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Abstract

The last years have seen two major advances in Knowledge Representation and Reasoning. First,
many interesting problems (ranging from Semi-structured Data to Linguistics) were shown to be
expressible in logics whose main deductive problems are EXE-complete. Second, experiments
in automated reasoning have substantially broadened the meaning of “practical tractability”.
Instances of realistic size fordPACEcomplete problems are now within reach for implemented
systems.

Still, there is a gap between the reasoning services needed by the expressive logics mentioned
above and those provided by the current systems. Indeed, the algorithms based on tree-automata,
which are used to prove EXIPMME-completeness, require exponential time and space even in simple
cases. On the other hand, current algorithms based on tableau methods can take advantage of such
cases, but require double exponential time in the worst case.

We propose a tableau calculus for the description logi@C for checking the satisfiability of a
concept with respect to a TBox with general axioms, and transform it into the first simple tableau-
based decision procedure working in single exponential time.

To guarantee the ease of implementation, we also discuss the effects that optimizations
(propositional backjumping, simplification, semantic branching, etc.) might have on our complexity
result, and introduce a few optimizations oursel@2000 Elsevier Science B.V. All rights reserved.
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1. Introduction and motivations

Automated Reasoning has been an active research area in the mainstream of Atrtificial
Intelligence in the last decades and has received special attention as a tool to provide
“reasoning services” for Knowledge Representation and Reasoning (KR&R) [53]. That
is, when knowledge about a problem is coded as formulae in a particular éagamnated
reasoning serviceabout such knowledge can be offered to a more complex system—
in more or less the same way implemented data structures offer methods to update the
structure itself [52]. Of course, to make reliable such a service, some bounds on the
resources needed to solve the reasoning problem associated to the service should be
given. This implies that the reasoning problem should be at least decidable; but more
pragmatically, the service should be accomplished within the resource bounds available
to the current technology—which is sometimes mentioned as “tractability”.

Traditionally, “tractability” has been largely understood as polynomial-time solvability
of the reasoning problems. This resulted in a tremendous effort on isolating the so-called
tractable fragmentsf various logics for knowledge representation [21,53,60,61,67].

The last years have seen a shift from this paradigm, at least for two reasons.

First, logics with polynomial-time deductive problems have been criticized for their
too limited expressive power [23]. Although systems with a limited-but-reliable KR&R
component have been successfully used in complex applications [7,19,79], it is now
recognized that many interesting KR&R problems can be expressed only in logics
whose main deductive problems—satisfiability and logical implication—are EM®-
complete. This is true especially for Description Logics, in which many problems, like
reasoning in conceptual data models, schema integration and semi-structured data [9,10],
are expressible in EXRME-complete Description Logics. The need is also true for logics
very similar to Description Logics, such as Modal Logics [25,29], Propositional Dynamic
Logics [27,49], Temporal Logics for Computer Aided Verification [24,78], Hybrid Logics
for Linguistics [6], Security Modal Logics [1,35].

Second, a number of recent experimental advances in description and modal logics
theorem proving and satisfiability checking have substantially broadened the meaning
of “tractability” for practical purposes. Better algorithms, better coding, better computer
technology have brought forward a number of novel and effective systems for modal
and description logics based on on different calculi and implementations, ranging from
tableau and constraint systems [41,43,44] to DPLL-based implementations [32,34] and
first order theorem provers [48]. Problems such as as concept satisfiability or modal
provability, which are BPACEcomplete problems in the worst case, are now within reach
for instances of realistic size [58]. Potentially EXME-complete problems stemming
from real applications can be also be reasonably solved [30,41,45].

1.1. The problem

Notwithstanding the impressive amount of theoretical and experimental work, there is
still a gap between the reasoning services for the expressive logics mentioned above and
those provided by the currently implemented systems. Indeed, although many systems
such asFaCT andDLP [41,43,64] provide reasoning services for problems 8PACE
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(e.g., concept satisfiability) and in EXRME (e.g., subsumption with respect to TBoxes,
validity for propositional dynamic logic), it is only for problems irsPACEthat the offered
reasoning services are proved to guarantee the computational complexity upper bound [45].

For sake of concreteness, in this paper we concentrate on a reasoning technique for a
particular Description LogicALC [22,70], which is a subset of nearly every expressive
Description Logic. However, we remark that£C is merely a notational variant of
the multi-modal logick [38], and, with simple adaptations, one obtains Propositional
Dynamic Logics (without converse) and Temporal Logics.

From correspondences with Propositional Dynamic Logic (PDL) it is known that the
satisfiability of anALC conceptC with respect to a TBox KB is in EXPME [65,77].
However, the algorithms directly derived from the tree-automata methods, which have been
used to prove such a result, require exponential time and space even in simple cases, e.g.,
when a simple model satisfying both KB a@iccan be easily found. Loosely speaking, this
happens because one first constructs an automaton which accepts the tree nikiglalsctf
C, and whose size is exponential in the size of the input. Then, one checks its emptiness,
i.e., whether the automaton accepts no model [13,24,31]. The construction of efficient
methods for testing emptiness—i.e., unsatisfiability—on-the-fly while constructing a tree
automata, is still an active area of research. The problem has been solved ordpAaeP
problems such as satisfiability of linear temporal logic [13,31].

In contrast, proposed tableau methods [8], which explore a space of candidate models
for KB andC starting from simple ones, can take advantage of such cases. However, there
can be an exponential number of possibly exponential-size candidate models. Hence, a
straightforward implementation based on tableaux requires doubly exponential time in the
worst case.

As a solution to this problem, many implementdd’C satisfiability solvers “cache”
the (un)satisfiability status of sets of concepts for later use [37,43]. This optimization
prunes heavily the search space but its unrestricted usage may lead to unsoundness [37].
It is conjectured that “caching” leads to EX®E-bounds but this has not been formally
proved so far, nor the correctness of caching has been shown.

Indeed, a practical and easily implementable algorithm, whose correctness and com-
plexity have been formally proven, has not been given in the literature. This topic is only
quickly discussed in [8] and the transformation of a tableau calculus into anr ExP
algorithm is only sketched in [16,20].

1.2. The contribution of this paper

We devise a refined tableau calculus that neatly formalizes and integrates the techniques
used by ALC solvers with the theoretical work on PDL with tableaux, thus achieving
the first simple tableau-based procedure working in single exponential time for the
satisfiability of anALC conceptC with respect to a TBoXB containing general axioms
of the formC C D.

This result is particularly important as it shows that it is possible to exploit a search-
based technique, with the possibility of finding rapid solutions for “easy problems”,
without sacrificing worst-case complexity.
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In a nutshell, traditional tableau methods close a branch only by “first principles”
(atomic clashes), whereas our enhanced tableaux exploit previously proved inconsistencies
as additional lemmata to decide that a branch can be closed, without delving into the same
formulae only to find the same atomic clashes again and again.

We remark that, in a realistic setting, several satisfiability tests are posed to the same
TBox [3]. Even if most concepts usually turn out to be satisfiable, the reasoning process
may analyze many inconsistent sets of concepts. These lemmata are related to the TBox;
they are independent on the particular concept being tested, and can therefore be exploited
for answering subsequent tests. Hence, their use not only speeds up a single deduction, but
the cost of memorizing them can be amortized over several tests.

Once correctly formalized, our tableau calculus is very simple—even though the
complexity proof is far from simple—and could be easily implemented in existing top-
down tableau-based systems, sucha®T [41,42],KSAT [32] or DLP [43,64]. Indeed, we
can see a further contribution of this paper in the actual distillation and formalization of
many intuitions present in current implementations.

Our techniques could also be extended to translation-based appraatzh&hlbach
[62], using the simulation techniques developed by Hustadt and Schmidt [47] which makes
it possible to simulate the actual proof search with prefixed tablaédaassacci [54,57]
in a first-order resolution framework.

To guarantee the ease of implementation, we have taken particular care in discussing the
effects that the various optimizations (propositional backjumping, simplification, semantic
branching, etc.) might have on our complexity results, and how our results can be lifted
to more expressive logics beyodICC. Moreover, we introduced a few optimizations
ourselves (e.g., modal backjumping).

1.3. Plan of the paper

In the next section we introduce the syntax and the semantics of the description logic
ALC. Then, we present the general principles of an innovative tableau calculUsCtor
(Section 3) and sketch how to lift it to more expressive logics. We show how to transform
it into an EXPrimEe efficient algorithm (Section 4) and discuss the incorporation of many
state-of-the-art optimizations into the basic algorithm.

We also prove the correctness of the tableau calculus (Section 5) and the required
exponential complexity bounds on the algorithm (Section 6). Finally we review some
related approaches (Section 7) and conclude (Section 8).

The reader interested in the practical working of the algorithm can find in the appendix
a worked example.

2. Notation and semantics
Let A denote a concept nam€&,and D arbitrary concepts, anil a role name. Concepts
in ALC are formed with the following syntax:
C,D:=T|L|A|=C|CnD|CuUD|VYR.C|3IR.C
In the sequel we denote sets of concepts by the calligraphic I€tms D.
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o o1 ap B 1 B2

cnbD C D —~(CnD) —C =D

—~(CubD) —C -D cub C D
neg pos v(R) Vo 7(R) 0
——C C VR.C C —VR.C —-C
—3R.C -C iR.C C

Fig. 1. Uniform notation of concept expressions.

A TBox KB is a set containingnclusionsof the formC C D. We do not impose any
constraint on the form of these inclusions.

For sake of modularity, we classify concepts with the typesg introduced by
Smullyan [73]in the 1960s, and extended to modal logic by Fitting [28]. This classification
is recalled in Fig. 1.

Definition 2.1. If A is a concept name, we refer to formulae of the fofin-A, v(R) and
7 (R) asmodal atoms

The intuition is that modal atoms cannot be reduced further by simple propositional
rules.

2.1. Semantics

An interpretationZ = (A, -Z) consists of a non-empty set, thedomainof Z—whose
members are calledlements-and a function?, the interpretation functionof Z, that
maps every concept to a subsetofind every role to a subset df x A such that

T = A,

1=y,

cnbpyt=ctnp?,

«cubpy=ctup?,

(=O)F =\,

(YR.C)Y =|a € A|Vb.(a,b) € RF impliesb e C*},
@R.C)f ={ae A|3b.(a,b) e RT andb € CT}.

According to this definition, an interpretation function is completely determined by the
way it interprets atomic concepts and roles.
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An interpretationZ satisfies a concept if there exists an element € A such that
d e CT ie. if CT #0. Aninterpretatiorvalidates a concept if for every elementl € A
one has/ € CZ, thatis, ifCZ = A.

An interpretationZ validatesthe inclusionC = D if ¢ € DZ. In other words, this
interpretation validates the concep€ U D.

A TBox is a finite set of inclusions. An interpretatidnis a modelfor a TBox KB if
7 validates all inclusions in KB. We say that a TBox Kdhtailsthe inclusionC C D,
written KB = C T D, if every model of KB validates the inclusiainC D. A conceptC is
satisfiable with respect to a TBox KB if there is a modedf KB such thatZ satisfiesC.

Observe that satisfiability of a concept with respect to a TBox can solve also other
problems such as entailment. For instance, KB en@ifs D iff C m—D is unsatisfiable
with respect tKB.

3. Atableau calculus for ALC

Our calculus combines features of Gentzen-type tableaux, prefixed tableaux, and
constraint systems. Below we give (to the reader who is familiar with these calculi) some
intuitive reasons why we need a calculus which is more general than each one of them.

e Gentzen-type tableaux [28,36] provide too rough a level of granularity, since they
implicitly work with sets of concepts, but concentrate on one element at the time, and
there is no way to distinguish different elements linked to the same set of concepts.

e Prefixed tableaux [28,36,54,57] and constraint systems [8] provide too fine a level of
granularity. They give names to elements, but they do not immediately identify the
whole set of concepts linked to an element.

e Graph-based systems, from Kripke’s original proposal [50], to more recent incarna-
tions in modal logics [11,26] and description logics [44,45] allow to identify the sets
of concepts linked to a node. However, since they represent only a single tentative
model in a tableau, and employ nondeterministic rules, they shift the problem of ob-
taining a deterministic algorithm into the implementation. Therefore they are suited
only for proving decidability [26,44,45], ordPACEcompleteness, by exploiting Sav-
itch’s Theorem that BPACEis closed under nondeterminism [45].

e Loop checking [18,36,39,54,57], also known as blocking [8,44,45] and filtering [36],
is only useful for “reusing” satisfiable concepts, namely the concepts that can be used
to build a (partial) model.

e Standard algorithms do not learn from local proofs of unsatisfiability. Indeed, even
if caching of unsatisfiable concepts is often claimed by many implementors [37,
41,43,64], this feature is left out of the formal description of the calculus and the
algorithm. Therefore, it is impossible to prove its correctness or its complexity. In
contrast, we mudbrmally re-use parts of the computationsth for satisfiability and
unsatisfiability.

In a nutshell, the intuitions behind our system are close to those commonly described in

the recent modal and description logic literature. What we have done is to actually distil
and formalize the different fragments into a coherent and effective whole.
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3.1. Tableau rules

The basic component of our calculus is a pairC, composed by grefix e and a
set of concept€. We call this pair gorefixed setA prefix is an alternating sequence of
integers and role names, starting with 1. FormallyRifs a role name and an integer
we have that the syntax of prefixeseis.= 1| e.R.n. For example, ifP and Q are roles,
1.P5.0.11.P.12is a prefix,and 2.8.R.9: {A, BUVR.C} is a prefixed set.

Intuitively, a prefixe in a paire : C is a name for an element in a domain of a model the
calculus tries to build. If a model is actually buitt satisfies all concepts contained in the
setC.

To define a tableau, we adapt from Smullyan’s book [72, pp. 24 and 29] and use the
uniform notation defined in Fig. 1 to avoid any preliminary reduction to negation normal
form.

A tableau for a concepf is an ordered dyadic tree, whose points are (occurrences of)
prefixed sets, which is constructed as follows. We start by placi{g'1 at the root. Now
suppose/ is a tableau foIC which has already been constructed;#dbe abranchin 7,

i.e., a path from the root to a leaf. Then we may ext@nly using the rules in Fig. 2 as
follows: if the antecedents of a rule appear al@hgve add toB the consequent(s) of the

rule. For thep rule, we simultaneously adjoin the two consequents as the left successor
and the right successor of the leaf. Notice that the antecedent of a rule needs not be a leaf
in the tree as in [41].

We call the rules in Fig. Prefixed Set rule@PS-rules for short).

We say that rule is applied to a prefixed set: C if ¢ : C is the antecedent of the rule
being applied. For the(R) rule, which has two antecedents, we say that the rule is applied
to the first antecedent (the prefixed seC U {v(R)}).

e:CU{a} e:CU({neg
e:CU{aqg, ap} “ e:CU{pog (dneg
e:CU{B}

c:CUB e:CUBy D

e:C
—— (KB h C DecKB
e:CU{—CuD}( ) whereCE D e
e:CU{m(R)}

7(R) wheree.R.n is new in the tablead”
e.R.n:{mp}

e:CU{v(R)} e.Rn:D
e.R.n: DU {vp}

v(R)

Fig. 2. Prefixed Set rules.
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Regarding ruler(R), a prefix ispresentin a tableau7, if there is a prefixed set ifl”
with that prefix, and it i;ewif it is not present.

The same rule might be applicable to different prefixed sets, due to the presence in the
sets of the very same concept. For example, starting the tableau fréariB, C U D},
and applying thex rule, the prefixed set 1{A, B, C u D} is added to the tableau as a
successor of the root. Now th&rule is applicable both to the root and to its successor;
but obviously, there is no point in applying the rule to the root, since it contains a concept
already decomposed. To prevent this ambiguity, we impose the following restriatéon:
cannot apply a rule to a prefixed set C if below in the branch there is already a prefixed
sete : C’ (with the same pref)x

Remark 3.1. The condition inz (R) thate.R.n is new in7 ensures that each prefix is
uniquely identified in7 . Moreover, it is easy to see that if an prefbR.n is present irZ,
SO ise.

3.2. Reusing computations for satisfiability

We need the preliminary notion of reduced concept:

Definition 3.2. A conceptC € C is PS-reducedor the prefixed set : C in the branch3
iff one of the following conditions holds:

(1) if C is of typea, and bothw; anday are inC;

(2) if C is of typeg, and eitheiy or B2 is in C;

(3) if C is of typeneg andposis inC;

(4) if C is of type 7 (R), and there is another prefixed seR.n : D in B such that

o € D,

(5) if C is of typev(R), and for all prefixed sets.R.n : D presentins3 itis vp € D.
Moreover, arinclusionC C D € KB is PS-reducetbr the prefixed se¢ : C in a branch3
iff ~CuDeC.

If the concepC is reduced according the first three rules, we say thapidpositionally
reduced Clearly, modal atoms are propositionally reduced.

Definition 3.3. A prefixed set : C is PS-reducedn branchB if every conceptC € C is
PS-reduced foe : C and every inclusioi® C D € KB is PS-reduced fo# : C.

Of course we do not need to apply a rule to a concept which is already PS-reduced, nor
to consider PS-reduced prefixed sets.

Although this may be sufficient to avoid some useless computations, it is still not enough
to provide termination. We need to introduce the notion of implicitly reduced concept and,
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to this extent, the standard lexicographic ordering for prefixes. This is obtained by taking
the transitive (but not reflexive) closure of the following relations:

e<e.Rn
e.Rn~<e.R n' providedn <n'

e.R.e1<e R .ex providede <¢'.

For example, 1R.6 < 1.0.11, and 1R.12.0.20< 1.0.15.R.16. For simplicity, we keep
the same symbok for the transitive closure of the above relations.
To identify loops in a branch, we define the following notiorwetness

Definition 3.4. A prefixed sete : C is awitness in a branctB for a prefixed set’ : C, if
e<¢',e:Cis PS-reduced, and there is no other prefixe@'éet in B such that” < e.

In the above definitior is the same in both prefixed sats C ande’ : C. Note also
that if e : C has a witness, then it is reduced with respect to points (1)—(3) in the above
Definition 3.2. Since the relation is well-founded, there is at most one witness for a given
setC. Clearly, there is no point in reducing further a prefixed set which has a witness.

Definition 3.5. A prefixed sete : C is implicitly PS-reducedn a branchs iff either it is
PS-reduced or it has a witness C in 1.

3.3. Reusing computations for unsatisfiability
We start by recalling the usual definition of explicit inconsistency.

Definition 3.6. A prefixed sete : C is inconsistenif there is a concep€ such that both
C € C and—C € C. For a given concept, we callclashthe set{C, —C}.

To re-use unsatisfiable sets of concepts we introduce a special kind of prefixed sets called
inconsistent set6L-sets for short), denoted as (C)*.

The semantic interpretation ef: (C)*is the logical implicatiorkKB = rC C L, where
if C={Cy,...,C,} thenniC=C11m---11C,. In other words, al-set contains a set of
concepts whose conjunction has already been proven inconsistent for the given knowledge
base KB, during the expansion of the tableau.

The intuition is thatl is anextra labelthat we may propagate along the current labels
of the nodes of the tableau. So we have a series of rules for relabeling, shown in Fig. 3.
The rules are applied as follows: if the antecedent prefixed sets occur in the tabtihe
consequent : D occurs also in the tableau, then we relabel the consequent(@-.

Without the condition that both antecedents and consequent already appear in the
tableau, the rules for thé.-sets would be a parallel calculus to derive the inconsistency
of a set of concepts bottom-up rather than top-down, and many (irrelelzesdjs could be
generated. On the contrary, in this way we can have at most as i&eys as “normal”
prefixed sets.
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For all rules, the consequent appears (unlabelled) in the tableau.

C,-CeC 0t ¢ <e .
e(T(J_) T(l WltneSS

e: (CU{ag, aopt e:(CU{pos)t
e: (CU{aht (L) e:(CU({neg)* (-dneg
e:(CUBIHt e (CU{Bht
e (CU(BhHt

(L-B)

e:(CU{—-CUD)L CcCDeKB
e: (C)L

(L-KB)

DC{|v(R)eC) eRn:(DU{mht
e: (CU{m(R)HL

(L7 (R))

Fig. 3. Generation of_-sets.

The L-rules are the (almost) dual version of the PS-rules. The major difference is
that PS-rules are applied within a branch, whereas rules of Fig. 3 can be applied across
branches, i.e., antecedents and consequents may appear in different branches of the
tableau—cf. in particular the rulé-witness

Then, we can broaden the definition of an inconsistent prefixed set:

Definition 3.7. A prefixed set : C is implicitly inconsistentf it is a L -set.

Later, in Lemma 5.2 we prove that this name is faithful to its meaning, namely, that an
implicitly inconsistent set is indeed inconsistent.

Since we have more rules than simply PS-rules, we must also add the notion of
reduced prefixed set.

Definition 3.8. A prefixed sete : (C)* is L-reducedif every rule of Fig. 3 which can be
applied to it does not introduce a nelwset.

3.4. Tableau proof search
The presence of withesses and the notion of implicitly inconsistent, PS-reduced, and
L -reduced sets require a novel definition of open and closed branches with respect to the

standard tableau definitions.

Definition 3.9. A branchi isimplicitly closedf there is an implicitly inconsistent prefixed
setinB. A tableau is implicitly closed if all its branches are implicitly closed.
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Definition 3.10. A branchi5 is openif every prefixed set i8 is both implicitly PS-reduced
and_L-reduced, and® is not implicitly closed. A tablead is open if at least one branch
of 7 is open.

Now we have defined all the notions needed to state the first two results (proofs in
Section 5).

Theorem 3.11. If there is an implicitly closed tableau for the conc&pivith a TBox KB
thenC is unsatisfiable for KB.

Theorem 3.12.If there is an open tableau for the conceptwith a TBox KB therC is
satisfiable for KB.

The key problem is how do we find an open or implicitly closed tableau, possibly
using single exponential time in the size of KB a@id To this extent we need to apply
the following high-level search techniques. For each technique, we give some intuitive
rationale.

Technique 1. Never apply a rule to an implicitly PS-reduced prefixed set, nor tora-
duced prefixed set.

Regarding implicitly PS-reduced prefixed sets, either they are PS-reduced (and then,
no PS-rule can be applied to them), or they have a withess. Observe that following this
technique, only the first encountered witness can be properly PS-reduced. In fact, the
prefixed set having a witness will not be PS-reduced with respect to conditions (4)—(5)
in Definition 3.2.

A 1-reduced prefixed set is inconsistent (we show this formally in Section 5), so there
is no point in further expanding it.

We now impose that we do not expand prefixed sets which we have already “proved” to
be inconsistent:

Technique 2. Never apply a PS-rule to an implicitly inconsistent prefixed set.

In order to apply Technique 2 as often as possible, saving useless expansions, we need
to “discover” L-sets as soon as possible. Then, we give precedence to the generation of
1 -sets:

Technique 3. Apply the rules for the addition of new-sets before other rules.

These techniques preserve the soundness and the completeness of the search strategies
that apply them, but we need more constratntsr proving that the proof search requires
single exponential time.

1 We do not know whether the constraints we impose are minimal or there are alternative ones. For instance,
see the work of Demri on non-uniform strategies [18] or Farifias and Gasquet [26] for a different strategy which
guarantees termination.
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Technique 4. For every prefixed set: C, apply rulese, pos KB andv(R) before other
rules, and apply rul@ before ruler (R).

Technique 5. The new prefixe.R.n generated by rule (R) must be such that > m for
every other integemn already present in the tableau.

Intuitively, this technique simply says that we use a global counter for generating the
successors of: first generate.R’.1, thene.R”.2, thene.R”.3 and so on, wher&’, R”,
andR” may be the same role.

Technique 6. Apply a rule to a prefixed set: C only if there is no prefixed set : D, with
e’ < e, to which a rule can be applied.

Technique 7. Use a depth-first strategy for the traversal of the branches of the tableau.

The combination of Techniques 4 and 6 force the applicationofR rule just after
an application of ar(R) rule. That is, just after ruler (R) introduces a new prefix, all
additional conceptsg imposed by universal formulag R) are transferred to the newly
generated prefix by the applicationafR) rule.

We now have the machinery to prove that the search process terminates, using single
exponential time in the worst case.

Theorem 3.13. Any search strategy respecting Techniqde§ terminates using single
deterministic exponential time in the sizetbfind the TBox KB.

The proof is carried out in Section 6, after making the above calculus and techniques
more concrete with the help of a set of algorithms (Section 4).

3.5. Extension to logics beyoodlCC

The calculus and the corresponding correctness and complexity results can be easily
extended to cope with reflexive and transitive roles (i.e., with modal logics suGh &8,
and S4,). We simply need to incorporate th&) and (4) rule for Single Step Prefixed
Tableaux [36,54,57]. In a nutshell we simply need to augment the calculus with the rules:

e:CU{W(R)}
e:CU{v(R), vo}

:CU{v(R .Rn:D
¢:CUWMR))  eRn v*(R) whenR is a transitive role
e.Rn:DU{v(R)}

vT(R) whenR is a reflexive role

Thev (R) rule has the same priority of anddnegrules whereas the*(R) rule have the
same priority of the classical R) rule.
Role hierarchies, in absence of transitive roles, in the fBrim Q for atomic roles? and
Q can also be easily accommodated by usingthaule given in [56]. The combination of
role hierarchies and transitive roles requires major modifications to the calculus, because
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of the interaction between transitive roles and role hierarchies (see [44] for a graph-based
calculi).

Our results easily carry over to any extended calculus such that:

e it has the finite superformula property [36], i.e., the reduction of a formula only
requires the introduction of formulae which are in a bourfdesliperset of the
subformulae of the TBox and the initial concept;

e its rules can be casted as prefixed tableau ruleditting [28] (see also [36,54,57]),
where each rule involves formulae with either the same prefix (@,@, dnegrules,
andv” (R) rules for reflexive roles) or with a longer one (eg(R), v(R) rules, and
v4(R) rules for transitive roles).

The use of converse is more problematic: it requires to go back and forth prefixes.
Obviously, we could simply adapt the rules for converse proposed by De Giacomo and
Massacci [16]. This would give us a calculus which is sound and completé£6rwith
converse, and in which one only visits a number of prefixed sets which is exponentially
bounded by the size of the TBox and the initial concept. However, visiting only an
exponential number of concepts is not sufficient when designing a depth-first-search
algorithm, because we could visit the same concepts again and again up to a doubly
exponential number of recursive calls. What is missing is an easy way to transform the
generation ofL-sets sketched in [16] into a simple depth-first-search-style algorithm.

4. An EXPTIME efficient algorithm

We first give a simple version of the algorithm (without any of the standard optimizations
adopted by ALC satisfiability testers), and then progressively explain how it can be
enhanced without affecting correctness and complexity.

4.1. A simpleEXPTIME-efficient algorithm

Regarding the data structures, we assume that two auxiliary functions for working with
sets are available.

methodsboolean member(set of concepts, set of (set of concepts))
void insert(set of concepts,set of (set of concepts))

Their meaning is obvious from the names themselves: the first function returns true if a set
of concepts is a member of a set of sets of concepts; the second one inserts the set into the
collection.

Remark 4.1. To obtain our single exponential upper bound, it is essential that such
procedures require at most single exponential time in the size of the first argument (the
set of concepts) and polynomial time in the size of the second argument (the set of set of
concepts).

270 guarantee the single exponential time is necessary that such bound is linear in the size of the TBox and the
concept.
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This is not a restriction, as many algorithms with much better bounds for equality testing
of sets are known [74] and efficiently implemented [59]. From the viewpoint of practical
implementations, methods requiring logarithmic or sublogarithmic time and space are
much better. The set passed as first argument can be as big as the whole KB, and the
second argument can contain all possible subsets of the subconcepts of KB.

These functions are repeatedly applied to two sets of sets of concepts:

e Visited which contains the sets of concepts which are PS-reduced;

e NoGoods which contains the sets of concepts which have been shown taéts.

For what regards the control structure, we assume two auxiliary procedures for selecting
concepts and prefixed sets of concepts to be reduced according our calculus:

e chooseConcepselects the concefit to be reduced next in a given prefixed set;

e chooseSeselects the prefixed set C to be reduced next in a given set of prefixed

sets concepB (which is just a branch of a tableau).
We have no restriction on these procedures, beside the obvious one that they should work
in polynomial time in the size of the input, and they should respect the search techniques
set forth in Section 3. We assume that

e chooseConceptvorks accordingly to Technique 4;

e chooseSetvorks accordingly to Technique 6.

In the remaining algorithms, we use the symbe!’“for assignment, and==" for
equality testing.

The main algorithm BTISFIABLE is just a shell, which initializes the search strategy,
and calls the proper search procedure DFS (depth-first search). It is shown in Fig. 4.

The core algorithm DFS, which is directly derived from the calculus and the various
technigues we have listed, is shown in Fig. 5. It takes a br8nafthe tableau and extends
it, according the rules of the calculus.

A tricky part of the algorithm is the value which is returned by DFS. It is the constant
valuesatif the branch3 on which DFS is called can be extended to an open branch (i.e., if

Algorithm SATISFIABLE;
input a TBoxKB, and a set of concepty
output satif C is satisfiable with respect B,
unsatotherwise;
variables set of (set of concepts) NoGoods;
set of (set of concepts) Visited,;
integern;
methodsboolean member(set of concepts, set of (set of concepts))
void insert(set of concepts, set of (set of concepts))
begin
NoGoods= ;
Visited= ¢;
n=1;
return DFS({1:C})==sat
end

Fig. 4. The algorithm for deciding satisfiability.
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Algorithm DFS;
input a branchB
output satif B is satisfiable, a prefix otherwise;
variable set of (set of concepts) OldVisited;
begin
if chooseSet prefixed set : C € B s.t. for someC e Citis =C € C
then return ¢;
else if chooseSei prefixed set : C € B s.t. membef, NoGoods] A2]
then return e;
else chooseSet prefixed set : C € B s.t.e : C is not reduceénd
not member(, Visited);
if chooseSefails
then return sat
else chooseConcefat concepC e C which is not reduced
Apply the appropriate tableau rule @
in the prefixed set : C in the branchB
end

Fig. 5. The DFS algorithm for deciding satisfiability.

the the initial concept is satisfiable), and a prefotherwise. The prefix indicates which
prefixed set o3 has been shown to be inconsistent with respect to the TBox, i.e., (at least)
the set prefixed by is a L-set.

To keep the set NoGoods up to date and consistent with the value returned by DFS, we
make sure that each time DHB( {e : C}) returns the prefix, the setC has been inserted
in NoGoods.

We also use the returned prefix to implement an optimization that wenuadlal
backjumpingand which we discuss later in this section together with other optimizations.

Then, the DFS algorithm checks that the branch contains neither atomic clashes (point
Al), nor previously seer -sets (point A2), then selects some prefixed sets which is neither
reduced, nor identical to some other set which is reduced, and applies the appropriate rule.
For sake of readability, we replaced the actual “code” corresponding to the application of
our tableau rules with an English sentence.

Fig. 6 shows how rules are applied by the DFS algorithm. As a reminder, the order in
which rules are listed corresponds to the priority in which they should be applied by the
selection functiorthooseConcept

The rules are directly derived from the calculus we presented in Section 3 and, as usual,
alternative choices due to the presencg-dbrmulae are considered by recursive calls.

Remark 4.2. In contrast to standard trace-based techniques—used in all current imple-
mentations [32,34,37,41,43,64]—we dot reducer (R) formulae by making “parallel”
recursive calls to the satisfiability testing procedure for each modal successor, and by back-
tracking (locally) as soon as one of these returns unsatisfiable.
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Apply the appropriate tableau rule €in the prefixed set : C in the branch3
begin
case type(C) of
o
E=DFS(BUe: (CU{a1,a2}));
if E == ¢ theninsert(C,NoGoods);
return E
neg
E=DFS(BUe: (CU{pos));
if E == ¢ theninsertC,NoGoods);
return E
KB :
selectD1 E Dy € KB such that=-D1 L D5 ¢ C;
E=DFS(BUe:(CU{—=D1U D3}));
if E == ¢ theninsert(C,NoGoods);
return E

OldVisited= Visited,;
E=DFS(BUe: (CU (1))
if E == e and not membe€], NoGoods] A4]
then Visited= OldVisited;
E=DFS(BUe: (CU{B));
if E == ¢ theninsert(C,NoGoods);

return E

v(R)
chooseSeanother node.R.n : D € B such thatg ¢ D
return DFS(BUe.R.n: (D U {vg}))

7(R)
if all otherw’(R’) are reduced
then insertC, Visited);[ A5]
n=n+1;
E=DFS(BUe.R.n:{mg});
if E == e.R.ntheninsertC, NoGoods)[A6]

E =e¢;

return E

endcase

end

Fig. 6. The application of tableau rules in DFS.

Itis easy to recast the algorithm according to this “schema” and retain correctness, but it
is open whether our complexity result will transfer. A substantially different proof would
be needed.

For sake of example, we recall the intuitions behind the reductigitfofmulae. Since
we selected @-formula we continue the search by visiting the left branch of the tableau,
obtained by adding the prefixed node(C U {81}). When DFS returns from the left call
with a valueE, we have three possibilities:
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e DFS returnsatand then clearly we have no need to check the right branch;
e DFS returns a prefi¥ different frome and then we know that there islaset in 3,
but this set has nothing to do wi¢h C, so there is no point in continuing case analysis
on the concepts if;
e DFS returns and therefore® U {81} is a L-set, so we must continue on the right
branch withe : (C U {82}).
Then, if a right call is issued, and DFS returns a prefix from the case analygis ore
have two more cases:
e DFS returng. Then we know that als6 U { 8>} is a_L-set, so we conclude théttoo
is a_L-setand we insert it into NoGoods.
e DFS returns a prefi¥ different frome. Then, we have found an alternativeset in
B (maybe because U {8} is satisfiable with respect to the TBox), so we do nothing
and return the new prefix for continuing the search.

Remark 4.3. Atricky point here is the check “and not membér NoGoods) (A4)” which

would seem to be unnecessary, because of the preventive check A2 (Fig. 5). Instead, check
A4 is essential to prove our complexity result. The intuition is that at the time we&met

for the first time and applied the rufg we had not yet showd to be a_l-set. However,

when returning from the left branch, we might have already @ehen visiting a modal
successor of, and found a different proof of unsatisfiability f6r

The techniques we presented in Section 3 are implemented as follows:

Technique 1 is realized through condition A3 in the DFS algorithm for what concerns
PS-rules. For_-rules, the technique is cast into the DFS algorithm by exiting each DFS
call whenever al-set is inserted.

Technique 2 is realized through conditions A1l and A2 of the DFS algorithm.

Technique 3 is realized indirectly through conditions A1, A2, A4, since they prevent the
application of PS-rules to an implicitly inconsistent prefixed set.

Technique 4 must be implemented through the selection functibbaoseConceptcalled
in the DFS algorithm, to select the concept to be reduced next.

Technique 5 is implemented through the global varialalén the main algorithm, which
is incremented at each generation of a new prefix.

Technique 6 must be implemented through the selection functibmoseSetcalled in the
DFS algorithm, to select the prefixed set to be reduced next.

Technique 7 is the DFS algorithm itself.

From the above correspondences, it is straightforward to prove that the collection of
algorithms is a correct implementation of the calculus, since each rule is one-one with a
case in the algorithm DFS.
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4.2. Adding optimizations tDFS

The presence of optimizations is a standard feature of any efficient tableau-based
implementation [34,43,48,63,71]. We discuss the most important and widespread ones.

Some obvious preprocessing steps sudexsal normalization and boolean reduction
can be added without further ado. They are immaterial for the results presented here.

The first substantial optimization is the usesbfllow reduction rulessometimes called
simplification rulessuch as unit resolution, modus ponens and modus tollens. For instance,
atypical rule has the form “i€ U D is present in a set of concepignd also-C is present
in C then addD to C". Any efficient implementation applies them in an eager way. See, for
instance, the classical paper by Oppacher and Suen [63], or the papers on the comparison
of modal provers [32,43,48].

These rules do not change the set of concepts visited by the algorithm and make it
possible to avoid branches of shallow depth. Hence, their addition to the algorithm does
not change our correctness and complexity proofs.

The second optimization is the use adep reductiofsimplification rules introduced
in [55], which allow to simplify the structure of concepts at any level of nesting of
connectives. An instance of the rule might have the fornvV#.C is present in a set of
concepts andfR.(C m D) is also present i@ then replace the second concept witR. D",

These rules eliminate further branches and can speed up the search exponentially. Their
addition does not change the correctness proof, but the complexity proof must be modified
since they change the set of concepts visited by the algorithm. The important property to
guarantee is that the number of concepts that are introduced by these rules is linearly (or
polynomially) bounded by the number of subconcepts of the original input. Thus, this must
be proved for each simplification rule.

The second substantial optimization is the udeited forms of analytic cusometimes
calledsemantic branchinf@3,45], asymmetric beta rule, split, principle of bivalence etc.
The rule has only one form: “whenevgris present in a set of concepisthen add two
branches and adéh to C in the first branch aneh 81 to C in the second branch”. Thefy
might be derived by shallow reduction rules in the second branch. The way in Which
is chosen might vary or the “presentation of the rule” might be different but the resulting
calculus is essentially the same. For instance this rule is at the basiskgAnealculi of
Giunchiglia et al. [32,34].

From a complexity-theoretic point of view, this rule strengthens the classical tree-like
tableau calculus in propositional logic. Indeed, there are unsatisfiable sets of propositional
concepts whose shortest proof using “semantic branching” rules is exponentially shorter
than the shortest proof using traditional rules—see the survey of Urghart [76] for further
details.

The exponential slow down due to the absence of semantic branching is not true for
our algorithm. Although we do not use analytic cut (i.e., semantic branching), we store
1 -sets to cut the search (see again check A2 and A4 in the DFS algorithm). This means
that, for what regard unsatisfiability proofs in propositional logic, our calculus corresponds
to a directed acyclic graph (DAG) variant of a tableau calculus. DAG tableaux have the
same power as tree-like tableaux with full analytic cut (and not just the restricted version
above). It is known [2] that in propositional logic we have exponentially shorter proofs
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with respect to calculi using the restricted cuts currently employed by semantic branching
implementations.

Thus, semantic branching is neither necessary nor useful to speed up the search in our
case. Indeed, in our full worked example—see Appendix A—we show an example of a
simple concept for which our method substantially prunes more branches than analytic
cut.

The next batch of optimizations does not regard properly the calculus but rather the
search process. They do not affect the calculus because they just say that, under certain
conditions, the application of some rules can be skipped without loosing completeness.
Thus, they do not introduce new formulae among the set of formulae which can be
potentially visited by the algorithm, but can make this set of potentially visited formulae
smaller. Therefore they do not change nor the complexity nor the soundness proof and must
be definitely added in an efficient implementation.

The first optimization in this batch which is often employediurgt subsumption‘if
C u D is present in a set of concepfsand alsoC is present inC then deleteC u D”.

This rule is generalized by our selection rule (Technique 10: i§ present thei@ 1 D is
PS-reduced and so it will be never be considered for further reductions.

The next one isabsorption the lazy unfolding of definitions in the TBox. The basic
intuition is that whenever we have two inclusions of the fotnt C andC C A, for an
atomic conceptd, we can see it as a definition for the concdp£ C, provided thatC
does not depends ofdirectly or via other inclusions.

Then, we can reformulate the KB-rule for this particular case: we@dad a prefixed
sete: C if A e(C, we add—C if —A € C, and skip the axiomsAC C andCC A
otherwise. In other words this corresponds to apply the traditional KB-rule introducing
—AUC (or Au—C) only when it can be followed by a shallow simplification rule (unit
resolution step). Since this optimization has been recently proven complete by Horrocks
and Tobies [46], it can be applied without ado.

Indeed, we can state a stronger result:

Remark 4.4. Any optimization which only restricts the application of one or more PS-
rules and which has been proven complete for any fair strategy can be added without
changing the complexity result.

We do not know whether this result can be extended taules. Likely this is not
possible as the the continuous introduction of névsets as the search proceeds along
different branches is one of the backbone of our complexity proof.

The last optimization makes it possible to skip branching points in the search. First
proposed by Shanin et al. in [71], it has been re-discovered many times under different
names such asroof condensatiof63], conflict directed backjumpind.7], level cut [5],
etc. A good discussion on backjumping in description logics implementations can be found
in [43,45].

The idea behind this form of optimization can be explained by looking at the check A4 in
our algorithm: we could also check whethgaractually contributed to the unsatisfiability
of the branch. If not, then we just skip over this branching point, without going to the right
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branch withB,. The intuition is that we can get a closed tableau without performing case
analysis org.

Notice that this is not precisely an optimization rule of those mentioned above, because
it does not prevent entirely the application of fheule, it just says that we can do one-half
of it.

This traditional form of proof condensation, backjumping, etc., which we pralbo-
sitional backjumpingcan be added by a slight modification of the value returned by the
DFS algorithm without changing its correctness.

Instead of a prefix, the algorithm now returns a p@irD). The intuition is thatD
contains only a minimal set of concepts responsible for the unsatisfiability of the set of
concepts labeled by the prefix Then, when the DFS algorithm exits a call, we examine
the concept ire : C and see whether the subconcepts we have addédcem be found
in D. If this is indeed the case, we delete the subconcepts and add the parent cofitept to
otherwise we just skip the parent concept.

Remark 4.5. So, one may be tempted to conclude that “propositional backjumping can be
added without changing the complexity results”, but thisasthe case. Indeed, one of the
landmark of our complexity proof is that we never do an exponential amount of work on
unsatisfiable branches without storing a nevset. When backjumping over a disjunction

we might have done precisely that. So it is essential to specify precisely the format of the
backjumping rule, and how it affects the insertionlofsets.

For instance, we could further extend the optimization by storing only the minimal set
D among the NoGoods. It is open whether an algorithm implementing would terminate in
single exponential time, whenembership checkingf a new set of concepts in NoGoods
is used.

Our check A4 already offers a form of backjumping, which we gadldal backjumping
Indeed, by checking that the returned prefix is equal to the current prefix we check whether
the inferences performed on the conceptsaf the whole actually contributed to the proof
of unsatisfiability. If the returned prefix is different from the current prefix, this means that
no rule actually contributed; then, we skai branching points linked to that “useless”
prefix.

This is different from the traditional (trace-based) technique employed by current
systems: avoiding the exploration of further modal successor once a modal successor
has been found unsatisfiable. Modal backjumping allows to skip chronological branching
points of modal siblings visited by DFS prior to the actual prefix that has been proven
unsatisfiable. For instance, suppose that we applyrale to a prefixed set : C and find
that the left branch (witt8;) is unsatisfiable with the DFS returnirrg Then we must go
in the right branch. This subtree may turn out to be unsatisfiable as well, but the DFS may
return a prefixe’ different frome. In a nutshell, the heuristics of DFS have found out a
shorter proof somewhere else. In standard trace-based techniques, where backtracking is
local, we should anyway consider the previous branching points relatedriacontrast,
when DFS returns up in the execution stack, all previous branching points relateitsto
modal predecessors, and its modal successors will be skipped until a rule appfiés to
found.
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4.3. From membership testing to subset checking

One could therefore wonder whether our algorithm can be extended to work with subset-
checking, as common in some recent description logics and modal logics literature [11,26,
44,45,

At first glance, there is an optimization that significantly shrinks the set to be tested,
it is easy (and even desirable) to implement, and affects neither the correctness, nor the
complexity proof, while keeping the membership test based on equality of sets.

The optimization consists irestricting insertions and membership tests only to sets
of modal atoms and propositionally unreduced concepkais, whenever we call either
memberC, Visited) or insert¢, NoGoods), we delete from the set to be inserted or checked
all propositionally reduced concepts and all axionG L D from the knowledge base KB;
we just keep modal atoms and propositionally unreduced concepts which are not , then we
insert the reduced* in Visited or NoGoods, or test its presence.

We use this technique in the example in Appendix A. Then, when presenting the proofs
of correctness and complexity of the algorithm in subsequent sections, we discuss the
modifications needed to take into account the above optimization.

Our complexity results can be extended to full subset checking if one has effiniesdt
checking proceduréor NoGoods. This means that we have a data structure for storing
NoGoods such that given a set of concapand a set of sets of concepts NoGoods, we
can test in polynomial time in the size of NoGoods whether NoGoods contains a subset of
the input set.

As we have remarked, efficient algorithms for equality testing of sets are known [74] and
efficiently implemented [59], but we do not know of any such implementation for efficient
(polynomial time) subset checking algorithms [80]. An implementation for insertion and
subset checking has been recently presented in [40], but its complexity properties are not
studied enough.

If subset checking can be efficiently implemented, our algorithm can be optimized for
subset checking. For the optimized algorithm DFS-with-subset-checking, we assume three
procedures for working with sets are available.

methodsset of concepts subset(set of concepts, set of (set of concepts))
set of concepts superset(set of concepts, set of (set of concepts))
void insert(set of concepts, set of (set of concepts))

The meaning of each procedure or function is obvious from the name itself. For instance
the function “subset{, SC)”, where( is a set of concepts arfi a set of sets of concepts,
returns a set of concepf® such thatD € C andD e SC if one exists, otherwise, if no
suchD exists inSC, it returns a distinguished valum. The function “superset” finds a set
D D C if one exists andhoif no such set can be found §C.

For the convenience of implementors, Figs. 7 and 8 show the optimized algorithm for
subset checking. We have restructured it, so that we only haveetm& instruction at
the end of the procedure.

Notice that it directly incorporates propositional and modal backjumping. Indeed, for
propositional backjumping it is not necessary to add the conditiol ‘81 € D1” at A4
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Algorithm DFS-with-subset-checking-and-backjumping;
input a branch3
output a pair(sat, ?) if B is satisfiable{prefix, set of conceptsotherwise;
variable set of (set of concepts) OldVisited;
begin
if chooseSet pref. set : C € B s.t. for someC e Citis =C € C
then (E, D) = (e, {C, =C});
else if chooseSed pref. set : C € B s.t.not subset, NoGoods)==no[A2]
then (E, D) = (e, subsetC, NoGoods);
else chooseSet pref. sek : C € B s.t.e: C is not reducecnd
superset(, Visited)==no,
if chooseSefails
then (E, D) = (sat, ?);
else chooseConcefat conceptC € C which is not reduced
Apply the appropriate tableau rule
in the pref. see : C in the branchB
yielding (E, D)

return (E, D);
end

Fig. 7. DFS algorithm with subset checking.

because it is subsumed by “subgetfNoGoodsy==na’. The optimization of deleting
reduced concepts and KB concepts that we mentioned at the beginning of the section can
also be easily applied here.

The correctness and completeness proofs of the DFS algorithm can be extended to the
subset-checking version in the standard way [26,36,45].

The extension of our complexity proof based on equality-testing to the optimized
algorithm for subset-checking is possible, but it is a result of its own. The basic intuitions
behind the extension of the complexity proof are sketched in the following points.

e With DFS-with-membership-testing, we are sure that each time we apply a rule to a

set of concept€, DFS have not previously métand have been previously shown it
to be al-set. To guarantee this property, we always store each seNoGoods as
soon as we found that it is_a-set.

e With DFS-with-subset-checking, we are sure that each time we apply a rule to a set of

conceptg, DFS has not yet encountered a subset afhich was previously shown
to be al -set. To guarantee this property, we always statesubset of in NoGoods
as soon as we found that it isla-set.

e With DFS-with-membership testing we are sure that each time BRES{e : C})

returns the prefix thenC has been inserted in NoGoods.

e With DFS-with-subset-checking we are also sure that each time BBS¢ : C})

returns the paite, D) thenD has been inserted in NoGoods and is a (not necessarily
proper) subset af.
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Apply the appropriate tableau rule €in the prefixed set : C in the branchB
yielding (E, D)
begin
case type(C) of
o
(E,D)=DFS(BU{e:CU{ay,a2}});
if E==¢and (a1 €D orapeD)
then D = (D \ {1, a2}) U {a};
insert(D, NoGoods);
neg
(E,D) =DFS(BU{e:CU{pos});
if E==e¢ and pose D
then D = (D \ {pos) U {neg;
insert(D, NoGoods);
KB :
selectD1 € Dy € KB such that=-D1 LI D> ¢ C;
(E, D) =DFS(BU{e:CU{=D1U D2}});
if E==e¢and—-D1UDyeD
thenD =D\ {—=D1 U Da};
insert(D, NoGoods);

OldVisited = Visited;
(E,D1) = DFS(BU{e:CU {B1}});
if E == ¢ and subset(, NoGoods)==no[A4]
then Visited = OldVisited;
(E, D) =DFS(BU {e:CU {B2}});
if E==e¢and By € Do
then D= (D1 \ {B1) U (D2 \ {B2}) U{B);
insert(D, NoGoods);
elseD = Do;
elseD =Dq
v(R)
chooseSeanother node.R.n : D € B such thatg ¢ D
(E, D) =DFS(BU{e.R.n:DU{1g}});
7(R)
if all otherm’(R’) are reduced
then insertC, Visited);[ A5]
n=n+1;
(E,D) =DFS(BU{e.R.n:{mg}});
if E==e.RnthenD={v(R)eC | vge D} U{n(R)};
insert(®, NoGoods)[ A6]
E =e¢;
endcase
end

Fig. 8. Rules for the DFS algorithm with subset checking.
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e Then, in the worst case subset checking boils down to membership testing and the
proof for DFS-with-membership-testing can be carried over to DFS-with-subset-
checking.

5. Correctness

We divide in two parts the proof of the correctness of our tableau method. First we prove
the correctness for what regards concept unsatisfiability, then we address satisfiability.

5.1. Proving unsatisfiability

In this section we prove that if the tableau for a conc€pand a TBox KB can be
extended to a closed tableau, théns unsatisfiable for KB. This is a “classical” proof
by contradiction: we assume that the tabléaus satisfiable, show that satisfiability is
preserved by tableau rules and derived a contraction from the fact that a tableau can be
(implicitly) closed.

Definition 5.1. A tableau branchB is PS-satisfiable for a TBox KB if there is an
interpretationZ, A) which satisfies KB and a mappin@) — d from prefixes to elements
of the domain such that

(1) for every prefixed set: C in B and every concepf € C one has(e) € CL.

(2) for every pair of prefixes, e.R.n, appearing in prefixed sets @, one has

(t(e), t(e.R.n)) € RT.

A tableau is PS-satisfiable for a TBox KB if at least a tableau branch is PS-satisfiable
for KB.

For sake of simplicity we say that “a branch is PS-satisfiable” rather than “a branch is
PS-satisfiable for a TBox KB”, leaving the TBox implicit.
We start with a lemma saying thatrules correctly propagate inconsistencies.

Lemma 5.2. Lete : (C)* appear in a tablead for a TBox KB. Then KB=rC C L.

Proof. By induction on the application af -rules.

Base caself both C and—C are inC, thennC is clearly unsatisfiable. HencEB =
rnC C 1.

Inductive casesSuppose the claim holds for the antecedent of elachle. We analyze
the application of each -rule in turn.

(L-witness): If ¢’ : (C)* appears irT, then by the inductive hypothesiB =rC C L,
which is the claim.

(L-a): If e: (C U {a1,a2))t appears in7, then by inductive hypothesi&B =
(MC)MarNaz E L. Sinceay Maz =«, thenalsKB = (MC) na C L.

(L-dneg): Similar to the previous case.
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(L-B): Ifbothe: (CU{B1})* ande: (CU{B2})* then by inductive hypothesis bolB =
(MC)M BLC LandKB = (NC) M B2 C L hold. TherKB = (MC) M (B1 U B2) C L. Since
(B1U B2) = B, the claim follows.

(L-KB): If ¢: (CU{—=C u D})* andC E D € KB, then by inductive hypotheskB =
(MC)n (=Cu D) C L.SinceC C D € KB, in every model of KB the concept-C u D)
is equivalenttor. Hence KB = (mC)m T C L, thatiskB=nCC L.

(L-7(R)): If e.Rn: (C U {mo})* ande: D in 7, andC C {v | v(R) € D}, then
by inductive hypothesi&B = (1C) nmo C L. We prove the claim by contradiction.
Suppose there is a modélfor KB such that an element e A is in (D U {x(R)})*:
then there exists another elemént A such that(a, b) € RZ, b € (m9)* and for every
V(R) € D, b € (v9)L. Thereforep e ((Nf{vo | v(R) € D}) Nmo)L. Since((M{vo | v(R) €
DY) n o)t € ((NC) N 7o), this contradicts the hypothesis that the latter concept is
interpreted as the empty set in every model of KBl

If we wish to optimize our algorithm by storing and testing only modal atoms and
unreduced formulae, the witness step of the proof is the only one that may fail since the
node which is tested among the NoGoods would nat’b€& but rather some’ : C’ such
thatC andC’ only share the same modal atoms and the same unreduced concepts. However
it is immediate to prove by induction on the (absent) reduced formulae the following
proposition:

Proposition 5.3. Let C andC’ be two sets of concepts with the same modal atoms and
unreduced concepts. Then, they are logically equivalent, i.e., the conceptiKB= rnC’
and KB=nC’ £C.

And this is all we need.

Lemma 5.4. A PS-satisfiable branch in a tableau for a Thox KB cannot be implicitly
closed.

Proof. Let B be the PS-satisfiable branch and (&t A) and(() be the corresponding
interpretation and mapping.

By definition of implicitly closed branch, there is a prefixed se{C)* in the branch.
By definition of PS-satisfiable branch itig) € CZ for everyC e C. Thust(e) € (NC)~<.
By Lemma 5.2 it iKB =rC E L, contradiction. O

Corollary 5.5. A PS-satisfiable tableau cannot be implicitly closed.

Now we continue the proof of Theorem 3.11 by showing that PS-rules preserve the
satisfiability of the tableau.

Lemma 5.6. The application of a PS-rule or a.-rule to a PS-satisfiable tableau for a
TBox KB yields another PS-satisfiable tableau for KB.
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Proof. Let B be a PS-satisfiable branch in the initial tableau andZlett) and«() be the
corresponding interpretation and mapping. If either a PS-rule_bfrale is applied to a
prefixed set in a branch different frof the resulting tableau is obviously still satisfiable.
The only interesting case is when a rule is applied to a prefixed ¢t in

First, note that if al-rule can be applied to a prefixed setfn then B is implicitly
closed. This is impossible for Lemma 5.4.

So we are only left with PS-rules and the proof proceeds by cases. We show that we can
extend the mapping to accommodate the newer prefixed sets added by the applied PS-rule.

dneg Suppose that : C U {nedg has been selected and tkatC U {pog has been added
to B. Consider this new branch’. Observe that for alC € C it is ((e) € CZ since
e:C U {neg was already i3, andB was PS-satisfiable. By hypothesig) € (neg”
and(neg? = (po9? according the semantics. HenBeis still PS-satisfiable.

o Suppose that : C U {«} has been selected and tleatC U {«1, a2} has been added. By
hypothesis (¢) € ()% and by definition of interpretation it i&x)” = (1) N (a2).
Thust(e) € (e1)T andi(e) € (a2)L. The claim follows with the same line of reasoning
we used fodneg

B Suppose that : C U {8} has been selected and thatC U {81} has been added as a
left leaf ande : C U {82} has been added as a right leaf. By hypothegis € (8)Z,
and by definition(8)% = (B1)% U (B2)L. Hence either(()e) € (B1)% or 1((e) € (B2)~.
Suppose thai(e) € (81)Z. Then consider the left brandh extendings, i.e., the branch
includinge : CU{B1}. ForallC e Citis t(e) € CL sincee : C U{B} was already i3, and
B was PS-satisfiable. 38y is PS-satisfiable. A similar argument applies#) € (82)7,
using the right branch.

KB Suppose that : C has been selected and thatC U {—C u D} has been added for
someC C D € KB. SinceB is PS-satisfiable for KB, the corresponding interpretation
(Z, A) is a model for the KB. Thus it validatesC L D and since(e) € A it follows
thati(e) € (=C u D)L. The claim follows with the same line of reasoning we used for
dneg

w(R) Suppose that : C U {7 (R)} has been selected and tkaR.n : C U {ro} has been
added. By hypothesis of PS-satisfiable braneh € ((R))Z and thus there is an
element of the domaid such that(i(e),d) € RL andd € (=(R))%, sinceB is PS-
satisfiable. Then we extend the mapping as follas) = d if ¢/=e.R.n. For all other
elements;() is as before.

Since e.R.n is new there is no prefixed setR.n.R.m : D in the branch. By
constructiont(e), t(e.R.n)) = (t(e),d) € RT.

For all other pairs of prefixesi(¢'), ((e’.R'.n")) € (R) by hypothesis of PS-
satisfiable branch. Then the extended branch is PS-satisfiable with the same interpre-
tation(Z, A) and the extended mappingQ.

v(R) Suppose that.R.n: C ande : D U {v(R)} have been selected and thaR.n :
C U {vo} has been added. By hypothesis of PS-satisfiable brateshe v(R)Z and
(t(e), L(e.R.n)) € RT. Therefora(e.R.n) € v{ by the semantics. O
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Theorem 3.11. Let C be a concept and KB be a TBox. If there is a closed tableadfor
using KB, then no model of KB satisfi€s

Proof. The proofis a standard proof by contradiction, using Lemma 5.6 and Corollary 5.5.
See, e.g., [28, Chapter 8].0

5.2. Proving satisfiability

Now we prove the correctness of our tableau method for what regards concept
satisfiability (Theorem 3.12): if the tableau for the conc€pand the TBox KB can be
extended to an open tableau th@ris satisfiable for KB. At an abstract level, this proof is
carried over in four steps:

(1) we define a canonical interpretation from an open branch;

(2) we define a suitable mappingQ;

(3) we prove by induction that the canonical interpretation is a model of the branch: we

have to prove separately the base case, and the induction;

(4) we combine these results into the main theorem.

The first part of the proof is the construction of an interpretation from an open bfanch

Definition 5.7. The canonical interpretatioriZ of an open branclB is constructed as
follows:

A ={e|e:C e B andthereis no prefixed set D which has a witness i3}, (1)

Al ={ec Ale:CeBandAeC). 2)
The interpretation of atomic roles is composed of two sets:

RY = R;UR,, (3)
whereR,; andR,, are defined by:

Ry = {(e, e.R.n) | bothe € Aande.R.n e A}, 4)

Ry ={(e, ) | bothe € Aande’ € A and
¢ : C is the<-minimal witness in3 for e.R.n : C}. (5)

The interpretation is extended to complex concepts following their semantics.

Note that in (3) the first sek,; takes into account the relations which are explicitly
represented in the domain and the secondRgttakes into account the presence of
witnesses. Note also that in (8)R.n is not in A, otherwisee.R.n : C would not have
a witness, because of (1).

The second step is to devise a uniform mappipgrom elements to members of the
domain. The use of a mapping is a device that makes the proof easier. The mapping is set
such that (e) = e unless the prefix appears in a prefixed set C which has a witness
e’ :C. In this case we sete) = ((¢').
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We can prove the third step of the main proof: we start with the base case of the structural
induction on concept construction. We recall that a branch is a path in a tree, whose nodes
are prefixed sets. In what follows, we use the intuitive notiodegcendanof a prefixed
set referring to such a tree. We first highlight two properties about prefixed sets.

Proposition 5.8. Lete : C ande : D be two prefixed sets occurring in one branghf
e:Dis adescendant ef: C, thenC C D.

Proposition 5.9. Let (Z, A) be the canonical model of an open brangh let R be
an atomic role, and lete : C and e.R.n : D be prefixed sets occurring 8. Then,
(t(e),(e.R.n)) € RZ.

The former property follows from the definition of PS-rules, while the latter isimmediate
from (4) and (5). We state and prove the base case of the induction.

Lemma 5.10. Let(Z, A) be the canonical model of an open brarigh_et A be an atomic
concept and let : C be a prefixed set occurring iB8. If A € C then one has(e) € AZ;
otherwise if=A € C then one has(e) ¢ AL.

Proof. Let ¢ : D be the deepest descendant «of C with the same prefixe. From
Proposition 5.8 one has that e C (respectively—A € C) implies A € D (respectively
—A € D), and thus we restrict our attentiondoD.

First, assume that no prefixed getC’ has a witness if8. Then, from (1 € A. If A€ C
then by definition of assignmente) = e and by (2).¢ € AZ. If =A € C then suppose that
1(e) € AT. Again by (2), there is & such thak : C’ is present in the branch antle C'.
Then both—A € D and A € D hold because of Proposition 5.8 and becaus® is the
deepest descendant®ofC. Then the branch would not be open, contradiction.

Second, suppose that: D has a witness’ : D. By Proposition 5.8, ifA € C
(respectively—A € C) then A € D (respectively=A € D). Sincee’ : D has no witnesses
the claim holds for’ : D, therefore(¢') € A (respectivelyt(¢’) ¢ AL). By construction
we have that(e’) =t(e). O

The inductive step of the structural induction on concept construction is proved in the
next lemma. To prove that for a given conce&ptin a prefixed set : C of B, it holds
1(e) € €T, we assume the inductive hypothesis: for every prefix and every cofoshtch
is a syntactic component df, it holds:(¢’) € DZ. The formal statement follows.

Lemma5.11. Let(Z, A) be the canonical model of an open brargh_etC be a concept,
lete : C be a prefixed set occurring i and assume that for every sub-concBpf C and
everye' : D such thatD € D one has(e’) € DL. If C € C, thenu(e) € CZ.

Proof. First, we suppose that the deepest descendaBtof ¢ : C has no witness.

Propositional Connectives.So thatC has the formD; 1 Dz, —(D1 1 D2), D1 U Dy,
—(D1 u D) and——D1. We show only the case fori(D1 M D) since the others are
similar.
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Suppose that(D1 1 D) € D: then, since the branch is implicitly PS-reduced, either
—Dj € D or =Dy € D. By construction we have thate) = ¢ and then by hypothesis
eitheri(e) € (=D1)% ori(e) € (—=D2)L. Then we have(e) € (—=(D1 1 D2))~.

Existential Quantifier. Suppose thaf has the forrBR.D andC € D. Since the branch
is implicitly PS-reduced there is a nodeR.n : D’ such thatD € D'. By (4) and by
Proposition 5.94t(¢), t(e.R.n)) € RZ. Since D is a subconcept o€, by hypothesis
we have thatD € D” ande’ : D” imply «(¢') € D. Thereforei(e.R.n) € D and by
definition of interpretation we have that) € 3R.DZ.

Universal quantifier. SupposeC has the fornvVR.D. In this case we have to prove that
forall d € A if (1(e),d) € R thend € DZ. The interpretatiorf in Definition 5.7 is
such that only the following sub-cases are possible:

(1) d is equal ta(e.R.n) for somen;

(2) d is equal ta(e") for somen, wheree’ : D’ is the witness of a nodeR.n : D' in
the branch;

(3) dis suchthatthere is a node: D which has : D for witness and:(¢’), d) € R,
for instance withd = ((¢/.R.m).

For the first case, observe that by definition of implicitly PS-reduced branch there
must be a prefixed set.R.n : D' such thatD € D’ (rule v has been applied). By
hypothesis, it is(e.R.n) € DZ.

For the second case,df: D’ is the witness of a node R.n : D’ in the branch then,
according the definition of witness and implicitly PS-reduced branchrateist have
been applied t@.R.n : D’ and henceD € D'. So D is also in the prefixed set of the
witness and by hypothesi&’) € DZ. By construction(¢’) = t(e.R.n).

For what regards the last case, by Techniquee1:ifD has a witness no other prefixed
set extending either can be part of the branch. So this possibility is ruled out.

In conclusion(e) € (VR.D)L.

This closes the overall case in which the deepest descead@nof e : C has no witness.

Finally, suppose now that: D has a witnesg’ : D. By Proposition 5.8, ifC € C then
C € D. Sincee’ : D has no witnesses the claim holds fr D and thus(¢/) € CZ. By
construction, we havee’) =1(e). O

Again, by optimizing our algorithm and storing and testing only modal atoms and
unreduced formulae, the witness step of the proof may fail since the witness node would
not bee’ : D but rather’ : D’ whereD andD’ only share the same propositionally reduced
concepts and the same unreduced formulae. Proposition 5.3 does the necessary adaptation.

We can combine these lemmata above as follows:

Theorem 5.12. Lete : C be a prefixed set occurring in an open brarighet (Z, A) be the
canonical model oB, and letC be a concept such that € C. Theni(e) € CZ.
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Proof. Forthe base case we apply Lemma 5.10 for bbnd—A. Notice that for the base
case we need both the positive and the negative version of the concept. For the inductive
case we apply Lemma5.11.0

Theorem 3.12. Let C be a concept, and KB be a TBox. If the tableaudoand KB can
be extended to a tableau with an open branch t@ds satisfiable for the TBox KB.

Proof. Suppose that the tableau fércan be extended to a tableau with an open branch.
Let B be this branch. We prove the claim by exhibiting a model for KB which satigfies

First, construct the canonical interpretatibiof B according to Definition 5.7.

The tableau foC starts with 1: {C} and by construction(1) € A. From Theorem 5.12
we haver (1) € CZ. Hence the interpretatidh satisfiesC.

We have to show thdf also satisfies the TBox KB. Observe thatis PS-implicitly
reduced and therefore for every inclusiGric D € KB and every prefixed set: C one has
that either(=C u D) € C or there is a node such that Dis present and—C u D) € D.
By Theorem 5.12 we have tha) € (—C 1 D) € DL. By (1), for everyd € A there is at
least one prefixed set: D in the branch5 such that(e) = d. Hence the interpretatiah
validates(—C u D). O

6. Complexity analysis

In this section we prove our main result on complexity, namely, that the algorithm DFS

takes single exponential time.

From a high-level perspective, the proof is arranged in four parts:

(1) We set the definitions and some nice basic properties of the call tree of the recursive
calls of DFS.

(2) We prove that the height of the call tree is bounded: the size of the largest branch
is bounded by a single exponential in the size of the TBox and the initial concept.
Without further work, this would only yield an unsatisfactory doubly exponential
bound on the call tree.

(3) We prove that the width of the call tree is bounded: the number of branches of the
call tree (not to be confused with the branches of the tableau) is bounded by a single
exponential in the size of the TBox and the initial concept.

(4) Finally, we combine all bits together and get our single exponential time bound.

The third step is the trickiest. The way in which we prove it is to assign to each branch, or

to a fraction of them, a distinguished set of concepts that “characterizes” the branch of the
call tree. Since the number of distinct sets of concepts is bounded by the size of the TBox,
we obtain the desired result.

This is the place wherg-sets play their role. Ideally, we would like to associate to each

1 -set, the first branch of the call tree where it is introduced into NoGoods. Even though
a | -set might be introduced many times in NoGoods, and the safset may be used to

stop the search in many DFS-calls, the idea would be that when DFS returns from previous
calls, sooner or later a new-set is inserted in NoGoods.
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Unfortunately, it turned out that it is not possible to assign a distinguighedt to each
branch of the DFS call tree, nor to a constant fraction of them. However, we can assign a
different_L-set to each “right” branch of the call tree.

Intuitively, this is accomplished in three steps.

(1) We identify the “right” branches of the call tree as those where the deepest choice
is “going to the right”. Clearly, for every branch that goes right, the number of
“offshoot” branches going “left-only” is at most as big as the size of the right branch
itself. This gives a total bound of the size of the tree.

(2) Each “right” branch is identified by a specikéy branching poinin the tree.
Remarkably, each key branching point is not just the last branching point but can
be fairly up in the tree (see Fig. 9). So the identification of key branching points is
the less intuitive part of our construction.

(38) To each key branching point we can associate a diffedeistet in NoGoods.
Intuitively, when leaving a key branching point we know that some deget is
introduced in NoGoods, even if we do not know exactly when.

Throughout the section, we always usé¢o denote the size of the input—that is, the

number of symbols in the TBoKB and in the concepf.

6.1. Preliminary definitions and properties of tbé-S-call tree
We start by recalling some terminology for recursive programs.

Definition 6.1. We define theall tree T (P) of a recursive procedure P as follows:

e each nodeV is one-to-one with an invocation of P;

e a nodeN; has an immediate successor nddgeif the invocation of P related to/;

calls the invocation of P related 16,.

A branching pointis a node with more than one immediate successor (i.e., at least two
recursive calls are made), and its related invocatiorbisaaching call

A leaf is a node without successors (i.e., there are no further recursive calls), and its
related invocation is keaf call.

We call successorthe transitive closure of the immediate successor relation, and
predecessoathe inverse of successor.

Note that when the procedure is DFS(DFS) is a binary tree. In this case, a branching
point is an invocation of DFS in which the control flow passes through the test A4, and
the test is successful. We cadift immediate successaf the branching point the first
call of DFS,right immediate successor the second calleft successois either the left
immediate successor, or a successor of the left immediate successor. A right successor is
defined similarly.

Remark 6.2. The call tree is not binary for “standard” trace-based techniques which
reducern (R) formulae by making “parallel” recursive calls to the satisfiability testing
procedure for each modal successor, and backtrack (locally) as soon as one of these returns
“unsatisfiable”. In that case, the control structure is much more complex as the call tree is

a generic one.
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We now prove two properties about the calls of DFS, which we use later on.

Lemma 6.3. If a DFSinvocation selects : C, applies a rule different from, and returns
e, thenC has been inserted iINoGoodsbefore exiting the invocation.

Proof. Simply by inspection over all cases of the algorithm DF &1

Lemma 6.4. If a DFSinvocationN selects : C and applies arule(R), thenN does not
return the prefixe.

Proof. According to Technique 6 in the search strategy, every prefixed: gkis selected
before any prefixed set with an extended prefiR.n is selected. Hence & R) rule can

be applied only after at least on& R) rule has been applied, andt@R) rule is applied
only when alla, 8, KB anddnegrules have been applied (Technique 4). Note that the
application of eitherr (R) or v(R) rules to the prefixed set: C does not add a prefixed set

e : C' with the same prefix. Thus, other prefixed set€’ cannot be added in the calls that
are successors @f. Thereforeg cannot be returned by. O

To prove our main result we need to introduce other properti@ggbFS). We start by
defining some particular branches and branching poinfyDFS).

Definition 6.5. A DFS-branchis the sequence of invocations of DFS related to the nodes
of a path from the root to a node iH(DFS). A DFS-branch ixompletéf its path ends in
a leaf.

The deepest branching poirtf a complete branch is a branching point which has no
successor which is a branching point.

A complete righDF S-branchis a complete DFS-branch containing the right successor
of its deepest branching point.

A key branching poinis a branching point such that both its left successor and its right
successor belong to a complete right DFS-branch.

For a better understanding of these definitions, refer to Fig. 9. It depicts a possible
T (DFS). Branches are numbered from left to right and right branches are marked by a
capital R in their leaf call. We show some of its deepest branching points (e.g., D1, D5,
D8, etc.) and markll key branching points with a black dot (K3, K7,.).

Remark 6.6. Each complete branch might be characterized by a different deepest
branching point and indeed the same branching point might be the deepest one for a branch
including its left successor but not for the branch including the right successor and vice-
versa.

For instance, D8 is not the deepest branching point for branch 7, but it is the deepest one
for branch 8; D1 is the deepest branching point for branch 1 but not for branch 2.

Remark 6.7. A key branching point may not be a deepest branching point.
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19 20R

Fig. 9. An instance of (DFS).

For instance, K3 is a key branching point because its left successor can be extended to a
right branch (3R) and also its right successor can be extended to a right branch (e.g., 10R).
Yet, K3 is not a deepest branching point for any branch.

Remark 6.8. Still, there is a bijection between each right branch and each key branching
point, but for the last right branch of the whole tree (23R). Intuitively, we can detect that
a branching point is a key branching point if we go immediately down to the left and then
we can go down to the right at least once. The right branch associated to a key branching
point can be found by going immediately to the left and then always to the right.

Thus, the key branching point K3 corresponds to the right branch 3R, K8 corresponds
to 8R, K11 (the root) corresponds to 11R and so ancidrresponds to the the braneR.

In Fig. 9 we have named each key branching point according the corresponding branch.
However, this is not the order in which they are inserted in the stack by DFS. In this respect,
we know that a DFS call is a branching point only after the call enters the right branch,
because of test A4 in the DFS algorithm. Thus, although K11 is the first key branching
point to enter in the stack, the first call which issues right successor call is K3, then K7,
then K8, K10, and only after this stage the control returns up to the right successor of K11.

Fig. 10 shows the snapshots of the stack execution of DFS for what regards key
branching points: On top of the stack we write down the branches that are visited while
these key branching points are in the stack. We underlined a key branching point when the
control has returned to the invocation and it is now doing the right branch(es), i.e., when
DFS is reducings; after having passed the A4-check.

From Figs. 9 and 10, one may notice that the number of branches visited by the algorithm
may vary whereas the key branching points in the stack are not changed. This means that
other DFS calls are placed in the stack (we have just not shown them), and the key issue is
how many they are.
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Fig. 10. Snapshots of the key branching points in the stack from Fig. 9.

For instance, we could add many left offshoots branches between the points D5 and K8
in Fig. 9. From the DFS point of view it may simply mean that we keep on closing left
branches using the samesets. However, we cannot keep adding offshoots brarathes
libitum. The maximum number of left-only branches is bounded by the size of the right
branch from which they spring. As soon as we add a right branch a new key branching
point is added.

As another example, consider the branches below D17 18 in Fig. 9. We might add
branches going left off the segment (D17,18R) without changing the number of key
branching points. Our only bound is the size that the segment from D17 to 18R can have.
However, as soon as we add a branch going right off the segment (D17,17), this transform
D17 into a key branching point for that branch (see Remark 6.8).

Note also that a DFS-branch (DFS) corresponds to a tableau branghwhereB is
the argument of the last DFS invocation. A complete DFS-branch corresponds to a tableau
branch (the argument of the leaf call) which is either implicitly closed (the leaf call returns
a prefix) or reduced and open (the leaf call retigat}.

When no confusion arises, we say that € occurs in a DFS-branch” meaning tkatC
occurs in the input branch of an invocation of that DFS-branch.

6.2. Bounding the height of tH2F S call tree

Lemma 6.9. The recursion depth in a compleBFS-branch of 7(DFS) is O(n? - 2"),
wheren is the size of the input concept and the TBox.

Proof. We first give an @:2) bound on the number of calls selecting a prefixed set
containing a given prefix, then we give anZd) bound on how many different prefixes
can be selected by successive calls in the recursion stack.

Consider a given prefix. In a DFS-branch, the calls selecting some prefixe@ sé,
are at most @2). In fact, ruleKB can add @n) concepts t&@, and each of the rules, S,
dnegcan be applied Gr) times, since they progressively reduce the size of the concepts
in e : C that can be chosen for further reduction. RulgrR) can be applied Or) times
(number ofr (R) subconcepts), and for each applicatiomdR), rule v(R) can be applied
O(n) times (number o (R) subconcepts).
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Regarding the number of different prefixes, recall that once thewxyul® has been
applied as many times as possible, a newCsit added to Visited (point A5 in Fig. 6).
From condition A3 in the algorithm, no call up in the recursion stack can then choose a
prefixed set’ : C with the same set of concegtsHence in the stack the calls can choose as
many different prefixed sets as the number of possible sets of concepts, tiat)s Q1

Of course, the above bound is still insufficient to prove that the total number of calls (the
size of T(DF9)) is exponential. Hence, we prove other propertied @FS), which will
be useful to reach our goal.

6.3. Bounding the width of tHeFS call tree

Proposition 6.10. If an invocationN of DFS selectse : C, and insert< in Visited, then
e : C is a witness for every other nodé: C occurring in evenyDF S-branch containingV.

Lemma 6.11. For every invocatiorDFS(3) corresponding to a nod#/ in 7(DFS), if
e : C € B has a witness i3 then the prefie will never be returned by anfsubsequeit
DFSinvocation in anyDFS-branch containingV.

Intuitively, this lemma says that prefixed sets responsible for the insertionlotet
in NoGoods (i.e., prefixed sets whose prefix is returned) are always “originals” and never
“copies”.

We remark that we could prove a stronger lemma, namelyethalt never be returned
by any DFS call in thentire T (DFS). However, in the following we need just the above
weaker version of the lemma.

Lemma 6.12. Let N be a call inT(DFS), and letN select a prefixed set with prefix
Then no call successor of can select a prefixed set with prefix< e.

Proof. The claim follows from Technique 6, and the observation that every rule, applied
to e : C, introduces a new prefixed set with either the same peefix with a longer prefix
e.R.n, forsomen. O

Remark 6.13. The above claim would not hold if the description logic included inverse
roles.

Lemma 6.14. Suppos&V is a branching point, selecting: CU{g}, and letN; be theDFS
call N1 which is the left immediate successomMof ThenNy selectse : C U {8} U {B1}.

Proof. Observe that ifV is a branching point thefi U {8} U {81} is not reduced. Indeed,
supposeN; selects a prefixed set with a different prefix Since the selection function
applies a lexicographic ordering for selecting prefixed sets, then by Lemma 6.12, no
successor call o1 selects a prefixed set with prefix HenceN1 does not returre, and

N is not a branching point from condition A4 in DFS, contradicting the hypothesis.
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Now we prove the key property of the DFS algorithm: every key branching point is
one-to-one with a different set of concepts inserted in NoGoods.

Theorem 6.15.Let N be a key branching point, and let: C U {8} be the prefixed set
selected byN. Let Ng the left immediate successor of, and let N1, ..., Ny be all
successor calls aVp returninge, in the rightmosDF S-branch passing throughp. Then,
there is at least one set of concefitsuch that

(1) D was not inNoGoodsw~vhenNg started

(2) Dis notinserted iMloGoodshy anyDFS call successor oNg, and different from

N1, ..., Ng;
(3) D isinserted iNNoGoodshby at least one amono, N1, ..., Ni.

Proof. For sake of clarity, the DFS calls described in the statement of the theorem are
pictorially represented in Fig. 11.

First of all, note thatVg returnse, otherwiseN would not be a branching point because
of condition A4 in the algorithm of DFS. Secondlyy cannot be a leaf call, otherwige
would not be a key branching point. The¥iyg must select a prefixed set, and issue at least
one recursive call.

From Lemma 6.14Ng selectse : C U {B} U {B1}. Since it also returng, Lemma 6.4
implies thatNg does not apply a(R) rule. Then, from Lemma 6.3 it follows tha¥y
insertsC U {B} U {81} in NoGoods. Now we analyze two cases for

Supposek = 0. This means that there are no other DFS calls that retuim the
rightmost DFS-branch passing throulyp. Then, sinceVg selectse : C U {8} U {81} and
returnse, the only rule thatNg can apply is ther rule. In this case, from point A5 of
the DFS algorithmNg insertsC U {8} U {81} in Visited. From Lemma 6.11, no other
successor call oiVg insertsC U {8} U {B1} in NoGoods. Hence, the claim holds with

D=CU{B}U{p1}.

N2
Ni

Nk

Rightmost Branch<->N

Fig. 11. The key branching poi¥ and its left subtree in Theorem 6.15.
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Suppos& > 1. We distinguish two sub cases: firaf; is not a leaf call; second, it is a

leaf call.

(1) SupposeV; is not a leaf call. Then there exists a cAl}.+1, successor oy, and
such thatVi,1 returnse’ # e. SinceNy returnse, by inspection on the rules in DFS
this can only happen iV, 1 returnse’ = ¢.R.n, and Ny applied ar rule, selecting
e : D and insertingD in Visited. Then from Lemma 6.11, no other successor call of
Ny insertsD in NoGoods, anadvy, insertsD in NoGoods.

(2) SupposeV, is a leaf call. SinceV is a key branching point, there must be at least
one branching point betweeYy and Ny: let us denote&v,, the deepest (i (DFS))
branching point betweeNg and N, and letN; selecte : D,. By hypothesisN,
returnse, and hence it insert®;, in NoGoods.

Recall thatVy, ..., Ny are nodes in theghtmostDFS-branch passing througVp.
Hence,Np.11, ..., Ny are all right successors of,. From point A2 in the algorithm
of DFS, D, was notinserted in NoGoods by any call successoiofhich is issued
before N,. From point A4,D, was not inserted in NoGoods by any call which is
a left successor oiV,. Moreover, every right successt, 1, ..., Ny of N, adds
one or more subconcepts to the prefixedeseD,. Hence, each of them inserts in
NoGoods a set of concepts which is different frém. Therefore, the claim of the
theorem holds foD,. 0O

Theorem 6.16. The number of key branching pointsiiDFS) is bounded by".

Proof. From the previous theorem, a new set of concepts is inserted in NoGoods for every
immediate left successor of a key branching point. Since there are at fndiffie?ent sets
of concepts this is also a bound for the number of key branching points.

6.4. EXPTIME-efficiency of th&FSalgorithm
We can now put all results together.

Theorem 6.17.The total number ofDFS calls in T(DFS) is O(2?), for a suitable
constantc > 1.

Proof. Observe that, starting DFS with a concept thatCisl 1, the number of key
branching points equals the number of complete right branches minus one. From the
previous Theorem 6.16, the number of right brancheg &0
From Lemma 6.9 the recursion depth of a DFS-branch(i$202"). This means that
for every right branch we can have at mosu®. 2*) left branches which do not introduce
also a new right branch (at worst one for each invocation of DFS in the right branch).
Hence the total number of branches i:©®- 2" - 2) and the total number of calls is
O(n?.2m.2n. 2", thatis, G2") for a suitablec. O

As a straightforward corollary of Theorem 6.17 we have the main result:

Theorem 3.13. Any search strategy respecting Techniqted terminates using single
deterministic exponential time in the size(bfind the TBox KB.
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Now suppose that we wish to enhance our algorithm by storing and testing for
membership only sets composed by modal atoms and unreduced concepts. The above
proofs could be adapted to the new algorithm based on the following argument. Each time
a new_L-set is inserted in NoGoods, what makes it new is the fact that it contains a new
unreduced formula. There are only two exceptions to this observation(ferule (this
was the case already without the optimization) and the KB rule. But Lemma 6.9 implies
that bothv(R) and KB rules can only be applied a polynomial number of times for a given
prefix.

7. Overview of related methods

Although a large body of results exists on the EX¥e-completeness of many
description logics (see, e.g., [14,15]), most of these results are of theoretical nature: they do
not offer a direct decision procedure but just exhibit polynomial translation of satisfiability
of extensions ofALC into Propositional Dynamic Logic, following the ground breaking
work by Schild [68].

The classical procedures that match the exact EXB-bound (such as automata on
infinite trees [77] or model graph [38,66]) have the unfortunate property of being also
“best case” exponential, because they construct tableau structures bottom-up. As we have
said, this happens because one first constructs an automaton which accepts the tree models
of KB and C, and whose size is exponential in the size of the input. Then, one checks its
emptiness, i.e., whether the automaton does not accept any model (see [13,24,31]).

From the proper automated reasoning perspective, a large number of calculi for modal
and description logics have been proposed. However, only a limited number of these works
concentrate on the aspects of algorithmic complexity.

In the realm of description logics, the complexity analysis of tableau-based algorithms
for ALC was pioneered in [70], where only thesPacEsatisfiability case without global
axioms is considered. More recent works have extended the calculus to deal with additional
constructs such as inverse or transitive roles (see, e.g., the works of Horrocks, Sattler, and
Tobies [41,44,45,75]) but have not dealt with the algorithmic complexity of reasoning with
global axioms. For instance, in [45] a calculus for an BEX\E-complete logic including
ALC is given. However, complexity results are only shown for seACEfragment of
the logic. For EXRIME-completeness results they refer to De Giacomo and Massacci on
dynamic logic [16].

The only work where the complexity of decision procedures with global axioms has been
investigated is the work by Buchheit, Donini, and Schaerf [8], where a calculus working
in nondeterministic exponential time is given, and a modification of it working in single
exponential time is just foreseen. A preliminary announcement of the results showed in
this paper was also reported in [20].

The classical studies on the complexity of (variants of) the sequent or tableau calculus
for multi-modal logic K (a notational variant o1£C), such as those by Ladner [51] or by
Halpern and Moses [38] only focus on satisfiability without global axioms.

Recent works on prefixed tableaux such as those by Massacci [54,57] or extended
sequent calculi such as Hurding et al. [39], Demri [18], or Basin et al. [4] again only
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give bounds for satisfiability without global axioms, although they discuss a larger set of
logics than simply modal logic K.

The idea of using a set of “no-goods” for transforming N EXX¥e-tableau calculi into
EXPTIME-algorithms has been given by De Giacomo and Massacci [16] for Propositional
Dynamic Logic but an explicit algorithm has not been given there, and that calculus is
complicated by the need to accommodate both the iteration and converse operator.

Studies based on translation into first order la@ila Ohlbach [62] have mainly dealt
with the problem of decidability [47,69], and only recently there has been an attempt
to discuss the actual proof complexity of the resolution method [12,47]. Also, these
approaches do not study the complexity of satisfiability with global axioms. For instance,
Hustadt and Schmidt have just shown that it is possible to use resolution as a decision
procedure forALC with TBoxes [47] by means of a step-by-step simulation of prefixed
tableau proof search.

This latter result is particularly interesting as it allows to transfer our complexity result
to translation-based methods. It is enough to impose that the simulated tableau proof
respects our proof search techniques. Howevet, &gts corresponds to derived clauses
in the resolution framework, it might be that features such as clause subsumption or clause
deletion by resolution theorem provers may affect adversely the key result which requires
1 -sets to be used as much and as soon as possible.

There has been also a substantial work on the implementation of efficient theorem
provers for Description Logics includinglLC—among othersFaCT [41,43,44],DLP
[43,64], HAM-ALC (now RACE) [37], KRIS [3], KSAT [32—-34]. These implementations
are usually based on the standard trace based technique, with a different emphasis on the
various optimizations employed (see again Section 4 for a presentation of some of them).

Setting optimizations aside, usual tableau strategies (which explore one disjunctive
branch at a time) are applied, and in exploring a branch there is no use of inconsistent
sets of concepts already discovered in another branch (unless the “caching” optimization
is employed). Moreover, existential concepts are reduced by making “parallel” recursive
calls to the satisfiability testing procedure for each modal successor, and by backtracking
(locally) as soon as one of these returns unsatisfiable. These characteristics are not present
in our algorithm.

So, an interesting question is whether our algorithm combined with modal backjumping
could be recasted into the standard trace-based technique. The reason that our algorithm
does not employ that technique is precisely that we cowdt prove the worst-case
complexity result with it. Indeed, the standard trace-based techniques has been widely
presentin the literature, but only for provingPacg NEXPTIME, or decidability results.

In contrast, up to now only bottom-up techniques were used for provingrawePbounds.
The odds seem against such equivalence.

For what regard the re-use of concepts during proof search, this is typically captured by
the so called “caching” optimization. FOILP, “caching” of the satisfiability status of all
encountered sets of concepts is claimed [43,64]. Other systems sg&#{CasandFaCT
cache different information using pseudo-models of satisfiable concepts (see, e.g., [37,
42]), KSAT most recent incarnation uses different bounded cachesH&3T, even disables
caching of satisfiability status, claiming that it adversely affects the performance on a the
particular knowledge base one is interested in classifying [42].
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The most difficult problem is that the caching optimizations are left out of the
formal descriptions, and this makes it difficult even to ascertain whether two different
implementations mean the same thing for “caching”. As more important consequence of
the lack of a formal treatment, it has never been formally proved whether the different
caching optimizations are sound (see for instance [37] for an example of unsound caching)
and whether they can provide the desired EXHE-upper bound.

For what regard other optimizations, even though most systems employ propositional
backjumping (see [43,45] for a discussion of the problems relative to its implementations),
there is no evidence that the optimization that we call “modal backjumping” has been
implemented. As we have already remarked, this is mostly due to the different structure
of our algorithm which does not employ “parallel” recursive calls for analyzing modal
SuCCessors.

Our work distils and formalizes many of the intuitions and techniques present in modal
and description logic literature and provides the logical and algorithmic rationale of a
method that works in single exponential time, which might have been implemented (or
might be easily implementable) DLP or in similar systems.

Notice that we haveotproved that “caching” all sets of concepts (including potentially
satisfiable concepts) is a sound procedure. Indeed, in our calculus we “permanently cache”
all andonly unsatisfiable sets of concepts; many potentially satisfiable sets of concepts are
discarded when passing from a branch to another branch. Storing all sets of concepts might
lead to an unsound calculus (see [37] for examples).

8. Conclusions

In this paper we have presented the first tableau-based algorithm for satisfiability of a
concept with respect to a TBox (and hence also for subsumption in a TBox) which works
in worst-case single exponential time. In fact, we do not need to change substantially the
“normal” construction used by tableaux which has proven to be reasonably effective in
practice [41,43]. The key point is to forfait in part the standard trace-based technique and
make use of an auxiliary data structure which is used to store sets of concepts whose
conjunction was already proved to be inconsistent. Nevertheless, as it can be seen from the
machinery of Sections 5 and 6, the proofs that the new reasoning method is correct, and
that it indeed requires single exponential time, were neither simple, nor short.

The main ideas behind our algorithms can be used to devise TE¥FPtableau
implementations for various extension.4£C. In particular, since our calculus is tableau-
based, it can be easily modified to deal with an ABox as well. Moreover, it is possible
to export our complexity result to translation-based methods, by using the step-by-step
simulation of the proof search between prefixed tableaux and ordered resolution by Hustadt
and Schmidt [47].

This work can be extended in many directions: on the deductive side one may work for
extending the logic, and in particular to accommodate individuals or the converse and the
star (transitive closure) operators. Regarding complexity of optimizations (see Sections 4.2,
4.3), one may prove that the storage of minimal inconsistent subsets and the use of subset
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checking, which seems to be more promising in practice, also yields a single exponential
decision procedure.

Another promising avenue of research is the generalization of our complexity analysis of
the DFS-algorithm to AND/OR graphs and its transformation into algorithms for checking
on-the-fly the emptiness of accepting automata for EX42-complete logics.
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Appendix A. A full worked example

We test the satisfiability of the concepgtLl 3P.A against the knowledge bagd =
{AC3JQ0.Bn3IR.C;, BC IP.A}, whereC, denotes an unsatisfiable concept which is
not trivially unsatisfiable (e.g., by normalization and simplification).

This simple knowledge base is difficult enough to make it interesting as case study.
Indeed, the knowledge base is cyclical and the length of the cycle is longer than one
and goes through different roles. Therefore simple rewriting techniques do not help, and
termination is not guaranteed without loop checking.

To improve the readability, we do not present the whole tableau as a tree. Rather we
present the deduction steps as the algorithm performs them and recapitulate the overall
structure of the proof tree in Fig. A.1. The tree corresponds to the call tree of the DFS
algorithm.

We summarize in Table A.1 and in Table A.2, respectively, the sets which are inserted
into NoGoods and Visited during the search process.

We skip uninteresting rules such as the addition of assumptions frolBh®&/e also
skip the trivial reduction of @ rule when the extension of the left branch withgenerates
a clash.

In the proof fragments below we dwt show reduced concepts although they are to
be considered present. Their existence is reminded by ellipsis Moreover we box the
concepts that are added. We apply here the simple optimization of storing only modal
atoms and unreduced concepts in NoGoods and in Visited concepts.
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Numbers in the picture denote the corresponding invocation of the DF'S algorithm.
The remaining symbols are interpreted as follows:

e “1” in a leaf means that a clash has been found;

e “1” in an internal node means that a new set of concepts has been inserted in
NoGoods when the DFS algorithm returned to that call;

e “l-witness” in a leaf denotes an application of step A2 of the DFS algorithm;

e “skip” denotes an application of modal backjumping.

Fig. A.1. The call tree of the DFS-algorithm.

A.l. A step-by-step execution trace®FS

The tableau starts by adding the concept we want to test for satisfiability:

1:{[Au3P.Al] (A1)

We can either reduce thfeconcept or add the axioms from the knowledge base. According
our strategy, we apply twice tHeB rule:

1: {AuEIP.A,

—AU@Q.BN3IR.Cy)

,IMI} (A.2)
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Table A.1
Insertion and usage of NoGoods in the search
NoGoods Added at call Used at call
(c1} (A.17) (A.26)
{A,—B,3R.B,3R.C |} (A.8) (A.25)
{A,30.B,3R.C,3P.A} (A.20)
{A,30.B,3R.C |} (A.5)
{A,30.BN3R.C|} (A.4)
(A} (A.3) (A.29, A.34)
{3P.A, A} (A.29)
{3P.A,30.B,3R.C |} (A.34)
{3P.A,30.BN3R.C|} (A.30)
(3P.A} (A.27)
{AL3P.A} (A1)
Table A.2
Insertion and usage of Visited in the search
Visited Added atcall Usedatcall Discarded at call
{A,30.B,3R.C|,—B} (A.8) (A.16) (A.18)
{(B,—A,3P.A)} (A.12) (A.18)
{A,30.B,3R.C,3P.A} (A.21) (A.26) (A.27)

Now we can apply thg-rule to two different concepts. Without loss of generality, we
choose the first concept of the sett3P.A. Then we generate two branches and the left
one, withB1, continues as follows:

1:[,...,—-A|_|(EIQ.BHEIR.CL),—-BuEIP.A} (A.3)

Recall that the reduced concepti IP.A is replaced by ellipsis.

A further g-reduction of—A 1 (3Q.B N 3R.C,) yields another branch. The resulting
node 1: {4, ...,[=A] ...,—B u3P.A)} contains a clash, and the DFS algorithm returns
the element 1.

Then we come back at point (A.3) above and start the right branch, i.e., régoce of
—AU(3Q.BM3IR.C ). We apply anx-rule and we get:

1:[A,..., 30.BN3R.C. ,...,—-BuEP.A} (A.4)
l:[A,...,,,...,...,—-BuEIP.A} (A.5)

Then we apply again the-rule to—B LI3P.A and inser{s;.
1:[A,...,EQ.B,ER.CL,...,...,,...} (A.6)



130 F.M. Donini, F. Massacci / Artificial Intelligence 124 (2000) 87-138

Now we can choose to expand eith&9.B or IR.C. Suppose that our heuristic
function is unlucky and we proceed by applying theule to3Q.B and3R.C .

1:{A,...,30.B,3R.Cy,...,...,—B, ...} (A7)
[1.02): &)

1:{A,30.B,3R.C1,—B} (A.8)
1.0.2:{B)

173 [

At step (A.8) the DFS algorithm inserts the $at 30Q.B, 3R.C, , —~B} in Visited.
Then, we add the axioms from the KB and we arrive at the stage

1:{A,...,30.B,3RC.1,...,...,—B,..)) (A.9)
1.0.2: [B, —AUG@0.BN3RCL|, —-BuEIP.A}

1.R.3:{Cy}

Again we must apply #-rule. This time we are luckier (or want just to cut it short), and
select the second disjunctiemB L3 P.A for branching.

Once we addd; = —B, the node prefixed by.D.2 contains a clash and the DFS
algorithm returns 10.2 and the search proceeds in the right branch.

1:{A,...30.B,3R.C1,...,...—B,.. ) (A.10)
1.0.2: [B, ~AUE0.B naR.cl),,...}
1.R.3:{C.}

Again we have g concept to reduce in the set prefixed hy12 and the algorithm
continues on the left by addingy = —A, as follows:

1:{A,...,30.B,3RCi,...,....,—B,...) (A.11)
1.0.2: [B,,...,EP.A,...}
1.R.3:{C1)

No more propositional rules are possible. So we appty B) rule to 1 0.2 and add the
new prefix 10.2.P.4 to the branch.

1:{A,...,30.B,3R.C1,...,...,—B,..} (A.12)
1.0.2:{B,—A,...,3P.A,.. )
1.R.3:{Cy}

[Lo2Pa): (4]

At step (A.12) we insert in Visited the set of concepts prefixed 3.2 (Table A.2).
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After two applications of th&B-rule we get the following branch:

1:{A,...,30.B,3RCi,...,...,—=B,...) (A.13)
1.0.2:{B,—A,...,3P.A,..})
1.R.3:(C1)
1.0.2.P.4: [A, —AU@EQ.BN3RCL)|, —-BuEiP.A}

Again we have to apply g-rule to the prefix 10.2.P.4 and the algorithm proceeds by
branching on the left and adding tjf¢ = —A subconcept of-A LU (3Q.Bn3R.C1). The
DFS algorithm detects the clash and return3.2. P.4, so that the proof search continues
on the right branch.

1:{A,...,30.B,3R.C1,...,...,—B,...} (A.14)
1.0.2:{B,—A,...,AP.A, ..}
1.R.3:{C.)}

1.0.2.P.4: [A, J0.BA3RCL],....~BU EIP.A}

1:{A,...,30.B,3R.Cy,...,...,—B,..} (A.15)
1.0.2:{B,—A,...,3P.A,..})
1.R.3:{C.}

1.02.P4:{4,[30.B].3RCL]. .......~BU3P.A}

A B-rule to reduce-B L 3P.A prefixed by 10.2. P.4 starts the next DFS-call:

1:{A,...,30.B,3RCi,...,...,—=B,...) (A.16)
1.0.2:{B,—A,...,3P.A,..})
1R.3:{C1)

1.0.2.P.4: [A,EIQ.B,EIR.CL,...,...,,...}

DFS notices that the set of concepts prefixed by 1 that we have inserted in Visited
(Table A.2) is a witness for.D.2. P.4. This prefixed set is not reduced further.

We can focus our attention on the prefixed s&.3: {C, } because the next prefix in
the lexicographic order is.R.3.

1:{A,...,30.B,3RCy,........,~B, ..} (A17)
1.02:(B.~A.....3P.A. ..}
LR3: {1

1.0.2.P4:{A,30.B.3R.C,,........~B... )

For simplicity, we assume that after a suitable number of steps the proof search
terminates{C, } is added to the NoGoods, and the DFS call returis3.
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At this stage the DFS algorithms returns over the potential branching point (A.15). The
check prevents the potential branch becauge? P.4 is different from the returned prefix
1.R.3.

Then we go at call (A.13) after the right branch has been visited. Because the returned
prefix LR.3 is different from the current prefix. ©.2. P.4 we do not insert anything in
the NoGoods and continue. We skip also the potential branching point on the right at
step (A.10) because the returned prefiR B is different from 10.2.

We exit DFS-calls upward without doing any work until we resume call A.8. Then the
instruction A6 of the DFS algorithm inserts theset{A, —=B,3R.B,3R.C 1} among the
NoGoods. The new returned prefix is now 1.

The algorithm backtracks directly to call (A.5). At this point the condition A4 is true
and the search continues in the right branch. Before going to the right, we discard the set
{B,—A,3P.A} from Visited.

1:{A,...,30.B,3R.C1,...,...,3P.A, ..} (A.18)

It is clear that this second branch is useless, since the disjunction that we are currently
analyzing does not contribute to the contradiction. If we used propositional backjumping
we could have avoided that branch too. We have already discussed how to add this
optimization to the DFS algorithm (see Sections 4.2 and 4.3).

Here we have again to chooseraconcept to reduce. For sake of simplicity assume
that we again reduce the concepts in the same order which we have chosen in the previous
branches: firstA, thenC  , and now we have alsB. We get:

1:{A,...,30.B,3R.Cy,...,...,AP.A,.. ) (A.19)
L5 ()
1:{A,...,30.B,3R.Cy,...,...,AP.A, ..} (A.20)
1.P.5:{A)
[L.R.6]: [}
1:{A,...,30.B,3R.Cy,...,...,AP.A, ..} (A.21)
1.P.5:{A)
1.R.6:{C.}

o7 )

Notice that in call A.21 we introducgA, 3Q.B,3R.C 1, 3P.A} in Visited.
The search now continues on the next prefix in the lexicographic order, that.i. As
usual, we addB-axioms first.

1:{A,....,30.B,3R.C,........3P.A, ..} (A.22)
1P5: [A, —ALU@E0.BMA3RCL|, —-BuEIP.A}

1.R.6:{C.}
1.0.7: (B}
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Then we must apply &-rule. Again we choose the first disjunction and the branch on
the leftimmediately closes. We are left with the following (right) branch:

1:{A,...,30.B,3R.Cy,...,...,3P.A, ..} (A.23)
1.P.5:{A,[F0BN3RCL],....~BL3P.A}
1.R.6:{C,}
1.0.7:{B}
1:{A,...,30.B,3R.Cy,...,...,3P.A, ..} (A.24)
1.P.5:{A.[30B].BRCL]. ..., ~Bu3P.A|
1.R.6:{C,}
1.0.7:{B}
We are still left with ag-concept to reduce; we go to the left.
1:{A,...,30.B,3R.Cy,...,...,AP.A, ..} (A.25)
1P5: [A,EIQ.B,EIR.CL,...,...,,...}
1.R.6:{C.}
1.0.7:{B}

This is where our use of NoGoods shows its usefulness: $ihceQ.B,AR.C |, — B} is
in NoGoods, we do not need to expand this branch any further. We stop the search closing
the branch and DFS returnsA.5.

This resultcannot be obtained with semantic branchitrgleed, if we had used semantic
branching in call A.5 we would have obtained the following branch:

1: [A,...,EIQ.B,E!R.CL,...,...,EIP.A,,...}
1.P5:{A,30.B,3RC,...,...,—B,...)
1R.6:{C1)
1.0.7:(B)

Unfortunately, the knowledge that the concépis satisfied by the prefix 1 is of no avail
to close the search atR.5.
The DFS algorithm returns 2.5 at the call (A.24). We continue with the right branch.

1:{A,...,30.B,3R.C.,...,...,3P.A, B, ..} (A.26)
1.P.5:{A,30.B,3AR.Cy,...,...,AP.A, .. }

1.R.6:{C.}

1.0.7:{B}

Since the setA,30.B,3R.C,,3P.A}is in Visited, we do not expand it.
The next prefix in the lexicographic order iskRL6. Now condition A2 is true with the
1-set{C,} and the DFS algorithm returnsRL6. We return up to call (A.20), where we
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insert the sefA,30Q.B,3R.C1,3P.A} among the NoGoods and return 1 and go back to
call (A.5).

Both right and left branch return the same prefix. Thus a dewset is introduced:
{A,30.B,3dR.C,—B u3IP.A}. Since we do not store axioms of tké3, we insert the
smaller se{A,30Q.B,3R.C}.

Returning through calls (A.4) inserts also another set in NoGoods (namely the
conjunction of the existentials) and finally call (A.3) inserts in NoGoods theet
{A,-AUEFR.BN3R.C1),—~BuIP.A} for which we only stord A}.

Now we are back at the root of the tableau and we can branch on the right.

1: [,—-Au(EQ.BﬂEIR.Cl),—-BuEIP.A} (A.27)

The second disjunct is reduced and thus we do not reduce it. Now we have to apply further
a p-rule on the left and then the only availabtéP)-rule.

1: [EIP.A,, ...... } (A.28)
1:{3P.A,—A,~BU3P.A) (A.29)

[17.8): {4}

Now {A} € NoGoods and therefore this branch can be immediately closed. So call (A.29)
returns 1, and the s¢iiP.A, —A} is also added to NoGoods.

We return to call (A.27) and branch on the right. Again we stubbornly do a pointless
branching because clearly the disjunct we have branched on does not contribute to the
search. Yet, in contrast with standard tableau method, pointless branching does not result
in (exponential) disaster:

1:{3P.4,[30BTIRC. .. | (A.30)
1:{3p.4.[30:].[3RCL]. . | (A:31)

then we start reducing the-concepts.

1:{3P.A,30.B,3R.C.,—~BLUIP.A} (A.32)
[17.9): A}
1:{3P.A,3Q0.B,3R.C.,—~BU3IP.A)} (A.33)
1.P.9:{A)}
[LR10): {[c1])
1:{3P.A,30.B,3R.C,...,...} (A.34)

1.P.9: A}
1.R.10:{C.}

[L.0.13): (2]}
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Looking into NoGoods we find that the next lexicographic prefiR.® prefixes al -set.
We can close the last branch without any further ado. When we return up the DFS tree new
L -sets are added. Although they are not needd in this example, they might be useful for
subsequent deductions.
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