
INTERACTIVE ACCESS CONTROL FOR

WEB SERVICES∗

Hristo Koshutanski and Fabio Massacci
Dip. di Informatica e Telecomunicazioni - Univ. di Trento
via Sommarive 14 - 38050 Povo di Trento (ITALY)

{hristo, massacci}@dit.unitn.it

Abstract Business Processes for Web Services (BPEL4WS) are the new paradigms
for lightweight enterprise integration. They cross organizational bound-
aries and are provided by entities that see each other just as business
partners. Web services require shift in the access control mechanism:
from identity-based access control to trust management and negotia-
tion, but this is not enough for cross organizational business processes.
For many businesses no partner may guess a priori what kind of cre-
dentials will be sent by clients and clients may not know a priori which
credentials are required for completing a business process.

We propose a logical framework for reasoning about access control
for BPEL4WS and a BPEL4WS based implementation using Collaxa
server. Our model is based on interaction and exchange of requests for
supplying or declining missing credentials. We identify the formal rea-
soning services (deduction, abduction, consistency checking) that char-
acterise the problem and discuss their implementation.

Keywords: Web Services; Business Processes; Credential-Based Systems; Interac-
tive Access Control; Internet Computing; Logics for Access Control

1. Introduction

In the past millennium the development of middleware marked influ-
enced the IT sector efforts to integrate distributed resources of a cor-
poration. The new century has seen the rise of a new concept: virtual
enterprises, the result of the outsourcing trend of the last 10 years in the
IT sector.

∗This work is partially funded by the IST programme of the EU Commission FET un-
der the IST-2001-37004 WASP project and by the FIRB programme of MIUR under the
RBNE0195K5 ASTRO Project and RBAU01P5SS Project.

2

Conceptually, a virtual enterprise is born when a business process
is not longer closed within the boundary of a single corporation. It is
composed by partners that offer their services on the web and lightly
integrate their efforts into one (hopefully coherent) process.

To support the process of lightweight integration of partners’ re-
sources, a number of specifications and standards have emerged. SOAP
and Web Services Description Language1 (WSDL) help organisations in
exposing their basic functionalities as Web Services. Business Process
Execution Language2 (BPEL4WS) and Electronic Business XML initia-
tive3 (ebXML) describe the behavior of complex business processes.

Intuitively, business processes are hierarchical graphs where each com-
posite node represents an orchestration activity and primitive nodes are
Web Services interfaces described in WSDL.

Considering the nature of a virtual enterprise – orchestration and
choreography of WS, global and local business processes, complex busi-
ness transactions – the picture gets complicated. Distributed processes,
in a virtual enterprise, become more dynamic, allowing new partners
and services to be selected at runtime.

The scenario offered by business processes for web services is par-
ticularly challenging for the definition of its security features. It has
aspects of trust management systems and aspects of workflow security
management.

From the trust management systems (see e.g. [18, 8, 15]) it takes
the credential-based view: a (web) service is offered on its own and
the decision to grant or deny access can only be made on the basis of
the credentials sent by the client. In contrast with trust management
system, we have a process and thus a notion of assignment of permissions
to credentials that requires to look beyond the single access decision.

From workflow access control systems (see e.g. [2, 3, 10, 11]) we
borrow all classical problems such as dynamic assignment of roles to
users, dynamic separation of duties, and assignment of permissions to
users according the least privilege principles. In contrast with workflow
security management schemes, a business process for web services crosses
organizational boundaries and is provided by entities that see each other
as partners and nothing else. We have something even more loosely
coupled than federated databases.

Also, we can no longer assume that an enterprise will assign tasks
and roles to users (its employees) in a way that makes the completion of

1WSDL–http://www.w3.org/TR/wsdl
2BPEL4WS–http://www-106.ibm.com/developerworks/webservices/library/ws-bpel
3ebXML Business Process Spec. – www.ebxml.org/specs/ebBPSS.pdf

Interactive Access Control for Web Services4 3

the workflow possible w.r.t. its security constraints. The reason is that
such enterprise no longer exists. So, it must be possible for a user to
communicate missing credentials.

In this paper we propose a logical framework for reasoning about ac-
cess control for business processes for web services. We identify the dif-
ferent reasoning tasks (deduction, abduction, consistency checking) that
characterize the problem and clarify the problems of temporal evolution
of the logical model.

2. System Architecture

In this section we sketch the architecture of a system for distributed
access control for Web and Business Processes that we have imple-
mented. We refer to [12] for additional information on the rationale
behind the architecture. At the time of writing we have done an initial
prototype including the main entities of the system given below.

PolicyEvaluator makes endpoint decisions on access control. All part-
ners involved in a business process are likely to be as different
entities, each represented by a PolicyEvaluator. It encapsulates the
partner’s specific authorization policy, and presents it as a service
using standardized WS interface (e.g., WSDL).

PolicyOrchestrator is an entity responsible for the workflow level access
and release control. It decides which are the partners that are in-
volved in the requested service and on the basis of some orchestra-
tion security policies combines the corresponding PolicyEvaluators
in a form of a business process that is suitable for execution by the
AuthorizationServer.

AuthorizationServer is responsible for locating, executing, and managing
all needed PolicyEvaluators, and returning an appropriate result to
the ApplicationServer. Also it is responsible for managing all the
interactions with the Client.

At the application level, the architecture does not envisage the typical
exchange of messages in access control system: “data” level (credentials,
policies, requests, objects, etc.) that must be interpreted by the recipi-
ents. We can exchange messages at “source code” level and in particular
at the level of business process description. Partners exchanges “mobile”
processes (namely BPEL files) passing from one entity to another indi-
cating themselves what the recipient has to do.

The mobility of authorization processes has a number of advantages.
First of all, a server simply needs an off-the-shelf interpreter for business

4

processes for a quick implementation. Second, we have more flexibility
for describing the process leading to an access control decision.

To say few words on the implementation, Collaxa5 is used as a main
BPEL manager (on the AuthorizationServer side) for executing and man-
aging all policy composition processes returned by the PolicyOrchestrator,
as well as, for the implementation of the of the AuthorizationServer itself.

The AuthorizationServer itself is a BPEL process deployed under Col-
laxa that internally deploys the policy process returned by the Policy-

Orchestrator as an internal web service and then also internally executes
it. The advantage in this case is that if the AuthorizationServer is re-
quested to get an access decision for a service that has already been
asked for it and there is no change in the workflow policy then the Au-

thorizationServer does not deploy the service’s policy process again but
just (internally) executes it. In that way we speed up the access decision
time.

PolicyOrchestrator in the current prototype is just a mapping between
a service resource and its workflow policy process. We assume that the
the process is already created by some GUI (e.g., could be used any
BPEL visual tool generator that actually connects all involved partners’
PEs in a BPEL process) and is available to the orchestrator.

PolicyEvaluator is another key point in our system. In its core, it is a
Java module that acts as a wrapper for the DLV6 system and implements
our interactive algorithm for stateless WS described in Section 6.

3. The Formal Framework

Our formal model for reasoning on access control is based variants of
Datalog with the stable model semantics and combines in a novel way a
number of features

logic for trust management by Li et al. [15];

logic for workflow access control by Bertino et al. [3];

logic for release and access control by Bonatti and Samarati [4].

We consider the view of a single partner since we cannot assume shar-
ing of policies between partners. In [12] it is explained how the entire
process can be orchestrated by using “mobile” business processes, while
keeping each partner policy decision process as a black-box.

5Collaxa BPEL Server – www.collaxa.com
6DLV System – www.dlvsystem.com

Interactive Access Control for Web Services7 5

In our framework each partner has a security policy for access control
PA and a security policy for disclosure control PD, whose syntax will be
defined later in section 5.

The policy for access control is used for making decision about usage
of all web services offered by the partner. We will use abduction to
infer the missing credentials from the access policy and the credentials
already presented by the user. The disclosure policy is used (as the name
implies) for controlling disclosure of credentials. Basically, we ask the
client only the missing credentials that are disclosable according to PD.

To execute a service of the fragment of a business process under the
control of the partner the user will submit a set of presented credentials
CP , a set of declined credentials CN and a service request r. We assume
that CP and CN are disjoint.

For the syntax we build upon [3, 4, 15]. We have three disjoint sets
of constants: one for users identifiers denoted by User :U ; one for roles
denoted by Role :R; and one for services denoted by WebServ :S.

The predicates can be divided into three classes: predicates for assign-
ments of users to roles and services (Fig. 1a), predicates for credentials
(Fig. 1b), and predicates describing the current status of the system.
The last class of predicates keeps track on the main activities done by
users and services, such as: a predicate specifying successful activation
of services by users; a predicate for successful completion of services; its
dual one for abortion; predicates indicating granting a service to a user
and, the opposite one, denial user’s access to a service.

Furthermore, for some additional workflow constraints we need to
have some meta-level predicates that specify how many statements are
true. We use here a notation borrowed from Niemela smodels system,
but we are substantially using the count predicates defined by Das [6]:

n ≤ {X.Pr} where n is a positive integer, X is a set of variables, and
Pr is a predicate, so that intuitively n ≤ {X.Pr} is true in a
model if at least n instances of the grounding of X variables in Pr

are satisfied by the model. The {X.Pr} ≤ n is the dual predicate.

We assume additional comparison predicates (for instance for equality
or inequalities) or some additional monadic predicates for instance to
qualify service, users, or keys for credentials.

4. Logic Programming Background

Normal logic programs [1] are sets of rules of the form:

A ← B1, . . . , Bn, not C1, . . . , not Cm (1)

6

Role :Ri � Role :Rj when role Role :Ri dominates role Role :Rj .

Role :Ri �WebServ:S Role :Rj when role Role :Ri dominates, just for service WebServ :S,
the role Role :Rj .

assign (P, WebServ :S) when an access to the service WebServ :S is granted to P . P

can be either a Role :R or User :U .

forced (P, WebServ :S) when access the service WebServ :S must be forced to P . Prin-
cipal P can be either a Role :R or User :U .

(a) Predicates for assignments to Roles and Services

declaration (User :U) it is a statement by the User :U for its identity.

credential (User :U, Role :R) when User :U has a credential activating Role :R.

credentialTask (User :U, WebServ :S) when User :U has the right to access WebServ :S.

(b) Predicates for Credentials

Figure 1. Predicates used in the model

where A, Bi and Ci are (possibly ground) predicates among those de-
scribed in Section 3. A is called the head of the rule, each Bi is called
a positive literal and each not Cj is a negative literal, whereas the con-
junction of the Bi and not Cj is called the body of the rule. If the body
is empty the rule is called a fact. A normal logic program is a set of
rules.

In our framework, we also need constraints that are rules with an
empty head.

← B1, . . . , Bn, not C1, . . . , not Cm (2)

One of the most prominent semantics for normal logic programs is
the stable model semantics proposed by Gelfond and Lifschitz [9] (see
also [1] for an introduction). The intuition is to interpret the rules of a
program P as constraints on a solution set S (a set of ground atoms) for
the program itself. So, if S is a set of atoms, rule (1) is a constraint on S

stating that if all Bi are in S and none of Cj are in it, then A must be in
S. A constraint (2) is used to rule out from the set of acceptable models
the situation in which Bi are true and all Cj are false is not acceptable.

We now consider ground rules, i.e. rules where atoms do not contain
variables.

Definition 1 The reduct P S of a ground logic program P with respect
to a set of atoms S is the definite program obtained from P by deleting:

Interactive Access Control for Web Services9 7

1 each rule that has a negative literal not C in its body with C ∈ S;

2 each negative literal in the bodies of the remaining rules.

The reduct P S is a definite logic program. Let M(P S) = MP S be the
semantics of the definite logic program P S , i.e. its minimal model.

Definition 2 A set of atoms S is a stable model of a normal logic
program P iff S = M(P S).

A program can have none, one or many stable models. The definition
of stable models captures the two key properties of solution sets of logic
programs.

1 Stable models are minimal: a proper subset of a stable model is
not a stable model.

2 Stable models are grounded: each atom in a stable model has a
justification in terms of the program, i.e. it is derivable from the
reduct of the program with respect to the model.

Though this definition of stable models in terms of fix points is non-
constructive there are constructive definitions [1] and systems [17, 14]
that can cope with ground programs having tens of thousands of rules.

Logic programs with variables can be given a semantics in terms of
stable models.

Definition 3 The stable models of a normal logic program P with vari-
ables are those of its ground instantiation PH with respect to its Herbrand
universe8.

If logic programs are function free, then an upper bound on the number
of instantiations is rcv, where r is the number of rules, c the number of
the constants, and v the upper bound on the number of distinct variables
in each rule.

Definition 4 (Logical Consequence and Consistency) Let P be
a logic program and L be a (positive or negative) ground literal. L is a
logical consequence of P (P |= L) if L is true in every stable model of
P . P is consistent (P 6|= ⊥) if there is a stable model for P .

Definition 5 (Abduction) Let P be a logic program, H a set of pred-
icates (called hypothesis, or abducibles), L a (positive or negative) ground

8Essentially, we take all constants and functions appearing in the program and combine them
in all possible ways. This yields the Herbrand universe. Those terms are then used to replace
variables in all possible ways thus building its ground instantiation.

8

literal, and ≺ a p.o. over subsets of H, the cautious solution of the ab-
duction problem is a set of ground atoms E such that

1 E is a set ground instances of predicates in H,

2 P ∪E |= L

3 P ∪E 6|= ⊥

4 any set E ′ ≺ E does not satisfy all conditions above

Traditional p.o.s are subset containment or set cardinality. Other solu-
tions are possible with orderings over predicates.

5. The Logical Model

In this section we define the semantics of our logical model and give
formal definitions of the security policies introduced in Section 3.

Definition 6 An access control policy PA is a logic program over the
predicates defined in Section 3 in which (i) no credential and no execution
atom can occur in the head of a rule, (ii) role hierarchy atoms occur
as facts, (iii) for every rule containing a head A which is the (possibly
ground instance of) predicate forced (P,WebServ :S) there is the (possibly
ground instance of) rule assign (P,WebServ :S)←forced (P,WebServ :S).

An access request is a ground instance of an assign (User :U,WebServ :S)
predicate.

The request r is a security consequence of a policy PA if (i) PA is
logically consistent and (ii) r is a logical consequence of PA.

In contrast to the proposal by Bertino et al. [3] for workflows we don’t
need any special rule for determining which services cannot be executed
and which services must be executed by a specific user or role. The
forced (,) predicate and the constraints guarantee the same result.

Example 7 Consider a security policy in which having a credential for
the role accountant is incompatible with the assignment of any role
manager, and that the execution of a service phoneCall from user billG

requires that the service answer must be executed by anybody having the
role headOfStaff . The following rules guarantees the desired behavior:

←credential (User :U,Role :accountant), assign (User :U,Role :manager).
forced (Role :headOfStaff,WebServ :answer)←

running (User :billG,WebServ :call, number :N).

Example 8 Consider an e-stock portal where we have roles associated
to services as follows: role eSeller – for selling shares and bonds on the

Interactive Access Control for Web Services10 9

floor; role eBuyer – for buying shares and bonds; role eAdvisor – used by
accredited consultants to sell their advice to other customers of the portal.
Then examine the case where one could send the eAdvisor credential to
the service publishing advisories and suggest to sell shares, and at the
same time the eBuyer credential to the service hosting bids.
In such situations we can define separation of duty rules:

customer(eSeller)←.

customer(eBuyer)←.

←assign (User :U,Role :R1), customer(R1), assign (User :U,Role :eAdvisor).

The access control rule on reviewing selling bids is the following:

assign (User :U,WebServ :S) ← credential (User :U,Role :R),
assign (Role :R,WebServ :S).

assign (Role :R,WebServ :reviewSell) ← Role :R � Role :eSeller.

As mentioned, we will use the disclosure policy PD to decide which
missing credentials are to be asked from the client.

Definition 9 A disclosure policy PD is a logic program in which no
role hierarchy atom and no execution atom can occur in the head of a
rule.

Definition 10 A credential c is disclosable if it is a logical consequence
of the disclosure policy PD and presented credentials CP (PD ∪ CP |= c).

Example 11 Considering again the access policy in Example 8. A pos-
sible (part of) the disclosure policy PD could be:

credential (User :U,Role :eUser)←declaration (User :U).
credential (User :U,Role :eSeller)←credential (User :U,Role :eUser).
credential (User :U,Role :eSellerV IP)←credential (User :U,Role :eSeller).

The second rule says: to reveal the need for a eSeller credential there
should be already a credential attesting the client as a valid user of the
system together with a declaration of its identity.

So, the request assign (User :fm,WebServ :reviewSell) together with
credential (User :fm,Role :eUser) and declaration (User :fm) will yield a
counter request – credential (User :fm,Role :eSeller) – specifying the need
for additional privileges necessitated to get the service.

Note that the need for a credential attesting the role eSellerVIP, dis-
closed together with eSeller, should not be considered as a potential
output by the system because the ”intuition” says that eSeller is enough.

10

Remark 1 The choice of the partial order has a major impact in pres-
ence of complex role hierarchies. The “intuitive” behavior of the abduc-
tion algorithm for the extraction of the minimal set of security credentials
is not guaranteed by the straightforward interpretation of H (abducibles)
as the set of credentials and by the set cardinality or set containment
orderings.

Consider the following program:

Role :r2 � Role :r1 ← .

assign (User :U,WebServ :ws) ← credential (User :U,Role :R),
Role :R � Role :r1.

Request assign (User :fm,WebServ :ws) has two ⊆-minimal solutions:

{credential (User :fm,Role :r1)} , {credential (User :fm,Role :r2)}

Yet, our intuition is that the first should be the minimal one.
So, we need a more sophisticated partial order. For example, if E �

E′ is such that for all credentials c ∈ E there is a credential c′ ∈ E′

where c = c′, we can revise it so that E ≺ E ′ if c ∈ E there is a
credential c′ ∈ E′ where c′ is identical to c except that it contains a role
R′ that dominates the corresponding role R in c. This p.o. generates
the “intuitive” behavior of the abduction algorithm.

Another alternative, currently implemented in out prototype, is to
include extra information to credentials in the hypotheses (abducibles),
specifying the position of a role in the role-lattice hierarchy. Then it
is easy to select the set(s) with the lowest role-position values. After
having obtained the missing credentials, we drop this extra information
from the set that is to be sent back to the client.

Definition 12 (Fair Access) Let PA be an access control policy, let
CD be the set of ground instances of credentials occurring in PA, and let
≺ be a p.o. over subsets of CD. The policy PA guarantees ≺-fair access
if for any ground request r that is an instance of a head of a rule in PA

there exists a set CM ⊆ CD that is a solution of the abduction problem.

Definition 13 (Fair Interaction) Let PA and PD be, respectively,
an access and disclosure control policies, and let CD be the set of ground
instances of credentials occurring in PA, and let ≺ be a p.o. over subsets
of CD. The policies guarantee ≺-fair interaction w.r.t. a set of initial
credentials CI if (i) PA guarantees ≺-fair access and (ii) for any solution
of the abduction problem CM ⊆ CD and any credential c ∈ CM if it
PD ∪CI |= c. If the set CI only contains declarations then the disclosure
is unlimited.

Interactive Access Control for Web Services12 11

The above process does not take into account the progressive disclosure
of credentials in the interactive process.

Remark 2 It is possible to define a process of trust negotiation along
the lines of Yu et al. [19] if at each interaction step we ask only for the
credentials that are entailed by a 1-step deduction over PD and CP . In
this case, the interaction policy must be a monotonic logic program.

6. Reasoning

In this section we show how the various notions that we have seen
so far can be combined into a complete authorization mechanism. Pol-

icyEvaluator receives the request r, processes it according to the access
control algorithm and eventually takes a decision. A decision may have
involved interactions and so we also keep track of the current set of active
credentials and the history of the requests made by the client.

Since the client must collect all relevant credentials (if required) for
getting access to a service, one could borrow mechanisms for discovering
distributed credentials’ chains from [16, 5].

Once again it is worth noting that this view is partial as we only focus
on the knowledge of one single partner: there is no authorization domain
crossing partnerships.

To allow for an easier grasp of the problem, we start with a basic
framework shown in Figure 2. This approach is the cornerstone of most
logical formalizations [7].

1 verify that the request is a logical consequence of the credentials,
namely PA ∪ CP |= r

2 if the check succeeds then grant access else deny access

Figure 2. Traditional Access Control

A number of works has deemed such blunt denials unsatisfactory and
therefore it has been proposed by Bonatti and Samarati [4] and Yu et
al. [19] to send back to the client some of the rules that are necessary to
gain additional access (see Figure 3). In their work it is revised to allow
for the flow of rules and information to users.

Since the systems proposed by both Bonatti and Samarati [4] and Yu
et al. [19] are flat, in p the client will find all missing credentials to
continue the process until r is granted.

In many cases, this is neither sufficient nor desirable. For instance,
if the policy is not flat, it has constraints on the credentials that can

12

1 verify that the request is a logical consequence of the credentials,
namely PA ∪ CP |= r

2 if the check succeeds then access is granted, otherwise select some
rule r ← p ∈ PartialEvaluation(PA ∪ CP) and send the rule back
to the client

Figure 3. Disclosable Access Control

be presented at the same time (e.g., separation of duties) or a more
complex role structure is used, these systems would not be complete.
Also repeated queries allow for the disclosure of the entire policy, which
might well be undesirable11.

Another point in our formal model, worth discussing here, is the way
we address the disjunctive information in the partner’s disclosure policy
(e.g., “present either a VISA or a Mastercard or an American Express
card”). In presence of such disjunctive information an arbitrary dis-
junct will be selected and on the next interaction step (if the client has
declined the credential) the abduction algorithm is informed that the
previous solution was not accepted. We approach this by discarding the
set of declined credentials from the set of newly computed disclosable
credentials. In this case the abduction algorithm does not consider the
declined credentials, from the last step, in the next interaction step.

Our interactive access control solution for Web Services is shown in
Figure 4.

This is all we need for business processes made up by stateless web
services, in which all decisions are taken on the basis of the current input
set of credentials, and which envisaged to be the large majority.

This type of decision is characteristic of most logical approaches to
access control [15, 3, 4]: we only look at the policy, the request and the
set of credentials. The failure of the access control process at step 3c
(Fig. 4) may be due to the presence of badly designed constraints for
separation of duties such that no possible set of credentials can unlock
the service r. In same cases this might also be a feature of the systems.

11In the negotiation process of Yu et al. [19] rules are only disclosed when all preliminary
credentials have been already sent by the client. Still this is unsatisfactory because we may
well want to tell a user all credentials we may possibly ask him, but not how we are going to
evaluate them.

Interactive Access Control for Web Services13 13

1 extract from the client’s input the set of presented credentials CP and the
set of declined credentials CN

2 verify that the request is a logical consequence of the credentials, namely
PA ∪ CP |= r

3 if the check succeeds then access is granted, otherwise

(a) compute the set of disclosable credentials CD as
CD = {c | c credential that PD ∪ CP |= c} \ CN

(b) use abduction to find a minimal set of missing credentials CM ⊆ CD
such that both PA ∪ CP ∪ CM |= r and PA ∪ CP ∪ CM 6|= ⊥

(c) if no such set exists then ⊥ is sent back to the user,

(d) otherwise communicate the set of missing credentials CM back to the
client and iterate the process.

Figure 4. Interactive Access Control for Stateless WS

7. Implementation of the Logical Model

For the implementation of the algorithm in Figure 4 we used DLV
(a disjunctive datalog system with negations and constraints) as a core
engine for the basic functionalities of deduction and abduction. The dis-
junctive datalog front-end (the default one) is used for deductive compu-
tations while the diagnosis front-end is used for abductive computations.
We refer to Section 5 for definitions of deduction and abduction.

What follows is a step-by-step description of the implementation em-
ploying the DLV system:

1 Extract from the client’s input the two sets of credentials CP and
CN , transform them to predicates suitable for the underlying for-
mal model (ref. Fig. 1) and store them in temporary files;

2 Use the DLV’s disjunctive datalog front-end. Specify as input the
partner’s access policy, the two sets from step 1 and the service
request r marked as a query over the models computed by DLV.
The output of this step are those models of the access policy in
which r is true.

3 If it exists a model in step 2 that satisfies r then grant, otherwise:

(a) use again the DLV’s front-end as input partner’s disclosure
policy PD together with presented credentials CP . In this case
DLV computes all models of PD that are disclosable by CP .

14

Then from the computed models we remove all credentials
that belongs to CN .

(b) find a model, out of the ones in step 3a, for which it exists
a subset satisfying the abductive computation described be-
low. Use the abductive diagnosis (subset minimal) front-end
with the following input: PA, CP , the set of credentials from
the model being checked stored in a temporary file with spe-
cial extension .hyp (called hypotheses or abducibles) and the
service request r also stored in a temporary file with exten-
sion .obs (observations). The output of such computation
are all possible subsets of the hypotheses that satisfy the ob-
servations. In that way we find all possible missing sets of
credentials satisfying r. Then we filter them, first against
role-minimality criterion, and then against set cardinality cri-
terion. The former filters those sets with lowest possible role-
position values and the latter filters the ones with minimal
cardinality.

(c) if no such set exists reject otherwise send the missing set back
to the client.

Remark 3 The sequence, the two criteria, set cardinality and role min-
imality makes sense in different contexts. The sequence role minimal-
ity/ set cardinality, tries to keep the minimal set as lower in the role
hierarchy as possible, i.e. selects those sets that have a larger number of
not so powerful roles. The other alternative, set cardinality/ role mini-
mality, selects those sets with fewer roles but with higher privileges.

The latter may be useful if getting or transmitting credentials is ex-
pensive (e.g., in a mobile setting).

8. Stateful Business Processes

If the authorization decisions of business processes are stateful, and
the corresponding workflow of the partners has constraints on the ex-
ecution of future services on the basis of past services this solution is
not adequate enough. For instance in the workflow example described
by Atluri and Bertino [3, pag.67] a branch manager of a bank clearing a
cheque cannot be the same member of staff who has emitted the cheque.
The problems are the following:

the request may be inconsistent with some role that the user has
taken up in the past;

the new set of credential may be inconsistent with requirements
such as separation of duties;

Interactive Access Control for Web Services14 15

in contrast to intra-enterprise workflow systems [3], the partner
offering the web service has no way to assign to the client the right
set of credentials for consistency future request.

So, this means that we must have some roll-back procedure by which,
if the user has by chance sent the “wrong” credentials, he has some
revocation mechanism to drop them. A preliminary solution has been
described in [13].

9. Conclusions

In this paper we proposed a logical framework for reasoning about ac-
cess control for stateless business processes for web services. Our formal
model for reasoning on access control is based on variants of Datalog
with the stable model semantics and combines in a novel way a number
of features: the logic for trust management by Li et al. [15]; the logic
for workflow access control by Bertino et al. [3]; the logic for controlling
the release of information by Bonatti and Samarati [4].

We identified the different reasoning tasks (deduction, abduction, con-
sistency checking) that characterize the problem and clarify the problems
of temporal evolution of the logical model.

Future work is in the direction of more effective trust negotiation for
stateful business processes.

References

[1] Apt, K. Logic programming. In Handbook of Theoretical Computer Science,
J. van Leeuwen, Ed. Elsevier, 1990.

[2] Atluri, V., Chun, S. A., and Mazzoleni, P. A Chinese wall security model
for decentralized workflow systems. In Proceedings of the 8th ACM conference
on Computer and Communications Security (2001), ACM Press, pp. 48–57.

[3] Bertino, E., Ferrari, E., and Atluri, V. The specification and enforcement
of authorization constraints in workflow management systems. ACM Transac-
tions on Information and System Security (TISSEC) 2, 1 (1999), 65–104.

[4] Bonatti, P., and Samarati, P. A unified framework for regulating access
and information release on the web. Journal of Computer Security 10, 3 (2002),
241–272.

[5] Clarke, D., Elien, J.-E., Ellison, C., Fredette, M., Morcos, A., and
Rivest, R. L. Certificate chain discovery in SPKI/SDSI. Journal of Computer
Security 9, 4 (2001), 285–322.

[6] Das, S. Deductive Databases and Logic Programming. Addison-Wesley, Reading,
MA, 1992.

[7] De Capitani di Vimercati, S., and Samarati, P. Access control: Policies,
models, and mechanism. In Foundations of Security Analysis and Design -
Tutorial Lectures, R. Focardi and F. Gorrieri, Eds., vol. 2171 of LNCS. Springer
Verlag Press, 2001.

16

[8] Ellison, C., Frantz, B., Lampson, B., Rivest, R., Thomas, B. M., and
Ylonen, T. SPKI Certificate Theory, September 1999. IETF RFC 2693.

[9] Gelfond, M., and Lifschitz, V. The stable model semantics for logic pro-
gramming. In Proceedings of the Fifth International Conference on Logic Pro-
gramming (ICLP’88) (1988), R. Kowalski and K. Bowen, Eds., MIT-Press,
pp. 1070–1080.

[10] Georgakopoulos, D., Hornick, M. F., and Sheth, A. P. An overview of
workflow management: From process modeling to workflow automation infras-
tructure. Distributed and Parallel Databases 3, 2 (April 1995), 119–153.

[11] Kang, M. H., Park, J. S., and Froscher, J. N. Access control mechanisms
for inter-organizational workflow. In Proceedings of the Sixth ACM Symposium
on Access control models and technologies (2001), ACM Press, pp. 66–74.

[12] Koshutanski, H., and Massacci, F. An access control framework for business
processes for Web services. In Proceedings of the 2003 ACM workshop on XML
security (Fairfax, VA, October 2003), ACM Press.

[13] Koshutanski, H., and Massacci, F. A logical model for security of Web
services. Tech. Rep. IIT TR-10/2003, First International Workshop on Formal
Aspects of Security and Trust (FAST), Istituto di Informatica e Telematica,
Pisa, Italy, September 2003. Editors: Theo Dimitrakos and Fabio Martinelli.

[14] Leone, N., Pfeifer, G., and et al. The DLV system. In the 8th European
Conference on Artificial Intelligence (JELIA) (September 2002), vol. 2424 of
Lecture Notes in Computer Science, Springer, pp. 537–540.

[15] Li, N., Grosof, B. N., and Feigenbaum, J. Delegation logic: A logic-based
approach to distributed authorization. ACM Transactions on Information and
System Security (TISSEC) 6, 1 (2003), 128–171.

[16] Li, N., Winsborough, W. H., and Mitchell, J. C. Distributed creden-
tial chain discovery in trust management. Journal of Computer Security 11, 1
(February 2003), 35–86.

[17] Niemelä, I., Simons, P., and Soininen, T. Stable model semantics of weight
constraint rules. In Proceedings of the Fifth International Conference on Logic
Programming and Nonmonotonic Reasoning (December 1999), Springer-Verlag.

[18] Weeks, S. Understanding trust management systems. In IEEE SS&P-2001
(2001), IEEE Press.

[19] Yu, T., Winslett, M., and Seamons, K. E. Supporting structured creden-
tials and sensitive policies through interoperable strategies for automated trust
negotiation. ACM Transactions on Information and System Security (TISSEC)
6, 1 (2003), 1–42.

