
Artificial Intelligence 124 (2000) 87–138

EXPTIME tableaux forALC

Francesco M. Doninia,c, Fabio Massaccib,c,∗
a Dip. di Elettrotecnica ed Elettronica—Politecnico di Bari, Via G. Re David, 200, 70125 Bari, Italy

b Dip. Ingegneria dell’Informazione—Università degli Studi di Siena, Via Roma 56, 53100 Siena, Italy
c Dip. di Informatica e Sistemistica—Università di Roma “La Sapienza”, Via Salaria 113, 00198 Roma, Italy

Received 10 December 1999

Abstract

The last years have seen two major advances in Knowledge Representation and Reasoning. First,
many interesting problems (ranging from Semi-structured Data to Linguistics) were shown to be
expressible in logics whose main deductive problems are EXPTIME-complete. Second, experiments
in automated reasoning have substantially broadened the meaning of “practical tractability”.
Instances of realistic size for PSPACE-complete problems are now within reach for implemented
systems.

Still, there is a gap between the reasoning services needed by the expressive logics mentioned
above and those provided by the current systems. Indeed, the algorithms based on tree-automata,
which are used to prove EXPTIME-completeness, require exponential time and space even in simple
cases. On the other hand, current algorithms based on tableau methods can take advantage of such
cases, but require double exponential time in the worst case.

We propose a tableau calculus for the description logicALC for checking the satisfiability of a
concept with respect to a TBox with general axioms, and transform it into the first simple tableau-
based decision procedure working in single exponential time.

To guarantee the ease of implementation, we also discuss the effects that optimizations
(propositional backjumping, simplification, semantic branching, etc.) might have on our complexity
result, and introduce a few optimizations ourselves. 2000 Elsevier Science B.V. All rights reserved.

Keywords:Automated reasoning; Tableaux; Description logics; Modal logics; Algorithms; Computational
complexity

∗ Corresponding author.
E-mail addresses:donini@poliba.it (F.M. Donini), massacci@dis.uniroma1.it (F. Massacci).

0004-3702/00/$ – see front matter 2000 Elsevier Science B.V. All rights reserved.
PII: S0004-3702(00)00070-9

88 F.M. Donini, F. Massacci / Artificial Intelligence 124 (2000) 87–138

1. Introduction and motivations

Automated Reasoning has been an active research area in the mainstream of Artificial
Intelligence in the last decades and has received special attention as a tool to provide
“reasoning services” for Knowledge Representation and Reasoning (KR&R) [53]. That
is, when knowledge about a problem is coded as formulae in a particular logic,automated
reasoning servicesabout such knowledge can be offered to a more complex system—
in more or less the same way implemented data structures offer methods to update the
structure itself [52]. Of course, to make reliable such a service, some bounds on the
resources needed to solve the reasoning problem associated to the service should be
given. This implies that the reasoning problem should be at least decidable; but more
pragmatically, the service should be accomplished within the resource bounds available
to the current technology—which is sometimes mentioned as “tractability”.

Traditionally, “tractability” has been largely understood as polynomial-time solvability
of the reasoning problems. This resulted in a tremendous effort on isolating the so-called
tractable fragmentsof various logics for knowledge representation [21,53,60,61,67].

The last years have seen a shift from this paradigm, at least for two reasons.
First, logics with polynomial-time deductive problems have been criticized for their

too limited expressive power [23]. Although systems with a limited-but-reliable KR&R
component have been successfully used in complex applications [7,19,79], it is now
recognized that many interesting KR&R problems can be expressed only in logics
whose main deductive problems—satisfiability and logical implication—are EXPTIME-
complete. This is true especially for Description Logics, in which many problems, like
reasoning in conceptual data models, schema integration and semi-structured data [9,10],
are expressible in EXPTIME-complete Description Logics. The need is also true for logics
very similar to Description Logics, such as Modal Logics [25,29], Propositional Dynamic
Logics [27,49], Temporal Logics for Computer Aided Verification [24,78], Hybrid Logics
for Linguistics [6], Security Modal Logics [1,35].

Second, a number of recent experimental advances in description and modal logics
theorem proving and satisfiability checking have substantially broadened the meaning
of “tractability” for practical purposes. Better algorithms, better coding, better computer
technology have brought forward a number of novel and effective systems for modal
and description logics based on on different calculi and implementations, ranging from
tableau and constraint systems [41,43,44] to DPLL-based implementations [32,34] and
first order theorem provers [48]. Problems such as as concept satisfiability or modal
provability, which are PSPACE-complete problems in the worst case, are now within reach
for instances of realistic size [58]. Potentially EXPTIME-complete problems stemming
from real applications can be also be reasonably solved [30,41,45].

1.1. The problem

Notwithstanding the impressive amount of theoretical and experimental work, there is
still a gap between the reasoning services for the expressive logics mentioned above and
those provided by the currently implemented systems. Indeed, although many systems
such asFaCT and DLP [41,43,64] provide reasoning services for problems in PSPACE

F.M. Donini, F. Massacci / Artificial Intelligence 124 (2000) 87–138 89

(e.g., concept satisfiability) and in EXPTIME (e.g., subsumption with respect to TBoxes,
validity for propositional dynamic logic), it is only for problems in PSPACEthat the offered
reasoning services are proved to guarantee the computational complexity upper bound [45].

For sake of concreteness, in this paper we concentrate on a reasoning technique for a
particular Description LogicALC [22,70], which is a subset of nearly every expressive
Description Logic. However, we remark thatALC is merely a notational variant of
the multi-modal logicK [38], and, with simple adaptations, one obtains Propositional
Dynamic Logics (without converse) and Temporal Logics.

From correspondences with Propositional Dynamic Logic (PDL) it is known that the
satisfiability of anALC conceptC with respect to a TBox KB is in EXPTIME [65,77].
However, the algorithms directly derived from the tree-automata methods, which have been
used to prove such a result, require exponential time and space even in simple cases, e.g.,
when a simple model satisfying both KB andC can be easily found. Loosely speaking, this
happens because one first constructs an automaton which accepts the tree models ofKB and
C, and whose size is exponential in the size of the input. Then, one checks its emptiness,
i.e., whether the automaton accepts no model [13,24,31]. The construction of efficient
methods for testing emptiness—i.e., unsatisfiability—on-the-fly while constructing a tree
automata, is still an active area of research. The problem has been solved only for PSPACE

problems such as satisfiability of linear temporal logic [13,31].
In contrast, proposed tableau methods [8], which explore a space of candidate models

for KB andC starting from simple ones, can take advantage of such cases. However, there
can be an exponential number of possibly exponential-size candidate models. Hence, a
straightforward implementation based on tableaux requires doubly exponential time in the
worst case.

As a solution to this problem, many implementedALC satisfiability solvers “cache”
the (un)satisfiability status of sets of concepts for later use [37,43]. This optimization
prunes heavily the search space but its unrestricted usage may lead to unsoundness [37].
It is conjectured that “caching” leads to EXPTIME-bounds but this has not been formally
proved so far, nor the correctness of caching has been shown.

Indeed, a practical and easily implementable algorithm, whose correctness and com-
plexity have been formally proven, has not been given in the literature. This topic is only
quickly discussed in [8] and the transformation of a tableau calculus into an EXPTIME

algorithm is only sketched in [16,20].

1.2. The contribution of this paper

We devise a refined tableau calculus that neatly formalizes and integrates the techniques
used byALC solvers with the theoretical work on PDL with tableaux, thus achieving
the first simple tableau-based procedure working in single exponential time for the
satisfiability of anALC conceptC with respect to a TBoxKB containing general axioms
of the formC vD.

This result is particularly important as it shows that it is possible to exploit a search-
based technique, with the possibility of finding rapid solutions for “easy problems”,
without sacrificing worst-case complexity.

90 F.M. Donini, F. Massacci / Artificial Intelligence 124 (2000) 87–138

In a nutshell, traditional tableau methods close a branch only by “first principles”
(atomic clashes), whereas our enhanced tableaux exploit previously proved inconsistencies
as additional lemmata to decide that a branch can be closed, without delving into the same
formulae only to find the same atomic clashes again and again.

We remark that, in a realistic setting, several satisfiability tests are posed to the same
TBox [3]. Even if most concepts usually turn out to be satisfiable, the reasoning process
may analyze many inconsistent sets of concepts. These lemmata are related to the TBox;
they are independent on the particular concept being tested, and can therefore be exploited
for answering subsequent tests. Hence, their use not only speeds up a single deduction, but
the cost of memorizing them can be amortized over several tests.

Once correctly formalized, our tableau calculus is very simple—even though the
complexity proof is far from simple—and could be easily implemented in existing top-
down tableau-based systems, such asFaCT [41,42],KSAT [32] or DLP [43,64]. Indeed, we
can see a further contribution of this paper in the actual distillation and formalization of
many intuitions present in current implementations.

Our techniques could also be extended to translation-based approachesà la Ohlbach
[62], using the simulation techniques developed by Hustadt and Schmidt [47] which makes
it possible to simulate the actual proof search with prefixed tableauxà la Massacci [54,57]
in a first-order resolution framework.

To guarantee the ease of implementation, we have taken particular care in discussing the
effects that the various optimizations (propositional backjumping, simplification, semantic
branching, etc.) might have on our complexity results, and how our results can be lifted
to more expressive logics beyondALC. Moreover, we introduced a few optimizations
ourselves (e.g., modal backjumping).

1.3. Plan of the paper

In the next section we introduce the syntax and the semantics of the description logic
ALC. Then, we present the general principles of an innovative tableau calculus forALC
(Section 3) and sketch how to lift it to more expressive logics. We show how to transform
it into an EXPTIME efficient algorithm (Section 4) and discuss the incorporation of many
state-of-the-art optimizations into the basic algorithm.

We also prove the correctness of the tableau calculus (Section 5) and the required
exponential complexity bounds on the algorithm (Section 6). Finally we review some
related approaches (Section 7) and conclude (Section 8).

The reader interested in the practical working of the algorithm can find in the appendix
a worked example.

2. Notation and semantics

LetA denote a concept name,C andD arbitrary concepts, andR a role name. Concepts
in ALC are formed with the following syntax:

C,D ::= > | ⊥ |A | ¬C | C uD | C tD | ∀R.C | ∃R.C

In the sequel we denote sets of concepts by the calligraphic lettersC andD.

F.M. Donini, F. Massacci / Artificial Intelligence 124 (2000) 87–138 91

α α1 α2

C uD C D

¬(C tD) ¬C ¬D

β β1 β2

¬(C uD) ¬C ¬D
C tD C D

neg pos

¬¬C C

ν(R) ν0

∀R.C C

¬∃R.C ¬C

π(R) π0

¬∀R.C ¬C
∃R.C C

Fig. 1. Uniform notation of concept expressions.

A TBox KB is a set containinginclusionsof the formC vD. We do not impose any
constraint on the form of these inclusions.

For sake of modularity, we classify concepts with the typesα, β introduced by
Smullyan [73] in the 1960s, and extended to modal logic by Fitting [28]. This classification
is recalled in Fig. 1.

Definition 2.1. If A is a concept name, we refer to formulae of the formA,¬A, ν(R) and
π(R) asmodal atoms.

The intuition is that modal atoms cannot be reduced further by simple propositional
rules.

2.1. Semantics

An interpretationI = 〈∆, ·I 〉 consists of a non-empty set∆, thedomainof I—whose
members are calledelements—and a function·I , the interpretation functionof I, that
maps every concept to a subset of∆ and every role to a subset of∆×∆ such that

>I =∆,
⊥I = ∅,
(C uD)I = CI ∩DI ,
(C tD)I = CI ∪DI ,
(¬C)I =∆ \CI ,
(∀R.C)I = {a ∈∆ | ∀b. (a, b)∈ RI impliesb ∈ CI},
(∃R.C)I = {a ∈∆ | ∃b. (a, b)∈ RI andb ∈CI}.

According to this definition, an interpretation function is completely determined by the
way it interprets atomic concepts and roles.

92 F.M. Donini, F. Massacci / Artificial Intelligence 124 (2000) 87–138

An interpretationI satisfies a conceptC if there exists an elementd ∈ ∆ such that
d ∈CI , i.e., ifCI 6= ∅. An interpretationvalidates a conceptC if for every elementd ∈∆
one hasd ∈CI , that is, ifCI =∆.

An interpretationI validatesthe inclusionC vD if CI ⊆ DI . In other words, this
interpretation validates the concept¬C tD.

A TBox is a finite set of inclusions. An interpretationI is a modelfor a TBox KB if
I validates all inclusions in KB. We say that a TBox KBentails the inclusionC vD,
writtenKB |= C vD, if every model of KB validates the inclusionC vD. A conceptC is
satisfiable with respect to a TBox KB if there is a modelI of KB such thatI satisfiesC.

Observe that satisfiability of a concept with respect to a TBox can solve also other
problems such as entailment. For instance, KB entailsC vD iff C u ¬D is unsatisfiable
with respect toKB.

3. A tableau calculus forALC

Our calculus combines features of Gentzen-type tableaux, prefixed tableaux, and
constraint systems. Below we give (to the reader who is familiar with these calculi) some
intuitive reasons why we need a calculus which is more general than each one of them.
• Gentzen-type tableaux [28,36] provide too rough a level of granularity, since they

implicitly work with sets of concepts, but concentrate on one element at the time, and
there is no way to distinguish different elements linked to the same set of concepts.
• Prefixed tableaux [28,36,54,57] and constraint systems [8] provide too fine a level of

granularity. They give names to elements, but they do not immediately identify the
whole set of concepts linked to an element.
• Graph-based systems, from Kripke’s original proposal [50], to more recent incarna-

tions in modal logics [11,26] and description logics [44,45] allow to identify the sets
of concepts linked to a node. However, since they represent only a single tentative
model in a tableau, and employ nondeterministic rules, they shift the problem of ob-
taining a deterministic algorithm into the implementation. Therefore they are suited
only for proving decidability [26,44,45], or PSPACE-completeness, by exploiting Sav-
itch’s Theorem that PSPACEis closed under nondeterminism [45].
• Loop checking [18,36,39,54,57], also known as blocking [8,44,45] and filtering [36],

is only useful for “reusing” satisfiable concepts, namely the concepts that can be used
to build a (partial) model.
• Standard algorithms do not learn from local proofs of unsatisfiability. Indeed, even

if caching of unsatisfiable concepts is often claimed by many implementors [37,
41,43,64], this feature is left out of the formal description of the calculus and the
algorithm. Therefore, it is impossible to prove its correctness or its complexity. In
contrast, we mustformally re-use parts of the computationsboth for satisfiability and
unsatisfiability.

In a nutshell, the intuitions behind our system are close to those commonly described in
the recent modal and description logic literature. What we have done is to actually distil
and formalize the different fragments into a coherent and effective whole.

F.M. Donini, F. Massacci / Artificial Intelligence 124 (2000) 87–138 93

3.1. Tableau rules

The basic component of our calculus is a paire : C, composed by aprefix e and a
set of conceptsC. We call this pair aprefixed set. A prefix is an alternating sequence of
integers and role names, starting with 1. Formally, ifR is a role name andn an integer
we have that the syntax of prefixes ise ::= 1 | e.R.n. For example, ifP andQ are roles,
1.P .5.Q.11.P .12 is a prefix, and 1.Q.8.R.9 : {A,B t ∀R.C} is a prefixed set.

Intuitively, a prefixe in a paire : C is a name for an element in a domain of a model the
calculus tries to build. If a model is actually built,e satisfies all concepts contained in the
setC.

To define a tableau, we adapt from Smullyan’s book [72, pp. 24 and 29] and use the
uniform notation defined in Fig. 1 to avoid any preliminary reduction to negation normal
form.

A tableau for a conceptC is an ordered dyadic tree, whose points are (occurrences of)
prefixed sets, which is constructed as follows. We start by placing 1: {C} at the root. Now
supposeT is a tableau forC which has already been constructed; letB be abranchin T ,
i.e., a path from the root to a leaf. Then we may extendT by using the rules in Fig. 2 as
follows: if the antecedents of a rule appear alongB, we add toB the consequent(s) of the
rule. For theβ rule, we simultaneously adjoin the two consequents as the left successor
and the right successor of the leaf. Notice that the antecedent of a rule needs not be a leaf
in the tree as in [41].

We call the rules in Fig. 2Prefixed Set rules(PS-rules for short).
We say thata rule is applied to a prefixed sete : C if e : C is the antecedent of the rule

being applied. For theν(R) rule, which has two antecedents, we say that the rule is applied
to the first antecedent (the prefixed sete : C ∪ {ν(R)}).

e : C ∪ {α}
e : C ∪ {α1, α2} (α)

e : C ∪ {neg}
e : C ∪ {pos} (dneg)

e : C ∪ {β}
e : C ∪ {β1} e : C ∪ {β2} (β)

e : C
e : C ∪ {¬C tD} (KB) whereC vD ∈ KB

e : C ∪ {π(R)}
e.R.n : {π0} π(R) wheree.R.n is new in the tableauT

e : C ∪ {ν(R)} e.R.n :D
e.R.n :D ∪ {ν0} ν(R)

Fig. 2. Prefixed Set rules.

94 F.M. Donini, F. Massacci / Artificial Intelligence 124 (2000) 87–138

Regarding ruleπ(R), a prefix ispresentin a tableauT , if there is a prefixed set inT
with that prefix, and it isnewif it is not present.

The same rule might be applicable to different prefixed sets, due to the presence in the
sets of the very same concept. For example, starting the tableau from 1: {A u B,C tD},
and applying theα rule, the prefixed set 1: {A,B,C t D} is added to the tableau as a
successor of the root. Now theβ rule is applicable both to the root and to its successor;
but obviously, there is no point in applying the rule to the root, since it contains a concept
already decomposed. To prevent this ambiguity, we impose the following restriction:we
cannot apply a rule to a prefixed sete : C if below in the branch there is already a prefixed
sete : C ′ (with the same prefix).

Remark 3.1. The condition inπ(R) that e.R.n is new inT ensures that each prefix is
uniquely identified inT . Moreover, it is easy to see that if an prefixe.R.n is present inT ,
so ise.

3.2. Reusing computations for satisfiability

We need the preliminary notion of reduced concept:

Definition 3.2. A conceptC ∈ C is PS-reducedfor the prefixed sete : C in the branchB
iff one of the following conditions holds:

(1) if C is of typeα, and bothα1 andα2 are inC;
(2) if C is of typeβ , and eitherβ1 or β2 is in C;
(3) if C is of typeneg, andposis in C;
(4) if C is of typeπ(R), and there is another prefixed sete.R.n : D in B such that

π0 ∈D;
(5) if C is of typeν(R), and for all prefixed setse.R.n :D present inB it is ν0 ∈D.

Moreover, aninclusionC vD ∈ KB is PS-reducedfor the prefixed sete : C in a branchB
iff ¬C tD ∈ C.

If the conceptC is reduced according the first three rules, we say that it ispropositionally
reduced. Clearly, modal atoms are propositionally reduced.

Definition 3.3. A prefixed sete : C is PS-reducedin branchB if every conceptC ∈ C is
PS-reduced fore : C and every inclusionC vD ∈ KB is PS-reduced fore : C.

Of course we do not need to apply a rule to a concept which is already PS-reduced, nor
to consider PS-reduced prefixed sets.

Although this may be sufficient to avoid some useless computations, it is still not enough
to provide termination. We need to introduce the notion of implicitly reduced concept and,

F.M. Donini, F. Massacci / Artificial Intelligence 124 (2000) 87–138 95

to this extent, the standard lexicographic ordering for prefixes. This is obtained by taking
the transitive (but not reflexive) closure of the following relations:

e ≺ e.R.n
e.R.n≺ e.R′.n′ providedn < n′

e.R.e1≺ e′.R′.e2 providede ≺ e′.
For example, 1.R.6≺ 1.Q.11, and 1.R.12.Q.20≺ 1.Q.15.R.16. For simplicity, we keep
the same symbol≺ for the transitive closure of the above relations.

To identify loops in a branch, we define the following notion ofwitness.

Definition 3.4. A prefixed sete : C is awitness in a branchB for a prefixed sete′ : C, if
e≺ e′, e : C is PS-reduced, and there is no other prefixed sete′′ : C in B such thate′′ ≺ e.

In the above definitionC is the same in both prefixed setse : C ande′ : C. Note also
that if e : C has a witness, then it is reduced with respect to points (1)–(3) in the above
Definition 3.2. Since the≺ relation is well-founded, there is at most one witness for a given
setC. Clearly, there is no point in reducing further a prefixed set which has a witness.

Definition 3.5. A prefixed sete : C is implicitly PS-reducedin a branchB iff either it is
PS-reduced or it has a witnesse′ : C in B.

3.3. Reusing computations for unsatisfiability

We start by recalling the usual definition of explicit inconsistency.

Definition 3.6. A prefixed sete : C is inconsistentif there is a conceptC such that both
C ∈ C and¬C ∈ C. For a given conceptC, we callclashthe set{C,¬C}.

To re-use unsatisfiable sets of concepts we introduce a special kind of prefixed sets called
inconsistent sets(⊥-sets for short), denoted ase : (C)⊥.

The semantic interpretation ofe : (C)⊥is the logical implicationKB |= uC v⊥, where
if C = {C1, . . . ,Cn} thenuC = C1 u · · · u Cn. In other words, a⊥-set contains a set of
concepts whose conjunction has already been proven inconsistent for the given knowledge
base KB, during the expansion of the tableau.

The intuition is that⊥ is anextra labelthat we may propagate along the current labels
of the nodes of the tableau. So we have a series of rules for relabeling, shown in Fig. 3.
The rules are applied as follows: if the antecedent prefixed sets occur in the tableauandthe
consequente :D occurs also in the tableau, then we relabel the consequent ase : (D)⊥.

Without the condition that both antecedents and consequent already appear in the
tableau, the rules for the⊥-sets would be a parallel calculus to derive the inconsistency
of a set of concepts bottom-up rather than top-down, and many (irrelevant)⊥-sets could be
generated. On the contrary, in this way we can have at most as many⊥-sets as “normal”
prefixed sets.

96 F.M. Donini, F. Massacci / Artificial Intelligence 124 (2000) 87–138

For all rules, the consequent appears (unlabelled) in the tableau.

C,¬C ∈ C
e : (C)⊥ (⊥) e′ : (C)⊥ e′ ≺ e

e : (C)⊥ (⊥-witness)

e : (C ∪ {α1, α2})⊥
e : (C ∪ {α})⊥ (⊥-α)

e : (C ∪ {pos})⊥
e : (C ∪ {neg})⊥ (⊥-dneg)

e : (C ∪ {β1})⊥ e : (C ∪ {β2})⊥
e : (C ∪ {β})⊥ (⊥-β)

e : (C ∪ {¬C tD})⊥ C vD ∈ KB

e : (C)⊥ (⊥-KB)

D ⊆ {ν0 | ν(R) ∈ C} e.R.n : (D ∪ {π0})⊥
e : (C ∪ {π(R)})⊥ (⊥-π(R))

Fig. 3. Generation of⊥-sets.

The ⊥-rules are the (almost) dual version of the PS-rules. The major difference is
that PS-rules are applied within a branch, whereas rules of Fig. 3 can be applied across
branches, i.e., antecedents and consequents may appear in different branches of the
tableau—cf. in particular the rule⊥-witness.

Then, we can broaden the definition of an inconsistent prefixed set:

Definition 3.7. A prefixed sete : C is implicitly inconsistentif it is a ⊥-set.

Later, in Lemma 5.2 we prove that this name is faithful to its meaning, namely, that an
implicitly inconsistent set is indeed inconsistent.

Since we have more rules than simply PS-rules, we must also add the notion of⊥-
reduced prefixed set.

Definition 3.8. A prefixed sete : (C)⊥ is ⊥-reducedif every rule of Fig. 3 which can be
applied to it does not introduce a new⊥-set.

3.4. Tableau proof search

The presence of witnesses and the notion of implicitly inconsistent, PS-reduced, and
⊥-reduced sets require a novel definition of open and closed branches with respect to the
standard tableau definitions.

Definition 3.9. A branchB is implicitly closedif there is an implicitly inconsistent prefixed
set inB. A tableau is implicitly closed if all its branches are implicitly closed.

F.M. Donini, F. Massacci / Artificial Intelligence 124 (2000) 87–138 97

Definition 3.10. A branchB is openif every prefixed set inB is both implicitly PS-reduced
and⊥-reduced, andB is not implicitly closed. A tableauT is open if at least one branch
of T is open.

Now we have defined all the notions needed to state the first two results (proofs in
Section 5).

Theorem 3.11. If there is an implicitly closed tableau for the conceptC with a TBox KB
thenC is unsatisfiable for KB.

Theorem 3.12. If there is an open tableau for the conceptC with a TBox KB thenC is
satisfiable for KB.

The key problem is how do we find an open or implicitly closed tableau, possibly
using single exponential time in the size of KB andC. To this extent we need to apply
the following high-level search techniques. For each technique, we give some intuitive
rationale.

Technique 1. Never apply a rule to an implicitly PS-reduced prefixed set, nor to a⊥-re-
duced prefixed set.

Regarding implicitly PS-reduced prefixed sets, either they are PS-reduced (and then,
no PS-rule can be applied to them), or they have a witness. Observe that following this
technique, only the first encountered witness can be properly PS-reduced. In fact, the
prefixed set having a witness will not be PS-reduced with respect to conditions (4)–(5)
in Definition 3.2.

A ⊥-reduced prefixed set is inconsistent (we show this formally in Section 5), so there
is no point in further expanding it.

We now impose that we do not expand prefixed sets which we have already “proved” to
be inconsistent:

Technique 2. Never apply a PS-rule to an implicitly inconsistent prefixed set.

In order to apply Technique 2 as often as possible, saving useless expansions, we need
to “discover”⊥-sets as soon as possible. Then, we give precedence to the generation of
⊥-sets:

Technique 3. Apply the rules for the addition of new⊥-sets before other rules.

These techniques preserve the soundness and the completeness of the search strategies
that apply them, but we need more constraints1 for proving that the proof search requires
single exponential time.

1 We do not know whether the constraints we impose are minimal or there are alternative ones. For instance,
see the work of Demri on non-uniform strategies [18] or Fariñas and Gasquet [26] for a different strategy which
guarantees termination.

98 F.M. Donini, F. Massacci / Artificial Intelligence 124 (2000) 87–138

Technique 4. For every prefixed sete : C, apply rulesα, pos, KB andν(R) before other
rules, and apply ruleβ before ruleπ(R).

Technique 5. The new prefixe.R.n generated by ruleπ(R) must be such thatn > m for
every other integerm already present in the tableau.

Intuitively, this technique simply says that we use a global counter for generating the
successors ofe: first generatee.R′.1, thene.R′′.2, thene.R′′′.3 and so on, whereR′, R′′,
andR′′′ may be the same role.

Technique 6. Apply a rule to a prefixed sete : C only if there is no prefixed sete′ :D, with
e′ ≺ e, to which a rule can be applied.

Technique 7. Use a depth-first strategy for the traversal of the branches of the tableau.

The combination of Techniques 4 and 6 force the application of aν(R) rule just after
an application of aπ(R) rule. That is, just after ruleπ(R) introduces a new prefix, all
additional conceptsν0 imposed by universal formulaeν(R) are transferred to the newly
generated prefix by the application ofν(R) rule.

We now have the machinery to prove that the search process terminates, using single
exponential time in the worst case.

Theorem 3.13.Any search strategy respecting Techniques1–7 terminates using single
deterministic exponential time in the size ofC and the TBox KB.

The proof is carried out in Section 6, after making the above calculus and techniques
more concrete with the help of a set of algorithms (Section 4).

3.5. Extension to logics beyondALC

The calculus and the corresponding correctness and complexity results can be easily
extended to cope with reflexive and transitive roles (i.e., with modal logics such asTn, K4n
andS4n). We simply need to incorporate the(T) and (4) rule for Single Step Prefixed
Tableaux [36,54,57]. In a nutshell we simply need to augment the calculus with the rules:

e : C ∪ {ν(R)}
e : C ∪ {ν(R), ν0}ν

T (R) whenR is a reflexive role,

e : C ∪ {ν(R)} e.R.n :D
e.R.n :D ∪ {ν(R)} ν4(R) whenR is a transitive role.

TheνT (R) rule has the same priority ofα anddnegrules whereas theν4(R) rule have the
same priority of the classicalν(R) rule.

Role hierarchies, in absence of transitive roles, in the formP vQ for atomic rolesP and
Q can also be easily accommodated by using the⇒ rule given in [56]. The combination of
role hierarchies and transitive roles requires major modifications to the calculus, because

F.M. Donini, F. Massacci / Artificial Intelligence 124 (2000) 87–138 99

of the interaction between transitive roles and role hierarchies (see [44] for a graph-based
calculi).

Our results easily carry over to any extended calculus such that:
• it has the finite superformula property [36], i.e., the reduction of a formula only

requires the introduction of formulae which are in a bounded2 superset of the
subformulae of the TBox and the initial concept;
• its rules can be casted as prefixed tableau rulesà la Fitting [28] (see also [36,54,57]),

where each rule involves formulae with either the same prefix (e.g.,α, β , dnegrules,
andνT (R) rules for reflexive roles) or with a longer one (e.g.,π(R), ν(R) rules, and
ν4(R) rules for transitive roles).

The use of converse is more problematic: it requires to go back and forth prefixes.
Obviously, we could simply adapt the rules for converse proposed by De Giacomo and
Massacci [16]. This would give us a calculus which is sound and complete forALC with
converse, and in which one only visits a number of prefixed sets which is exponentially
bounded by the size of the TBox and the initial concept. However, visiting only an
exponential number of concepts is not sufficient when designing a depth-first-search
algorithm, because we could visit the same concepts again and again up to a doubly
exponential number of recursive calls. What is missing is an easy way to transform the
generation of⊥-sets sketched in [16] into a simple depth-first-search-style algorithm.

4. An EXPTIME efficient algorithm

We first give a simple version of the algorithm (without any of the standard optimizations
adopted byALC satisfiability testers), and then progressively explain how it can be
enhanced without affecting correctness and complexity.

4.1. A simpleEXPTIME-efficient algorithm

Regarding the data structures, we assume that two auxiliary functions for working with
sets are available.

methodsboolean member(set of concepts, set of (set of concepts))
void insert(set of concepts,set of (set of concepts))

Their meaning is obvious from the names themselves: the first function returns true if a set
of concepts is a member of a set of sets of concepts; the second one inserts the set into the
collection.

Remark 4.1. To obtain our single exponential upper bound, it is essential that such
procedures require at most single exponential time in the size of the first argument (the
set of concepts) and polynomial time in the size of the second argument (the set of set of
concepts).

2 To guarantee the single exponential time is necessary that such bound is linear in the size of the TBox and the
concept.

100 F.M. Donini, F. Massacci / Artificial Intelligence 124 (2000) 87–138

This is not a restriction, as many algorithms with much better bounds for equality testing
of sets are known [74] and efficiently implemented [59]. From the viewpoint of practical
implementations, methods requiring logarithmic or sublogarithmic time and space are
much better. The set passed as first argument can be as big as the whole KB, and the
second argument can contain all possible subsets of the subconcepts of KB.

These functions are repeatedly applied to two sets of sets of concepts:
• Visited which contains the sets of concepts which are PS-reduced;
• NoGoods which contains the sets of concepts which have been shown to be⊥-sets.
For what regards the control structure, we assume two auxiliary procedures for selecting

concepts and prefixed sets of concepts to be reduced according our calculus:
• chooseConceptselects the conceptC to be reduced next in a given prefixed sete : C;
• chooseSetselects the prefixed sete : C to be reduced next in a given set of prefixed

sets conceptB (which is just a branch of a tableau).
We have no restriction on these procedures, beside the obvious one that they should work
in polynomial time in the size of the input, and they should respect the search techniques
set forth in Section 3. We assume that
• chooseConceptworks accordingly to Technique 4;
• chooseSetworks accordingly to Technique 6.
In the remaining algorithms, we use the symbol “=” for assignment, and “==” for

equality testing.
The main algorithm SATISFIABLE is just a shell, which initializes the search strategy,

and calls the proper search procedure DFS (depth-first search). It is shown in Fig. 4.
The core algorithm DFS, which is directly derived from the calculus and the various

techniques we have listed, is shown in Fig. 5. It takes a branchB of the tableau and extends
it, according the rules of the calculus.

A tricky part of the algorithm is the value which is returned by DFS. It is the constant
valuesatif the branchB on which DFS is called can be extended to an open branch (i.e., if

Algorithm SATISFIABLE;
input a TBoxKB, and a set of conceptsC;
output sat if C is satisfiable with respect toKB,

unsatotherwise;
variables set of (set of concepts) NoGoods;

set of (set of concepts) Visited;
integern;

methodsboolean member(set of concepts, set of (set of concepts))
void insert(set of concepts, set of (set of concepts))

begin
NoGoods= ∅;
Visited= ∅;
n= 1;
return DFS({1 : C})==sat

end

Fig. 4. The algorithm for deciding satisfiability.

F.M. Donini, F. Massacci / Artificial Intelligence 124 (2000) 87–138 101

Algorithm DFS;
input a branchB
output sat if B is satisfiable, a prefix otherwise;
variable set of (set of concepts) OldVisited;
begin

if chooseSeta prefixed sete : C ∈B s.t. for someC ∈ C it is ¬C ∈ C A1
then return e;
else if chooseSeta prefixed sete : C ∈B s.t. member(C, NoGoods)A2
then return e;
else chooseSeta prefixed sete : C ∈ B s.t.e : C is not reducedand

not member(C, Visited); A3
if chooseSetfails
then return sat
else chooseConcepta conceptC ∈ C which is not reduced

Apply the appropriate tableau rule toC
in the prefixed sete : C in the branchB

end

Fig. 5. The DFS algorithm for deciding satisfiability.

the the initial concept is satisfiable), and a prefixe otherwise. The prefixe indicates which
prefixed set ofB has been shown to be inconsistent with respect to the TBox, i.e., (at least)
the set prefixed bye is a⊥-set.

To keep the set NoGoods up to date and consistent with the value returned by DFS, we
make sure that each time DFS(B ∪ {e : C}) returns the prefixe, the setC has been inserted
in NoGoods.

We also use the returned prefix to implement an optimization that we callmodal
backjumpingand which we discuss later in this section together with other optimizations.

Then, the DFS algorithm checks that the branch contains neither atomic clashes (point
A1), nor previously seen⊥-sets (point A2), then selects some prefixed sets which is neither
reduced, nor identical to some other set which is reduced, and applies the appropriate rule.
For sake of readability, we replaced the actual “code” corresponding to the application of
our tableau rules with an English sentence.

Fig. 6 shows how rules are applied by the DFS algorithm. As a reminder, the order in
which rules are listed corresponds to the priority in which they should be applied by the
selection functionchooseConcept.

The rules are directly derived from the calculus we presented in Section 3 and, as usual,
alternative choices due to the presence ofβ-formulae are considered by recursive calls.

Remark 4.2. In contrast to standard trace-based techniques—used in all current imple-
mentations [32,34,37,41,43,64]—we donot reduceπ(R) formulae by making “parallel”
recursive calls to the satisfiability testing procedure for each modal successor, and by back-
tracking (locally) as soon as one of these returns unsatisfiable.

102 F.M. Donini, F. Massacci / Artificial Intelligence 124 (2000) 87–138

Apply the appropriate tableau rule toC in the prefixed sete : C in the branchB
begin

case type(C) of
α :

E = DFS(B ∪ e : (C ∪ {α1, α2}));
if E == e then insert(C, NoGoods);
return E

neg:
E = DFS(B ∪ e : (C ∪ {pos}));
if E == e then insert(C, NoGoods);
return E

KB :
selectD1vD2 ∈ KB such that¬D1 tD2 /∈ C;
E = DFS(B ∪ e : (C ∪ {¬D1 tD2}));
if E == e then insert(C, NoGoods);
return E

β :
OldVisited= Visited;
E = DFS(B ∪ e : (C ∪ {β1}));
if E == e and not member(C, NoGoods)A4
then Visited= OldVisited;

E = DFS(B ∪ e : (C ∪ {β2}));
if E == e then insert(C, NoGoods);

return E

ν(R) :
chooseSetanother nodee.R.n :D ∈ B such thatν0 /∈D
return DFS(B∪ e.R.n : (D ∪ {ν0}))

π(R) :
if all otherπ ′(R′) are reduced
then insert(C,Visited); A5
n= n+ 1;
E = DFS(B ∪ e.R.n : {π0});
if E == e.R.n then insert(C, NoGoods);A6

E = e;
return E

endcase
end

Fig. 6. The application of tableau rules in DFS.

It is easy to recast the algorithm according to this “schema” and retain correctness, but it
is open whether our complexity result will transfer. A substantially different proof would
be needed.

For sake of example, we recall the intuitions behind the reduction ofβ-formulae. Since
we selected aβ-formula we continue the search by visiting the left branch of the tableau,
obtained by adding the prefixed nodee : (C ∪ {β1}). When DFS returns from the left call
with a valueE, we have three possibilities:

F.M. Donini, F. Massacci / Artificial Intelligence 124 (2000) 87–138 103

• DFS returnssatand then clearly we have no need to check the right branch;
• DFS returns a prefixE different frome and then we know that there is a⊥-set inB,

but this set has nothing to do withe : C, so there is no point in continuing case analysis
on the concepts inC;
• DFS returnse and thereforeC ∪ {β1} is a⊥-set, so we must continue on the right

branch withe : (C ∪ {β2}).
Then, if a right call is issued, and DFS returns a prefix from the case analysis onβ2, we
have two more cases:
• DFS returnse. Then we know that alsoC ∪ {β2} is a⊥-set, so we conclude thatC too

is a⊥-set and we insert it into NoGoods.
• DFS returns a prefixE different frome. Then, we have found an alternative⊥-set in
B (maybe becauseC ∪ {β2} is satisfiable with respect to the TBox), so we do nothing
and return the new prefix for continuing the search.

Remark 4.3. A tricky point here is the check “and not member (C, NoGoods) (A4)” which
would seem to be unnecessary, because of the preventive check A2 (Fig. 5). Instead, check
A4 is essential to prove our complexity result. The intuition is that at the time we metC
for the first time and applied the ruleβ we had not yet shownC to be a⊥-set. However,
when returning from the left branch, we might have already metC when visiting a modal
successor ofe, and found a different proof of unsatisfiability forC.

The techniques we presented in Section 3 are implemented as follows:

Technique 1 is realized through condition A3 in the DFS algorithm for what concerns
PS-rules. For⊥-rules, the technique is cast into the DFS algorithm by exiting each DFS
call whenever a⊥-set is inserted.

Technique 2 is realized through conditions A1 and A2 of the DFS algorithm.

Technique 3 is realized indirectly through conditions A1, A2, A4, since they prevent the
application of PS-rules to an implicitly inconsistent prefixed set.

Technique 4 must be implemented through the selection functionchooseConcept, called
in the DFS algorithm, to select the concept to be reduced next.

Technique 5 is implemented through the global variablen in the main algorithm, which
is incremented at each generation of a new prefix.

Technique 6 must be implemented through the selection functionchooseSet, called in the
DFS algorithm, to select the prefixed set to be reduced next.

Technique 7 is the DFS algorithm itself.

From the above correspondences, it is straightforward to prove that the collection of
algorithms is a correct implementation of the calculus, since each rule is one-one with a
case in the algorithm DFS.

104 F.M. Donini, F. Massacci / Artificial Intelligence 124 (2000) 87–138

4.2. Adding optimizations toDFS

The presence of optimizations is a standard feature of any efficient tableau-based
implementation [34,43,48,63,71]. We discuss the most important and widespread ones.

Some obvious preprocessing steps such aslexical normalization and boolean reduction
can be added without further ado. They are immaterial for the results presented here.

The first substantial optimization is the use ofshallow reduction rules, sometimes called
simplification rules, such as unit resolution, modus ponens and modus tollens. For instance,
a typical rule has the form “ifC tD is present in a set of conceptsC and also¬C is present
in C then addD to C”. Any efficient implementation applies them in an eager way. See, for
instance, the classical paper by Oppacher and Suen [63], or the papers on the comparison
of modal provers [32,43,48].

These rules do not change the set of concepts visited by the algorithm and make it
possible to avoid branches of shallow depth. Hence, their addition to the algorithm does
not change our correctness and complexity proofs.

The second optimization is the use ofdeep reduction/simplification rules, introduced
in [55], which allow to simplify the structure of concepts at any level of nesting of
connectives. An instance of the rule might have the form “if∀R.C is present in a set of
concepts and∀R.(C uD) is also present inC then replace the second concept with∀R.D”.

These rules eliminate further branches and can speed up the search exponentially. Their
addition does not change the correctness proof, but the complexity proof must be modified
since they change the set of concepts visited by the algorithm. The important property to
guarantee is that the number of concepts that are introduced by these rules is linearly (or
polynomially) bounded by the number of subconcepts of the original input. Thus, this must
be proved for each simplification rule.

The second substantial optimization is the use oflimited forms of analytic cut, sometimes
calledsemantic branching[43,45], asymmetric beta rule, split, principle of bivalence etc.
The rule has only one form: “wheneverβ is present in a set of conceptsC then add two
branches and addβ1 to C in the first branch and¬β1 to C in the second branch”. Thenβ2
might be derived by shallow reduction rules in the second branch. The way in whichβ1
is chosen might vary or the “presentation of the rule” might be different but the resulting
calculus is essentially the same. For instance this rule is at the basis of theKSAT calculi of
Giunchiglia et al. [32,34].

From a complexity-theoretic point of view, this rule strengthens the classical tree-like
tableau calculus in propositional logic. Indeed, there are unsatisfiable sets of propositional
concepts whose shortest proof using “semantic branching” rules is exponentially shorter
than the shortest proof using traditional rules—see the survey of Urqhart [76] for further
details.

The exponential slow down due to the absence of semantic branching is not true for
our algorithm. Although we do not use analytic cut (i.e., semantic branching), we store
⊥-sets to cut the search (see again check A2 and A4 in the DFS algorithm). This means
that, for what regard unsatisfiability proofs in propositional logic, our calculus corresponds
to a directed acyclic graph (DAG) variant of a tableau calculus. DAG tableaux have the
same power as tree-like tableaux with full analytic cut (and not just the restricted version
above). It is known [2] that in propositional logic we have exponentially shorter proofs

F.M. Donini, F. Massacci / Artificial Intelligence 124 (2000) 87–138 105

with respect to calculi using the restricted cuts currently employed by semantic branching
implementations.

Thus, semantic branching is neither necessary nor useful to speed up the search in our
case. Indeed, in our full worked example—see Appendix A—we show an example of a
simple concept for which our method substantially prunes more branches than analytic
cut.

The next batch of optimizations does not regard properly the calculus but rather the
search process. They do not affect the calculus because they just say that, under certain
conditions, the application of some rules can be skipped without loosing completeness.
Thus, they do not introduce new formulae among the set of formulae which can be
potentially visited by the algorithm, but can make this set of potentially visited formulae
smaller. Therefore they do not change nor the complexity nor the soundness proof and must
be definitely added in an efficient implementation.

The first optimization in this batch which is often employed isunit subsumption: “if
C t D is present in a set of conceptsC and alsoC is present inC then deleteC t D”.
This rule is generalized by our selection rule (Technique 1): ifC is present thenC tD is
PS-reduced and so it will be never be considered for further reductions.

The next one isabsorption, the lazy unfolding of definitions in the TBox. The basic
intuition is that whenever we have two inclusions of the formAv C andC v A, for an
atomic conceptA, we can see it as a definition for the conceptA

.= C, provided thatC
does not depends onA directly or via other inclusions.

Then, we can reformulate the KB-rule for this particular case: we addC to a prefixed
set e : C if A ∈ C, we add¬C if ¬A ∈ C, and skip the axiomsAv C and C vA
otherwise. In other words this corresponds to apply the traditional KB-rule introducing
¬A t C (or A t ¬C) only when it can be followed by a shallow simplification rule (unit
resolution step). Since this optimization has been recently proven complete by Horrocks
and Tobies [46], it can be applied without ado.

Indeed, we can state a stronger result:

Remark 4.4. Any optimization which only restricts the application of one or more PS-
rules and which has been proven complete for any fair strategy can be added without
changing the complexity result.

We do not know whether this result can be extended to⊥-rules. Likely this is not
possible as the the continuous introduction of new⊥-sets as the search proceeds along
different branches is one of the backbone of our complexity proof.

The last optimization makes it possible to skip branching points in the search. First
proposed by Shanin et al. in [71], it has been re-discovered many times under different
names such asproof condensation[63], conflict directed backjumping[17], level cut [5],
etc. A good discussion on backjumping in description logics implementations can be found
in [43,45].

The idea behind this form of optimization can be explained by looking at the check A4 in
our algorithm: we could also check whetherβ1 actually contributed to the unsatisfiability
of the branch. If not, then we just skip over this branching point, without going to the right

106 F.M. Donini, F. Massacci / Artificial Intelligence 124 (2000) 87–138

branch withβ2. The intuition is that we can get a closed tableau without performing case
analysis onβ .

Notice that this is not precisely an optimization rule of those mentioned above, because
it does not prevent entirely the application of theβ-rule, it just says that we can do one-half
of it.

This traditional form of proof condensation, backjumping, etc., which we callpropo-
sitional backjumping, can be added by a slight modification of the value returned by the
DFS algorithm without changing its correctness.

Instead of a prefix, the algorithm now returns a pair〈e,D〉. The intuition is thatD
contains only a minimal set of concepts responsible for the unsatisfiability of the set of
concepts labeled by the prefixe. Then, when the DFS algorithm exits a call, we examine
the concept ine : C and see whether the subconcepts we have added toC can be found
in D. If this is indeed the case, we delete the subconcepts and add the parent concept toD,
otherwise we just skip the parent concept.

Remark 4.5. So, one may be tempted to conclude that “propositional backjumping can be
added without changing the complexity results”, but this isnot the case. Indeed, one of the
landmark of our complexity proof is that we never do an exponential amount of work on
unsatisfiable branches without storing a new⊥-set. When backjumping over a disjunction
we might have done precisely that. So it is essential to specify precisely the format of the
backjumping rule, and how it affects the insertion of⊥-sets.

For instance, we could further extend the optimization by storing only the minimal set
D among the NoGoods. It is open whether an algorithm implementing would terminate in
single exponential time, whenmembership checkingof a new set of concepts in NoGoods
is used.

Our check A4 already offers a form of backjumping, which we callmodal backjumping.
Indeed, by checking that the returned prefix is equal to the current prefix we check whether
the inferences performed on the concepts ofe on the whole actually contributed to the proof
of unsatisfiability. If the returned prefix is different from the current prefix, this means that
no rule actually contributed; then, we skipall branching points linked to that “useless”
prefix.

This is different from the traditional (trace-based) technique employed by current
systems: avoiding the exploration of further modal successor once a modal successor
has been found unsatisfiable. Modal backjumping allows to skip chronological branching
points of modal siblings visited by DFS prior to the actual prefix that has been proven
unsatisfiable. For instance, suppose that we apply aβ-rule to a prefixed sete : C and find
that the left branch (withβ1) is unsatisfiable with the DFS returninge. Then we must go
in the right branch. This subtree may turn out to be unsatisfiable as well, but the DFS may
return a prefixe′ different frome. In a nutshell, the heuristics of DFS have found out a
shorter proof somewhere else. In standard trace-based techniques, where backtracking is
local, we should anyway consider the previous branching points related toe. In contrast,
when DFS returns up in the execution stack, all previous branching points related toe, its
modal predecessors, and its modal successors will be skipped until a rule applied toe′ is
found.

F.M. Donini, F. Massacci / Artificial Intelligence 124 (2000) 87–138 107

4.3. From membership testing to subset checking

One could therefore wonder whether our algorithm can be extended to work with subset-
checking, as common in some recent description logics and modal logics literature [11,26,
44,45].

At first glance, there is an optimization that significantly shrinks the set to be tested,
it is easy (and even desirable) to implement, and affects neither the correctness, nor the
complexity proof, while keeping the membership test based on equality of sets.

The optimization consists inrestricting insertions and membership tests only to sets
of modal atoms and propositionally unreduced concepts. Thus, whenever we call either
member(C, Visited) or insert(C, NoGoods), we delete from the set to be inserted or checked
all propositionally reduced concepts and all axioms¬C tD from the knowledge base KB;
we just keep modal atoms and propositionally unreduced concepts which are not , then we
insert the reducedC∗ in Visited or NoGoods, or test its presence.

We use this technique in the example in Appendix A. Then, when presenting the proofs
of correctness and complexity of the algorithm in subsequent sections, we discuss the
modifications needed to take into account the above optimization.

Our complexity results can be extended to full subset checking if one has efficientsubset
checking procedurefor NoGoods. This means that we have a data structure for storing
NoGoods such that given a set of conceptsC and a set of sets of concepts NoGoods, we
can test in polynomial time in the size of NoGoods whether NoGoods contains a subset of
the input setC.

As we have remarked, efficient algorithms for equality testing of sets are known [74] and
efficiently implemented [59], but we do not know of any such implementation for efficient
(polynomial time) subset checking algorithms [80]. An implementation for insertion and
subset checking has been recently presented in [40], but its complexity properties are not
studied enough.

If subset checking can be efficiently implemented, our algorithm can be optimized for
subset checking. For the optimized algorithm DFS-with-subset-checking, we assume three
procedures for working with sets are available.

methodsset of concepts subset(set of concepts, set of (set of concepts))
set of concepts superset(set of concepts, set of (set of concepts))
void insert(set of concepts, set of (set of concepts))

The meaning of each procedure or function is obvious from the name itself. For instance
the function “subset(C, SC)”, whereC is a set of concepts andSC a set of sets of concepts,
returns a set of conceptsD such thatD ⊆ C andD ∈ SC if one exists, otherwise, if no
suchD exists inSC, it returns a distinguished valueno. The function “superset” finds a set
D⊇ C if one exists andno if no such set can be found inSC.

For the convenience of implementors, Figs. 7 and 8 show the optimized algorithm for
subset checking. We have restructured it, so that we only have onereturn instruction at
the end of the procedure.

Notice that it directly incorporates propositional and modal backjumping. Indeed, for
propositional backjumping it is not necessary to add the condition “and β1 ∈ D1” at A4

108 F.M. Donini, F. Massacci / Artificial Intelligence 124 (2000) 87–138

Algorithm DFS-with-subset-checking-and-backjumping;
input a branchB
output a pair〈sat,?〉 if B is satisfiable,〈prefix,set of concepts〉 otherwise;
variable set of (set of concepts) OldVisited;
begin

if chooseSeta pref. sete : C ∈ B s.t. for someC ∈ C it is ¬C ∈ C A1
then 〈E,D〉 = 〈e, {C,¬C}〉;
else if chooseSeta pref. sete : C ∈ B s.t.not subset(C, NoGoods)==no A2
then 〈E,D〉 = 〈e,subset(C, NoGoods)〉;
else chooseSeta pref. sete : C ∈B s.t.e : C is not reducedand

superset(C, Visited)==no; A3
if chooseSetfails
then 〈E,D〉 = 〈sat,?〉;
else chooseConcepta conceptC ∈ C which is not reduced

Apply the appropriate tableau rule toC
in the pref. sete : C in the branchB
yielding 〈E,D〉

return 〈E,D〉;
end

Fig. 7. DFS algorithm with subset checking.

because it is subsumed by “subset(C, NoGoods)==no”. The optimization of deleting
reduced concepts and KB concepts that we mentioned at the beginning of the section can
also be easily applied here.

The correctness and completeness proofs of the DFS algorithm can be extended to the
subset-checking version in the standard way [26,36,45].

The extension of our complexity proof based on equality-testing to the optimized
algorithm for subset-checking is possible, but it is a result of its own. The basic intuitions
behind the extension of the complexity proof are sketched in the following points.
• With DFS-with-membership-testing, we are sure that each time we apply a rule to a

set of conceptsC, DFS have not previously metC and have been previously shown it
to be a⊥-set. To guarantee this property, we always store each setC in NoGoods as
soon as we found that it is a⊥-set.
• With DFS-with-subset-checking, we are sure that each time we apply a rule to a set of

conceptsC, DFS has not yet encountered a subset ofC which was previously shown
to be a⊥-set. To guarantee this property, we always store a⊥-subset ofC in NoGoods
as soon as we found that it is a⊥-set.
• With DFS-with-membership testing we are sure that each time DFS(B ∪ {e : C})

returns the prefixe thenC has been inserted in NoGoods.
• With DFS-with-subset-checking we are also sure that each time DFS(B ∪ {e : C})

returns the pair〈e,D〉 thenD has been inserted in NoGoods and is a (not necessarily
proper) subset ofC.

F.M. Donini, F. Massacci / Artificial Intelligence 124 (2000) 87–138 109

Apply the appropriate tableau rule toC in the prefixed sete : C in the branchB
yielding 〈E,D〉

begin
case type(C) of
α :
〈E,D〉 = DFS(B ∪ {e : C ∪ {α1, α2}});
if E == e and (α1 ∈D or α2 ∈D)
thenD = (D \ {α1, α2})∪ {α};

insert(D, NoGoods);
neg:
〈E,D〉 = DFS(B ∪ {e : C ∪ {pos}});
if E == e and pos∈D
thenD = (D \ {pos})∪ {neg};

insert(D, NoGoods);
KB :

selectD1vD2 ∈ KB such that¬D1 tD2 /∈ C;
〈E,D〉 = DFS(B ∪ {e : C ∪ {¬D1 tD2}});
if E == e and¬D1 tD2 ∈D
thenD =D \ {¬D1 tD2};

insert(D, NoGoods);
β :

OldVisited= Visited;
〈E,D1〉 = DFS(B ∪ {e : C ∪ {β1}});
if E == e and subset(C, NoGoods)==no A4
then Visited= OldVisited;
〈E,D2〉 = DFS(B ∪ {e : C ∪ {β2}});
if E == e and β2 ∈D2
then D = (D1 \ {β1}) ∪ (D2 \ {β2})∪ {β};

insert(D, NoGoods);
elseD =D2;

elseD =D1
ν(R) :

chooseSetanother nodee.R.n :D ∈B such thatν0 /∈D
〈E,D〉 = DFS(B ∪ {e.R.n :D ∪ {ν0}});

π(R) :
if all otherπ ′(R′) are reduced
then insert(C,Visited); A5
n= n+ 1;
〈E,D〉 = DFS(B ∪ {e.R.n : {π0}});
if E == e.R.n thenD = {ν(R) ∈ C | ν0 ∈D} ∪ {π(R)};

insert(D, NoGoods);A6
E = e;

endcase;
end

Fig. 8. Rules for the DFS algorithm with subset checking.

110 F.M. Donini, F. Massacci / Artificial Intelligence 124 (2000) 87–138

• Then, in the worst case subset checking boils down to membership testing and the
proof for DFS-with-membership-testing can be carried over to DFS-with-subset-
checking.

5. Correctness

We divide in two parts the proof of the correctness of our tableau method. First we prove
the correctness for what regards concept unsatisfiability, then we address satisfiability.

5.1. Proving unsatisfiability

In this section we prove that if the tableau for a conceptC and a TBox KB can be
extended to a closed tableau, thenC is unsatisfiable for KB. This is a “classical” proof
by contradiction: we assume that the tableauT is satisfiable, show that satisfiability is
preserved by tableau rules and derived a contraction from the fact that a tableau can be
(implicitly) closed.

Definition 5.1. A tableau branchB is PS-satisfiable for a TBox KB if there is an
interpretation〈I,∆〉 which satisfies KB and a mappingι(e) 7→ d from prefixes to elements
of the domain such that

(1) for every prefixed sete : C in B and every conceptC ∈ C one hasι(e) ∈CI .
(2) for every pair of prefixese, e.R.n, appearing in prefixed sets ofB, one has
〈ι(e), ι(e.R.n)〉 ∈RI .

A tableau is PS-satisfiable for a TBox KB if at least a tableau branch is PS-satisfiable
for KB.

For sake of simplicity we say that “a branch is PS-satisfiable” rather than “a branch is
PS-satisfiable for a TBox KB”, leaving the TBox implicit.

We start with a lemma saying that⊥-rules correctly propagate inconsistencies.

Lemma 5.2. Let e : (C)⊥ appear in a tableauT for a TBox KB. Then KB|= uC v⊥.

Proof. By induction on the application of⊥-rules.
Base case.If both C and¬C are inC, thenuC is clearly unsatisfiable. Hence,KB |=
uC v⊥.

Inductive cases.Suppose the claim holds for the antecedent of each⊥-rule. We analyze
the application of each⊥-rule in turn.

(⊥-witness): If e′ : (C)⊥ appears inT , then by the inductive hypothesisKB |= uC v⊥,
which is the claim.

(⊥-α): If e : (C ∪ {α1, α2})⊥ appears inT , then by inductive hypothesisKB |=
(uC) u α1 u α2v⊥. Sinceα1 u α2= α, then alsoKB |= (uC) u α v⊥.

(⊥-dneg): Similar to the previous case.

F.M. Donini, F. Massacci / Artificial Intelligence 124 (2000) 87–138 111

(⊥-β): If both e : (C ∪{β1})⊥ ande : (C ∪{β2})⊥ then by inductive hypothesis bothKB |=
(uC) u β1v⊥ andKB |= (uC) u β2v⊥ hold. ThenKB |= (uC) u (β1 t β2)v⊥. Since
(β1 t β2)= β , the claim follows.

(⊥-KB): If e : (C ∪ {¬C tD})⊥ andC vD ∈ KB, then by inductive hypothesisKB |=
(uC) u (¬C tD)v⊥. SinceC vD ∈ KB, in every model of KB the concept(¬C tD)
is equivalent to>. Hence,KB |= (uC) u>v⊥, that isKB |= uC v⊥.

(⊥-π(R)): If e.R.n : (C ∪ {π0})⊥ and e : D in T , and C ⊆ {ν0 | ν(R) ∈ D}, then
by inductive hypothesisKB |= (uC) u π0v⊥. We prove the claim by contradiction.
Suppose there is a modelI for KB such that an elementa ∈ ∆ is in (D ∪ {π(R)})I :
then there exists another elementb ∈ ∆ such that(a, b) ∈ RI , b ∈ (π0)

I and for every
ν(R) ∈D, b ∈ (ν0)

I . Therefore,b ∈ ((u{ν0 | ν(R) ∈D}) u π0)
I . Since((u{ν0 | ν(R) ∈

D}) u π0)
I ⊆ ((uC) u π0)

I , this contradicts the hypothesis that the latter concept is
interpreted as the empty set in every model of KB.2
If we wish to optimize our algorithm by storing and testing only modal atoms and

unreduced formulae, the witness step of the proof is the only one that may fail since the
node which is tested among the NoGoods would not bee′ : C but rather somee′ : C ′ such
thatC andC ′ only share the same modal atoms and the same unreduced concepts. However
it is immediate to prove by induction on the (absent) reduced formulae the following
proposition:

Proposition 5.3. Let C and C ′ be two sets of concepts with the same modal atoms and
unreduced concepts. Then, they are logically equivalent, i.e., the concept KB|= uC vuC ′
and KB|= uC ′ v uC.

And this is all we need.

Lemma 5.4. A PS-satisfiable branch in a tableau for a Tbox KB cannot be implicitly
closed.

Proof. Let B be the PS-satisfiable branch and let〈I,∆〉 and ι() be the corresponding
interpretation and mapping.

By definition of implicitly closed branch, there is a prefixed sete : (C)⊥ in the branch.
By definition of PS-satisfiable branch it isι(e) ∈ CI for everyC ∈ C. Thusι(e) ∈ (uC)I .
By Lemma 5.2 it isKB |= uC v⊥, contradiction. 2
Corollary 5.5. A PS-satisfiable tableau cannot be implicitly closed.

Now we continue the proof of Theorem 3.11 by showing that PS-rules preserve the
satisfiability of the tableau.

Lemma 5.6. The application of a PS-rule or a⊥-rule to a PS-satisfiable tableau for a
TBox KB yields another PS-satisfiable tableau for KB.

112 F.M. Donini, F. Massacci / Artificial Intelligence 124 (2000) 87–138

Proof. Let B be a PS-satisfiable branch in the initial tableau and let〈I,∆〉 andι() be the
corresponding interpretation and mapping. If either a PS-rule or a⊥-rule is applied to a
prefixed set in a branch different fromB, the resulting tableau is obviously still satisfiable.
The only interesting case is when a rule is applied to a prefixed set inB.

First, note that if a⊥-rule can be applied to a prefixed set inB, thenB is implicitly
closed. This is impossible for Lemma 5.4.

So we are only left with PS-rules and the proof proceeds by cases. We show that we can
extend the mapping to accommodate the newer prefixed sets added by the applied PS-rule.

dneg Suppose thate : C ∪ {neg} has been selected and thate : C ∪ {pos} has been added
to B. Consider this new branchB′. Observe that for allC ∈ C it is ι(e) ∈ CI since
e : C ∪ {neg} was already inB, andB was PS-satisfiable. By hypothesisι(e) ∈ (neg)I

and(neg)I = (pos)I according the semantics. HenceB′ is still PS-satisfiable.

α Suppose thate : C ∪ {α} has been selected and thate : C ∪ {α1, α2} has been added. By
hypothesisι(e) ∈ (α)I and by definition of interpretation it is(α)I = (α1)

I ∩ (α2)
I .

Thusι(e) ∈ (α1)
I andι(e) ∈ (α2)

I . The claim follows with the same line of reasoning
we used fordneg.

β Suppose thate : C ∪ {β} has been selected and thate : C ∪ {β1} has been added as a
left leaf ande : C ∪ {β2} has been added as a right leaf. By hypothesisι(e) ∈ (β)I ,
and by definition(β)I = (β1)

I ∪ (β2)
I . Hence eitherι(()e) ∈ (β1)

I or ι(()e) ∈ (β2)
I .

Suppose thatι(e) ∈ (β1)
I . Then consider the left branchB1 extendingB, i.e., the branch

includinge : C∪{β1}. For allC ∈ C it is ι(e) ∈CI sincee : C∪{β}was already inB, and
B was PS-satisfiable. SoB1 is PS-satisfiable. A similar argument applies ifι(e) ∈ (β2)

I ,
using the right branch.

KB Suppose thate : C has been selected and thate : C ∪ {¬C tD} has been added for
someC vD ∈ KB. SinceB is PS-satisfiable for KB, the corresponding interpretation
〈I,∆〉 is a model for the KB. Thus it validates¬C tD and sinceι(e) ∈ ∆ it follows
that ι(e) ∈ (¬C tD)I . The claim follows with the same line of reasoning we used for
dneg.

π(R) Suppose thate : C ∪ {π(R)} has been selected and thate.R.n : C ∪ {π0} has been
added. By hypothesis of PS-satisfiable branchι(e) ∈ (π(R))I and thus there is an
element of the domaind such that〈ι(e), d〉 ∈ RI and d ∈ (π(R))I , sinceB is PS-
satisfiable. Then we extend the mapping as follows:ι(e′)= d if e′=e.R.n. For all other
elements,ι() is as before.

Since e.R.n is new there is no prefixed sete.R.n.R′.m : D in the branch. By
construction〈ι(e), ι(e.R.n)〉 = 〈ι(e), d〉 ∈ RI .

For all other pairs of prefixes〈ι(e′), ι(e′.R′.n′)〉 ∈ (R′)I by hypothesis of PS-
satisfiable branch. Then the extended branch is PS-satisfiable with the same interpre-
tation〈I,∆〉 and the extended mappingι().

ν(R) Suppose thate.R.n : C and e : D ∪ {ν(R)} have been selected and thate.R.n :
C ∪ {ν0} has been added. By hypothesis of PS-satisfiable branchι(e) ∈ ν(R)I and
〈ι(e), ι(e.R.n)〉 ∈ RI . Thereforeι(e.R.n) ∈ νI0 by the semantics.2

F.M. Donini, F. Massacci / Artificial Intelligence 124 (2000) 87–138 113

Theorem 3.11. LetC be a concept and KB be a TBox. If there is a closed tableau forC

using KB, then no model of KB satisfiesC.

Proof. The proof is a standard proof by contradiction, using Lemma 5.6 and Corollary 5.5.
See, e.g., [28, Chapter 8].2
5.2. Proving satisfiability

Now we prove the correctness of our tableau method for what regards concept
satisfiability (Theorem 3.12): if the tableau for the conceptC and the TBox KB can be
extended to an open tableau thenC is satisfiable for KB. At an abstract level, this proof is
carried over in four steps:

(1) we define a canonical interpretation from an open branch;
(2) we define a suitable mappingι();
(3) we prove by induction that the canonical interpretation is a model of the branch: we

have to prove separately the base case, and the induction;
(4) we combine these results into the main theorem.
The first part of the proof is the construction of an interpretation from an open branchB.

Definition 5.7. The canonical interpretationI of an open branchB is constructed as
follows:

∆= {e | e : C ∈ B and there is no prefixed sete :D which has a witness inB}, (1)

AI = {e ∈∆ | e : C ∈ B andA ∈ C}. (2)

The interpretation of atomic roles is composed of two sets:

RI =Rd ∪Rw, (3)

whereRd andRw are defined by:

Rd =
{〈e, e.R.n〉 | bothe ∈∆ ande.R.n ∈∆}, (4)

Rw =
{〈e, e′〉 | bothe ∈∆ ande′ ∈∆ and

e′ : C is the≺-minimal witness inB for e.R.n : C}. (5)

The interpretation is extended to complex concepts following their semantics.

Note that in (3) the first setRd takes into account the relations which are explicitly
represented in the domain and the second setRw takes into account the presence of
witnesses. Note also that in (5)e.R.n is not in∆, otherwisee.R.n : C would not have
a witness, because of (1).

The second step is to devise a uniform mappingι() from elements to members of the
domain. The use of a mapping is a device that makes the proof easier. The mapping is set
such thatι(e) = e unless the prefixe appears in a prefixed sete : C which has a witness
e′ : C. In this case we setι(e)= ι(e′).

114 F.M. Donini, F. Massacci / Artificial Intelligence 124 (2000) 87–138

We can prove the third step of the main proof: we start with the base case of the structural
induction on concept construction. We recall that a branch is a path in a tree, whose nodes
are prefixed sets. In what follows, we use the intuitive notion ofdescendantof a prefixed
set referring to such a tree. We first highlight two properties about prefixed sets.

Proposition 5.8. Let e : C and e : D be two prefixed sets occurring in one branchB. If
e :D is a descendant ofe : C, thenC ⊆D.

Proposition 5.9. Let 〈I,∆〉 be the canonical model of an open branchB, let R be
an atomic role, and lete : C and e.R.n : D be prefixed sets occurring inB. Then,
〈ι(e), ι(e.R.n)〉 ∈ RI .

The former property follows from the definition of PS-rules, while the latter is immediate
from (4) and (5). We state and prove the base case of the induction.

Lemma 5.10. Let 〈I,∆〉 be the canonical model of an open branchB. LetA be an atomic
concept and lete : C be a prefixed set occurring inB. If A ∈ C then one hasι(e) ∈ AI ;
otherwise if¬A ∈ C then one hasι(e) /∈AI .

Proof. Let e : D be the deepest descendant ofe : C with the same prefixe. From
Proposition 5.8 one has thatA ∈ C (respectively¬A ∈ C) impliesA ∈ D (respectively
¬A ∈D), and thus we restrict our attention toe :D.

First, assume that no prefixed sete : C ′ has a witness inB. Then, from (1)e ∈∆. If A ∈ C
then by definition of assignmentι(e)= e and by (2),e ∈AI . If ¬A ∈ C then suppose that
ι(e) ∈ AI . Again by (2), there is aC ′ such thate : C ′ is present in the branch andA ∈ C ′.
Then both¬A ∈ D andA ∈ D hold because of Proposition 5.8 and becausee : D is the
deepest descendant ofe : C. Then the branch would not be open, contradiction.

Second, suppose thate : D has a witnesse′ : D. By Proposition 5.8, ifA ∈ C
(respectively¬A ∈ C) thenA ∈ D (respectively¬A ∈ D). Sincee′ : D has no witnesses
the claim holds fore′ :D, thereforeι(e′) ∈ AI (respectivelyι(e′) /∈ AI). By construction
we have thatι(e′)= ι(e). 2

The inductive step of the structural induction on concept construction is proved in the
next lemma. To prove that for a given conceptC in a prefixed sete : C of B, it holds
ι(e) ∈CI , we assume the inductive hypothesis: for every prefix and every conceptD which
is a syntactic component ofC, it holdsι(e′) ∈DI . The formal statement follows.

Lemma 5.11. Let 〈I,∆〉 be the canonical model of an open branchB. LetC be a concept,
let e : C be a prefixed set occurring inB and assume that for every sub-conceptD ofC and
everye′ :D such thatD ∈D one hasι(e′) ∈DI . If C ∈ C, thenι(e) ∈ CI .

Proof. First, we suppose that the deepest descendante :D of e : C has no witness.

Propositional Connectives.So thatC has the formD1 u D2, ¬(D1 u D2), D1 t D2,
¬(D1 tD2) and¬¬D1. We show only the case for¬(D1 uD2) since the others are
similar.

F.M. Donini, F. Massacci / Artificial Intelligence 124 (2000) 87–138 115

Suppose that¬(D1 uD2) ∈D: then, since the branch is implicitly PS-reduced, either
¬D1 ∈ D or ¬D2 ∈ D. By construction we have thatι(e) = e and then by hypothesis
eitherι(e) ∈ (¬D1)

I or ι(e) ∈ (¬D2)
I . Then we haveι(e) ∈ (¬(D1 uD2))

I .

Existential Quantifier. Suppose thatC has the form∃R.D andC ∈D. Since the branch
is implicitly PS-reduced there is a nodee.R.n : D′ such thatD ∈ D′. By (4) and by
Proposition 5.9,〈ι(e), ι(e.R.n)〉 ∈ RI . SinceD is a subconcept ofC, by hypothesis
we have thatD ∈ D′′ ande′ : D′′ imply ι(e′) ∈ DI . Thereforeι(e.R.n) ∈ DI and by
definition of interpretation we have thatι(e) ∈ ∃R.DI .

Universal quantifier. SupposeC has the form∀R.D. In this case we have to prove that
for all d ∈ ∆ if 〈ι(e), d〉 ∈ RI thend ∈ DI . The interpretationI in Definition 5.7 is
such that only the following sub-cases are possible:

(1) d is equal toι(e.R.n) for somen;
(2) d is equal toι(e′) for somen, wheree′ :D′ is the witness of a nodee.R.n :D′ in

the branch;
(3) d is such that there is a nodee′ :D which hase :D for witness and〈ι(e′), d〉 ∈ RI ,

for instance withd = ι(e′.R.m).
For the first case, observe that by definition of implicitly PS-reduced branch there

must be a prefixed sete.R.n : D′ such thatD ∈ D′ (rule ν has been applied). By
hypothesis, it isι(e.R.n) ∈DI .

For the second case, ife′ :D′ is the witness of a nodee.R.n :D′ in the branch then,
according the definition of witness and implicitly PS-reduced branch, ruleν must have
been applied toe.R.n : D′ and henceD ∈ D′. SoD is also in the prefixed set of the
witness and by hypothesisι(e′) ∈DI . By constructionι(e′)= ι(e.R.n).

For what regards the last case, by Technique 1 ife′ :D has a witness no other prefixed
set extending eithere′ can be part of the branch. So this possibility is ruled out.

In conclusion,ι(e) ∈ (∀R.D)I .

This closes the overall case in which the deepest descendante :D of e : C has no witness.
Finally, suppose now thate :D has a witnesse′ : D. By Proposition 5.8, ifC ∈ C then

C ∈ D. Sincee′ : D has no witnesses the claim holds fore′ : D and thusι(e′) ∈ CI . By
construction, we haveι(e′)= ι(e). 2

Again, by optimizing our algorithm and storing and testing only modal atoms and
unreduced formulae, the witness step of the proof may fail since the witness node would
not bee′ :D but rathere′ :D′ whereD andD′ only share the same propositionally reduced
concepts and the same unreduced formulae. Proposition 5.3 does the necessary adaptation.

We can combine these lemmata above as follows:

Theorem 5.12.Lete : C be a prefixed set occurring in an open branchB, let 〈I,∆〉 be the
canonical model ofB, and letC be a concept such thatC ∈ C. Thenι(e) ∈ CI .

116 F.M. Donini, F. Massacci / Artificial Intelligence 124 (2000) 87–138

Proof. For the base case we apply Lemma 5.10 for bothA and¬A. Notice that for the base
case we need both the positive and the negative version of the concept. For the inductive
case we apply Lemma 5.11.2
Theorem 3.12. LetC be a concept, and KB be a TBox. If the tableau forC and KB can
be extended to a tableau with an open branch thenC is satisfiable for the TBox KB.

Proof. Suppose that the tableau forC can be extended to a tableau with an open branch.
LetB be this branch. We prove the claim by exhibiting a model for KB which satisfiesC.

First, construct the canonical interpretationI of B according to Definition 5.7.
The tableau forC starts with 1: {C} and by constructionι(1) ∈∆. From Theorem 5.12

we haveι(1) ∈CI . Hence the interpretationI satisfiesC.
We have to show thatI also satisfies the TBox KB. Observe thatB is PS-implicitly

reduced and therefore for every inclusionC vD ∈ KB and every prefixed sete : C one has
that either(¬C tD) ∈ C or there is a node such thate :Dis present and(¬C tD) ∈D.
By Theorem 5.12 we have thatι(e) ∈ (¬C tD) ∈DI . By (1), for everyd ∈∆ there is at
least one prefixed sete :D in the branchB such thatι(e)= d . Hence the interpretationI
validates(¬C tD). 2

6. Complexity analysis

In this section we prove our main result on complexity, namely, that the algorithm DFS
takes single exponential time.

From a high-level perspective, the proof is arranged in four parts:
(1) We set the definitions and some nice basic properties of the call tree of the recursive

calls of DFS.
(2) We prove that the height of the call tree is bounded: the size of the largest branch

is bounded by a single exponential in the size of the TBox and the initial concept.
Without further work, this would only yield an unsatisfactory doubly exponential
bound on the call tree.

(3) We prove that the width of the call tree is bounded: the number of branches of the
call tree (not to be confused with the branches of the tableau) is bounded by a single
exponential in the size of the TBox and the initial concept.

(4) Finally, we combine all bits together and get our single exponential time bound.
The third step is the trickiest. The way in which we prove it is to assign to each branch, or
to a fraction of them, a distinguished set of concepts that “characterizes” the branch of the
call tree. Since the number of distinct sets of concepts is bounded by the size of the TBox,
we obtain the desired result.

This is the place where⊥-sets play their role. Ideally, we would like to associate to each
⊥-set, the first branch of the call tree where it is introduced into NoGoods. Even though
a⊥-set might be introduced many times in NoGoods, and the same⊥-set may be used to
stop the search in many DFS-calls, the idea would be that when DFS returns from previous
calls, sooner or later a new⊥-set is inserted in NoGoods.

F.M. Donini, F. Massacci / Artificial Intelligence 124 (2000) 87–138 117

Unfortunately, it turned out that it is not possible to assign a distinguished⊥-set to each
branch of the DFS call tree, nor to a constant fraction of them. However, we can assign a
different⊥-set to each “right” branch of the call tree.

Intuitively, this is accomplished in three steps.
(1) We identify the “right” branches of the call tree as those where the deepest choice

is “going to the right”. Clearly, for every branch that goes right, the number of
“offshoot” branches going “left-only” is at most as big as the size of the right branch
itself. This gives a total bound of the size of the tree.

(2) Each “right” branch is identified by a specialkey branching pointin the tree.
Remarkably, each key branching point is not just the last branching point but can
be fairly up in the tree (see Fig. 9). So the identification of key branching points is
the less intuitive part of our construction.

(3) To each key branching point we can associate a different⊥-set in NoGoods.
Intuitively, when leaving a key branching point we know that some new⊥-set is
introduced in NoGoods, even if we do not know exactly when.

Throughout the section, we always usen to denote the size of the input—that is, the
number of symbols in the TBoxKB and in the conceptC.

6.1. Preliminary definitions and properties of theDFS-call tree

We start by recalling some terminology for recursive programs.

Definition 6.1. We define thecall treeT (P) of a recursive procedure P as follows:
• each nodeN is one-to-one with an invocation of P;
• a nodeN1 has an immediate successor nodeN2 if the invocation of P related toN1

calls the invocation of P related toN2.
A branching pointis a node with more than one immediate successor (i.e., at least two
recursive calls are made), and its related invocation is abranching call.

A leaf is a node without successors (i.e., there are no further recursive calls), and its
related invocation is aleaf call.

We call successorthe transitive closure of the immediate successor relation, and
predecessorthe inverse of successor.

Note that when the procedure is DFS,T (DFS) is a binary tree. In this case, a branching
point is an invocation of DFS in which the control flow passes through the test A4, and
the test is successful. We callleft immediate successorof the branching point the first
call of DFS,right immediate successor the second call. Aleft successoris either the left
immediate successor, or a successor of the left immediate successor. A right successor is
defined similarly.

Remark 6.2. The call tree is not binary for “standard” trace-based techniques which
reduceπ(R) formulae by making “parallel” recursive calls to the satisfiability testing
procedure for each modal successor, and backtrack (locally) as soon as one of these returns
“unsatisfiable”. In that case, the control structure is much more complex as the call tree is
a generic one.

118 F.M. Donini, F. Massacci / Artificial Intelligence 124 (2000) 87–138

We now prove two properties about the calls of DFS, which we use later on.

Lemma 6.3. If a DFS invocation selectse : C, applies a rule different fromν, and returns
e, thenC has been inserted inNoGoodsbefore exiting the invocation.

Proof. Simply by inspection over all cases of the algorithm DFS.2
Lemma 6.4. If a DFS invocationN selectse : C and applies a ruleν(R), thenN does not
return the prefixe.

Proof. According to Technique 6 in the search strategy, every prefixed sete : C is selected
before any prefixed set with an extended prefixe.R.n is selected. Hence aν(R) rule can
be applied only after at least oneπ(R) rule has been applied, and aπ(R) rule is applied
only when allα, β , KB anddnegrules have been applied (Technique 4). Note that the
application of eitherπ(R) or ν(R) rules to the prefixed sete : C does not add a prefixed set
e : C ′ with the same prefix. Thus, other prefixed setse : C ′ cannot be added in the calls that
are successors ofN . Therefore,e cannot be returned byN . 2

To prove our main result we need to introduce other properties ofT (DFS). We start by
defining some particular branches and branching points inT (DFS).

Definition 6.5. A DFS-branchis the sequence of invocations of DFS related to the nodes
of a path from the root to a node inT (DFS). A DFS-branch iscompleteif its path ends in
a leaf.

The deepest branching pointof a complete branch is a branching point which has no
successor which is a branching point.

A complete rightDFS-branchis a complete DFS-branch containing the right successor
of its deepest branching point.

A key branching pointis a branching point such that both its left successor and its right
successor belong to a complete right DFS-branch.

For a better understanding of these definitions, refer to Fig. 9. It depicts a possible
T (DFS). Branches are numbered from left to right and right branches are marked by a
capital R in their leaf call. We show some of its deepest branching points (e.g., D1, D5,
D8, etc.) and markall key branching points with a black dot (K3, K7,. . .).

Remark 6.6. Each complete branch might be characterized by a different deepest
branching point and indeed the same branching point might be the deepest one for a branch
including its left successor but not for the branch including the right successor and vice-
versa.

For instance, D8 is not the deepest branching point for branch 7, but it is the deepest one
for branch 8; D1 is the deepest branching point for branch 1 but not for branch 2.

Remark 6.7. A key branching point may not be a deepest branching point.

F.M. Donini, F. Massacci / Artificial Intelligence 124 (2000) 87–138 119

Fig. 9. An instance ofT (DFS).

For instance, K3 is a key branching point because its left successor can be extended to a
right branch (3R) and also its right successor can be extended to a right branch (e.g., 10R).
Yet, K3 is not a deepest branching point for any branch.

Remark 6.8. Still, there is a bijection between each right branch and each key branching
point, but for the last right branch of the whole tree (23R). Intuitively, we can detect that
a branching point is a key branching point if we go immediately down to the left and then
we can go down to the right at least once. The right branch associated to a key branching
point can be found by going immediately to the left and then always to the right.

Thus, the key branching point K3 corresponds to the right branch 3R, K8 corresponds
to 8R, K11 (the root) corresponds to 11R and so on: Kn corresponds to the the branchnR.

In Fig. 9 we have named each key branching point according the corresponding branch.
However, this is not the order in which they are inserted in the stack by DFS. In this respect,
we know that a DFS call is a branching point only after the call enters the right branch,
because of test A4 in the DFS algorithm. Thus, although K11 is the first key branching
point to enter in the stack, the first call which issues right successor call is K3, then K7,
then K8, K10, and only after this stage the control returns up to the right successor of K11.

Fig. 10 shows the snapshots of the stack execution of DFS for what regards key
branching points: On top of the stack we write down the branches that are visited while
these key branching points are in the stack. We underlined a key branching point when the
control has returned to the invocation and it is now doing the right branch(es), i.e., when
DFS is reducingβ2 after having passed the A4-check.

From Figs. 9 and 10, one may notice that the number of branches visited by the algorithm
may vary whereas the key branching points in the stack are not changed. This means that
other DFS calls are placed in the stack (we have just not shown them), and the key issue is
how many they are.

120 F.M. Donini, F. Massacci / Artificial Intelligence 124 (2000) 87–138

Fig. 10. Snapshots of the key branching points in the stack from Fig. 9.

For instance, we could add many left offshoots branches between the points D5 and K8
in Fig. 9. From the DFS point of view it may simply mean that we keep on closing left
branches using the same⊥-sets. However, we cannot keep adding offshoots branchesad
libitum. The maximum number of left-only branches is bounded by the size of the right
branch from which they spring. As soon as we add a right branch a new key branching
point is added.

As another example, consider the branches below D17 18 in Fig. 9. We might add
branches going left off the segment (D17,18R) without changing the number of key
branching points. Our only bound is the size that the segment from D17 to 18R can have.
However, as soon as we add a branch going right off the segment (D17,17), this transform
D17 into a key branching point for that branch (see Remark 6.8).

Note also that a DFS-branch inT (DFS) corresponds to a tableau branchB, whereB is
the argument of the last DFS invocation. A complete DFS-branch corresponds to a tableau
branch (the argument of the leaf call) which is either implicitly closed (the leaf call returns
a prefix) or reduced and open (the leaf call returnssat).

When no confusion arises, we say that “e : C occurs in a DFS-branch” meaning thate : C
occurs in the input branch of an invocation of that DFS-branch.

6.2. Bounding the height of theDFScall tree

Lemma 6.9. The recursion depth in a completeDFS-branch ofT (DFS) is O(n2 · 2n),
wheren is the size of the input concept and the TBox.

Proof. We first give an O(n2) bound on the number of calls selecting a prefixed set
containing a given prefix, then we give an O(2n) bound on how many different prefixes
can be selected by successive calls in the recursion stack.

Consider a given prefixe. In a DFS-branch, the calls selecting some prefixed sete : C,
are at most O(n2). In fact, ruleKB can add O(n) concepts toC, and each of the rulesα, β ,
dnegcan be applied O(n) times, since they progressively reduce the size of the concepts
in e : C that can be chosen for further reduction. Ruleπ(R) can be applied O(n) times
(number ofπ(R) subconcepts), and for each application ofπ(R), ruleν(R) can be applied
O(n) times (number ofν(R) subconcepts).

F.M. Donini, F. Massacci / Artificial Intelligence 124 (2000) 87–138 121

Regarding the number of different prefixes, recall that once the ruleπ(R) has been
applied as many times as possible, a new setC is added to Visited (point A5 in Fig. 6).
From condition A3 in the algorithm, no call up in the recursion stack can then choose a
prefixed sete′ : C with the same set of conceptsC. Hence in the stack the calls can choose as
many different prefixed sets as the number of possible sets of concepts, that is O(2n). 2

Of course, the above bound is still insufficient to prove that the total number of calls (the
size ofT (DFS)) is exponential. Hence, we prove other properties ofT (DFS), which will
be useful to reach our goal.

6.3. Bounding the width of theDFScall tree

Proposition 6.10. If an invocationN of DFS selectse : C, and insertsC in Visited, then
e : C is a witness for every other nodee′ : C occurring in everyDFS-branch containingN .

Lemma 6.11. For every invocationDFS(B) corresponding to a nodeN in T (DFS), if
e : C ∈ B has a witness inB then the prefixe will never be returned by any(subsequent)
DFS invocation in anyDFS-branch containingN .

Intuitively, this lemma says that prefixed sets responsible for the insertion of a⊥-set
in NoGoods (i.e., prefixed sets whose prefix is returned) are always “originals” and never
“copies”.

We remark that we could prove a stronger lemma, namely, thate will never be returned
by any DFS call in theentireT (DFS). However, in the following we need just the above
weaker version of the lemma.

Lemma 6.12. LetN be a call inT (DFS), and letN select a prefixed set with prefixe.
Then no call successor ofN can select a prefixed set with prefixe′ ≺ e.

Proof. The claim follows from Technique 6, and the observation that every rule, applied
to e : C, introduces a new prefixed set with either the same prefixe, or with a longer prefix
e.R.n, for somen. 2
Remark 6.13. The above claim would not hold if the description logic included inverse
roles.

Lemma 6.14. SupposeN is a branching point, selectinge : C∪{β}, and letN1 be theDFS
call N1 which is the left immediate successor ofN . ThenN1 selectse : C ∪ {β} ∪ {β1}.

Proof. Observe that ifN is a branching point thenC ∪ {β} ∪ {β1} is not reduced. Indeed,
supposeN1 selects a prefixed set with a different prefixe′. Since the selection function
applies a lexicographic ordering for selecting prefixed sets, then by Lemma 6.12, no
successor call ofN1 selects a prefixed set with prefixe. HenceN1 does not returne, and
N is not a branching point from condition A4 in DFS, contradicting the hypothesis.2

122 F.M. Donini, F. Massacci / Artificial Intelligence 124 (2000) 87–138

Now we prove the key property of the DFS algorithm: every key branching point is
one-to-one with a different set of concepts inserted in NoGoods.

Theorem 6.15. Let N be a key branching point, and lete : C ∪ {β} be the prefixed set
selected byN . Let N0 the left immediate successor ofN , and letN1, . . . ,Nk be all
successor calls ofN0 returninge, in the rightmostDFS-branch passing throughN0. Then,
there is at least one set of conceptsD such that:

(1) D was not inNoGoodswhenN0 started;
(2) D is not inserted inNoGoodsby anyDFScall successor ofN0, and different from

N1, . . . ,Nk ;
(3) D is inserted inNoGoodsby at least one amongN0,N1, . . . ,Nk .

Proof. For sake of clarity, the DFS calls described in the statement of the theorem are
pictorially represented in Fig. 11.

First of all, note thatN0 returnse, otherwiseN would not be a branching point because
of condition A4 in the algorithm of DFS. Secondly,N0 cannot be a leaf call, otherwiseN
would not be a key branching point. Then,N0 must select a prefixed set, and issue at least
one recursive call.

From Lemma 6.14,N0 selectse : C ∪ {β} ∪ {β1}. Since it also returnse, Lemma 6.4
implies thatN0 does not apply aν(R) rule. Then, from Lemma 6.3 it follows thatN0
insertsC ∪ {β} ∪ {β1} in NoGoods. Now we analyze two cases fork:

Supposek = 0. This means that there are no other DFS calls that returne in the
rightmost DFS-branch passing throughN0. Then, sinceN0 selectse : C ∪ {β} ∪ {β1} and
returnse, the only rule thatN0 can apply is theπ rule. In this case, from point A5 of
the DFS algorithm,N0 insertsC ∪ {β} ∪ {β1} in Visited. From Lemma 6.11, no other
successor call ofN0 insertsC ∪ {β} ∪ {β1} in NoGoods. Hence, the claim holds with
D= C ∪ {β} ∪ {β1}.

Fig. 11. The key branching pointN and its left subtree in Theorem 6.15.

F.M. Donini, F. Massacci / Artificial Intelligence 124 (2000) 87–138 123

Supposek > 1. We distinguish two sub cases: first,Nk is not a leaf call; second, it is a
leaf call.

(1) SupposeNk is not a leaf call. Then there exists a callNk+1, successor ofNk , and
such thatNk+1 returnse′ 6= e. SinceNk returnse, by inspection on the rules in DFS
this can only happen ifNk+1 returnse′ = e.R.n, andNk applied aπ rule, selecting
e :D and insertingD in Visited. Then from Lemma 6.11, no other successor call of
Nk insertsD in NoGoods, andNk insertsD in NoGoods.

(2) SupposeNk is a leaf call. SinceN is a key branching point, there must be at least
one branching point betweenN0 andNk : let us denoteNb the deepest (inT (DFS))
branching point betweenN0 andNk , and letNb selecte : Db. By hypothesis,Nb
returnse, and hence it insertsDb in NoGoods.
Recall thatN1, . . . ,Nk are nodes in therightmostDFS-branch passing throughN0.
Hence,Nb+1, . . . ,Nk are all right successors ofNb. From point A2 in the algorithm
of DFS,Db was not inserted in NoGoods by any call successor ofN0 which is issued
beforeNb. From point A4,Db was not inserted in NoGoods by any call which is
a left successor ofNb. Moreover, every right successorNb+1, . . . ,Nk of Nb adds
one or more subconcepts to the prefixed sete :Db. Hence, each of them inserts in
NoGoods a set of concepts which is different fromDb. Therefore, the claim of the
theorem holds forDb. 2

Theorem 6.16.The number of key branching points inT (DFS) is bounded by2n.

Proof. From the previous theorem, a new set of concepts is inserted in NoGoods for every
immediate left successor of a key branching point. Since there are at most 2n different sets
of concepts this is also a bound for the number of key branching points.2
6.4. EXPTIME-efficiency of theDFSalgorithm

We can now put all results together.

Theorem 6.17.The total number ofDFS calls in T (DFS) is O(2cn), for a suitable
constantc > 1.

Proof. Observe that, starting DFS with a concept that isC t ⊥, the number of key
branching points equals the number of complete right branches minus one. From the
previous Theorem 6.16, the number of right branches is O(2n).

From Lemma 6.9 the recursion depth of a DFS-branch is O(n2 · 2n). This means that
for every right branch we can have at most O(n2 · 2n) left branches which do not introduce
also a new right branch (at worst one for each invocation of DFS in the right branch).

Hence the total number of branches is O(n2 · 2n · 2n) and the total number of calls is
O(n2 · 2n · 2n · 2n), that is, O(2cn) for a suitablec. 2

As a straightforward corollary of Theorem 6.17 we have the main result:

Theorem 3.13. Any search strategy respecting Techniques1–7 terminates using single
deterministic exponential time in the size ofC and the TBox KB.

124 F.M. Donini, F. Massacci / Artificial Intelligence 124 (2000) 87–138

Now suppose that we wish to enhance our algorithm by storing and testing for
membership only sets composed by modal atoms and unreduced concepts. The above
proofs could be adapted to the new algorithm based on the following argument. Each time
a new⊥-set is inserted in NoGoods, what makes it new is the fact that it contains a new
unreduced formula. There are only two exceptions to this observation: theν(R) rule (this
was the case already without the optimization) and the KB rule. But Lemma 6.9 implies
that bothν(R) and KB rules can only be applied a polynomial number of times for a given
prefix.

7. Overview of related methods

Although a large body of results exists on the EXPTIME-completeness of many
description logics (see, e.g., [14,15]), most of these results are of theoretical nature: they do
not offer a direct decision procedure but just exhibit polynomial translation of satisfiability
of extensions ofALC into Propositional Dynamic Logic, following the ground breaking
work by Schild [68].

The classical procedures that match the exact EXPTIME-bound (such as automata on
infinite trees [77] or model graph [38,66]) have the unfortunate property of being also
“best case” exponential, because they construct tableau structures bottom-up. As we have
said, this happens because one first constructs an automaton which accepts the tree models
of KB andC, and whose size is exponential in the size of the input. Then, one checks its
emptiness, i.e., whether the automaton does not accept any model (see [13,24,31]).

From the proper automated reasoning perspective, a large number of calculi for modal
and description logics have been proposed. However, only a limited number of these works
concentrate on the aspects of algorithmic complexity.

In the realm of description logics, the complexity analysis of tableau-based algorithms
for ALC was pioneered in [70], where only the PSPACE-satisfiability case without global
axioms is considered. More recent works have extended the calculus to deal with additional
constructs such as inverse or transitive roles (see, e.g., the works of Horrocks, Sattler, and
Tobies [41,44,45,75]) but have not dealt with the algorithmic complexity of reasoning with
global axioms. For instance, in [45] a calculus for an EXPTIME-complete logic including
ALC is given. However, complexity results are only shown for a PSPACE-fragment of
the logic. For EXPTIME-completeness results they refer to De Giacomo and Massacci on
dynamic logic [16].

The only work where the complexity of decision procedures with global axioms has been
investigated is the work by Buchheit, Donini, and Schaerf [8], where a calculus working
in nondeterministic exponential time is given, and a modification of it working in single
exponential time is just foreseen. A preliminary announcement of the results showed in
this paper was also reported in [20].

The classical studies on the complexity of (variants of) the sequent or tableau calculus
for multi-modal logic K (a notational variant ofALC), such as those by Ladner [51] or by
Halpern and Moses [38] only focus on satisfiability without global axioms.

Recent works on prefixed tableaux such as those by Massacci [54,57] or extended
sequent calculi such as Hürding et al. [39], Demri [18], or Basin et al. [4] again only

F.M. Donini, F. Massacci / Artificial Intelligence 124 (2000) 87–138 125

give bounds for satisfiability without global axioms, although they discuss a larger set of
logics than simply modal logic K.

The idea of using a set of “no-goods” for transforming NEXPTIME-tableau calculi into
EXPTIME-algorithms has been given by De Giacomo and Massacci [16] for Propositional
Dynamic Logic but an explicit algorithm has not been given there, and that calculus is
complicated by the need to accommodate both the iteration and converse operator.

Studies based on translation into first order logicà la Ohlbach [62] have mainly dealt
with the problem of decidability [47,69], and only recently there has been an attempt
to discuss the actual proof complexity of the resolution method [12,47]. Also, these
approaches do not study the complexity of satisfiability with global axioms. For instance,
Hustadt and Schmidt have just shown that it is possible to use resolution as a decision
procedure forALC with TBoxes [47] by means of a step-by-step simulation of prefixed
tableau proof search.

This latter result is particularly interesting as it allows to transfer our complexity result
to translation-based methods. It is enough to impose that the simulated tableau proof
respects our proof search techniques. However, as⊥-sets corresponds to derived clauses
in the resolution framework, it might be that features such as clause subsumption or clause
deletion by resolution theorem provers may affect adversely the key result which requires
⊥-sets to be used as much and as soon as possible.

There has been also a substantial work on the implementation of efficient theorem
provers for Description Logics includingALC—among others,FaCT [41,43,44],DLP
[43,64], HAM-ALC (now RACE) [37], KRIS [3], KSAT [32–34]. These implementations
are usually based on the standard trace based technique, with a different emphasis on the
various optimizations employed (see again Section 4 for a presentation of some of them).

Setting optimizations aside, usual tableau strategies (which explore one disjunctive
branch at a time) are applied, and in exploring a branch there is no use of inconsistent
sets of concepts already discovered in another branch (unless the “caching” optimization
is employed). Moreover, existential concepts are reduced by making “parallel” recursive
calls to the satisfiability testing procedure for each modal successor, and by backtracking
(locally) as soon as one of these returns unsatisfiable. These characteristics are not present
in our algorithm.

So, an interesting question is whether our algorithm combined with modal backjumping
could be recasted into the standard trace-based technique. The reason that our algorithm
does not employ that technique is precisely that we couldnot prove the worst-case
complexity result with it. Indeed, the standard trace-based techniques has been widely
present in the literature, but only for proving PSPACE, NEXPTIME, or decidability results.
In contrast, up to now only bottom-up techniques were used for proving EXPTIME bounds.
The odds seem against such equivalence.

For what regard the re-use of concepts during proof search, this is typically captured by
the so called “caching” optimization. ForDLP, “caching” of the satisfiability status of all
encountered sets of concepts is claimed [43,64]. Other systems such asRACE andFaCT
cache different information using pseudo-models of satisfiable concepts (see, e.g., [37,
42]),KSAT most recent incarnation uses different bounded caches [33],FaCT even disables
caching of satisfiability status, claiming that it adversely affects the performance on a the
particular knowledge base one is interested in classifying [42].

126 F.M. Donini, F. Massacci / Artificial Intelligence 124 (2000) 87–138

The most difficult problem is that the caching optimizations are left out of the
formal descriptions, and this makes it difficult even to ascertain whether two different
implementations mean the same thing for “caching”. As more important consequence of
the lack of a formal treatment, it has never been formally proved whether the different
caching optimizations are sound (see for instance [37] for an example of unsound caching)
and whether they can provide the desired EXPTIME-upper bound.

For what regard other optimizations, even though most systems employ propositional
backjumping (see [43,45] for a discussion of the problems relative to its implementations),
there is no evidence that the optimization that we call “modal backjumping” has been
implemented. As we have already remarked, this is mostly due to the different structure
of our algorithm which does not employ “parallel” recursive calls for analyzing modal
successors.

Our work distils and formalizes many of the intuitions and techniques present in modal
and description logic literature and provides the logical and algorithmic rationale of a
method that works in single exponential time, which might have been implemented (or
might be easily implementable) inDLP or in similar systems.

Notice that we havenotproved that “caching” all sets of concepts (including potentially
satisfiable concepts) is a sound procedure. Indeed, in our calculus we “permanently cache”
all andonlyunsatisfiable sets of concepts; many potentially satisfiable sets of concepts are
discarded when passing from a branch to another branch. Storing all sets of concepts might
lead to an unsound calculus (see [37] for examples).

8. Conclusions

In this paper we have presented the first tableau-based algorithm for satisfiability of a
concept with respect to a TBox (and hence also for subsumption in a TBox) which works
in worst-case single exponential time. In fact, we do not need to change substantially the
“normal” construction used by tableaux which has proven to be reasonably effective in
practice [41,43]. The key point is to forfait in part the standard trace-based technique and
make use of an auxiliary data structure which is used to store sets of concepts whose
conjunction was already proved to be inconsistent. Nevertheless, as it can be seen from the
machinery of Sections 5 and 6, the proofs that the new reasoning method is correct, and
that it indeed requires single exponential time, were neither simple, nor short.

The main ideas behind our algorithms can be used to devise EXPTIME-tableau
implementations for various extension ofALC. In particular, since our calculus is tableau-
based, it can be easily modified to deal with an ABox as well. Moreover, it is possible
to export our complexity result to translation-based methods, by using the step-by-step
simulation of the proof search between prefixed tableaux and ordered resolution by Hustadt
and Schmidt [47].

This work can be extended in many directions: on the deductive side one may work for
extending the logic, and in particular to accommodate individuals or the converse and the
star (transitive closure) operators. Regarding complexity of optimizations (see Sections 4.2,
4.3), one may prove that the storage of minimal inconsistent subsets and the use of subset

F.M. Donini, F. Massacci / Artificial Intelligence 124 (2000) 87–138 127

checking, which seems to be more promising in practice, also yields a single exponential
decision procedure.

Another promising avenue of research is the generalization of our complexity analysis of
the DFS-algorithm to AND/OR graphs and its transformation into algorithms for checking
on-the-fly the emptiness of accepting automata for EXPTIME-complete logics.

Acknowledgements

We started this research with “Guiseppe” De Giacomo, whom we are indebted with for
inspiration and exhortation. We thank E. Giunchiglia, I. Horrocks, U. Hustadt, P. Patel-
Schneider, R. Schmidt, and R. Sebastiani for many useful discussions on modal and
description logics theorem proving, M. Vardi for pointing us the subtle relations between
our result and automata-theoretic works, and F. d’Amore for useful discussions about
data structures for dictionaries. Comments from the anonymous referees were helpful in
improving the presentation and clarifying the difficult steps.

Francesco Donini acknowledges the Dipartimento di Informatica e Sistemistica,
Università di Roma “La Sapienza”, in particular the research project CNR-LAICO, and
the CNR research projects “DeMAnD” and “Metodi di Ragionamento Automatico per
l’Analisi di Dominio” for supporting this research. Fabio Massacci acknowledges the
support of the CNR scholarship 201-15-9.

Appendix A. A full worked example

We test the satisfiability of the conceptA t ∃P .A against the knowledge baseKB=
{Av ∃Q.B u ∃R.C⊥,B v ∃P .A}, whereC⊥ denotes an unsatisfiable concept which is
not trivially unsatisfiable (e.g., by normalization and simplification).

This simple knowledge base is difficult enough to make it interesting as case study.
Indeed, the knowledge base is cyclical and the length of the cycle is longer than one
and goes through different roles. Therefore simple rewriting techniques do not help, and
termination is not guaranteed without loop checking.

To improve the readability, we do not present the whole tableau as a tree. Rather we
present the deduction steps as the algorithm performs them and recapitulate the overall
structure of the proof tree in Fig. A.1. The tree corresponds to the call tree of the DFS
algorithm.

We summarize in Table A.1 and in Table A.2, respectively, the sets which are inserted
into NoGoods and Visited during the search process.

We skip uninteresting rules such as the addition of assumptions from theKB. We also
skip the trivial reduction of aβ rule when the extension of the left branch withβ1 generates
a clash.

In the proof fragments below we donot show reduced concepts although they are to
be considered present. Their existence is reminded by ellipsis(. . .). Moreover we box the
concepts that are added. We apply here the simple optimization of storing only modal
atoms and unreduced concepts in NoGoods and in Visited concepts.

128 F.M. Donini, F. Massacci / Artificial Intelligence 124 (2000) 87–138

Fig. A.1. The call tree of the DFS-algorithm.

A.1. A step-by-step execution trace ofDFS

The tableau starts by adding the concept we want to test for satisfiability:

1 :
{
A t ∃P .A

}
(A.1)

We can either reduce theβ concept or add the axioms from the knowledge base. According
our strategy, we apply twice theKB rule:

1 :
{
A t ∃P .A, ¬A t (∃Q.B u ∃R.C⊥) , ¬B t ∃P .A

}
(A.2)

F.M. Donini, F. Massacci / Artificial Intelligence 124 (2000) 87–138 129

Table A.1
Insertion and usage of NoGoods in the search

NoGoods Added at call Used at call

{C⊥} (A.17) (A.26)

{A,¬B,∃R.B,∃R.C⊥} (A.8) (A.25)

{A,∃Q.B,∃R.C⊥,∃P .A} (A.20)

{A,∃Q.B,∃R.C⊥} (A.5)

{A,∃Q.B u ∃R.C⊥} (A.4)

{A} (A.3) (A.29, A.34)

{∃P .A,¬A} (A.29)

{∃P .A,∃Q.B,∃R.C⊥} (A.34)

{∃P .A,∃Q.B u ∃R.C⊥} (A.30)

{∃P .A} (A.27)

{A t ∃P .A} (A.1)

Table A.2
Insertion and usage of Visited in the search

Visited Added at call Used at call Discarded at call

{A,∃Q.B,∃R.C⊥,¬B} (A.8) (A.16) (A.18)

{B,¬A,∃P .A} (A.12) (A.18)

{A,∃Q.B,∃R.C⊥,∃P .A} (A.21) (A.26) (A.27)

Now we can apply theβ-rule to two different concepts. Without loss of generality, we
choose the first concept of the setA t ∃P .A. Then we generate two branches and the left
one, withβ1, continues as follows:

1 :
{
A , . . . ,¬At (∃Q.B u ∃R.C⊥),¬B t ∃P .A

}
(A.3)

Recall that the reduced conceptA t ∃P .A is replaced by ellipsis.
A further β-reduction of¬A t (∃Q.B u ∃R.C⊥) yields another branch. The resulting

node 1: {A, . . . , ¬A , . . . ,¬B t ∃P .A} contains a clash, and the DFS algorithm returns
the element 1.

Then we come back at point (A.3) above and start the right branch, i.e., reduceβ2 out of
¬At (∃Q.B u ∃R.C⊥). We apply anα-rule and we get:

1 :
{
A, . . . , ∃Q.B u ∃R.C⊥ , . . . ,¬B t ∃P .A

}
(A.4)

1 :
{
A, . . . , ∃Q.B , ∃R.C⊥ , . . . , . . . ,¬B t ∃P .A

}
(A.5)

Then we apply again theβ-rule to¬B t ∃P .A and insertβ1.

1 :
{
A, . . . ,∃Q.B,∃R.C⊥, . . . , . . . , ¬B , . . .

}
(A.6)

130 F.M. Donini, F. Massacci / Artificial Intelligence 124 (2000) 87–138

Now we can choose to expand either∃Q.B or ∃R.C⊥. Suppose that our heuristic
function is unlucky and we proceed by applying theπ -rule to∃Q.B and∃R.C⊥.

1 : {A, . . . ,∃Q.B,∃R.C⊥, . . . , . . . ,¬B, . . .} (A.7)

1.Q.2 :
{
B
}

1 : {A,∃Q.B,∃R.C⊥,¬B} (A.8)

1.Q.2 : {B}
1.R.3 :

{
C⊥

}
At step (A.8) the DFS algorithm inserts the set{A,∃Q.B,∃R.C⊥,¬B} in Visited.

Then, we add the axioms from the KB and we arrive at the stage

1 : {A, . . . ,∃Q.B,∃R.C⊥, . . . , . . . ,¬B, . . .} (A.9)

1.Q.2 :
{
B, ¬A t (∃Q.B u ∃R.C⊥) , ¬B t ∃P .A

}
1.R.3 : {C⊥}

Again we must apply aβ-rule. This time we are luckier (or want just to cut it short), and
select the second disjunction¬B t ∃P .A for branching.

Once we addβ1 = ¬B, the node prefixed by 1.Q.2 contains a clash and the DFS
algorithm returns 1.Q.2 and the search proceeds in the right branch.

1 : {A, . . .∃Q.B,∃R.C⊥, . . . , . . .¬B, . . .} (A.10)

1.Q.2 :
{
B,¬A t (∃Q.B u ∃R.C⊥), ∃P .A , . . .

}
1.R.3 : {C⊥}

Again we have aβ concept to reduce in the set prefixed by 1.Q.2 and the algorithm
continues on the left by addingβ1=¬A, as follows:

1 : {A, . . . ,∃Q.B,∃R.C⊥, . . . , . . . ,¬B, . . .} (A.11)

1.Q.2 :
{
B, ¬A , . . . ,∃P .A, . . .

}
1.R.3 : {C⊥}

No more propositional rules are possible. So we apply aπ(P) rule to 1.Q.2 and add the
new prefix 1.Q.2.P .4 to the branch.

1 : {A, . . . ,∃Q.B,∃R.C⊥, . . . , . . . ,¬B, . . .} (A.12)

1.Q.2 : {B,¬A, . . . ,∃P .A, . . .}
1.R.3 : {C⊥}

1.Q.2.P .4 :
{
A
}

At step (A.12) we insert in Visited the set of concepts prefixed by 1.Q.2 (Table A.2).

F.M. Donini, F. Massacci / Artificial Intelligence 124 (2000) 87–138 131

After two applications of theKB-rule we get the following branch:

1 : {A, . . . ,∃Q.B,∃R.C⊥, . . . , . . . ,¬B, . . .} (A.13)

1.Q.2 : {B,¬A, . . . ,∃P .A, . . .}
1.R.3 : {C⊥}

1.Q.2.P .4 :
{
A, ¬At (∃Q.B u ∃R.C⊥) , ¬B t ∃P .A

}
Again we have to apply aβ-rule to the prefix 1.Q.2.P .4 and the algorithm proceeds by
branching on the left and adding theβ1=¬A subconcept of¬A t (∃Q.B u ∃R.C⊥). The
DFS algorithm detects the clash and returns 1.Q.2.P .4, so that the proof search continues
on the right branch.

1 : {A, . . . ,∃Q.B,∃R.C⊥, . . . , . . . ,¬B, . . .} (A.14)

1.Q.2 : {B,¬A, . . . ,∃P .A, . . .}
1.R.3 : {C⊥}

1.Q.2.P .4 :
{
A, ∃Q.B u ∃R.C⊥ , . . . ,¬B t ∃P .A

}
1 : {A, . . . ,∃Q.B,∃R.C⊥, . . . , . . . ,¬B, . . .} (A.15)

1.Q.2 : {B,¬A, . . . ,∃P .A, . . .}
1.R.3 : {C⊥}

1.Q.2.P .4 :
{
A, ∃Q.B , ∃R.C⊥ , . . . , . . . ,¬B t ∃P .A

}
A β-rule to reduce¬B t ∃P .A prefixed by 1.Q.2.P .4 starts the next DFS-call:

1 : {A, . . . ,∃Q.B,∃R.C⊥, . . . , . . . ,¬B, . . .} (A.16)

1.Q.2 : {B,¬A, . . . ,∃P .A, . . .}
1.R.3 : {C⊥}

1.Q.2.P .4 :
{
A,∃Q.B,∃R.C⊥, . . . , . . . , ¬B , . . .

}
DFS notices that the set of concepts prefixed by 1 that we have inserted in Visited

(Table A.2) is a witness for 1.Q.2.P .4. This prefixed set is not reduced further.
We can focus our attention on the prefixed set 1.R.3 : {C⊥} because the next prefix in

the lexicographic order is 1.R.3.

1 : {A, . . . ,∃Q.B,∃R.C⊥, . . . , . . . ,¬B, . . .} (A.17)

1.Q.2 : {B,¬A, . . . ,∃P .A, . . .}
1.R.3 :

{
C⊥

}
1.Q.2.P .4 : {A,∃Q.B,∃R.C⊥, . . . , . . . ,¬B, . . .}

For simplicity, we assume that after a suitable number of steps the proof search
terminates,{C⊥} is added to the NoGoods, and the DFS call returns 1.R.3.

132 F.M. Donini, F. Massacci / Artificial Intelligence 124 (2000) 87–138

At this stage the DFS algorithms returns over the potential branching point (A.15). The
check prevents the potential branch because 1.Q.2.P .4 is different from the returned prefix
1.R.3.

Then we go at call (A.13) after the right branch has been visited. Because the returned
prefix 1.R.3 is different from the current prefix 1.Q.2.P .4 we do not insert anything in
the NoGoods and continue. We skip also the potential branching point on the right at
step (A.10) because the returned prefix 1.R.3 is different from 1.Q.2.

We exit DFS-calls upward without doing any work until we resume call A.8. Then the
instruction A6 of the DFS algorithm inserts the⊥-set{A,¬B,∃R.B,∃R.C⊥} among the
NoGoods. The new returned prefix is now 1.

The algorithm backtracks directly to call (A.5). At this point the condition A4 is true
and the search continues in the right branch. Before going to the right, we discard the set
{B,¬A,∃P .A} from Visited.

1 : {A, . . . ,∃Q.B,∃R.C⊥, . . . , . . . ,∃P .A, . . .} (A.18)

It is clear that this second branch is useless, since the disjunction that we are currently
analyzing does not contribute to the contradiction. If we used propositional backjumping
we could have avoided that branch too. We have already discussed how to add this
optimization to the DFS algorithm (see Sections 4.2 and 4.3).

Here we have again to choose aπ concept to reduce. For sake of simplicity assume
that we again reduce the concepts in the same order which we have chosen in the previous
branches: firstA, thenC⊥, and now we have alsoB. We get:

1 : {A, . . . ,∃Q.B,∃R.C⊥, . . . , . . . ,∃P .A, . . .} (A.19)

1.P .5 :
{
A
}

1 : {A, . . . ,∃Q.B,∃R.C⊥, . . . , . . . ,∃P .A, . . .} (A.20)

1.P .5 : {A}
1.R.6 :

{
C⊥

}
1 : {A, . . . ,∃Q.B,∃R.C⊥, . . . , . . . ,∃P .A, . . .} (A.21)

1.P .5 : {A}
1.R.6 : {C⊥}

1.Q.7 :
{
B
}

Notice that in call A.21 we introduce{A,∃Q.B,∃R.C⊥,∃P .A} in Visited.
The search now continues on the next prefix in the lexicographic order, that is 1.P .5. As

usual, we addKB-axioms first.

1 : {A, . . . ,∃Q.B,∃R.C⊥, . . . , . . . ,∃P .A, . . .} (A.22)

1.P .5 :
{
A, ¬A t (∃Q.B u ∃R.C⊥) , ¬B t ∃P .A

}
1.R.6 : {C⊥}
1.Q.7 : {B}

F.M. Donini, F. Massacci / Artificial Intelligence 124 (2000) 87–138 133

Then we must apply aβ-rule. Again we choose the first disjunction and the branch on
the left immediately closes. We are left with the following (right) branch:

1 : {A, . . . ,∃Q.B,∃R.C⊥, . . . , . . . ,∃P .A, . . .} (A.23)

1.P .5 :
{
A, ∃Q.B u ∃R.C⊥ , . . . ,¬B t ∃P .A

}
1.R.6 : {C⊥}
1.Q.7 : {B}

1 : {A, . . . ,∃Q.B,∃R.C⊥, . . . , . . . ,∃P .A, . . .} (A.24)

1.P .5 :
{
A, ∃Q.B , ∃R.C⊥ , . . . , . . . ,¬B t ∃P .A

}
1.R.6 : {C⊥}
1.Q.7 : {B}

We are still left with aβ-concept to reduce; we go to the left.

1 : {A, . . . ,∃Q.B,∃R.C⊥, . . . , . . . ,∃P .A, . . .} (A.25)

1.P .5 :
{
A,∃Q.B,∃R.C⊥, . . . , . . . , ¬B , . . .

}
1.R.6 : {C⊥}
1.Q.7 : {B}

This is where our use of NoGoods shows its usefulness: since{A,∃Q.B,∃R.C⊥,¬B} is
in NoGoods, we do not need to expand this branch any further. We stop the search closing
the branch and DFS returns 1.P .5.

This resultcannot be obtained with semantic branching. Indeed, if we had used semantic
branching in call A.5 we would have obtained the following branch:

1 :
{
A, . . . ,∃Q.B,∃R.C⊥, . . . , . . . ,∃P .A, B , . . .

}
1.P .5 : {A,∃Q.B,∃R.C⊥, . . . , . . . ,¬B, . . .}
1.R.6 : {C⊥}
1.Q.7 : {B}

Unfortunately, the knowledge that the conceptB is satisfied by the prefix 1 is of no avail
to close the search at 1.P .5.

The DFS algorithm returns 1.P .5 at the call (A.24). We continue with the right branch.

1 : {A, . . . ,∃Q.B,∃R.C⊥, . . . , . . . ,∃P .A,B, . . .} (A.26)

1.P .5 : {A,∃Q.B,∃R.C⊥, . . . , . . . ,∃P .A, . . .}
1.R.6 : {C⊥}
1.Q.7 : {B}

Since the set{A,∃Q.B,∃R.C⊥,∃P .A} is in Visited, we do not expand it.
The next prefix in the lexicographic order is 1.R.6. Now condition A2 is true with the
⊥-set{C⊥} and the DFS algorithm returns 1.R.6. We return up to call (A.20), where we

134 F.M. Donini, F. Massacci / Artificial Intelligence 124 (2000) 87–138

insert the set{A,∃Q.B,∃R.C⊥,∃P .A} among the NoGoods and return 1 and go back to
call (A.5).

Both right and left branch return the same prefix. Thus a new⊥-set is introduced:
{A,∃Q.B,∃R.C⊥,¬B t ∃P .A}. Since we do not store axioms of theKB, we insert the
smaller set{A,∃Q.B,∃R.C⊥}.

Returning through calls (A.4) inserts also another set in NoGoods (namely the
conjunction of the existentials) and finally call (A.3) inserts in NoGoods the⊥-set
{A,¬At (∃R.B u ∃R.C⊥),¬B t ∃P .A} for which we only store{A}.

Now we are back at the root of the tableau and we can branch on the right.

1 :
{
∃P .A ,¬A t (∃Q.B u ∃R.C⊥),¬B t ∃P .A

}
(A.27)

The second disjunct is reduced and thus we do not reduce it. Now we have to apply further
aβ-rule on the left and then the only availableπ(P)-rule.

1 :
{
∃P .A, ¬A ,

}
(A.28)

1 : {∃P .A,¬A,¬B t ∃P .A} (A.29)

1.P .8 :
{
A
}

Now {A} ∈NoGoods and therefore this branch can be immediately closed. So call (A.29)
returns 1, and the set{∃P .A,¬A} is also added to NoGoods.

We return to call (A.27) and branch on the right. Again we stubbornly do a pointless
branching because clearly the disjunct we have branched on does not contribute to the
search. Yet, in contrast with standard tableau method, pointless branching does not result
in (exponential) disaster:

1 :
{
∃P .A, ∃Q.B u ∃R.C⊥ , . . .

}
(A.30)

1 :
{
∃P .A, ∃Q.B , ∃R.C⊥ , . . .

}
(A.31)

then we start reducing theπ -concepts.

1 : {∃P .A,∃Q.B,∃R.C⊥,¬B t ∃P .A} (A.32)

1.P .9 :
{
A
}

1 : {∃P .A,∃Q.B,∃R.C⊥,¬B t ∃P .A} (A.33)

1.P .9 : {A}
1.R.10 :

{
C⊥

}
1 : {∃P .A,∃Q.B,∃R.C⊥, . . . , . . .} (A.34)

1.P .9 : {A}
1.R.10: {C⊥}

1.Q.11 :
{
B
}

F.M. Donini, F. Massacci / Artificial Intelligence 124 (2000) 87–138 135

Looking into NoGoods we find that the next lexicographic prefix 1.P .9 prefixes a⊥-set.
We can close the last branch without any further ado. When we return up the DFS tree new
⊥-sets are added. Although they are not needd in this example, they might be useful for
subsequent deductions.

References

[1] M. Abadi, M. Burrows, B. Lampson, G.D. Plotkin, A calculus for access control in distributed systems,
ACM Trans. Program. Lang. Syst. 15 (4) (1993) 706–734.

[2] N. Arai, A proper hierarchy of propositional sequent calculi, Theoret. Comput. Sci. 159 (2) (1996) 343–354.
[3] F. Baader, B. Hollunder, B. Nebel, H.-J. Profitlich, E. Franconi, An empirical analysis of optimization tech-

niques for terminological representation systems or: “making KRIS get a move on”, Appl. Intelligence 4 (2)
(1994) 109–132.

[4] D. Basin, S. Matthews, L. Vigano, A new method for bounding the complexity of modal logics, in:
G. Gottlob, A. Leitsch, D. Mundici (Eds.), Proc. 5th Kurt Gödel Colloquium, KGC’97, Lecture Notes in
Computer Science, Vol. 1289, Springer, Berlin, 1997, pp. 89–102.

[5] P. Baumgartner, U. Furbach, I. Niemelä, Hyper tableaux, in: J. Alferes, L. Pereira, E. Orlowska (Eds.),
Proc. 5th European Workshop on Logics in Artificial Intelligence (JELIA’96), Lecture Notes in Artificial
Intelligence, Vol. 1126, Springer, Berlin, 1996, pp. 1–17.

[6] P. Blackburn, E. Spaan, A modal perspective on computational complexity of attribute value grammar,
J. Logic Language and Inform. 2 (1993) 129–169.

[7] A. Borgida, P. Patel-Schneider, A semantics and complete algorithm for subsumption in the CLASSIC
description logic, J. Artificial Intelligence Res. 1 (1994) 277–308.

[8] M. Buchheit, F.M. Donini, A. Schaerf, Decidable reasoning in terminological knowledge representation
systems, J. Artificial Intelligence Res. 1 (1993) 109–138.

[9] D. Calvanese, G. De Giacomo, M. Lenzerini, What can knowledge representation do for semi-structured
data?, in: Proc. AAAI-98, Madison, WI, 1998, pp. 205–210.

[10] D. Calvanese, G. De Giacomo, M. Lenzerini, D. Nardi, R. Rosati, Description logic framework for
information integration, in: Proc. 6th International Conference on Principles of Knowledge Representation
and Reasoning (KR-98), Trento, Italy, 1998, pp. 2–13.

[11] M. Castilho, L. Fariñas del Cerro, O. Gasquet, A. Herzig, Modal tableaux with propagation rules and
structural rules, Fundamenta Informaticae 32 (3) (1997) 281–297.

[12] S. Cerrito, M. Cialdea Myer, Hintikka multiplicities in matrix decision methods for some propositional
modal logics, in: D. Galmiche (Ed.), Proc. International Conference on Analytic Tableaux and Related
Methods (TABLEAUX’97), Lecture Notes in Artificial Intelligence, Vol. 1227, Springer, Berlin, 1997,
pp. 138–152.

[13] C. Courcoubetis, M. Vardi, P. Wolper, M. Yannakakis, Memory efficient algorithms for the verification of
temporal properties, Formal Methods in System Design 1 (1992) 275–288.

[14] G. De Giacomo, M. Lenzerini, Tbox and abox reasoning in expressive description logics, in: Proc.
5th International Conference on the Principles of Knowledge Representation and Reasoning (KR-96),
Cambridge, MA, Morgan Kaufmann, Los Altos, CA, 1996, pp. 316–327.

[15] G. De Giacomo, M. Lenzerini, A uniform framework for concept definitions in description logics,
J. Artificial Intelligence Res. 6 (1997) 87–110.

[16] G. De Giacomo, F. Massacci, Combining deduction and model checking into tableaux and algorithms for
Converse-PDL, to appear in Information and Computation (accepted in 1997). An online version is at
http://www.academicpress.com/i&c on IDEALfirst. A preliminary version appeared in: Proc. CADE-96,
Lecture Notes in Artificial Intelligence, Vol. 1104, 1996, Springer, Berlin, pp. 613–628.

[17] R. Dechter, Enhancement schemes for constraint processing: Backjumping, learning, and cutset decompo-
sition, Artificial Intelligence 41 (3) (1990) 273–312.

[18] S. Demri, Uniform and non uniform strategies for tableaux calculi for modal logics, J. Appl. Non-Classical
Logics 5 (1) (1995) 77–96.

136 F.M. Donini, F. Massacci / Artificial Intelligence 124 (2000) 87–138

[19] P. Devambu, R.J. Brachman, P.J. Selfridge, B.W. Ballard, LASSIE: A knowledge-based software information
system, Comm. ACM 34 (5) (1991) 36–49.

[20] F.M. Donini, G. De Giacomo, F. Massacci, EXPTIME tableaux forALC, in: L. Padgham, E. Franconi,
M. Gehrke, D. McGuinness, P. Patel-Schneider (Eds.), Proc. 1996 Description Logic Workshop (DL-96),
no. WS-96-05 in AAAI Technical Reports Series, AAAI Press/MIT Press, 1996, pp. 107–110.

[21] F.M. Donini, M. Lenzerini, D. Nardi, W. Nutt, Tractable concept languages, in: Proc. IJCAI-91, Sydney,
Australia, 1991, pp. 458–463.

[22] F.M. Donini, M. Lenzerini, D. Nardi, W. Nutt, The complexity of concept languages, Inform. and
Comput. 134 (1997) 1–58.

[23] J. Doyle, R. Patil, Two theses of knowledge representation: Language restrictions, taxonomic classification,
and the utility of representation services, Artificial Intelligence 48 (1991) 261–297.

[24] A.E. Emerson, Automated temporal reasoning about reactive systems, in: F. Moller, G. Birtwistle (Eds.),
Logics for Concurrency (Structure versus Automata), Lecture Notes in Computer Science, Vol. 1043,
Springer, Berlin, 1996, pp. 41–101.

[25] R. Fagin, J.Y. Halpern, Y. Moses, M.Y. Vardi, Reasoning about Knowledge, MIT Press, Cambridge, MA,
1995.

[26] L. Fariñas del Cerro, O. Gasquet, Tableaux based decision procedures for modal logics of confluence and
density, Fundamenta Informaticae 40 (4) (1999) 317–333.

[27] N.J. Fischer, R.E. Ladner, Propositional dynamic logic of regular programs, J. Comput. System Sci. 18
(1979) 194–211.

[28] M. Fitting, Proof Methods for Modal and Intuitionistic Logics, Reidel, Dordrecht, 1983.
[29] M. Fitting, Basic modal logic, in: D. Gabbay, C. Hogger, J. Robinson (Eds.), Handbook of Logic in Artificial

Intelligence and Logic Programming, Vol. 1, Oxford University Press, Oxford, 1993, pp. 365–448.
[30] E. Franconi et al. (Eds.), Proc. 1998 Internat. Workshop on Description Logics, Technical Report

ITC-IRST 9805-03, 1998. Available as CEUR Publication at http://SunSite.Informatik.RWTH-Aachen.
DE/Publications/CEUR-WS/Vol-11/.

[31] R. Gerth, D. Peled, M. Vardi, P. Wolper, Simple on-the-fly automatic verification of linear temporal logic, in:
Protocol Specification Testing and Verification (PSVT-95), Warsaw, Poland, Chapman Hall, 1995, pp. 3–18.

[32] E. Giunchiglia, F. Giunchiglia, R. Sebastiani, A. Tacchella, SAT vs. translation based decision procedures
for modal logics: A comparative evaluation, J. Appl. Non-Classical Logics 10 (2) (2000).

[33] E. Giunchiglia, A. Tacchella, A subset-matching size-bounded cache for satisfiability in modal logics,
in: R. Dyckhoff (Ed.), Proc. 4th International Conference on Analytic Tableaux and Related Methods
(TABLEAUX 2000), Lecture Notes in Artificial Intelligence, Vol. 1847, Springer, Berlin, 2000.

[34] F. Giunchiglia, R. Sebastiani, Building decision procedures for modal logics from propositional decision
procedures—The case study of modal K, in: M.A. McRobbie, J.K. Slaney (Eds.), Proc. 13th International
Conference on Automated Deduction (CADE’96), Lecture Notes in Artificial Intelligence, Vol. 1104,
Springer, Berlin, 1996, pp. 583–597.

[35] J. Glasgow, G. MacEwen, P. Panangaden, A logic for reasoning about security, ACM Trans. Comput.
Syst. 10 (3) (1992) 226–264.

[36] R. Goré, Tableau methods for modal and temporal logics, in: M. D’Agostino, D. Gabbay, R. Hähnle (Eds.),
Handbook of Tableau Methods, Kluwer Academic, Dordrecht, 1999.

[37] V. Haarslev, R. Möller, Consistency testing: The RACE experience, in: R. Dyckhoff (Ed.), Proc. 4th
International Conference on Analytic Tableaux and Related Methods (TABLEAUX 2000), Lecture Notes
in Artificial Intelligence, Vol. 1847, Springer, Berlin, 2000.

[38] J.Y. Halpern, Y. Moses, A guide to completeness and complexity for modal logics of knowledge and belief,
Artificial Intelligence 54 (1992) 319–379.

[39] A. Heuerding, M. Seyfried, H. Zimmermann, Efficient loop-check for backward proof search in some non-
classical logics, in: Proc. 5th Workshop on Theorem Proving with Analytic Tableaux and Related Methods
(TABLEAUX’96), Lecture Notes in Artificial Intelligence, Vol. 1071, Springer, Berlin, 1996, pp. 210–225.

[40] J. Hoffman, J. Koehler, A new method to index and query sets, in: Proc. IJCAI-99, Stockholm, Sweden,
Morgan Kaufmann, Los Altos, CA, 1999, pp. 462–467.

[41] I. Horrocks, Using an expressive description logic: FaCT or fiction?, in: Proc. 6th International Conference
on Principles of Knowledge Representation and Reasoning (KR-98), Trento, Italy, Morgan Kaufmann, Los
Altos, CA, 1998, pp. 636–647.

F.M. Donini, F. Massacci / Artificial Intelligence 124 (2000) 87–138 137

[42] I. Horrocks, Benchmark analysis with FaCT, in: R. Dyckhoff (Ed.), Proc. 4th International Conference
on Analytic Tableaux and Related Methods (TABLEAUX 2000), Lecture Notes in Artificial Intelligence,
Vol. 1847, Springer, Berlin, 2000, pp. 62–66.

[43] I. Horrocks, P.F. Patel-Schneider, Optimizing description logic subsumption, J. Logic Comput. 9 (3) (1999)
267–293.

[44] I. Horrocks, U. Sattler, A description logic with transitive and inverse roles and role hierarchies, J. Logic
Comput. 9 (3) (1999) 385–410.

[45] I. Horrocks, U. Sattler, S. Tobies, Practical reasoning for expressive description logics, J. Interest Group in
Pure and Applied Logic 8 (3) (2000) 239–263.

[46] I. Horrocks, S. Tobies, Reasoning with axioms: Theory and practice, in: A.G.F. Cohen, B. Selman (Eds.),
Proc. 7th International Conference on Principles of Knowledge Representation and Reasoning (KR’2000),
Breckenridge, CO, Morgan Kaufmann, Los Altos, CA, 2000, pp. 285–296.

[47] U. Hustadt, R.A. Schmidt, On the relation of resolution and tableaux proof systems for description logics, in:
T. Dean (Ed.), Proc. IJCAI-99, Stockholm, Sweden, Morgan Kaufmann, Los Altos, CA, 1999, pp. 110–115.

[48] U. Hustadt, R.A. Schmidt, An empirical analysis of modal theorem provers, J. Appl. Non-Classical
Logics 9 (4) (1999) 479–522.

[49] D. Kozen, J. Tiuryn, Logic of programs, in: J. van Leeuwen (Ed.), Handbook of Theoretical Computer
Science, Vol. II, Elsevier Science (North-Holland), Amsterdam, 1990, Chapter 14, pp. 789–840.

[50] S. Kripke, Semantical analysis of modal logic I: Normal propositional calculi, Zeitschrift fur Mathematische
Logik und Grundlagen der Mathematik 9 (1963) 67–96.

[51] R.E. Ladner, The computational complexity of provability in systems of modal propositional logic, SIAM
J. Comput. 6 (3) (1977) 467–480.

[52] H.J. Levesque, Foundations of a functional approach to knowledge representation, Artificial Intelligence 23
(1984) 155–212.

[53] H.J. Levesque, R.J. Brachman, A fundamental tradeoff in knowledge representation and reasoning, in: R.J.
Brachman, H.J. Levesque (Eds.), Readings in Knowledge Representation, Morgan Kaufmann, Los Altos,
CA, 1985, pp. 41–70.

[54] F. Massacci, Strongly analytic tableaux for normal modal logics, in: A. Bundy (Ed.), Proc. 12th International
Conference on Automated Deduction (CADE’94), Lecture Notes in Artificial Intelligence, Vol. 814,
Springer, Berlin, 1994, pp. 723–737.

[55] F. Massacci, Simplification: A general constraint propagation technique for propositional and modal
tableaux, in: H. de Swart (Ed.), Proc. 2nd International Conference on Analytic Tableaux and Related
Methods (TABLEAUX’98), Lecture Notes in Artificial Intelligence, Vol. 1397, Springer, Berlin, 1998,
pp. 217–231.

[56] F. Massacci, Tableaux methods for formal verification in multi-agent distributed systems, J. Logic
Comput. 8 (3) (1998) 373–400.

[57] F. Massacci, Single step tableaux for modal logics: Methodology, computations, algorithms, J. Automat.
Reason. 24 (3) (2000) 319–364.

[58] F. Massacci, F.M. Donini, Design and results of TANCS-00, in: R. Dyckhoff (Ed.), Proc. 4th International
Conference on Analytic Tableaux and Related Methods (TABLEAUX 2000), Lecture Notes in Artificial
Intelligence, Vol. 1847, Springer, Berlin, 2000.

[59] K. Mehlhorn, S. Nueher, M. Seel, C. Uhrig, The LEDA User Manual, http://www.mpi-sb.mpg.de/LEDA/,
Max-Planck-Institut für Informatik and Algorithmic Solutions Software GmbH, 1998.

[60] B. Nebel, Computational complexity of terminological reasoning in BACK, Artificial Intelligence 34 (3)
(1988) 371–383.

[61] B. Nebel, H.-J. Bürckert, Reasoning about temporal relations: A maximal tractable subclass of Allen’s
interval algebra, J. ACM 42 (1) (1995) 43–66.

[62] H.J. Ohlbach, Translation methods for non-classical logics—An overview, J. Interest Group in Pure and
Applied Logic 1 (1) (1993) 69–89.

[63] F. Oppacher, E. Suen, HARP: A tableau-based theorem prover, J. Automat. Reason. 4 (1988) 69–100.
[64] P. Patel-Schneider, DLP system description, in: E. Franconi et al. (Eds.), Proc. 1998 Internat. Workshop

on Description Logics, Technical Report ITC-IRST 9805-03, 1998. Available as CEUR Publication at
http://SunSite.Informatik.RWTH-Aachen.DE/Publications/CEUR-WS/Vol-11/.

138 F.M. Donini, F. Massacci / Artificial Intelligence 124 (2000) 87–138

[65] V.R. Pratt, A practical decision method for propositional dynamic logic, in: Proc. 10th ACM Symposium on
Theory of Computing (STOC’78), San Diego, CA, 1978, pp. 326–337.

[66] V.R. Pratt, Models of program logics, in: Proc. 20th Annual Symposium on the Foundations of Computer
Science (FOCS’79), IEEE Computer Society Press, 1979, pp. 115–122.

[67] J. Renz, B. Nebel, On the complexity of qualitative spatial reasoning: A maximal tractable fragment of the
region connection calculus, Artificial Intelligence 108 (1–2) (1999) 69–123.

[68] K. Schild, A correspondence theory for terminological logics: Preliminary report, in: Proc. IJCAI-91,
Sydney, Australia, Morgan Kaufmann, Los Altos, CA, 1991, pp. 466–471.

[69] R. Schmidt, Decidability by resolution for propositional modal logics, J. Automat. Reason. 22 (4) (1999)
379–396.

[70] M. Schmidt-Schauß, G. Smolka, Attributive concept descriptions with complements, Artificial Intelli-
gence 48 (1991) 1–26.

[71] N. Shanin, G.Yu. Davydov, G.E. Mints, V.P. Orenkov, A.O. Slisenko, An algorithm for machine search of a
natural logical deduction in a propositional calculus, in: J. Siekmann, G. Wrightson (Eds.), Automation of
Reasoning (Classical Papers on Computational Logic), Vol. 1 (1957–1966), Springer, Berlin, 1983.

[72] R.M. Smullyan, First Order Logic, Springer, Berlin, 1968. Republished by Dover, New York, 1995.
[73] R.M. Smullyan, Uniform Gentzen systems, J. Symbolic Logic 33 (4) (1968) 549–559.
[74] R. Sundar, R. Tarjan, Unique binary-search-tree representations and equality testing of sets and sequences,

SIAM J. Comput. 23 (1) (1994) 24–44.
[75] S. Tobies, A PSPACE algorithm for graded modal logic, in: H. Ganzinger (Ed.), Proc. 16th International

Conference on Automated Deduction (CADE’99), Lecture Notes in Artificial Intelligence, Vol. 1632,
Springer, Berlin, 1999, pp. 52–66.

[76] A. Urquhart, The complexity of propositional proofs, Bull. Symbolic Logic 1 (4) (1995) 425–467.
[77] M. Vardi, P. Wolper, Automata-theoretic techniques for modal logics of programs, J. Comput. System Sci. 32

(1986) 183–221.
[78] M. Vardi, P. Wolper, Reasoning about infinite computations, Inform. and Comput. 115 (1) (1994) 1–37.
[79] J.R. Wright, E.S. Weixelbaum, G.T. Vesonder, K.E. Brown, S.R. Palmer, J.I. Berman, H.H. Moore,

A knowledge-based configurator that supports sales, engineering, and manufacturing at AT&T network
systems, AI Magazine 14 (3) (1993) 69–80.

[80] D. Yellin, An algorithm for dynamic subset and intersection testing, Theoret. Comput. Sci. 129 (2) (1994)
397–406.

