule).
The obvious way is to apply the rule o: —O0A and introduce a new prefixed formuan : —A.
However, some other rule may have already introduced a formula—A. In this case there is no
need to apply rulér).
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This is not enough to tame the examples mentioned above. A solution is a more
or less smart form of “loop-checking” [30, 7, 13, 20, 22, 25, 23, 32]: loosely speak-
ing, never reduce set of formulaef we have met and reduced this set beforehand.
We discuss this issue in Section 8.

5. From Gentzen-type and Prefixed Tableaux to SST

We can see a tableau proof as a failed attempt to find a countermodel for a valid
formula. Loosely speaking, the proof search is a “journey” through a tentative
Kripke model, jumping from world to world, chasing a contradiction. The differ-
ence between Gentzen-type, prefixed, and single step tableaux is precisely the way
they journey.

5.1. FORWARD RULES IN GENTZENTYPE AND PREFIXED TABLEAUX
The main intuition behind SST is inherited from Kripke [29].

Intuition . SST views the prefixes within a branch as a tree, labels nodes with a
single formula, reduces formulae one by one, and moves formulae only toward a
child or a parent node in the tree of prefixes.

Gentzen-type tableaweduce modal connectives by transforming a whole set
of modal formulae$ into another se§”. For instance, the logik4 is characterized
by the following rule:

(—-OA}U S whereS* = {B,0B | OB € S}.
(=AU S

In this way tableaux are trees where each node is labeled by a set of formulae. If
we arrange deduction in a way that a single formula labels a node of the tree, then
we must use global branch modification rutedelete all nodes in a branch and
replace them with others [13].

Intuition . Such transformation corresponds to a jump forward from the world
described bysS to the world described by*. It is a jump along one arc of the
accessibility relation. We never look back again. SST decompose such a “large”
jump into many “leaner” steps that take only one formula as input.

The difference between such a global rule and the SST rules is shown in Fig-
ure 2. We can simulate th&t jump with many subsequent applications of {l&g)
and(4) SST rules. We delete formulae in the Gentzen calculus while the SST rule
a can still be appliedto 1C A D.

Soundness is at stake: a complex rule can be globally sound, but its “stepwise
computations” may not be such. The key point is that the correctness proofs of
Gentzen-type tableaux [12, 13, 20] are stepwise. In a nutshell,Rb, we pick
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K4 Gentzen-type reduction K4 single step reduction
{—-0OA,O0B,C A D} 1:—-0A (a)
{—A, B,OB)} 1:0B ()
1:CAD

11:—-A (w)toa
The first set describes world 1 the 1.1:B (K)tob
second describes world1l 11:0B 4tob

Figure 2. Gentzen-type tableau vs SST #«4.

eachA” e §% and show that its truth value inis forced by the truth value im of
a correspondingt € S.

Prefixed tableawa la Fitting [13] introduce prefixes to “name” worlds and
mimic the behavior of Kripke semantics with a syntactic relatiobetween pre-
fixes. For instance, in the caself, if 1 ¢, 1.1 and 11 >¢,4 1.1.1, then we have
1>y, 1.1.1. Deduction is performed by considering a single fornwulacA and
addingo* : A for everyo* such that > o*.

Intuition . This deduction steps corresponds to a jump from the world named
to another (possibly far away) world, named. SST break “long” jumps into
sequences of “shorter” steps.

The difference between prefixed tableaux and SST is shown in Figure 3. SST
“emulates” the effect of transitivity by first moving to world1la v-formula and
then using rulgK).

Completeness is under siege: in a prefixed tableau we can jump far away, and
in a single step tableau we may lack the intermediate worlds needed to fill the gap.
Again, the analysis of the completeness proof for prefixed tableaux [13] reveals
that all intermediate worlds are there.

5.2. BACKWARD RULE AND ANALYTIC CUT

Euclidean and symmetric logics have accessibility relations where an arc between
two worlds in one direction (“forward”) imposes the existence of another arc in the
opposite direction (“backward”).

Intuition . In these logics, “discovering” a formula in the future forces constraints
on the past. For logical consequence Gentzen-type tableaux must UBEquiss
the formulae that will be discovered.

* The cut rule is defined TAT SSU{—-A}' The rule makes it possible to guess the truth value of
the formulaA. See [13] for a discussion.
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K4 prefixed tableau K4 single step tableau

1:0A 1:0A
| 11:0A )
1.11: A 111: A (K)

Since 1>¢, 1.1.1

Figure 3. Prefixed rule vs SST fdf4.

Gentzen-type deduction f&B Single step tableau
{(—-O0—-0A} 1:-0-0A
{—-O0—-0OA, -A} {(—-O—-0A, A} 11:—-—0A ()
{——0A, -O0—-—A} 11:0A (dneg)
{0A, -O0—-—A} 1:A (B)

{—|—|—|A, A’ —|‘:’—|DA}
{(—A, A, —O—-0OA}
4L

For the Gentzen-type derivation we apply first the cut rule and branch
the search. On the left branch we apgheg rules (not marked) ankB
rules. The initial set corresponds to world 1; the fik&t step leads to
world 1.1 and the next in 1.1.

Figure 4. Backward rule rather than cut fems.

SST use backward rules to bring back newly discovered formulae in previous
worlds. We gain some of the computational power of cut without its branching
factor

In Figure 4 we compare the Gentzen-type ruleKa&rwith the corresponding
backward rule in SST. For the Gentzen calculuskBeule transformg—O0A} U S
into {—A} U {B,—-0—C | OB, C € S} [13, 20].

Notice that cut is necessary for the completeness of local logical consequence
in KB. An example is=xs {A, B} = 0—0O—(A A B) [13].

6. Modularity

The first property of interest imodularity Hilbert axiomatizations are modular
“par excellence”: once we fix the set of rules and axioms that we want to use, it
is clear that the logi&D4 is an extension of (has more theorems than)ransla-
tion methods based on the relational translation [18] or the functional translation
with an explicit equality theory [39] are modular: change the first-order (equality)
axioms representing the accessibility relation and change the logic.

Gentzen calculi and the corresponding tableaux [13, 20] are much less modular
since the logic dependent part is compiled into one single rule flmrmulae. To
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change the logic, we must change the whole rule. The only modular part is the
presence of a single rule for reflexivity.

SST have the same cumulative flavor of Hilbert-style axiomatizations: the set
of available rules is given in Table Il, and by taking different subsets we obtain
different logics. The calculus with rulek) and(4) is clearly an extension of the
calculus using only rulék).

Notice that there is not a 1-1 mapping between axioms and SST-rules. For
instance SST can simulate the effect of three axidgms T + 4 with two rules
(T) + (4). On the other hand, rulgt?) alone cannot simulate the power of axiom
5. In a similar way(K) + (T) + (4) + (B) is not enough to get completeness for
S5. Overlooking this fact leads to incomplete formalizations. For instance the rules
for K5 are not complete in [32], and the rules &% are not complete in [29].

7. Proof Confluence

The study of confluence (Problem 2) has a long tradition in rewrite systems, and
we refer to [24] for an introduction.

7.1. PRELIMINARY DEFINITIONS AND COMPARISONS

In the sequek, y, z, u will be stages of the computation ard will be a rela-

tion between them. Here, the computation is the proof search, and its stages are
tableaux, sets of clauses, etc. For tableaws y if the tableauy is obtained from

x with an application of a tableau rule. For resolutianis set of clauses angd

the same set plus a resolvent of two clauses @m minus a subsumed clause. The
relation —* is the reflexive, transitive closure et whereas—¢ is the reflexive
closure.

DEFINITION 7.1 [24, p. 779]. The relation> is strongly conflueniff

Vxyz.if x - y andx — zthen3u. y -*u and z —>° u.

This form of confluence is too strict, and it is satisfied onlynbgdal resolution
[9]. We are usually interested in confluence modulo an equivalence relation. For
instance, in first-order resolution we want confluence up to renaming of bound
variables. If~ is an equivalence relation between stages of the computation, we
have (see [24, page 802]) the following definition.

DEFINITION 7.2. The relation— is strongly confluent module iff

Vxixoy1y,  if xq3 ~xpandxy — y; andx; — v,
then Juqus. us ~ upx andy, —* ug andy, —€ us.

Clearly thefunctional and relational translation methodssed on resolution
[18, 36, 38, 39] are strongly confluent modulo isomorphic renaming of bound
variables. They remain so using subsumption.
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Among direct methodgitch-style tableaux or Gentzen calculi are not conflu-
ent The culprit is ther rule (e.g., in Section 5): replace the Set {—=OA} with the
setS*U{—A}, whereS* is obtained fron by considering a subset of the formulae
of S. Typically one focuses omB € S (or —0OB) and deletes the other formulae
[12, 13, 20].

Backtracking becomes the only choice, and the search strategy becomes critical
[8]. We have a patrtially negative answer to Problem 2: being a systematic strategy is
not enough to be a fair (and hence complete) one. Consider the following selection
technique.

Technique 7.1Select formulae that have been reduced the least number of
times; then select formulae, thers formulae.

This strategy is clearly systematic but is not complete for Gentzen-type tableau:
try {DAVvOB, ~O(AV B)}. On the contrary, itis complete for SST. More examples
of systematic yet incomplete strategies for Gentzen-type tableaux are discussed in
[8].

The practical consequence is that we must do a lot of (maybe pointless) case
analysis with8-rules before trying anyr-rules. This substantially hinders the
effectiveness of the proof search [26].

7.2. SST CONFLUENCE

Single step tableauare strongly confluent modulo a renaming of prefixes. To prove
this result, we need some preliminary definitions.

DEFINITION 7.3. An injective and surjective functionfrom the set of prefixes
onto itself is arenamingiff #(1) = 1 andh(on) = h(c)m for some integem.

Intuitively, a renaming permutes the integers and leaves the structures of pre-
fixes unchanged.

DEFINITION 7.4. The sets of prefixed formula®, andB, are equivalent mod-
ulo a renaming of prefixes iff there are two renamirigs and h,, such that
l’l,’j(hji(o’)) =ocandifo : A € Bi thenl’l,’j(O') tAe £j for i, j= 1, 2.

This definition can be extended to tableaux as sets of branches.

THEOREM 7.1. If v-formulae can be reduced more than once, SST rules are
strongly confluent modulo isomorphic renaming of prefixes.

We discuss the key steps of the proof, leaving details in the appendix. The dif-
ficulties are due to rules with side conditions, for example sthele (Figure 1b)
and thev-rules (Figure 1c), since conditions impose an ordering.
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The first case is when a prefix must be introduced by )ar(le before we can
apply rule K) to it. This also happens for matrix-based methods (&-gdmissible
substitution [47, page 113)).

Still, confluence does not require an arbitrary shuffling of rules: it requires that
if we can choose which rule to apptizen the choice is irrelevant. With rules |
and (K) we cannot choose: if we can appli ) to a prefixo.m present inB, this
prefix is not new. Dually, if we apply ar()-rule to a branchB and introduce a new
prefix o.n, this prefix is not present ig8. So we cannot applyK) to o.n in B.

The other case is when twoformulae,o : —=0A ando : —OB can be reduced
in a branchB. After the reduction ob : —0OA the prefixo.ny is no longer new.
Thus the reduction of : —OB needs to introduce another new prefix:;. By
changing the order we do not get the same result. The partial compuitien
B U {o.ny : =A, o.my : =B} is potentially different fromB, = 8 U {o.n; :
—A,o.my: B},

We introduce the following renamingds , andi,, and we are done.

onj ifs=o.n;,
hij(s) = { om; ifs=om,,
s otherwise

Remark For the logic45, KD45 andS5, we can choose the calculus with rule
(47). Thenn-formulae must also be reducible more than once.

8. Decision Procedures

There are a number of ways in whidecision proceduresan be designed using a
logical calculus. The traditional way is to keep the original calculus and constrain
the applicability of rules (e.g., [8]). An alternative approach is to revise the cal-
culus, embedding the constraints in the proof theory (e.g., [23]). Both approaches
have their advantages and limitations: the former uses a simple calculus by keeping
implicit the termination conditions. The second makes termination and the search
strategy explicit features of the (new) calculus at the expenses of its clarity and
flexibility.

As mentioned in Section 2, we would like some simple (local) conditions that
prevent the application of the rules in theginal calculus.

This objective seems difficult fdranslation methodssince first-order logic is
not decidable: for functional translations [36, 39, 47], the mapping of worlds into
terms containing variables makes it possible to generate infinite sets of resolvents
even with simple modal formulae. In Figure 5 we show a simple (Horn) satisfiable
formula with Nonnegart's translation [36]. The prolog terins f, i: f:g are called
world paths [39]. The corresponding intuition is that there is aRapath in the
model such thaty; Rw;.  Rw;. r., and so on.
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Formulap A O(p v ¢—p) A O=p in KD45

Translation clauses SLD resolvents
r(U,Vv:X). <~ pG:f)

p(). <~ pGi:f:g

p(W) < r(, W), p(W:g) <~ pli:f:g:8)

< pG:f). <pli:f:g:8:8)

Figure 5. Infinite resolvents for translation methods.

We shall see how a simple technique, a local restriction on first-order terms
corresponding to worlds, makes translation methods decidable.

To design decision procedures fiirect methodsuch as modal resolution [9]
or Gentzen-type calculi or tableau [13, 20], one typically uses the property of
analyticity. The basic idea is that a calculusaisalytic iff its rules and axioms
use subformulae only of the formula we want to prove [46]. In the case of logical
conseguence we may need to use also subformulae of the set of local and global
assumptions.

If every analytic rule introduces in the consequents only proper subformulae
of the formulae of the antecedent, then technique 4.1 is the only thing we need to
terminate. This is the case for Gentzen-type calculi and the related tableau methods
for the logick, if we restrict ourselves to validityhat is, with an empty set of global
assumptions.

In the general case, we must usep checkind8, 13, 20, 25]: before applying
any rule we check whether we haven'’t applied it already to the same antecedent; if
this is the case we block the application of the rule. If the calculus is analytic, this
technique guarantees the termination of the proof search [8, 20].

A weaker property corresponds to the notion of Fischer—Ladner closure for
dynamic logics [11]: we can definefmite supersebf subformulae oU, G and
the formula we want to prove. Then a calculusigper-analytidff the consequent
of any rule contains only formulae in that superset [20]. When loop checking is
used, this is sufficient for termination.

Implementations must store the trace of previous computations and, more or
less often, verify whether a rule has been already applied. This process may be
extremely expensive [8].

It is possible to compile the loop-checking technique into the rules of the calcu-
lus, as done in [23]: we add a constraint corresponding to previous application of a
rule and then modify the rules so that they propagate both formulae and constraints.
This approach doesn't avoid the problem of storing previous computations: it sim-
ply stores this information in the constraints, although this is done in clever way to
store only the minimal relevant information.
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An alternative approach [5] is to translate each logic iKfdor which blind
search always terminates. The difficult part of this techniques is crafting a polyno-
mial translation, which may vary from logic to logic.

Designing decision procedures forefixed tableauxeither & la Fitting or SST,
is easier than translation methods (there are no variables) but harder than direct
methods (we have “extra” prefixes).

If we neglect prefixes, Fitting’s tableaux [13, Chap. 8] are analytic, and SST are
also analytic with the exception of the logics with the radexr). For validity, if
the rule(Cxt) is not coupled with rulg4) or (4”), then it is easy to prove that
SST are super-analytic w.r.t. the t= SuU QS U ---0?Ss, wheres is the set of
subformulae ot/ U {—=A} andd is the maximum modal nesting of formulae Sn
In case okK5 the calculus remains super-analytic if we provedhee-offproperty
as in [13]: rule(Cxr) can be applied only once. Indeed this is the case after we
have restricted rul€xt to prefixeso.n with o = 1. The superset we are looking
foris §* = S U OS (see also [20] for a discussion).

8.1. INCORPORATING“LOOP CHECKING' IN SST

The intuition behind loop checking is stopping the search whenever two prefixes
are “a different name for the same state”. We change the definition of completed
branches (Def. 4.3) to incorporate this idea.

We say that a prefix is acopyof a prefixog for branchB if for every formula
Aonehasr: Ae Bifandonlyifog: A € B.

DEFINITION 8.1. A prefix ist-reduced inB if it is reduced for all rules except
rule (r). A branch® is w-completedf (i) all prefixes arer-reduced inB, and (ii)
for everyo that is not fully reduced there is a fully reduced cejyshorter thanr.

The intuition is that to avoid infinite computations;rules should not be ap-
plied to formulae belonging to copies. Any complete search strategy must now
prove that it always leads toracompleted branch. A simple strategy that works
together with technique 4.1 is the following.

Technigue 8.1Select prefixed formulae with the shortest prefix.
The final outcome is a-completed branch although the proof search may not
terminate: we only guarantee completion “ad infinitum”. To guarantee termination,

we may use the following technique.

Technique 8.2Before reducing a -formula, check whether the corresponding
prefix is not a copy of a shorter prefix.

This is exactly the loop-checking method in [8].
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Remark The difference between SST and Gentzen-type tableaux is that SST
are proof confluent. We do not need to backtrack once we find a loop; we leave the
“copies” and focus on other parts of the branch.

Strategies that guarant@ecompleteness are complete.

THEOREM 8.1. If the L-tableau with local assumption8 and global assump-
tions G starting with1l : A terminates with ar-completed branch, thed is
L-satisfiable forU andG.

For logicsk4 and S4 it is useful to sharpen the notion af-completeness by
using the notion ofmodal copyo is a modal copy obg in B if it has the same
formulae.

DEFINITION 8.2. A branch® is w-modal-completedf (i) all prefixes arern-
reduced forB, and (ii) for every prefixed formula : —OA that is not reduced
there is a shorter modal copy of o such thabg : —=0OA is reduced.

ForK4 or S4 Theorem 8.1 can be extenddd 7-modal-completeness.

Once a branch is eithar-completeness or-modal-completed, we can “shorten”
it without losing this property. First we introduce th@rward tree of prefixes
rooted atr in branchs:

Ftredo) = {o": A|o": A € 8 ando is an initial subsequence of}.

The prefixo is in Ftredo), sinceos is an initial subsequence of itself.

Second, we say that a branghis prunedinto 8B \ Ftrego) if the set of prefixed
formulae B \ Ftrego) is obtained from®B by deleting all prefixed formulae in
Ftredo).

Third, the prefixed formular : —OA is fulfilled by o.n in 8 if o : —OA is
reduced for rulgn) in B because.n : —A is in B (see Def. 4.3).

The result we are looking for is the following.

LEMMA 8.2. (Pruning Lemma).Let B be a branch and.n a prefix such that for
everyo : —0OA that is fulfilled byo.n there is shorter copyresp. modal copy
op such thatoy : —OA is reduced inB. If 8 is w-completed(resp. 7-modal-
completedl thenB \ Ftreg(o.n) is m-completedresp.-modal-completed

Proof. This operation only changes the status of théormulaec : —0OA in
B \ Ftredo.n). By definition of 7-(modal)-completeness, eitheg : —OA is
reduced or there is a shorter (modal) capy such thatogg : —0OA is reduced.
By hypothesiso is a (modal) copy oby, and in either case we have a reduced
(modal) copy of the prefix . O

* This is not the case for logi¢eB andB. For instance, usé = {G(OBAOO—B)}andA = T.
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Table Ill. Input size parameters

Par. Definition

maximum nesting of modal operatorsrinf (U U {—A})
number ofv-subformulae imnf (U U {—A})
p number ofr-subformulae imnf (U U {—A})
dp  the maximum nesting of possibility operatabs
not under the scope of any operators imnf (U U {—A})
pc  number ofr-subformulae imnf (G)
ng  humber ofv subformulae imnf(G)
fc  number of formulae ofinf(G).

The intuition is thatr-completeness (modal or not) is a minimal requirement:
when pruning a branch that satisfies the preconditions of the pruning lemma, we
are just deleting useless reductions.

8.2. DECIDABILITY WITHOUT LOOP CHECKING

Loop checking is a very expensive method and does not match our second objective
(Problem 4): a simple technigue on the original rules of the calculus that checks
only the formula to be reduced.

In the rest of the section, we identify such simple techniques when the set of
global assumptions is empty and extend it to translation methods. We focus on
validity or at most local logical consequence.

For sake of simplicity, we assume that all formulaeGn U, and the initial
formula 1: —A have been reduced to negation normal form with standard trans-
formations such agnf(—0A) > < (nnf(—A)). All rules are also transformed in
the obvious way. For example, in rule) in Figure 1b we replace : —0OA with
o : A ando.n : —A with A.

We introduce some parameters to evaluate the sizg of, andA in Table Il
The measurd is also called the “modal depth” of the formula.diA A GO B) v
OC we have thatl = 3,n = 1, p = 3, andd,, = 1. Itis p = 3 because we must
count bothG<C B and< B.

Intuition . For each logid., there is a height bountlb, on the length of prefixes
in a branch after which either there are no more modal operators or formulae just
repeat themselves with a longer prefix.

Technique 8.3For every logicL the application of the single step tableau
rule is limited to prefixes whose length is less tiian.



SINGLE STEP TABLEAUX FOR MODAL LOGICS 339

Table IV. Bounds for decidability checks

LogicL Boundhb,

K,D,T,KB,KDB,B 1+d
K4, KD4, S4 2+dp+pxn

This is exactly the kind adbcal termination checkve are looking for: it requires
to look only at single formulae and, #b,_ is polynomial in the size of the input
formula, it is also efficient. In Table IV we give the upper bound for a first set of
logics. The first result is easy.

LEMMA 8.3. For local L-logical consequence=, U = A in the logicL every
strategy that applies techniqudsl and8.3with the bounds in Tabl®/ terminates.

The difficult part is proving that we preserve completeness. This proof is ex-
tremely difficult for Gentzen-type tableaux (see, e.g., [5, 23]). The major problem
is that we cannot universally quantify over strategies because the calculus is not
proof confluent and there are incomplete strategies (Section 7). As a consequence,
termination proofs have an existential flavor “if there is a proof, then there is a
proof such that...".

Thanks to proof confluence, we prove something more general.

THEOREM 8.4. For local L-logical consequence- U = A every strategy which
applies techniqued.1and 8.3 with the bound of Tablé/ terminates in one of the
following conditions:

(1) atableau proof has been found, or

(2) in every branch some rule is still applicable, or

(3) at least one branch can be pruned intoracompleted branchz-modal-
completed foK4 and S4).

Proof [Sketch, details in the appendixThe difficult case is when the strategy
terminates and no rule is applicable in at least a braBchVe have to prove that
the branch® can be pruned into a-(modal)-completed branch. The proof goes
through the following steps:

— prove that ifo : ¢ A is not reduced, thes must be longer thanb, (all other
r-formulae are reduced);

— prune subtrees of prefixes until a branghis found that no longer satisfies
the preconditions of the pruning lemma,;

— show that the longest chain of prefixes Inlup to 1n;...n, that does not
trigger the pruning lemma is such thak hb, .
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The logicsk, D, T, KB, KDB, andB can be treated without difficulty whereas
K4 andS4 require more work, especially for the third step. We use the following
properties of branches reduced for ride.

PROPOSITION 8.1.If the prefixog is an initial subsequence of in the branch
B, thenoy : OA € B8 implieso : OA € B.

PROPOSITION 8.2. Let all prefixeso, o.n7 Uup too.n....n, have the same-
formulae; then each.n; . .. .n; has been generated by a differenfformula<A.

Then, a counting argument shows that the longest sequence that does not trigger
the pruning lemma has lengtth, = 2+d +n x p. a

We do not need to prune the branch after the proof search terminates. It is
enough to know that we can do it. The calculus in [23] corresponds to a visit of
the tree of prefixes directly in the pruned brangh

We havereplaced loop checkinfpr SST with a simple local check.

8.3. DECIDABILITY FOR TRANSLATION METHODS

This result can be easily extended to free variables SSPproposed by Beckert
and Goré [1] and to other methods. It gives a direct decidability check for functional
[38, 39] and mixed [36] translation methods.

Observe that there is a 1-1 mapping between prefixes in (single step) prefixed
tableaux and ground terms with functional or mixed translation methods [43, 47]
for the logicsK, KD, T, K4, KD4, andS4. Use the following technique.

Technique 8.4Delete resolvents with terms corresponding to worlds paths lon-
ger thanib, for a logicL amongK, KD, T, K4, KD4, andS4.

This is particularly effective for methods that directly employ resolution. It is
also much simpler to implement than the exponential upper bound on multiplicity
derived in [5].

We can extend the decidability result to translation methods by combining The-
orem 8.4 with the mapping in [43, 47, 5]. We need factoring and condensing;
otherwise the number of literals in not subsumed clauses can grow without limits.
A direct proof can be found in [44].

THEOREM 8.5. Resolution with factoring, condensing, and techni@uis a
decision procedure for the modal logiksKD, T, K4, KD4, S4, with the functional
and mixed translation methods.

An S4 model is also as5 model. So, this technique also works 65 andSs.
In the example at the beginning of the section, we haveithat= 2+1+2x1 =
5, and thus we can terminate after few resolvents.
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9. Complexity and Search Strategies

The next step is proving (or trying to prove) that we can efficiently upgrade this
procedure to solve global logical consequence. A further step is finding further
restrictions on the proof search to match the theoretical complexity bounds.

In this section we assume a basic knowledge of complexity theory. An intro-
duction can be found in [28, 27], and some concepts of complexity classes are
recalled in the appendix. Recall that deciding validity issseACEecomplete prob-
lem for modal logics betweeki andS4 [30] and deciding logical consequence is
EXPTIME-complete [22] foK. Fork4s, KD45, andsSs, deciding validity is “only”
co-NPTIME-complete [22].

We need some preliminary observations on the size of the smallest model that
can satisfy a given formula.

Fact 9.1. If decidingL-satisfiability is NB'IME-complete, for every-satisfiable
formula A there is anL-model (W, R, V) for A such that its size (number of
worlds) is polynomially bounded in the size af

Fact 9.2. If decidingL-satisfiability is BPACEcomplete, there ane-satisfiable
formulae A such that the size (number of worlds) of the smallestodel forA is
exponential in the size of.

Fact 9.3. If decidingL-satisfiability is BPACECcomplete, for every-satisfiable
formula A there is an.-model (W, R, V) for A where the length of the longest
simple R-patht is bounded by a polynomial in the size 4f

The termination check in Section 8 is a reformulation of this property. Theo-
rem 8.4 simply says that the length of the long®spath ishb, .

Fact 9.4. If deciding L-logical consequence is EXIME-complete, there are
formulae A such thatG (4, A and that the length of the longest simgepath in
the smallest.-countermodel for is exponential in the size of andG.

These facts have a direct impact on the complexity of the proof search, in par-
ticular for calculi that work by refuting the theorem, that is, by trying to construct
a countermodel.

With an NPriMe-complete problem we can generate directly the countermod-
els: we “know” that some of them are small (although it may take exponential time
to find one or prove that there are none).

With a PspPACEcomplete problem we cannot generate whole models, since
there are formulae that have exponentially large models. Still, we “know” that we
can visit some of them using polynomial space.

* A model (W, R, V) is simply a directed graph. A simple path is a sequence of worlds
W1, - -y wy Without repetitions such that; Rw; 1.
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Remark If the completeness of our proof procedure requires the generation of
the whole model, the corresponding algorithm will takeponential spaceather
than polynomial space in the size of the input.

9.1. DEALING WITH LOGICAL CONSEQUENCE

The extension of technique 8.3 and 8.4 to logical consequence seems fairly easy
using the following procedure:

(1) keep the rules and the strategy of the calculus for validity (whether direct or
based on translation into first-order logic);

(2) apply the modal deduction theorem and transform (global) logical consequence
into validity (local logical consequence);

(3) recompute the upper bounds for the resulting problem;

(4) use the decision procedure with the new bounds.

The key question is, how efficient is this procedure? Reconsider again the modal
deduction theorem [13, 15]:

G =L U = A iff for somen one hasi=, U U | JO'G = 4, (1)
i=0

wheren® = G and0' ™G = {0A | A € O'G).

We can reformulate the question in terms of the value.df the value ofn
is polynomially bounded in the size @f, U and A, then this can be a feasible
approach. Ifn is not polynomially bounded, then the decision procedure could
receive an intermediate input with arponential blow-upv.r.t. the original input.

One may argue that the translation used in the deduction theorem is too naive.
For instance, the decision procedure $drproposed in [5] translates4 into K us-
ing two steps: first it generates aa-satisfiability preserving modal CNF with the
techniques of Mints [35] and then uses a naive translaticgtdhto K. The naive
translation would yield an exponential blow-up but the preprocessing guarantees a
polynomial translation. Unfortunately, clever translations are not possible.

THEOREM 9.1. For the logicsK, KD, T, KB, KDB, andB the existence of a polyno-
mial translation of logical consequence into validity implRsPACE= EXPTIME.

This is an obvious consequence of the fact that validitKfisr PsPACEcomple-
te whereas logical consequence is ExXfe -complete.

COROLLARY 9.2. For the logicsk, KD, T, KB, KDB, andB the value ofz in (1)
cannot be bounded by any polynomiakin

Proof. Suppose that is bounded by a polynomial in the size 6f U and A,
thatis,n < poly(|G|,|U|, |Al).
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Then observe that the modal deduction theorem is monotoneifrfl) holds
for somen, then it holds for alin > n. Indeed,=, U U U?:o 0'G = A implies
E UUU_,O'GUJL,.,0'G = A by monotonicity of the underlying modal
logic L.

For eachG, U and A we use directly the upper bountgh.x = poly(]|G|,
|U|,|A]) and apply the deduction theorem with = nna The generation of
Ui 0'G can be done in polynomial time in the value iofax and the size of
G. This would yield a polynomial time transformation of logical consequence into
validity. 0

These negative results can be extended to the decision procedures for SST and
functional/mixed translation methods:

COROLLARY 9.3. For logical consequenc& =, U = A in the logicsK, KD,
T, KB, KDB, andB the value ofib_ cannot be bounded by any polynomial in the
size ofG, U and A.

If a polynomial upper bounédb, existed, we could set = hb, in the modal
deduction theorem (1).
The situation is better fak4, KD4, andS4.

THEOREM 9.4. For global logical consequencg =, U = A in logicsK4 and
S4 every strategy that applies techniqUie3.3with hb, = 2+ (d, + pg) + (p +
pc) X (n+ ng + fg) terminates in one of the following conditions:

(1) atableaux proof has been found, or
(2) in every branch some rule is still applicable, or
(3) at least one branch can be pruned intacamodal-completed branch.

Proof. Logics includingk4 satisfy a particular form of the deduction theorem
[25,13,15]:G = U = Aifandonly if =, GUOGUU = A. Apply Theorem 8.4
tothenewsetV’' =GuUOGUU. O

9.2. NPTIME-SEARCH STRATEGIES FORK45 AND S5 WITH SST

From the preliminary facts we have recalled, proof search for logicxlgeand
S5 should be much simpler than for other logics.

Yet, the presence of symmetry makes things harder for most direct methods,
either Gentzen-type tableaux or modal resolution. Cut is necessary when faced
with local logical consequence for arbitrary formulae. The prototypical example
is E=ss {A, B} = OC(A A B). The common solution [9, 25, 40, 41] is to use an
equivalence-preserving preprocessing step that reduces the depth of the modal con-
nectives. Then cut-free calculi for the reduced formula can be found. The problem
is that the preprocessing step leads to an exponential blow-up. This can be avoided
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by using a further preprocessing with the definitional translation into modal CNF
by Mints [35]. The immediacy of the translation is now lost, and this procedure
requires at least a quadratic increase in size.

An alternative approach is the translation ist[14, 8]. This means translating
a simpler problem into a harder one.

For translation methods, the main result is in [47]. It gives a linear upper bound
on the multiplicities of every first-order variable.

In Section 4 we proposed two sets of rules for eack4#, KD45, andS5. A
simple technique to restrict rufe yields the NRIME-bound.

Technique 9.1With the calculus using rulé4) for K45, KD45, andS5, apply
rule (;r) once to eachlr-formula—0OA (no matter its prefix).

Technique 9.2With the calculus using ruléd™) for K45, KD45, andsS5, apply
rule (;r) only to the prefixo = 1.

Each technique gives a decision procedure when combined with technique T. 4.1
and provides an equivalent of Theorem. 8.4. We can also weaken the condition on
modal completeness: inreweakly-modal-completeoranch the modal copy, of
Definition 8.2 may be longer tham and may have more-formulae tharv.

LEMMA 9.5. For logical consequenc& = U = A in logics K45, KD45, and
S5 every strategy that applies techniqliet.Land T.9.1 (T.9.2)terminates in one
of the following conditions:

(1) atableaux proof has been found, or
(2) in every branch some rule is still applicable, or
(3) at least a branch isr-weakly-modal-completed branch.

Proof. Reduction wrt ruleg4) and (4%) forces all prefixes to have the same
v-formulae. Every prefix is a modal copy of all other prefix.

For the calculus with rulg4”), all prefixes are reduced w.r.t. ru(d®), and
hence the prefix 1 contains alformulae and alkr -formulae. a

We can also show that this is optimal.

THEOREM 9.6. For logical consequencé& = U = A in logicsK45, KD45, and
S5 every strategy with techniqui9.1 (T.9.2)generates SST branches with size
polynomial in the size of, U and A.
Proof.We can generate at mgstt pg + 1 different prefixes, which have length
at most 1+ p + pc + 1. Each prefix can have a number of formulae equal at most

* Loosely speaking, the number of times we need to instantiate each variable that is generated by
the translation of modal formulae into first-order ones.
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to the number of subformulae of, U, andA, and this number is linearly bounded
by their respective sizes. The theorem follows with a simple multiplication.O

Notice that the number of worlds imearly bounded by the number of-
formulae. This corresponds to the lowest possible bound.
We can extend this technique to translation methods.

Technique 9.3Let L be one of the logick45, KD45, and S5; the first-order
terms corresponding to worlds must contain at most one occurrence of each Skolem
function/constant corresponding taraformula.

In Figure 5, we can now stop after the generation of one resolvent. Resolution
with technique 9.3 is a decision procedure k@b, KD45, S5.

9.3. SPACE COMPLEXITY OF DIFFERENT CALCULI

The case for the logick, KD, T, K4, KD4, and S4 is more interesting because
deciding validity is BrACEcomplete and therefore we may have formulae only
with “large” models.

Gentzen-type calculiequire only polynomial space if we use loop checking
with backtracking as in [8, 30, 22]. This works if the calculus actudijetes
the formulae before backtracking to a previous stage. Loosely speaking, we can
describe this depth-first search as follows:

(1) start from a set of formulae;

(2) reduce propositional connectives (possibly creating new branches);

(3) if we get an inconsistent set, then stop and pass to a new branch;

(4) choose a-formula, and save the remaining choices in the stack;

(5) reduce ther-formula, generating a new starting set;

(6) if the same set was already generated, then delete all sets generated after the
latest choice point and backtrack; otherwise go to (1).

This strategy guarantees the use of polynomial space but has its disadvantages.
The worst problem is the reduction of disjunctions befaréormulae to retain
completeness (see Section 7). In practice, this forces a lot of (likely pointless) case
analysis [26].

More space, but still a polynomial amount, is required by the calculus in [23].
Indeed the major difference is that the loop-checking mechanism is compiled into
the rules. We can now check for loops without looking back in the stack. However,
we are simply encoding a part of the stack in each node, so nodes are bigger.

Remark The usage of polynomial space is not a characteristic of Gentzen sys-
tems. It is simply the fact that we are used to consider depth-first search as the
“natural” way to search for a proof in Gentzen-type calculi. If we use a breadth-first
search for visiting choice points af-formulae, then we need exponential space.
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Tableau methods that use an explicit accessibility relation [3, 29] are bound to
take exponential space: for the “bad formulae” they create the exponential models
(Fact 9.2).

For the same reasoneelational translation methodsased on resolution or
similar saturation methods [18] require exponential space. The key observation is
that the completeness of first-order resolution forces the addition of (nonsubsumed)
resolvents to the current set of clauses. If no contradiction is found, the final set of
clauses describes the accessibility relation between worlds of the (counter)model.
This model may have exponential size (see Fact 9.2 above).

Functional translation methodare slightly better, since the accessibility re-
lation between worlds is embedded in the unification theory. Therefore, we do
not need to store (and not even generate) the clauses describing the accessibility
relation. This is also true for the mixed translation method [36] where all literals
describing the accessibility relation can be resolved away.

Yet, we have the literals describing properties of worlds (recall that a term is just
aname for a world). Again, the saturated set of clauses for satisfiable formulae must
describe all these worlds and these may be in exponential number. The conclusion
is the following.

Fact 9.5. Any first-order complete resolution strategy for relational, functional,
and mixed translation methods requires worst-case exponential space.

This may seem strange given the experimental results in [26] where resolution
outperforms tableaux. The caveat is that we may be comparing the efficiency of
implementations or using benchmarks that are rsrAe ehard.

It is, of course, possible to recover polynomial space by ad hoc mechanisms
for deduction in modal logics. At a guess, this may be done by a combination of
specialized rules for deleting (not-subsumed) clauses and selection functions for
the next resolvent. In such a way we could mimic the search strategy of Gentzen-
type tableaux.

Yet, this would be the very negation of the motivation behind translation meth-
ods [37, page 513]: “there is no need to develop specialized theorem provers for
modal logic.”

Modal resolution [9] also requires exponential space.

The worst-case complexity of the matrix proof method [47] is unclear. An ex-
ponential upper bound for the calculus has been found in [4] but it is not possible to
derive (straightforward) conclusions regarding its worst-case space requirements.

The algorithms foprefixed(single steptableauxin [13, 20, 32] require expo-
nential space. This is not by chance: being a saturation method, prefixed tableaux
suffer from the same illness of resolution.

Fact 9.6. Any complete strategy for prefixed (single step) tableaux that never
deletes formulae requires worst-case exponential space.
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9.4. PSPACESEARCH STRATEGIES WITH SST

To recover a BpAacEalgorithm for validity, we need two techniques:

— delete formulae as soon as they are no longer needed;
— do not generate new prefixes if too many formulae are unreduced.

We know that this is possible: we can always fall back on a depth-first traversal of
the tree of prefixes and simulate the depth-first strategy of Gentzen-type tableaux.
We would like to exploit proof confluence for a more flexible strategy.

At first, we focus on the logics betwedhand S4, and then extend the tech-
nigues to logicskB, KDB, B. As in Section 8 we assume that formulae are in
negation normal form. Some preliminary notions are also neededatievard
treeof a prefix in branchB is the set

Btrego) = {og: A |0gp: A € B andoy is an initial subsequence of}.
We need to introduce the conceptaainfined formula

Intuition . A confined formula with prefix- does not interfere with the consistency
of formulae having different prefixes. So we can delete the formulae of a confined
prefix as soon as they are saturated.

Let 8’ be a set of prefixed formulae. A prefixed formuta: CA € B’ is
confinedin B’'. Prefixed formulaer : A A B ando : A v B are confined inB’ if
they are reduced i’ (Definition 4.3) or no formulaoC is a subformula of either
A or B. The prefixed formula : OA is confined ing’ iff it is reduced inB’. A
formulaA € U is confined inB’ iff 1 : A is confined inB’.

DEFINITION 9.1. A prefix isconfinedin a branchg if all formulae inU and all
prefixed formulae in Btrge ) are confined in Btre@ ).

LEMMA 9.7 (Local Stability). Let o be a confined prefix iBB. No sequence of
rules (@), (B), (Loc), (D), (K), (T), (4), (4") applied to formulae with prefixes
different fromo can introduce a new prefixed formuta: A in B.

Proof. The proof is by a double induction on the length of the prefiand the
length of the sequence. The case for prefix 1 is immediate.

For the first induction, suppose thai: is confined but there is a sequence of
rules that introduces a new prefixed formala : A.

The sequence of length 1 can be composed onlyibyude. Then, there should
be an unreduced : OA’ in 8. This formula is also in Btrge.r), and therefore
o.n could not be confined.

For longer sequences, we apply the induction hypothesis ifoo is confined,
no sequence of rules applied to prefixes different frencan introduce a new
prefixedo : OA in 8. Only o andg rules are left, and the corresponding formulae
are confined by hypothesis. a
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We use this lemma for proving that confined prefixes are preserved by the
techniques we have used for decidability.

PROPOSITION 9.1.A strategy using techniquds4.1andT.8.3cannot introduce
a new prefixed formula : A in a branch& if ¢ is a confined and reduced prefix
in B.

Now, choose a parametey > 1 (width bound) equal to some fixed constant
and apply the following technique.

Technique 9.4For every integen and every prefix- of lengthn, do not apply
rule (7r) to prefixed formulae : ©A if there are more thawb unreduced prefixes
of lengthn + 1.

The next step is proving that the unreduced part of each branch has only a
polynomial size.

THEOREM 9.8. For the logicsk, KD, T, K4, KD4, and S4 every strategy using
techniquesl.4.1, T.8.3 andT.9.4the number of unreduced prefixes in a branch is
bounded by a polynomial in the sizeldfand A.

Proof. By technique T.4.1 the number of (unreduced) prefixed formulae is lin-
early bounded by the number of subformulagodnd A. By technique T.8.3 the
maximum length of prefixes igb_, which is polynomially bounded in the size of
U andA (Thm. 8.4). By technique T.9.4 we have at ma$tunreduced prefixes of
lengthn for eachn > 1. The claim follows by a multiplication. a

The polynomial space algorithm we are looking for must use this additional
technique (beyond T.4.1, T.8.3, T.9.4) for each brasch

Technique 9.5Delete all prefixed formulae of every confined and reduced pre-
fix in B. If a prefixed formulas.n : A is deleted in this process, then consider the
corresponding : ©A as still reduced.

We may keep deleted prefixes somewhere to exhibit the model, but then the
auxiliary storage is bound to take exponential space (Fact 9.2).

The combination of these techniques preserves soundness (using Th. 9.1 and
7.1) and completeness (Th. 7.1, 8.1, 8.4), provides a decision procedure (Th. 8.4)
and guarantees the use of polynomial space in each branch (Theorem 9.8) — this
without dropping, but rather exploiting, proof confluence.

We are free to reduce a polynomial numberod formulae before reducing a
single disjunctive8-formula. Still we do not lose completeness nor the polynomial
space bound for the size of a branch.

* In general, we could also use a functioh < poly(|U |, |A]).
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Moreover, technique T.9.5 is so liberal that the part of the branch we keep in
memory may resemble a “tree with gaps”. For example, the part of the branch we
keep in memory can be composed only by the prefixes111,111.2, and 11.2.1,
because the prefix 1L has been deleted. Theorem 9.1 guarantees that such gaps are
harmless.

For logics with rule(B) these techniques are not sufficient. To be precise, reck-
less deletion of prefixes may lead to incomplete search strategies,osinceA
can be introduce by : 0OA andby o.n.m : OA. To prove that a prefix can be
safely deleted, it is not enough to look only to shorter prefixes; we must also look
to longer ones.

At first we need to revise the technique 9.5.

Technique 9.6Delete all prefixed formulae of every confined and reduced pre-
fix o in 8 such that for every.n the forward tree Ftrge.n) is empty (has been
previously deleted).

Second, use the following trick.

Technique 9.7If a new prefixed formula : OA is introduced inB, then for
everyo : OB if the corresponding.n : B has been deleted, then: < B must be
reduced again.

10. Soundness and Completeness for SST

As a preliminary result we can prove that SST satisfy a proof theoretical analogue
of the Generation theorem by Segerberg [15].

DEFINITION 10.1. A set of prefixe& is tree generatedif
(1) the prefix 1€ ¥ and it is the only prefix of length 1;
(2) if prefixng. . ... n;_1.n; € ¥ thenalsmy,. .. .. n_1 € X.
By induction on the rules used to construct a branch, one has the following.

THEOREM 10.1. Let 8 be a branch of a single step tableau; the set of prefixes
occurring in the brancHo | o : A € 8} is tree generated.

This explains why ther -rule requires prefixes to be new rather than unrestricted
as in [13]. Suppose that.n is new and yet it is the initial part of another prefix
o.n.ny...n;. By Theorem 10.1¢.n must also be present, contradiction.
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Table V. SST-rules and model properties

Rule form Semantic property
c:A=o0:B wlF Aimpliesw - B
oc:A=>on:B wRv andw I+ A impliesv I+ B
on:A=o:B wRv andv I+ A impliesw I+ B

om:A=om:B 3JwgwoRw andw IF A impliesw I+ B

om: A= omn:B JwywoRw andwRv andw IF A impliesv I+ B
omn: A= om:B JwgwoRw andwRv andv I- A impliesw I+ B
All variables except foivg are universally quantified.

10.1. STRONG SOUNDNESS

To prove the correctness of prefixed and labeled systems [13, 16], one establishes
a mapping between “names” (prefixes) and “things” (possible worlds) and shows
that the mapping is indeed an homomorphism preserved by tableau rules. To prove
the soundness of Gentzen-type tableaux [13, 20, 22], one shows that if a set of
formulae holds in a world, then a related set holds in a world one step away.

Intuition . The soundness proof of SST is a combination of both techniques: set a
mapping between prefixes and worlds, do not worry about homomorphisms, and
use the stepwise proof of Gentzen-type tableaux.

We need to establish some properties of the logics at hand, in a natural corre-
spondence with its SST rules.

We focus orv rules (the others can be found in [13]) and divide them into three
main classes, according the form of the prefixes that is used in the antecedent or in
the consequent of each rule.dtatic rulesboth the consequent and the antecedent
formula have the same prefix. For example, rdlB$ and(7T) are static. Irforward
rulesthe prefix of the consequent formula is one step longer than the prefix of the
antecedent. RuleXX), (4?), and(4) are examples of forward rules. backward
rulesthe prefix of the consequent formula is one step shorter than the prefix of the
antecedent. Rule@?), (B), or (Cxt) are backward rules.

Rules can balelayed This classification is orthogonal to the previous one. It
refers to rules applicable only to prefixes longer than two.

Table V identifies the correspondence between rules and propertiesadels
needed for the proof (see appendix) of the following lemma.

LEMMA 10.2. Leto : A = o* : B be an SST rule for logit; everyL-model
verifies the conditions in TabM.

The next step is defining a mapping between names and things and introduce
the notion of satisfiable branch.
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DEFINITION 10.2. Let8 be a branch andW, R, V) an L-model; anSST-
interpretationis a mapping from prefixes to world§o) € W such that for all
o ando.n present onB, one has (o) Ri(o.n).

SST interpretations do not depend on the logidn contrast with prefixed
tableaux interpretation [13], which are logic dependent. Loosely speaking, SST
interpretations are just-interpretations.

DEFINITION 10.3. A tableau brancl® with local assumption& and global as-
sumptionsG is L-SAT iff there is anL.-model{W, R, V) and an SST-interpretation
1() such that

(1) theL-model{W, R, V) validatesG;
(2) the world: (1) satisfiesU in (W, R, V);
(3) for every prefixed formula : A in B, the world: (o) satisfiesA.

A tableau isL.-SAT if at least one branch is such.
Now we have the machinery to provesafe extension lemma

THEOREM 10.3. Let 7 be anL-SAT tableau; the tableaG” obtained by an
application of an SST rule fdris alsoL-SAT.

Proof.If 7 isL-SAT, there is a branc that isL-SAT with an SST-interpretation
1() and a modelW, R, V). The cases wherg’ has been obtained by applying a
rule to a branch different fron®, or the rule applied to a prefixed formula is
ana, B, Loc or Glob rule are standard [13]. The different casesiarales and the
m-rule.

For SST-rules characterizing consider whether they are static, backward, or
forward. If astatic rule has been applied, then the preéfixis present in8 and
1() is defined on it. By inductive hypothesié ) I A and by Lemma10.2 we are
done.Forward and backward rulegnvolve prefixes of the formr ando.n both
already present on the branch. By Definition 10.2 one:ili@asR: (o n), and the
claim follows by Lemma 10.2.

Delayed rulesrequire an “ancestor” worldvy: by Theorem 10.1, ib.n and
o.n.m are in the branch, thea is there too. Hence() is defined on all three
prefixes and by inductive hypothesi&)Ri(o.n) andi(o.n)Ri(o.n.m). Apply
Lemma10.2.

The r-rule introduces a new prefix, and) must be extended. By hypothesis
the original branchB is L-SAT and thus (o) I —OA. The semantics forces the
existence of a worldv € W such that (¢)Rw andw I —A. Then extend() as
follows:

w if s =o.n,

J(s) = {l(s) otherwise
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Table VI. Conditions on the syntactic relation

Logic Conditions on the accessibility relation over prefiges o*

K o>o.n

KB o >o.nandon>o

K4 o> oo’ with|o’|> 1

K5 o > o.nando.o’ > o.0” with |¢’|> Land|¢”|> 1

K45 0.0’ > o.0” with|¢”|> 1

KD-logics asK-logics provided that either there is arsuch that > o.n
oro > o

T o >o.nando > o

B o > o.nando.n > o ando > o

S4 o>o.0

S5 o.0' >o0.0"

Cxt lo*|=|o| +1

We must prove thaj () is an SST-interpretation. On every prefixifferent from
o.n the mappingy (s) coincides withi (s), which is an SST-interpretation. More-
over, j (0)Rj(0.n) by construction. Since.n is new, there is no prefig.n.m in
the branch that requires us to prov@.n)R j (o.n.m). The branch i&-SAT on the
sameL-model with SST-interpretation(). a

The soundness theorem (Theorem 4.1) is now standard [13, 20].

10.2. STRONG COMPLETENESS

The completeness proof follows the general ideas of [13] adapted to “shorter rules”.
For simplicity, we give the proof using completed branches (Section 4). The exten-
sion torr -(modal)-completed branches (Section 8) can be done along the same lines
of the completeness proofs in [7] for prefixed tableaux or in [20] for completeness
via model graphs.

Intuition . Apply a systematic strategy to the tableau and use an open branch to
build a model for the initial formula-A, that is, a countermodel fot. Identify
prefixes present in the branch with worlds (so thais the identity function), and
show that ifo : A occurs in the branch, then alsal- A.

The “easy” part is the construction of a syntactic relatioetween prefixes
with the properties of the semantic relatighin L-models. Each logit. has its
relationt>; as shown in Table VI.

THEOREM 10.4. For every logicL, the syntactic relatiom> over prefixes has the
same properties of the semantic relati@over worlds.
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Figure 6. Traveling throughout prefixes k5.

The proof is long but easy: replace possible worlds with prefixes in the proper-
ties of R (Table I), use for> the conditions of Table VI, and reason by caqsge
appendix).

The “hard” part is the proof ofomplete reductigrthat is, ifo : OA is in the
branch andr > ¢*, theno™* : A is also there.

Intuition . Prefixed tableaux [13, 42] use in the calculus and have only ome
rule: if o : OA is present and > o* with o* also present, then add : A. The
proof procedure itself grants complete reduction.

However, complete reduction is too powerful because a set can be completely
reduced without being the result of a tableau proof; for exampilepp, 1.1.1.1 :
p} is completely reduced fat4 but doesn’t correspond to any tableaux proof.

Intuition . SST can recover complete reduction from SST-reductions by letting a
formula “travel” along prefixes.

A simple example is shown in Figure 6 f&b, where{1.1.3.1} s {1.2.1.4.1}
and thus we should hayé&.1.3.1 : A} implies{1.2.1.4.1 : A}.

We classify each logic according the “ability” of its syntactic accessibility rela-
tion . The relation> connects

immediate neighborsif > connects prefixes that are one integer shorter or longer
(logicsK, KB, and their serial, or reflexive variants);

far forward prefixes where the relation- can link a prefixo with a another prefix
o* that can be longer that but still o must be an initial subsequenceaf
(logic K4 or its variants);

far backward prefixes > can link a long prefixr with a shorters* such that*
is the initial subsequence of (logic K5 or its variants).

A logic can also satisfy a combination of these properties, for exarkipte,
Hence, we need to provecamplete reduction lemn{aee the appendix):

LEMMA 10.5. Let 8 be a branch of a tableau, i is completed for the logit,
then it is also completely reduced.

* Note that the relation> for K5 in [32] is incorrect and thus the original system is incomplete.
See also [20] for a detailed proof k6 completeness.
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Proof. If the syntactic relatiom- can access onlglose neighborghen complete
reduction coincides with SST reduction.

If > accesseforward prefixesuse rule(4) for copyingoA from o to o.n and
forward. Repeat until we arrive at the immediate predecesser* ol hen apply
rule (K).

For logics whose syntactic relation accesbaskward prefixesuse rule(4¥)
for copyingdA from o.n to o and backward. Repeat the process until we are at
the immediate predecessor«f and then applyK).

Other logics combine these techniques; for exampleCkarapply (Cxt) down
to 1 and(K) up too*. a

A further requirement is thaB should be an open branch, that is, for every
and everyA, there is no pait : A ando : —A in 8. Then we can prove strong
model existence theorem

THEOREM 10.6. If 8 is open branch for the rules of logic, then there is an
L-model forG and U where& is satisfiable.
Proof. Construct the model as follows:

W = {o : oispresentinB},
oRo* iff o1>o*,
Vip) = {o|o:pe B}

If L is serial, extendR by settingo Ro if there are no formula of the form
o : mOA in 8. This guarantees that : OB ¢ 8. Otherwise, since is reduced
for (D), we would have had : —O0—A € 8B, contradiction.

By Theorem 10.4,R satisfies the properties afaccessibility relations. We
must show thatB is L-SAT on model{W, R, V) with an SST-interpretation()
(here:() is the identity function): for everyd we must prove that it : A € B,
theno I A by induction on the construction of.

We focus on modal connectives.df: —O0A € B, we haveo.n : =A € B for
someo.n, sinces : ~OA must be reduced for ruler). By inductive hypothesis
o.n |k —=A ando Ro.n by construction. Therefore I —OA. If o : OA € B,
then, by Lemma10.5, for evewy* present in8 such thato > o*, one hass* :
A € 8. By inductive hypothesis* I A ando Ro* by construction. Therefore
o IF OA.

For everyA € G and every in B, the prefixed formula : A is present in the
branch8 becauser is reduced for th€Glob)-rule in 8. Theno I+ A. With the
same argument, il € U, then 1I- A. O

Thestrong completeness theordirheorem 4.2) is now standard [13].
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11. Conclusions

As pointed out by Catach [3, page 508]:

...the most interesting features of modal logics aresttressivityandmod-
ularity and also theipossible-world semanticahich is both general and
intuitive.

From this viewpoint Single Step Tableaux provide a calculus that reflects these
characteristics: modularity, simplicity, and intuitive rules that “pass” knowledge
(or necessity) between worlds.

A further advantage is their effectiveness. SST are proof confluent and can be
transformed into decision procedures that use polynomial space (nondeterministic
time for K45 andS5). The use of SST makes also possible to derive simple bounds
and termination checks for translation methods based on resolution [36, 39].

Given their modularity, as pointed out in [20], SST can be extended to multi-
modal logics and, with more work, to dynamic logics [7].

In the quest for effective implementations, a version of SST based on free
variables, as proposed in [1], which simulates the techniques for yieldirgd®
decision methods of Sections 8 and 9, may be one of the most effective modal
provers. We leave this open for future investigations.

Appendix
A. Terminology about Complexity Classes

PTiIME(NPTIME) is the class of decision problems solvable in polynomial time
by a deterministic (nondeterministic) Turing machine. For instance, satisfiability
for the propositional calculus [27] and the modal loggsandK45 is NPTIME-
complete [22, 30] together with the log@ixt which remains in NPIME also for

the multi-modal case [33].

Problems in EXPIME can be solved by a deterministic Turing machine using
exponential time, that is, time bounded By27°Y™), where poly(n) is a poly-
nomial in the sizen of the input. Deciding logical consequence ) and for
S4,, for m > 2 is EXPTIME-complete; validity for propositional dynamic logic is
EXPTIME-complete [22].

As for PspAcE and EXPsPACE, the machine is deterministic and works in
polynomial (exponential) space. For instance, deciding satisfiability and validity
for all modal logics betweelk and Section four and for all multimodal logics
betweerk,, andss,, with m > 2 is PspACEcomplete [30, 22].

It is known that RIME € NPTIME C PSPACE C EXPTIME C EXPSPACE
All containment relations are conjectured strict [27].
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Table VII. Reduction rules for SST

Reduction precondition Reduction relation
0c:AABEB 8-% BUfo:A,0:B)
o:—(AAB)€B 8L 8Ufo:=A)BU{0 : —B)

c:0AeBandiCon:Ce B J)’L%’U{a.n:A}
c:=0AeBand¥Con:C¢B B > BU{on: —A)

B. Proofs

B.1. PROOFS OF SECTION

Proof (Theorem 7.1)We show a stronger claim, namely

Vx,x'yz if x~xX&x—>y&x' >z
then Ju,u,y > u& z— u. & u ~ u,.

In words, if we apply a rule to the tableawyielding y or another rule yielding
z, then we can apply another rule ¥do obtainu and similarly toz obtainingu..

The two possible results andu, must be identical up to renaming of prefixes.

The standard Knuth—-Bendix method for proving confluence [24, page 797] is to
prove that each critical pair satisfies the above mentioned claim. For SST, a critical
pair can only be formed when we reduce two formulae in the same branch, since
reductions in different branches do not interact.

For clarity of exposition, we consider first the basic logiand the case where
x = x’. This is also the most difficult case.

The cases of superpositions can be seen more easily if we reformulate the rules
as in Table VII, whereB is a branch (set of prefixed formulae).

At first, formulae with different prefixes do not interact.

PROPOSITIONB.1.Leto; : A; ando, : A, be prefixed formulae with, # o>
and let 8’ be the reduction of8 using rule(r;) on oy : Aj. If rule () can be
applied too, : A, in B, then it can be applied itB’.

This reduces the cases of superposition to the following four:

(1) the prefixed formulae : OA, o.n : C ando.m : D are inB;

(2) the prefixed formulae : OA, o : OB ando.n : C are in$B;

(3) the prefixed formulae : OA, o : —OB ando.n : C are in8B but no prefixed
formulac.m : D is present inB (o.m is new);

* This is quite different from free variables tableaux where variables span over branches and
therefore the reduction (unification) in a branch affects other branches.
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(4) the prefixed formula : —0A ando : —OB are in8B and the prefixes.n and
o.m are new.

For case (1) we apply rulgk) either foro.n or for o.m. Suppose we apply first
(K) too.n yielding 8 — 8 U {o.n : A}. Sinceo.m : C is still present in the new
branch and formulae can be reused, we appl) and obtainBU{o.n : A, o.m :
A}. If we apply (K) first too.m and then tar.n, we obtainB U {o.m : A.o.n : A}.
The result is the same.

For case (2), use the same argument. The final outcome of both reduction paths
isequaltoB U {o.n: A,o.n: B}.

For (3) we can use rulékK) on o.n or introduce a new prefix witlir). If we
reduce the branch using rul& ), we do not introduce new prefixes amg: would
still be new inBU{c.n : A}. In other words, if for naC we haves.m : C € 8, then
om:C g BU{o.n: A}. Thus we use rulér) and obtainBU{o.n : A, o.m : =B}.

If we apply () first, we obtainB U {o.m : —B}. By hypothesis, for alD one
haso.m : D ¢ 8. Sinceo.n : C € B, one has.m # o.n . We can apply rulék)
obtaining the same brancB U {o.n : A, o.m : —=B}.

For case (4) we must use a renaming to prove confluence. Suppose we reduce
firsto : —0OA and obtainB U {o.n; : —A}. In the new branch, the prefixn; is
no longer new. So the next reduction forces the usemf. The final result is the
branch8, = B8 U {o.n1: —A, o.my: —B}.

If we reduces : —OB with o.n,, we obtain the branckB U {o.n, : —B}.
A further (;r)-reduction yieldsB8, = 8 U {o.n, : =B, o.m, : —A}. At this
stage we know only that there are two new prefizes ando.m. It can be that
ni=n#m=ny andA #* B and thusB; %+ Bo.

Then we define two renamings, andh;:

on; ifs=o.n;,
hij(s) = § om; if s =o.m,,
s otherwise

Now we can prove that : A € B; impliesh;;j(o) : A € 8;,andthat;;(h;;(c)) =
o.

The proof for logics other thaki is a repetition of arguments (1), (2), and (3) for
the variousv-rules; just replace the prefixed formulae 0A ando.n : A of rule
(K) with the antecedent and the consequent of eaalle. Eachv-formula must
be reducible more than once because each logic requires more thandaend
all rules must be applicable.

The proof of the general case~ x’, follows the same pattern, and it is simply
notationally heavy, since we have two branck®s~ 8, and two renamings,»
(from B to B,) andhyq (in the other direction).

The first step is the following.

PROPOSITION B.2.Arule (r) can be applied ta : A in B; if and only if it can
be applied tor;; (o) : Ain B;.
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Second, we reformulate Proposition B.1 as follows.

PROPOSITION B.3.Leto; : A € 8y andos : B € 8B, be prefixed formulae such
that 7112(01) # o2. Let B] be the reduction of8; using rule(r) onoy : A and
B4 be the reduction o3, using(r) onhia(o1) : A. If rule (r2) can be applied to
o2 : B in By, then it can be applied itB;.

The cases of superposition can be reformulated along the same lines. The proof
is substantially unchanged. Case (4) is the only difficult one.

For 8, we have the prefixed formulag : —0OA, o1 : —OB and the prefixes
o1.n1 andoy.m; are new. The same conditions (changing subscript) holdstor
We also havé:;; (0;) = o;. We have no constraints en.n; ando;.m; because they
are new.

As in the proof forx = x’, renamings must be updated when the bragh
reduces taB, U {o1.n1 : —A, o1.m1 : =B} and the branchB, reduces taB, U
{62.]12 . —'A, O2.Mmy —'B}.

hij(Ui)-nj if s = o;.n;,
h(s) = { hij(o).m; if s = orm;,
hij(s) otherwise

By hypothesis, one hds;(o;) = o; and the new mappings; gives the desired
renamings. ' O

B.2. PROOFS OF SECTIOMN

Proof (Theorem 8.4)If a tableau proof is found, Theorem 4.1 does the job. If
some rules are still applicable, then the strategy itself was not systematic or pos-
sibly incomplete. In this case continue the reduction of the applicable rules with a
systematic strategy. By proof confluence (Theorem 7.1) we must end up in one of
the remaining cases.

Finally, if the strategy terminates and no rule is applicable in at least one branch
B, then we must prove that the branghcan be pruned intoa-completed branch
(r-modal-completed fok4 andS4).

At first, ar-formulac : ¢ A may not be reduced according to Definition 8.2
only if |o] = hb.. Indeed, suppose that : ©A is not reduced but there is no
shorter modal copyg where it is reduced. lfo| < kb, then ruler would be still
applicable according to technique T.8.3 and this contradicts the assumption that no
rule is applicable inB.

The case for logic&, D, T, KB, KDB, andB is simple: every rule that increases
the length of the prefix strictly reduces the number of modal connectives. So any
prefix with length equal tib, = 1 + d has no modal connectives. We obtain
directly awr-completed branch.
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The case foK4 andS4 is more interesting, because rb increases the length
of the prefix without decreasing the number of modal connectives. The first obser-
vation is that the number offormulae increases monotonically with the length of
the prefix:

PROPOSITION 8.1f the prefixog is an initial subsequence ofin the branchs3,
thenog : OA € 8 implieso : OA € B.

If o : DA is not present, then we could apply r@b a suitable number of times
until o : OA is introduced. This is against the hypothesis that no rule is applicable
to branchB.

Now, we start pruning the tree: delete from the branch all members of(Ftrge
such that for every : ¢ A that is fulfilled byo.n there is a shorter modal copy
whereoy : A is reduced for rulém).

Denote byB’ the final set of prefixed formulae that cannot be pruned any-
more. Proposition 8.1 still holds f@8’, and the Pruning Lemma 8.2 guarantees the
following property:

PROPOSITION B.4.Leto : ©A be a prefixed formula iB’. Then eitheljo | =
hb_or o : CAis reduced for rulgr) in B8’ or there is a shorter modal copyp of
o such thatog : $A is reduced for rulg(mr) in B'.

The onlyz-formulae that may violate the definition @fmodal-completeness
are those with lengthb, .
SinceB’ cannot be pruned anymore, we have the following.

PROPOSITION B.5.Leto : ©A be a prefixed formula i’ that is not reduced
for (7). For everyog shorter tharno, eitherog is not a modal copy af, orog : CA
is not present inB’.

Then we only have to prove that the longest prefign the$’ that can satisfy
Proposition B.5 has lengthb, — 1 = 1+ d, + p x n. We need the following
preliminary results.

PROPOSITION 8.2If every prefix fromog, og.n1 Up t0og.n1...1n is a modal
copy ofag, then eaclyyg. . . n; fulfills a differentzr -formula< A in 8’.

Otherwise we could apply the pruning lemmate; . .. n; and delete the whole
subtree generated by it. This contradicts the hypothesisghatthe final result of
the pruning.

Given Propositions 8.1 and 8.2 the worst-case longest sequence of prefixes we
can build without violating Proposition B.5 is shown below:

1>1ni>lng...npa>l. npan,> 1. n,npa>01.. .0, 1>

0 v—formulae 1 v-formula

|>1...I’lp+pl>|>1...np+2pl> > |>1....np+(n71)p+ll>|>1...I’lp+np

2 v_formulae n v—formulae
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Consider the first sequence with zardormulae: they are clearly modal copies
of each other. Each time we pass from. 1n; to 1...#n;.n;, there is a different
r-formula that is fulfilled (Prop. 8.2). We have at mgstlifferentz -subformulae,
and we can arrive only till 1..n, before triggering the pruning lemma. Suppose
that nov-formula is present in 1L.n,. Then, for every 1..n, : CA there is a
shorter modal copy 1 .n; where 1..n; : ¢A is reduced. By Proposition B.5,
there is no longer prefix 1.n,.n,.1in B’

In the worst case, only oneformula will be freshly introduced in 1 . n,. This
formula will continue to be present from now on. Again, before finding another
v-formula we can arrive at mostto 1.7, .

We can continue this reasoning until we arrive at In,,. This prefix is the
longest prefix that respects Proposition B.5 (the lengthd4s/d+ n x p because
of the initial 1). If we add a new prefix it will have the same modal formulae of
1...n,1m-1p+1and everyr-formula will be already reduced in one of the prefixes
between 1..7,;4-1),+1 aNdo14,11),- Any further reduction would trigger the
pruning lemma.

For every prefixy,;, of length 14 p+n x p+1, and every unreduced-formula
o - OA, there is a shorter modal copy such thabg : ¢ A is reduced. Hence the
pruned branchB’ is 7-modal-completed.

The first part of the sequence, with zerdormulae, can be generated only by
m-formulae not under the scope of a necessity operator. Hence the modal depth
decreases after each rule application and the first part can be boundgdTiys
yields the final upper bound @b, =2+d, +n x p. a

B.3. PROOFS OF SECTIONO

Proof (Lemma 10.2)The case fo(K), (D) and(T) is immediate.

Rule (4) is used for transitive models. Assume that- 0A andwRv. Then,
for anyu € W such thatwRu one haswRu, by transitivity. Hence: I+ A. Since
u is arbitrary, alsov |+ OA. For rule (47) suppose thatvRv andv |- —OA.
The semantics forces the existence of a warlsuch thatvRu andu ¥ A. By
transitivity wRu and thusw I —OA.

Rule (4%) is used for Euclidean relations. Suppose thét 0A andwRv. For
anyu such thatwRu, one hasv Ru, sinceR is Euclidean. Thus, if I OA, one
hasu I+ A and therw IF OA.

For rule(B), assume thab Rv andv IF OA. By symmetry one hasRw and
thereforew I+ A.

Rule (Cxt) can be used for Euclidean and contextual models. Suppose the
model is Euclidean and thatRv with v IF OA. Then letw&Ru anduRt. The
properties ofR forcesuRv and therwR¢. Thust I+ A. Sincet is arbitrary, one
hasu IF OA andw IF ODOA.
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If the L-model is a contextual model (see [2] or Table I), then we have directly
vRt and the same reasoning applies.
Delayed rules require the same arguments plgiR w. O

Proof (Theorem 10.4 @xt)). For the logic of contextual reasoning we must
prove the following property [2]: “ib > 0, ando > o}, ando, > o, theno;, > ¢.”.
The conditions om> for Cxt are the following:

oo, Iiff |o,]=lo]+1
oo, Iff |op]=|lo]+1
04 > O iff |Gc|:|6a|+1

By substitution one hass. | =|o,| + =|o| +2=]|0,| + 1. O

Proof (Theorem 10.4K4)). Transitivity equals &, > o, ando;, > o, implies
o, > o.”. The two initial conditions impose the properties belowmer{Table VI):

o, >0, Iff 0, =0,0" with |¢/'|>1
op > o, Iff o.=0,.0" with |¢”]|>1

By concatenation one has = 0,.0’.0” and|c’.c” |> 1. O

Proof (Theorem 10.4K5)). An Euclidean relation is characterized by the prop-
erty “o, > 0, ando, > o, implieso, > ¢.”. The conditions foiK5 impose that

o, >0y Iff 0,=0.0’ando, =0.0” with |[¢/|>1and|c”|>1
o, > o, iff 0, =01.0{ ando. = 01.0; with |o]|>1and |o]|>1

By definition botho; ando are longer than 1. Since bathando, are initial parts
of the same prefix, then we only have three cases:= o; or oy = o.t oOr
o = o,.7 for some prefixc such that r | > 1.

o = oy: this condition impliess, = 0.0” ando, = o0.07. Since| ¢” | > 1 and
|oy | > 1 we have directly, > o;

o1 = 0.7. We substitutes; in the equation ob. and obtaino, = o.0” together
with o, = 0.7.07. Since|o” | > 1 and|t.01| > 1, we obtains, > o..

The remaining case is similar. 0

Proof (Lemma 10.5)If the syntactic relation> accesses onlglose neighbors
the proof is trivial: complete reduction coincides with SST reduction. For instance,
for the logic B there are three cases:>g 0, 0 >g o.n, ando.n >g o. Apply
respectively SST reduction for ru{@), (K), and(B).

If > connectsforward prefixestheno > o* implies thato* has the form
o.ny...n;fork > 1 (ork > 0if the logic is reflexive). By Theorem 10.1, for every
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i =1...kalsoo.ny...n;is present. Apply reduction w.r4) or (4°) to construct
the chaino : OA € B8 implieso.ny, : OA € B, implieso.ny.n, : OA € B etc.
Once we haver.n;...n;_1 : DA € B, apply SST reduction w.r.{.K) to obtain
o*: A e B.

When backward prefixesre connected by, theno > o* implies that for
some prefixog we haves = og.ny...n, ando* = og.m (Or 6* = oy if the
logic is reflexive). By Theorem 10.1, for every= 1...k alsoog.ny...n; isin
B. For everyi, if og.ny...n;y1 : OA € B thenog.ny...n; : OA € B, because
oo.n1...ni41 : OA € Bisreduced for rulg4®) by hypothesis. Thereforeg : 0A
is present inB. Then we apply the reduction for ru{&) and obtainrg.m : A € B.

For K5 we combine these technique: we apply reduction for ¢4fe until we
can conclude that.4 : OA is present. Ib* = 1.m then we use reduction for rule
(4R) followed by (K). Otherwise, firsiCxt) obtaining 1: OOA, and then(K).
From 1m : OA € 8, the reasoning is identical to that for syntactical relations
> connecting forward prefixes: first we consider reduction for (4l&) and last
reduction for rule(K).

For the logicCxt apply reduction for rulgéCx¢) until we have shown that 1
O"A e 8; then apply reduction fofK) up too*.

The tableaux foK45, KD45, S5 with rule (47) have prefixes of the form 1 and
1.n, since we restricted the application of therule. For movingb A we apply
(4%) once and then eithéK) or (T). 0
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