
AN INTERACTIVE TRUST MANAGEMENT

AND NEGOTIATION SCHEME

Hristo Koshutanski and Fabio Massacci
Dip. di Informatica e Telecomunicazioni - Univ. di Trento
via Sommarive 14 - 38050 Povo di Trento (ITALY)

{hristo, massacci}@dit.unitn.it

Abstract Interactive access control allows a server to compute and communicate
on the fly the missing credentials to a client and to adapt its responses
on the basis of presented and declined credentials. Yet, it may disclose
too much information on which credentials a client needs. Automated
trust negotiation allows for a controlled disclosure on which credentials
a client has during a mutual disclosure process. Yet, it requires pre-
arranged policies and sophisticated strategies. How do we bootstrap
from simple security policies a comprehensive interactive trust manage-
ment and negotiation scheme that combines the best of both worlds
without their limitations? This is the subject of the present paper.

Keywords: Trust Management; Trust Negotiation; Interactive Trust Management;
Interactive Access Control; Credential-Based Systems; Internet Com-
puting; Logics for Access Control;

1. Introduction

The new business hype of the moment – virtual organizations based
on Web Services [1] – is particularly challenging for security research in
access control. In a nutshell, the idea is to orchestrate into a coherent
business process the Web Services (WS for short) offered by different
partners. The functional orchestration is not trivial but the orchestration
of security policies of partners even less, even if we take for granted the
usage of Trust Management systems [3, 2].

First, the client may have no idea on the right set of credentials that
have to be presented to each partner and the process may bring different
partners on the forefront depending on the actual business execution
path. So, business partners must have a way to find out what credentials
are required (missing) for clients to get access to their resources. Second,
the client, once asked for the missing credentials, may be unwilling to

disclose them unless the server discloses some of its credentials first, i.e.
negotiates the need to disclose his own credentials.

A solution for the first problem has been proposed by Koshutanski and
Massacci [8, 7]: interactive access control. Assuming a logical formaliza-
tion (actually a rule-based policy is enough) and using some advanced
inference service it is possible for the server to compute the missing
credentials on the fly. Credentials that may not be straightforwardly de-
duced from the security policy, as approached by the trust negotitation
paradigm, but may require a more sophisticated reasoning service.

The solution for the second problem is trust negotiation, for instance
as advocated by Winslett et al. [11]. Here, we can structure our secu-
rity policy to specify which credentials a partner must show us before
we show him our own credentials, i.e. to specify the sequence of grad-
ually disclosable credentials by a partner’s side untill enough trust is
established.

Notice that the two problems are related but different. For sake of
example consider the view point of a server. In the first one, we help the
server to compute the missing set of credentials that a client needs to get
access to a service. The second approach helps the server to compute,
in a piecemeal fashion, the required set of credentials at each interaction
step until the final one, the missing set, is reached and trusted enough
to get access.

Both approaches in their core have limitations: the first approach does
not allow for a piecewise disclosure to the clients of what they eventually
need. The second one requires a sophisticated and rigid structuring of
policies to work.

1.1 The Contribution of this Paper

If we merge the two frameworks we have the following problems:

1 Alice wants to access some service of Bob

2 Alice does not know exactly what credentials Bob needs, so

(a) Bob must compute what is missing and ask Alice,

(b) Alice must send to Bob all credentials he requested.

3 In response to 2b, Alice may want to have some credentials from
Bob before sending hers, so

(a) She must tell Bob what he needs to provide,

(b) Bob must have a policy to decide how access to his credentials
is granted.

4 In response to 2a, Bob may not want to disclose all that is missing
at once but may want to have Alice to submit first some of the less
sesitive credentials, so

(a) Bob must request in a piecewise fashion the missing creden-
tials.

Here we try to combine the best of both worlds under the limited
assumptions that we have just three policies:

(i) a policy for determining the credentials needed by a client to get
a service,

(ii) a policy for specifying which of the server’s credentials a client is
allowed to know for,

(iii) a policy that tells which credentials a client must have already
shown before we disclose him the need of some more credentials.

The policies can be arbitrarily complex with almost everything that is on
the (Datalog for) Access Control market (say with negation as failure,
constraints on separation of duties, or other fancy credentials such as
those by Li et al. [9]). We only need deduction and its sister abduction1

Out of these two services we have constructed an algorithm that first
evaluates a client’s request by checking whether he can access the re-
quested service – using policy (i). If the client is not enough trusted (i.e.
he does not have enough credentials), the algorithm computes a (min-
imal, trusted enough) set of credentials from policies (i) and (ii) that
unlocks the desired resource. Then it starts a negotiation process in
which needed credentials are disclosed in a piecewise manner, according
to policy (iii), until enough trust is established and the service is granted.
In the negotiation process the client himself may run the algorithm to
control access to his own credentials.

2. Interactive Access Control for Web Services

In the framework introduced by Koshutanski and Massacci [8, 7] each
partner has a security policy for access control PA and a security policy
for disclosure control PD. The policy for access control is used for mak-
ing decision about usage of all web services offered by a partner. The
policy for disclosure control is used to decide the credentials whose need
can be potentially disclosed to a client.

1Note that if the former is decidable within complexity class C, the latter is decidable within
complexity class ΣC or at worst ΠC if minimality of abductive solutions is requested.

Role :Ri ≻ Role :Rj when role Role :Ri dominates role Role :Rj .

Role :Ri ≻WebServ:S Role :Rj when role Role : Ri dominates, just for service WebServ : S, the
role Role :Rj .

assign (P,WebServ :S) when an access to the service WebServ :S is granted to P . Where P

can be either a Role :R or User :U .

forced (P,WebServ :S) when access the service WebServ : S must be forced to P (P can be
either a Role :R or User :U).

(a) Predicates for assignments to Roles and Services

declaration (User :U) it is a statement by the User :U for its identity.

credential (User :U,Role :R) when User :U has a credential activating Role :R.

credentialTask (User :U, WebServ :S) when User :U has the right to access WebServ :S.

(b) Predicates for Credentials

Figure 1. Predicates used in the model

To execute a service, under the control of a partner, a user will submit
a service request r and a set of credentials Cr . When the user sends the
request r the server starts a negotiation session and creates a client’s
profile. The client’s profile consists of two sets – the set of presented
credentials CP and the set of declined credentials CN . Both sets are
kept up-to-date by the server as at each interaction step, CP is updated
with the credentials the client currently sends, while CN is updated as
a difference between the missing credentials CM, the client was asked in
the previous interaction, and the ones presented in the current step.

For the syntax we have three disjoint sets of constants: one for users
identifiers denoted by User :U ; one for roles denoted by Role :R; and one
for services denoted by WebServ :S.

The predicates can be divided into three classes: predicates for assign-
ments of users to roles and services (Fig. 1a), predicates for credentials
(Fig. 1b), and predicates describing the current status of the system.
The last class of predicates keeps track on the main activities done by
users and services, such as: successful activation of services by users;
successful completion of services; abortion; granting a service to a user
and denying a user’s access to a service. We refer to [7] for additional
details on the model.

We note here that the model, presented in the this section, can be
adapted to any generic policy framework. Since the information we
need from the underlying policy model, for our basic reasoning services,

is shown in Figure 1 and that infromation can be found in (extracted
from) most policy languages.

Below are the definitions of the basic reasoning services used in our
formal framework.

Definition 1 (Logical Consequence and Consistency) We use
the symbol P |= L, where P is a policy and L is either a credential or a
service request, to specify that L is a logical consequence of a policy P .
P is consistent (P 6|= ⊥) if there is a model for P .

Definition 2 (1-Step Deduction) We use the symbol P |=1 A, where
P is a policy with a predefined set of ground atoms A and A is a positive
literal, if for some literals L1, . . . , Ln holds the following:
(i) A← L1, . . . , Ln is in ground(P),
(ii) A |= L1,∧ . . .∧, Ln.

Definition 3 (Abduction) Abduction solution (see Fig. 2(b)) over a
policy P , a set of predicates H (with a defined p.o. over subsets of H)
and a ground literal L is a set of ground atoms E such that:
(i) E ⊆ H,
(ii) P ∪ E |= L,
(iii) P ∪ E 6|= ⊥,
(iv) any set E′ ≺ E does not satisfy all conditions above.

Traditional p.o.s are subset containment or set cardinality.
The core of our interactive trust management protocol, introduced

in the next section, is shown in Figure 2. The basic computations of
deduction (Def. 1) and abduction (Def. 3) are shown in Figure 2(b). The
global variables CN and CP represent the client’s profile (as described
earlier). The protocol takes as input the request r and the partner’s
policies for access and disclosure control PA, PD. The output can be
either grant r, deny r, or ask(CM) – the set of missing credentials that
the client needs to provide in order to get r.

The intuition behind the algorithm is the following. First (in step 1)
it checks whether the client’s credentials CP are enough to get the service
r, according the policy PA. In the case of failure, it starts the abduction
process (step 3) to compute what is missing (complement) to the client’s
CP that unlocks r. The preliminary step to abduction is computing the
set of disclosable and not declined credentials CD (in step 2). The set CD
stores those credentials that the client is allowed to know, on the basis of
his profile, for their existence. Then the abduction process computes all
possible subsets of CD that are consistent with the access policy PA and,
at the same time, grant r. Out of all these sets (if any) the algorithm
selects the minimal one. Here we point out that the minimality criterion

Global vars: CN , CP ;
Protocol input: r, PA, PD;
Protocol output: grant/deny/ask(CM);

InteractiveAccessControl(r, PA, PD){

1: if doDeduction(r,PA ∪ CP) then return grant

2: else compute the set of disclosable credentials CD = {c | PD ∪ CP |= c}\CN ;

3: result = doAbduction(r, CD, PA ∪ CP);

4: if result == ∅ then return deny

5: else CM = result and return ask(CM);

}

(a) Interactive Access Control Algorithm

doDeduction(R: Query, P: LogProgram){ // check for P |= R?

1: run DLV∗ in deduction mode with input: P , R? ;

2: check output: if R is deducible then return true else return false;

}
doAbduction(R: Observation, H: Hypotheses, P: LogProgram){

1: run DLV in abduction diagnosis mode with input: R, H , P ;

2: DLV output: all sets Ci that (i) Ci ⊆ H , (ii) P ∪Ci |= R, (iii) P ∪Ci 6|= ⊥;

3: if no Ci exists then return ⊥

4: else select a minimal Cmin and return Cmin;

}

∗DLV System – www.dlvsystem.com

(b) Basic Functionalities of Deduction and Abduction

Figure 2. Basic Trust Management Protocol

could be different for different contexts. We have identified two criteria:
minimal set cardinality and role minimality (least privilege).

When the abduction is finished the protocol outputs either ask(CM)
or denies r, if no CM could be computed.

3. Automated Trust Negotiation

The main idea in a trust negotiation process is to gradually disclose
sensitive credentials between the negotiation participants until sufficient
trust is established.

In Winslett et al framework [11, 12] a policy protects a resource, being
it access to a service or disclosure of a credential, by stipulating what

the requestor should satisfy to be authorized for that resource. They
require policies to be monotonic if a set of credentials unlocks a service
also a superset unlocks it.

One can abstract from any policy language by wrapping it in a policy
compliance checker module and treat it as a black box, encapsulating
a decision engine for the underlying policy language. It accepts as an
input a set of credentials and a policy and returns the subset of the
credentials that satisfy the policy. However, the actually used policy
language can be easily casted into a set of negation-free Datalog rules.
Each alternative set of credentials that unlock a resource can be casted
in a Datalog rule having a predicate corresponding to the resource in
the head and the needed credentials in the body.

Winslett et al, define a TrustBuilder negotiation protocol and, running
on top of it, families of strategies that address the requirements and
needs of each party to negotiate in a way best suited for it. The protocol
defines message type and ordering and the strategy controls the content
of the negotiation messages. Both the negotiation protocol and the
families of strategies are located in a negotiation strategy module – the
TrustBuilder.

So, whenever two parties want to negotiate, they first choose (agree
on) negotiation strategies that guarantee a successful interoperation and
completion of the process. Once they chose the strategies, they run the
TrustBuilder protocol.

Abstracting from the concrete strategy and family, in its essence the
relevant strategy for selecting the next set of credentials (message) is
the following: for every credential, relevant to the service request, if the
credential is disclosable by the client’s presented set of credentials it is
added to the output else its policy (the part that protects the resource)
is added instead. Then in the final output of the current strategy step
the client can find the newly unlocked credentials together with policies
for the others (not disclosed ones) that the client should satisfy in order
to continue the process. The process continues, with parties swapping
roles, until all requirements are satisfied and the resource is granted or
a consensus was not reached by one of the parties who terminates the
execution.

4. Bootstrapping Trust Negotiation

To combine automated trust negotiation and interactive access control
we only assume that both clients and servers have some logical security
policies. In particular we assume available:

1 a policy for access to own resources PAR on the basis of foreign
credentials,

2 a policy for access to own credentials PAC on the basis of foreign
credentials,

3 a policy for the disclosure of the need of missing foreign credentials
PD.

Here PAR is a logic program over the predicates defined in Section 2 in
which no credential and no execution atom can occur in the head of a
rule, and role hierarchy atoms occur as facts. Respectively, PAC and PD
are logic programs in which no role hierarchy atom and no execution
atom can occur in the head of a rule.

Technically speaking we could merge 1 and 2 into a flat policy for
protecting sensitive resources. We believe that a structured approach is
better because the criteria behind (and likely the administrator of) each
policy are different. Resource access is decided by the business logic,
whereas credential access is due to security and privacy considerations.

Then the client and server do not need to worry about interoperable
strategies but must simply run the trust negotiation protocol shown in
Figure 3.

The intuition behind the protocol is the following:

The client, Alice, sends a service request r and (optionally) a set
of credentials Cr to the server, Bob (steps 1 and 2).

Then Bob looks at r and if it is a request for a service he calls
InteractiveAccessControl with his policies for access and dis-
closure of resources < PAR,PD > (step 6) and we fall back in the
case of Section 2.

If r is a request for a credential then he calls InteractiveAccessControl
with his respective policies for access and disclosure of credentials
< PAC ,PD > (step 9).

In the case of computed missing credentials CM (in step 11), he
transforms that into requests for credentials (askCredentials(...)
function in Figure 3) and waits until receives all responses. At this
point Bob acts as a client, requesting Alice the set of credentials
CM. Alice will run the same protocol swapping roles.

When Bob’s main process receives all responses it checks whether
the missing credentials have been supplied by Alice (step 13).

If CM was not reached, Bob restarts the loop and consults the
InteractiveAccessControl algorithm for a new decision.

Global vars: CN , CP :: initially set up to ∅ when the main process is started;
InteractiveTrustManagement(){ // runs in a new thread.

1: r = receiveRequest();

2: Cr = receiveCredentials();

3: CP = CP ∪ Cr ;

4: repeat

5: if isService(r) then

6: result = InteractiveAccessControl(r, PAR, PD);

8: else // isCredential(r(c))

9: result = InteractiveAccessControl(r, PAC, PD);

11: if result == ask(CM) then

12: askCredentials(CM);

13: if CM ⊆ CP then result = grant;

14: until result == grant or result == deny;

15: if result == grant and isCredential(r) then

16: sendResponse(cred(r));

17: else

18: sendResponse(result);

}
askCredentials(CM){

1: parfor each c ∈ CM do

2: sendRequest(r(c));

3: if receiveResponse() == cred(c) then

4: CP = CP ∪ {c};

5: CN = CN \ {c};

6: else if c 6∈ CP then

7: CN = CN ∪ {c};

8: done

}

Figure 3. Interactive Trust Negotiation Protocol

When a final decision is taken, a respective response (steps 16 and
18) is sent back to Alice.

The server initiates the main trust negotiation process when the client
initially submits a request for a service. Each counter-request from the

client can be seen as additional threads that share the same globally
accessible client’s profile (CP , CN).

A technicality in the protocol is the way the server requests missing
credentials back to the client. As indicated in the figure, we use the key-
word parfor for representing that the body of the loop is run each time
in a parallel thread under the thread that has computed CM. At that
point of the protocol, it is important that each of the finished threads
updates the presented and declined set of credentials appropriately. So,
we avoid the situations where some running parallel threads ask the
client already asked credentials or already declined ones computed in
other running threads under the same main process.

Also an important point, here, is to clarify the way we treat decliend
and not yet released credentials. In a negotiaition process, declining a
credential is when an entity is asked for it and the same entity replies to
the same request an empty set (saying no). In the second case, when the
entity is asked for a credential and, insted of reply, there is a (counter-
)request for more credentials, then the thread, started the original re-
quest, awaits the client for an explicit reply and treats the requested
credential as not yet released. In any case, at the end of a (sub) nego-
tiation process a client either supplies the originally asked credential or
declines it.

The thread based implementation (with shared CP and CN) is nec-
essary to allow for a polynomial execution time of the trust negotiation
protocol in the number of queries to the abduction algorithm. Indeed,
without a shared memory for received credentials it is possible to struc-
ture the policies in a way that a credential will be asked far too many
times. In this way the protocol queries to PAC are bounded by the
number of credentials in the policies.
Remark 1 It can be proved that if policies are negation free then the
algorithms on the client and server sides interoperate.
It is possible to run the TrustBuilder by Yu et al. [12] on top of our
mechanism so that our framework abstracts away the requirements on
policies and strategies that should be imposed on the user’s disclosure
policy if using TrustBuilder directly.

However, we have not yet solved the problem of piecewise disclosure
of missing foreign credentials. This turns out to be also possible as we
shall see in the next section.

5. Controlled Disclosure of Missing Credentials

The intuition here is that Bob does not want to disclose his policy
before some trust has been built, namely Bob will not tell Alice what
she additionally needs before she discloses some credentials first.

Global vars: CN , CP ;
InteractiveTrustManagement(){ . . .

}
PieceWiseDisclosure(CM, PD){

1: CD1 = {c | PD ∪ CP |=1 c} \ CN ;

2: PD1 = {ĉ← B | c← B ∈ PD} ∪
{c← ĉ | c 6∈ CD1 and c← B ∈ PD for some B};

3: Q =
{

q ←
∧

c∈CM
c

}

;

4: CM1 = doAbduction(q, CD1, PD1 ∪ CP);

5: return CM1;

}
askCredentials(CM, PD){

1: repeat

2: CM1 = PieceWiseDisclosure(CM, PD);

3: if CM1 == ⊥ then return;

4: parfor each c ∈ CM1 do

5: sendRequest(r(c));

6: if receiveResponse() == cred(c) then

7: CP = CP ∪ {c};

8: CN = CN \ {c};

9: else if c 6∈ CP then

10: CN = CN ∪ {c};

11: done

12: CM = CM \ CP ;

13: until CM ⊆ CN ;

}

Figure 4. Piecewise Trust Management Protocol

To address this issue we extend the protocol in Section 4 with an algo-
rithm for piecewise disclosure of missing credentials. The basic intuition
is that the logical policy structure itself tells us which credentials must
be disclosed to obtain the information that other credentials are miss-
ing. So, we simply need to extract this information automatically. We
exploit the structure of the policy and perform a step-by-step evaluation
on it. For that purpose we use one step deduction (Definition 2) over the
disclosure policy PD to determine the next set of potentially disclosable
credentials.

Essentially, the protocol replaces the askCredentials function with
a new version of it using the piecewise disclosure algorithm and adds the
disclosure policy to its arguments, see Figure 3.

With its new version the askCredentials function (Figure 4) takes
as input the set of missing credentials CM (as the old one) together
with the policy for disclosure control PD that CM was computed from.
In a nutshell, the algorithm requests the client all missing credentials
supplied in the input, but with the difference of stepwise awaiting for
each of the computed steps by the PieceWiseDisclosure algorithm. In
other words, when a next step of missing credentials is computed (step
2) the algorithm waits until the client responses to all current requests.
Again here the client’s profile is updated on each request/response to
facilitate other’s threads access decisions. Then the check in step 3 for
CM1 comprises the two cases: either the set of presented credentials CP
has been updated (indirectly) by other running threads such that now
CM is satisfied so that there is no next step, or the client has declined
some credentials that stop his way further to CM.

The task of the PieceWiseDisclosure is to determine at each inter-
action step exactly the relevant credentials that are needed to reach at
the end the set CM.

Basically, we compute the set of abducible credentials in one step as
CD1 (compare with the corresponding step 2 in Figure 2(a)). Out of
those, we extract only the minimal set of credentials that is actually
necessary to derive CM. To this extent, we modify policy PD by adding
a new atom q that can be derived if all (and only) CM credentials are
derived. Additionally, we also change syntactically the structure of PD
rule so that relevant credentials in CD1 must be abduced and can no
longer be derived from chaining other rules.

We do that by changing a rule of the from c← c1, . . . , cn into a pair of
rules ĉ ← c1, . . . , cn and c ← ĉ, where ĉ is a new symbol. The informal
meaning of the first rule is that c is disclosable if all ci are. So, we now
say that the need for the fictitious ĉ is disclosable if the need for all ci

is disclosable and that the need for credential c is disclosable if the need
for ci is.

Now if we remove the c ← ĉ for all c in CD1 there will be no rule to
infer that the need for c is disclosable so we must abduce c as a primitive
atom (if it is actually needed to derive q, i.e. some of the CM).

6. Implementation

For the implementation of the framework we have chosen Collaxa2

manager. Collaxa server supports many standards as BPEL4WS, WSDL,
SOAP, etc. and interoperates with platforms as BEA’s WebLogic and
Microsoft .NET. So, this makes it well-suited for the purposes of the
framework. The main idea of the work is that using BPEL4WS specifi-
cation [5] we can orchestrate all the requirements and communications
between the client and the partners in an automatic and transparent
way via a main authorization server.

A preliminary prototype of the system, especially the authorization
server and the policy orchestrator, have been done, running them under
Collaxa.

For the implementation of the algorithms and protocols we need, on
a lower level, a suitable engine for the basic computational processes as
deduction, one step deduction and abductiom (Def. 1,2,3). For that
purpose we have done a wrapper (a set of interfaces) to the DLV system
that manages all the internal computations, queries and transformations
to and from the DLV’s defined front-ends.

For the actual crypto infrastructure we decided to use PERMIS3 [4].
We chose PERMIS because it implements RBAC using entirely X.509
Identity and Attribute Certificates [6]. It allows for creating, verify-
ing and validating attribute certificates and for storing and allocating
them using LDAP directories [10]. For the integration with PERMIS, we
extend the PERMIS’s Access Decision Function (ADF) with the func-
tionality of our model such that PERMIS validates and gathers client’s
credentials on its own and then asks our algorithm for an access decision
(next possible step) presenting the newly collected credentials.

7. Conclusions

In this paper we have proposed a framework for leveraging trust man-
agement and negotiation scheme between a client and a service provider
in the WS world. We proposed a basic access control algorithm that
evaluates a client’s request with respect to a partner’s policies and in
the case of failure it computes what is necessary for the client to get
the desired resource. Then we devised an interactive trust management
protocol that communicates and negotiates the missing credentials in
a piecewise manner until enough trust is established and the service is
granted or the negotiation failed and the process was terminated.

2www.collaxa.com
3www.permis.org

The protocol can be run on both the client and server side so that they
understand each other and automatically interoperate until a desired
solution is reached or denied.

It is also possible to run the TrustBuilder by Yu et al. [12] on top
of the protocol with the only requirement of transforming each time the
protocol input/output to syntax understandable by the TrustBuilder
policy engine.

One of the advantages in our approach is that we do not pose any
restrictions on a partner’s policies since the basic computations we per-
form on the policies are deduction and abduction which do not require
any specific policy structure.

References

[1] Benatallah, B., Casati, F., and Toumani, F. Web service conversation
modeling: a cornerstone for e-business automation. IEEE Internet Computing
8, 1 (Jan/Feb 2004), 46–54.

[2] Blaze, M., Feigenbaum, J., Ioannidis, J., and Keromytis, A. The KeyNote
Trust-Management System Version 2, 1999. RFC 2704.

[3] Blaze, M., Feigenbaum, J., and Lacy, J. Decentralized trust management.
In Proc. of IEEE Symposium on Security and Privacy (1996), pp. 164–173.

[4] Chadwick, D. W., and Otenko, A. The PERMIS X.509 role-based privilege
management infrastructure. In Seventh ACM Symposium on Access Control
Models and Technologies (2002), ACM Press, pp. 135–140.

[5] Francisco Curbera, et al. Business Process Execution Language for
Web Services (BPEL4WS). BEA, IBM, Microsoft, May 2003. http://www-
106.ibm.com/developerworks/webservices/library/ws-bpel/.

[6] ITU-T Recommendation X.509:2000(E) | ISO/IEC 9594-8:2001(E). The
directory: Public-key and attribute certificate frameworks.

[7] Koshutanski, H., and Massacci, F. A logical model for security of Web
services. Tech. Rep. IIT TR-10/2003, First International Workshop on Formal
Aspects of Security and Trust (FAST), Pisa, Italy, September 2003.

[8] Koshutanski, H., and Massacci, F. Interactive access control for Web Ser-
vices. In Proceedings of the 19th IFIP International Information Security Con-
ference (SEC 2004) (Toulouse, France, August 2004). (to appear).

[9] Li, N., and Mitchell, J. C. RT: A role-based trust-management framework.
In Proceedings of the 3rd DARPA Information Survivability Conference and
Exposition (DISCEX III) (Los Alamitos, California, April 2003), pp. 201–212.

[10] Wahl, M., Howes, T., and Kille, S. Lightweight Directory Access Protocol
(v3), December 1997. RFC 2251.

[11] Winslett, M., Yu, T., Seamons, K., Hess, A., Jacobson, J., Jarvis, R.,
Smith, B., and Yu, L. Negotiating trust in the Web. IEEE Internet Computing
6, 6 (Nov/Dec 2002), 30–37.

[12] Yu, T., Winslett, M., and Seamons, K. E. Supporting structured creden-
tials and sensitive policies through interoperable strategies for automated trust
negotiation. ACM TISSEC 6, 1 (2003), 1–42.

