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Combining Deduction and Model Checking into
Tableaux and Algorithms for Converse-PDL1

Giuseppe De Giacomo and Fabio Massacci2

Dip. di Informatica e Sistemistica, Universita� di Roma ``La Sapienza,'' Italy

This paper presents a prefixed tableaux calculus for Propositional
Dynamic Logic with Converse based on a combination of different
techniques such as prefixed tableaux for modal logics and model checkers
for +-calculus. We prove the correctness and completeness of the
calculus and illustrate its features. We also discuss the transformation of
the tableaux method (naively NEXPTIME) into an EXPTIME algorithm.
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1. INTRODUCTION

Propositional dynamic logics (PDLs) are modal logics introduced in [10] to
model the evolution of the computation process by describing the properties of
states reached by programs during their execution [15, 24, 27]. Over the years,
PDLs have been proved to be a valuable formal tool in computer science, logic,
computational linguistics, and artificial Intelligence far beyond their original use for
program verification (e.g., [4, 12, 14, 15, 24, 23]).

In this paper we focus on Converse-PDL (CPDL) [10], obtained from the basic
logic PDL by adding the converse operator to programs, which is interpreted as the
converse of the (input�output) relation interpreting the program. A possible use of
the converse is for formalizing preconditions; e.g., [?&] . can be interpreted as
``before running program ?, property . must hold.''

There are certain applications of PDLs where the ability of denoting converse
programs is essential. For instance, recent research in knowledge representation [7,
5, 23] points out a tight correspondence between PDLs and a family of class-based
knowledge representation formalisms, known as the description logics [29]. Such
research shows that, by means of suitable polynomial reductions, inference in very
expressive description logics can be rephrased as inference in CPDL. Thus, inference
procedures for CPDL can be exploited as the reasoning core for such knowledge
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representation formalisms. Indeed, this was one of the main motivations that has
led us to look into inference procedures for CPDL.

From the formal point of view, CPDL shares many characteristics with the basic
PDL, and many results for PDL extend to CPDL without difficulties. For instance
the proofs of finite model property for PDL in [10] are easily extended to CPDL,
as well as the proof of EXPTIME-completeness in [21]. However, efficient��in
practical cases��inference procedures have been successfully developed for PDL, but
their extension to CPDL has proved to be a difficult task and unsuccessful till now
(to the best of our knowledge).

To be precise, inference procedures based on model enumeration [10, 21] or on
automata on infinite trees [27] have been extended to converse of programs. Yet,
these procedures are more suited for proving theoretical results than for being used
in applications. Tableaux procedures for PDL [20, 22], which are typically simpler
in practice, have never been extended. In [20] Pratt said ``We do not have a practi-
cal approach to this difficulty with converse, and our practical procedure therefore
does not deal with converse.''

In this paper we propose a prefixed tableaux calculus for PDL and extend it to
deal with the converse operator, thus obtaining the first tableaux calculus for
CPDL. The tableaux-based technique we propose here combines in a natural way
a number of intuitions and techniques that have been developed for validity�
satisfiability checking [9, 17, 20, 22, 27, 28] and model checking [3, 17, 25, 24]
with prefixed tableaux [11, 13, 18] for modal logics. Indeed, the work in this paper
confirms that the combination of model checking and theorem proving techniques,
as witnessed also at the recent CAV conference [1], may be very fruitful also for
purely deductive techniques.

1.1. Plan of the Paper

In the rest of the paper we present at first the intuitions underlying our work and
emphasize the possibility of merging theorem proving and model checking techni-
ques for dynamic and temporal logics (Section 2). We introduce some notions on
CPDL (Section 3), present the tableaux calculus (Section 4), give examples
(Section 5) and prove its soundness and completeness (Section 6). Finally we sketch
the transformation of NEXPTIME tableaux into EXPTIME algorithms (Section 7)
and conclude (Section 8).

2. TABLEAUX AND MODEL CHECKING TECHNIQUES

The use of tableaux for modal logics dates back to Kripke (see [13] for a recent
overview or [11] for a classical treatment) and efficient procedures based on depth
first search are known [14, 16]. Tableaux methods for satisfiability checking have
been developed for the basic PDL [20, 22], but not for many extensions, such as
CPDL, whereas automata theoretic techniques are available [26, 27].

The problem is that PDLs, temporal logics, or the modal +-calculus cannot be
tamed only by traditional tableaux methods for logics of knowledge and belief:
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�� Some formulae impose fixpoint properties on paths (in the rest of the paper
we call them iterated eventualities or necessities) so that the traditional local
validation of a model is not enough.

�� PDLs, like the modal +-calculus, have an added difficulty w.r.t. temporal
logics (which have only one transition, next, and simpler eventualities) since
programs can be extremely complicated and deciding whether two states are
reached by a program may have the same complexity of the original problem.

�� The converse operator (or past for temporal logics) imposes constraints on
previously visited states so that these must be reprocessed.

�� The models of a formula can be exponential in its size and therefore direct
depth-first search with backtracking at choice points may lead to a double
exponential algorithm (although decidability for these logics is in EXPTIME).

Tableaux approaches for PDLs (and expressive temporal logics) [20; 22; 9; or 17,
Sect. 5.1�5.3] cope with these problems in two conceptual phases:

1. Construct an AND-OR graph based on the Fisher�Ladner closure which
satisfies the constraints of a normal modal logic, where nodes with the same
formulae are identified and nodes that are locally inconsistent are deleted.

2. model check the pseudo-model thus obtained for iterated eventualities
(deleting nodes with unfulfilled eventualities).

The separation into two phases is present also in automata techniques where the
automaton corresponding to a formula3 is the product of two automata: one for
checking local modal conditions and one for eventualities [26�28].

The first intuition is to build the AND-OR graph of phase 1 in an incremental
fashion, as particles tableaux for temporal logics [17],

Intuition 1. A node of the tableau is a set of formulae and new nodes are
generated only by reducing already present formulae.

In this way we generate nodes and check for local consistency on-the-fly. In
contrast with maximal model techniques [21], tableaux methods generate all
subsets of the Fisher�Ladner closure only in the worst cases.

The idea of proceeding in an incremental fashion can be pushed further by
executing the two phases, building the AND-OR graph and model checking even-
tualities, at the same time4. In this way we need not wait for the construction of a
(large) model just to discard it with the very first eventuality we checked.

Intuition 2. Merge the pseudomodel checking stage for iterated eventualities
with the incremental tableaux construction.

Thus an algorithm may close a branch due to an unfulfilled eventuality before the
construction of the whole model, improving its average time behaviour.
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For temporal logics this problem has been solved [3, 17]: as soon as the same
node is repeated along the path and we find again the same eventuality (i.e., the
same formula) we conclude that this is a bad (unfulfilling) loop.

For PDL�CPDL there are more difficulties: to conclude that an eventuality of the
form ( \*) . is not fulfilled, it is not enough to ``find again'' the same eventuality
into a duplicate node. One must verify that the two nodes are connected by some
\-steps and \ can be a complex program. This problem does not arise (mutatis
mutandis) in temporal logic because \ can only be ``next''.

The solution developed by Pratt in [22] has been the introduction of an operator O
to link every eventuality of the form ( \) . with the corresponding fulfilling node where
. holds. However this may lead to a cumbersome tableau and to many unnecessary rela-
tions between formulae. Moreover it does not completely address the issue of merging
the two phases, because one needs to construct the transitive closure of O and this can
be done only after the pseudomodel construction is terminated. The automata theoretic
approaches [27, 28], instead of building such O -links, use suitable eventuality
automata, which also require the construction of the pseudomodel first.

There is another way that fully addresses this problem, based on the same
intuition of history variables, i.e., ``auxiliary variables whose values in the current
states reflect all the facts we need to know about the past'' [17]5. This idea has
been used for model checking techniques for the modal +-calculus, introducing new
propositional variables (names) for denoting fixpoints [24].

If we introduce a name X to denote ( \*) . and use the name for subsequent
reductions then we have a direct way to identify, by just looking at them, when two
nodes are connected by some \-steps and therefore use the simple check of
temporal logics (repeated eventually into duplicated nodes).

Intuition 3. Associate iterated eventualities with new names X.( \*) . and
define reduction rules which use the name rather than the formula.

Next we focus on the converse operator. One of the intuitions used for automata
theoretic techniques [27] is to use two-way tree models where a transition can go
from the current state to its child (direct) or vice versa (converse). We combine this
idea with the notion of prefixed tableaux developed for modal logics of knowledge
and belief [11, 18] to get the following:

Intuition 4. Associate to each a formula a prefix formed by the sequence of
states and direct�converse transitions starting from the initial state and ending in
the current state where the formula is supposed to hold. Devise rules which take
into account both formulae and prefixes.

In this framework we simply devise tableaux rules for the converse of an (atomic)
program with the techniques for symmetric modal logics B or S5 from [18]:

Intuition 5. Necessity-like formulae with direct programs such as [A] . move
formulae forward when the last prefixed transition is direct and backward when the
last transition is converse. [A&] does the opposite.
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The next step, when we look for duplicated nodes, is to take into account what
has been also noted for automata [27]: ``we also have to know what program
connects this node to its predecessor.'' With prefixed tableaux this check is
straightforward: it is embedded into the label of the formulae of each state.

We still need to guess a small subset of formulae that characterizes past computa-
tions, especially when we are trying to discard unfulfilled eventualities6. The
existence of a set characterizing past symmetric computations was pointed out in
[11] and used in [6] to provide a translation of CPDL into PDL.

Intuition 6. To identify two duplicate nodes the formulae which compose them
must also completely specify the past (the arriving program), so we use analytic cut
on a small subset of subformulae to complete the nodes.

Last, we want to lower the complexity of the tableaux procedure from
NEXPTIME to EXPTIME. The key point is that to avoid exponential behavior on
average it is not enough to store only the visited nodes as in [22]. We must also
track the nodes already proven to be inconsistent as in [3].

Intuition 7. Use a global data structure to store bad sets which have been
proven to lead to contradictions in previous expansions of the tableau. Before
expanding a node always check that it is not a previously seen bad set.

3. SYNTAX AND SEMANTICS OF CPDL

We sketch some basic notions on CPDL (see [15, 24] for an introduction).
If A is a set of direct atomic programs (a, b, etc.), P a set of propositional letters

(P, Q, etc.), the formulae ., � and the programs \, / of CPDL are

., � ::=P | c. | . 7 � | ( \) . \, / ::=a | \; / | \ _ / | \* | \& | .?

Other connectives can be seen as abbreviations��e.g., [ \] .#c( \) c.. W.l.o.g.
we restrict the converse operator to atomic programs, by using equivalences such
as (\; /)&#(/&; \&) or (\*)&#(\&)*. The metavariable A denotes either a
direct or a converse atomic program (considering (a&)&.a) and we refer to it as
an atomic program, without specifying direct or converse. In the following 8 is the
formula to be proved valid or satisfiable.

The semantics is based on Kripke structures [15]: a model is a pair (W, I )
where W is a nonempty set of states and I an interpretation s.t. for every direct
atomic program a it is aI�W_W and for every propositional letter P it is
PI�W. The interpretation I is then extended as follows:

(� 7 .)I=.I & �I (c.)I=W&.I

(( \) .)I=[w | _v # W s.t. (w, v) # \I and v # .I]

(\; /)I=[(w, v) | _u(w, u) # \I and (u, v) # /I]
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(\ _ /)I=\I _ /I

(\*)I=reflexive and transitive closure of \I

(\&)I=[(v, w) | (w, v) # \I]

(.?)I=[(w, w) | s # .I].

In the following we write w<. for w # .I.

Definition 1. A CPDL formula 8 is satisfiable iff there is a model (W, I)
where (8)I is not empty. A formula 8 is valid if for every model (W, I) it is
(8)I=W.

The Fisher�Ladner closure of a formula 8 [10, 15] is defined inductively as:

�� 8 # CL(8);

�� if . # CL(8) then c. # CL(8), provided . does not start with c;

�� if c., . 7 � or ( \) . are in CL(8) then ., � # CL(8);

�� if ( \; /) . # CL(8) then ( \)(/) . # CL(8);

�� if ( \ _ /) . # CL(8) then both ( \) . and (/) . are in CL(8);

�� if (�?) . # CL(8) then � # CL(8);

�� if ( \*) . # CL(8) then ( \)( \*) . # CL(8).

To establish the truth value of a formula 8 in a model it is sufficient to check the
value of the formulae in CL(8) for every state of the model [10, 15]. Both number
and size of the formulae in CL(8) are linearly bounded by the size of 8.

4. PREFIXED TABLEAUX FOR CPDL

Prefixed tableaux are based on prefixed formulae, i.e. pairs (_ : .) where . is a
CPDL formula and _ is an alternating sequence of integers and atomic programs
called prefix defined as _ ::=1 | _.a.n | _.a&.n.

Intuitively _ denote the sequence of two-way transitions (in the sense of [27]) of
states and atomic programs A that starts from the initial state 1 and reaches the
state where . holds. For instance the prefix 1 .a& .2 .b .3 .a . 5 .c&.4 corresponds to
w1 �

a
w2 �

b
w3 �

a
w5 �

c
w4 . PDL has only one-way transitions.

We use the standard initial subsequence ordering C=��i.e., impose _C&_ .A .n for
every _, A, and n, and take the reflexive�transitive closure.

The definition of branch and tableau is standard [11, 13, 18]. A tableau T is a
rooted tree where nodes are labeled with formulae, a branch B is a path from the
root to a leaf, and a segment S is a path from the root to a node of the tree. If
a segment terminates into a branching due to a disjunctive rule (;, [test],
(choice) , X, LB(A)) we denote the left-hand extension of S (the left ``branch'' par
abuse de language) with Sl and the right-hand extension with Sr . Intuitively a
branch is a (tentative) model for the initial formula.

A prefix is present in a segment if there is a prefixed formula with that prefix
already in the segment, and it is new if it is not already present. In the following
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FIG. 1. Propositional and program tableau rules.

we say that the pair (_0 , S0) is shorter than (_, S) if either (i) _0 is a proper
initial subsequence of _ and S0 is an initial subsegment of S or (ii) _=_0 and S0

is a proper initial subsegment of S.
Figure 1 shows the rules for and, not, sequence, choice and test.
The rules for CPDL formulae starting with an atomic program A are shown

in Fig. 2 and are the usual ?-rule for (A) .-formulae and the &-rule for
[A] .-formulae. The converse requires a rule which is analogous of the B rule
for symmetric modal logics [18]: we use both forward (F) and backward (B) rules
for necessities.

The rules for iteration combines prefixed tableaux with the ideas of [25, 24] for
model checking fixpoints in the modal +-calculus7 (Fig. 3). In practice when an
iterated eventuality ( \*) . is found, we introduce a new propositional variable X
(possibly with indices), set a side condition X.( \*) ., and use the X-rule for
further reductions. The set X of propositional variables introduced in this way is
distinct from the set P of propositional letters which are used for formulae.

The use of _ : c. in the right part of the X rule is motivated by the definition
of ( \*) . as a least fixpoint: \-steps are performed while c. is true, stopping as
soon as . becomes true. Indeed ( \*) .#( (c.?; \)*) .#(while c. do
\) � is valid in CPDL [10].

As mentioned in Section 2, these variables are introduced to detect the presence
of \ loops which do not fulfill ( \*) .. Using such variables, we can eliminate the
O (and its transitive closure) introduced by Pratt [22].

Remark 2. The combination of converse } & with iteration } * is harder than
both of them in isolation: although [A]B is enough for CPDL without iteration and
X rules are enough for PDL, their combination is not enough for full CPDL.

Iteration } * constructs properties with unbounded delays, such as (a*) P, while
converse } & can be used for late discoveries, such as (a)[a&] cP, which impose
a property on the current state after the execution of a program. Their combination
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FIG. 2. Transitional rules for CPDL.

creates bombs, such as P 7 (a*)[(a&)*] cP, which after an unbounded number
of iterations, make the initial state inconsistent.

So, we use a restricted analytic cut LB (look behind), presented in Fig. 4, where
8 is the formula to be proved valid or satisfiable.

Since the cut is analytic and its application strongly restricted, its introduction
does not destroy the decidability of the calculus (although its unnecessary applica-
tion may choke the proof search).

In the following, if S is a segment (possibly a branch) of a tableau we indicate
with S�_ the set of prefixed formulae in S labeled with the prefix _; i.e.,

S�_=[. | (_ : .) # S].

Definition 3. A prefix _ is reduced in S if (A)-rules are the only rules not yet
applied to formulae of S�_. It is fully reduced if all rules have been applied.

Two prefixes are ``a different name for the same state'' in CPDL (where the past
matters) if they (i) have the same properties (dynamic formulae) and (ii) are
reachable by the same atomic program. An identical requirement is used for
automata [27]. Point (ii) is not necessary for PDL.

Definition 4. A prefix _ in the segment S is a copy of a prefix _0 in S0 if (i)
S�_=S0 �_0 , and (ii) both have the form _$ .A .n and _$0 .A .m for the same atomic
program A. If distinct Xi , Xj are present in _0 and _ we consider them equal if they
represent the same iterated eventuality, i.e., Xi .( \*) ..Xj .

Definition 5. A branch B is ?-completed if (i) all prefixes are reduced, and (ii)
for every _ which is not fully reduced there is a pair (_0 , S0) shorter than (_, B)
s.t. _0 is fully reduced in the segment S0 and _ is a copy of _0 in B.

FIG. 3. Rules for V-iteration operator.
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FIG. 4. Look behind analytic cut.

If _ : X has been considered equal to a _0 : X0 we say that X collapses into X0 .
By ?-completenes, collapsed X cannot generate new _$ : X with longer _$. The intui-
tion for ?-completeness is that (A)-rules are not applied to formulae belonging to
copies.

Definition 6. An eventuality X.( \*) . is fulfilled in segment S iff there is
either a _ : X in S such that _ : . is also in S or X has been collapsed into an X0

which is fulfilled.

Definition 7. A branch B is contradictory iff it contains both _ : P and _ : cP,
for some P and some _. A ?-completed branch B is ignorable iff there is an
eventuality X which is not fulfilled.

In a ?-completed branch B, an eventuality X cannot collapse (directly or tran-
sitively) into itself and be fulfilled at the same time, since we have either _ : . or
_ : c. in the X-rule. Indeed suppose we tried to collapse an X from (_, B) into
a shorter (_0 , S0) also with _0 : X. Obviously _0 cannot fulfill X, otherwise the
branch would only have had _0 : . but no other X and therefore a longer (_, B)
with X could not have been generated at all. On the contrary the right-hand
``branch'' S0r has another instance of X, i.e., _0 : ( \) X but also _0 : c.. It can
generate the longer (_, B) by reducing ( \) X. However if _ must be a copy of _0

this means that also _: c. must be there and _ would not fulfill X.
In a nutshell we found an unsuccessful loop [22]: we try to fulfill an eventuality

( \*) . with X-rules; the left-hand ``branches'' with _ : . are always discarded;
finally we meet a prefix _| with the same formulae of an already seen prefix; so we
conclude that we could never fulfill it and give up. We can express this fact with the
following sufficient condition to close ignorable branches:

Proposition 8. A branch B is ignorable if there is an X which collapses (directly
or transitively) into itself provided the corresponding shorter (_0 , S0) is fully
reduced.

Fully reduced means also that cut has been applied in all possible ways and this is
the only place where we need it: we must be sure that two prefixes are identical also
with respect to the past, at least w.r.t. the Fisher�Ladner closure.

Criterion 1. Apply LB(A) only if the prefixed formulae _ .A .n : X and
_ .A .n : c. occurs in the branch and we are trying to collapse X into an X0 (also
itself).

Definition 9. A tableau is closed if all branches are either contradictory or
ignorable. A tableau is open if at least one branch is open (?-completed and neither
contradictory nor ignorable).
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Definition 10. A tableau validity proof for the formula 8 in the logic CPDL is
the closed tableau starting with (1 : c8).

For satisfiable formulae a model can be built from an open branch, as is done
in the completeness proof.

5. EXAMPLES AND QUESTIONS

We assume that we have rules for the necessity operator which can be easily
derived from the corresponding [rule] described in Section 4.

A simple example where converse forces us to ``move'' back and forth among
states is given in Fig. 5. An example of an ignorable branch is given in Fig. 6.

There are also interesting questions which can be better clarified by examples.

Question 11. Why X different are introduced each time the same ( \*) . is met
with a different prefix if later on we identify them in the loop checking?

The propositional variables X.( \*) . are an automatic bookkeeping system:
if we introduce _0 : X at a certain stage and, later on, we find a longer _ with _ : X,
then we can infer, without further checks that there are some (\)-steps from _0 to
_, no matter how complicated \ is. Hence, if _ : . is present in the branch, we can
conclude that the initial occurrence of ( \*) . and all subsequent occurrences
(represented by X) are fulfilled.

If we reused the same X for a different prefix _1 : ( \*) . in the branch, then we
could not know anymore whether _ follows from _0 or from _1 . We would have
to wait for the completion of the (pseudo)model and then model check it, which is
exactly what we are trying to avoid.

Yet Xi are just names for the corresponding ( \*) . and we want to fulfill the
formula and not a name. If we find out that Xi .( \*) ..Xj this means that they

FIG. 5. Tableau proof.
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FIG. 6. Another tableau proof.

are just different names for the same property: if a state _0 fulfills the same formulae
of _ plus Xi then it clearly fulfills the Xj occurring in _ and thus we can identify
the two formulae and hence the states.

For instance try the following (without LB(A), since there is no converse):

8SAT .P 7 [b*]((b) P 7 (a*) cP) 8UNSAT .8SAT 7 [b*; a*]P.

The consequences of the wrong usage of X are shown in Fig. 7 for 8SAT .

Question 12. Is cut really necessary?

Cut is eliminable if formulae do not contain both converse and iteration
operators since the soundness proof does not require its use. The difficult formula
is [(\&)*] which imposes unbounded constraints on the past. Check the following
formulae without cut and with a (modified) X without the _ : c. on the right.

FIG. 7. Erroneous tableaux proofs.
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9UNSAT .P 7 (a*)[(a&)*] cP

9SAT .P 7 (a*) \cP 7 �
n

i=1

[a&i] cP+ ,

where we abbreviate a&; ...; a& for i times with a&i. The second formula is
satisfiable, while the first is not. Without cut and without the c.-branch in the X
rule, after n applications of the X rule both formulae will have only contradictory
or ignorable branches. After n+1 steps, the tableau for 9SAT has one nonignorable
branch whereas the one for 9UNSAT remains ignorable.

6. SOUNDNESS AND COMPLETENESS

The intuitions behind soundness and completeness can be explained by examin-
ing the concepts of copied prefixes and ignorable branches from a model theoretic
perspective, in particular by comparing tableau rules to visiting steps of a model
and prefixes to booking devices (names for states).

Whenever we find two prefixes _0 and _| which have the same properties we may
conclude that they are essentially identical (model M in Fig. 8). Thus, there is no
need to expand the formulae of _| : we have already done it for _0 (by Definition 5)
and if we did not find a contradiction before we will not find it now. We can avoid
the visit of the infinite path from _| by changing the model. If a branch is open
then we introduce a loop back to _0 , thus dropping the in-principle-infinite path
starting from _| (model Mgood in Fig. 8). This is the completeness theorem.
When a branch is ignorable there is an eventuality ( \*) , on _ that, after some
( \)-steps where c, always holds, arrives to an ``identical'' state _| . So we change
the model to Mbad (Fig. 8) and conclude that we cannot fulfill the eventuality in
any number of \-steps. This is the soundness theorem.

In the tableaux of [20, 22] they were called successful and unsuccessful loops.
The formal soundness proof follows an established path [11, 18]:

1. devise a mapping between prefixes in a tableau and states in a model;

2. prove a safe extension lemma (any tableaux rule applied to a satisfiable
formula preserves satisfiability with this mapping);

3. prove a safe closure lemma (no satisfiable branch is ignored).

FIG. 8. Bad and good models.
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Remark 13. For modal logics safe closure is immediate (a branch must only be
noncontradictory), whereas it is the hardest part for PDL�CPDL: we have to verify,
with a finite computation, that an eventuality will never be fulfilled.

Definition 14. Let B be a branch and (W, I) a model, a mapping is a
function @( ) from prefixes to states such that for all _ and _ .A .n present in B it
is (@(_), @(_ .A.n)) # AI.

Definition 15. A tableaux branch B is satisfiable (SAT for short) in the model
(W, I) if there is a mapping @( ) such that for every (_ : .) present in B it is
@(_)<.. A tableau is SAT if one branch is SAT in some model (W, I).

Theorem 16. If T is a SAT tableau, then the tableau T$ obtained by an applica-
tion of a tableau rule is also SAT.

Proof. The proof is by induction on the applied rules as in [11, 13, 18]. K

The difficult part is proving that ignorable branches can be discarded. We need
a preliminary result telling that either (i) if an eventuality X is not collapsed then
it terminates into a fulfilling _ : ., i.e., no more X are generated, or (ii) if we follow
the path from an eventuality that is collapsed into itself (directly or indirectly) then
we always meet (_ : X ) with (_ : c.).

To this extent we introduce the following relation O between prefixed formulae
for each X.( \*) . in a branch B:

�� (_0 : X) O(_ : X ) iff _0 : X appears in the segment S0 , _ : X properly8

appears in S, and (_0 , S0) is shorter than (_, S);

�� (_ : X) O(_0 : X0) iff X has been collapsed in X0 and _0 is the fully
reduced copy of _.

The transitive (but not reflexive) closure of O is OO . We need to use segments
to take tests into accounts. In a nutshell we are reconstructing (only for the proof
and only for iterated eventualities) the O relation of Pratt [22].

Then we can prove the following result whose intuition is that either an even-
tuality is fulfilled (and O forms a well-ordering with maximum) or after a certain
stage all X fall into a final cluster (and O is not well-founded).

Lemma 17. Let B be a ?-completed branch, _: X be a prefixed eventuality, with
X.( \*) ., and path(_ : X ) be the set of (_i : Xi) present in B, such that
(_ : X ) OO(_i : Xi) . Then there is a (_| , X|) in path(_ : X ) such that:

�� either (_| : .) is in B and then path(_ : X ) is well-ordered by O and
(_| , X|) is the maximum element.

�� or (_| : X|) OO(_| : X|) and then for all (_i : Xi) # path(_ : X ) the
prefixed formula (_i : c.) is in B and (_i : Xi) OO(_| : X| ).
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Again the proof is by induction on the applied rules using the argument for
Proposition 8 and the fact that a collapsed eventuality is not further reduced.
Notice that the assignment of a different X for each occurrence of the eventuality
( \*) . with a different prefix is necessary for the proof. With this provision the
only way to obtain some _$ : X is by reducing some previously generated _ : ( \) X.

Theorem 18. If T is a SAT tableau, then one SAT branch is not ignorable.

Proof. Suppose the contrary: T is SAT with all SAT branches ignorable
(clearly SAT branches cannot be contradictory). It is worth noting that each
branch can be ignorable due to a different unfulfilled X.( \*) . (or even more
than one). It is easy to prove the following proposition.

Proposition 19. Let B be an ignorable branch for some _ : X. For every model
(W, I) and for every mapping @( ) such that B is SAT for them, if (_i , Xi) is in
path(_ : X ) then @(_i)<% ..

This is immediate because of the presence of c. on the right-hand branch of the
X-rule: it boils down to the definition of SAT branches.

Since B is SAT, there is a model (W, I) and a mapping @( ) on which B is SAT
with a certain mapping @( ). However, since B is ignorable, by Lemma 17, we can
consider the final cluster generated by any prefixed formula _ : X for the X which
is unfulfilled.

We can show that there are at least two \-connected prefixes in the final cluster
on path(_ : X ). Indeed the only way to make a loop, is to have some Xj along the
path collapsing into an Xi (maybe itself ) and therefore the corresponding prefixes
must be different. Let us denote the fully reduced prefix in the loop by _0 #_$0 .A .n0

and the copy with _| #_$| .A .n| .
Since B is SAT, @(_0)<( \) X, and therefore an integer N and N+1 states

w0 , ..., wN in (W, I) exist such that @(_0)=w0 , (wi , wi+1) # \I, and wN<..
Since the prefix _0 has been fully reduced B must also contain (_0 : ( \) X )

and this must be reduced. Thus the only way to generate the next (_1 : X ) o
(_0 : X ) to go to _| is to perform at least one \-step. Hence, in general, there are
R \-steps from _0 to _1 to _2 ... to _| for some integer R�1

Let first assume that N�R. Then we can remap the prefixes _0 , ..., _N so that
@(_i)=wi . By Proposition 19 the formula . cannot be fulfilled by any mapping @( )
of the _i in path(_ : X ) on the states of (W, I). Hence we get a contradiction.

Let assume that N>R. Then there must be N&R \-steps from _| to fulfill . in
the model (W, I) under @( ).

Now we construct a new model (W, J) as in Fig. 8 by copying the original
model: W$=[wc | w # W], PJ=[wc | w # PI] and aJ=[(wc , vc) | (w, v) # aI].
Then we add a new A-arc, where A is the atomic (direct or converse) program
occurring last in _0 and _| , i.e.:

AJ=[(wc , vc) | (w, v) # AI] _ [(@(_0)c , @(_|)c)].

The key point is to prove that this new A-arc can be safely added.
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Since B is ?-completed, all possible instances of LB(A) have been applied and
therefore for every � # CL(8) either (_0 : c(A&) �) or (_0 : (A&) �) is
present on the branch. The prefix _| is a copy of _0 by hypothesis, so
(_| : c(A&) �) is present in the branch iff (_0 : c(A&) �) is present. Since
the branch is SAT on the original model (W, I) , it is @(_0)<c(A&) ) � iff
@(_|)<c(A&) � for every � # CL(8).

Consider now the state @(_|)c . The only difference with the original state @(_|)
is the incoming A-arc. But, as we have seen above, the two states see exactly the
same formulae of CL(8) going back through A. By the filtration lemma [10, 15],
these are the only formulae necessary for establishing the truth value of 8. Hence,
by induction, we have that @(_|)c satisfies ( \*) . in N&R \-steps in the new
model (as in the old one).

Then we construct a new mapping }( ) on the new model as follows: map every
prefix shorter than or unrelated to _0 in the same way as @( ) does, and map }(_0)
on @(_|)c . This make the branch still satisfiable: the formulae are the same for both
_0 and _| and the incoming arc does not affect them. By Theorem 16 we can
expand the tableau and still preserve SAT.

In the new model the state }(_0) fulfills the eventuality ( \*) . in N&R<N
\-steps. We can repeat the process until we reach an N$�R, getting again a
contradiction.

The correctness theorem follows with a standard argument [11]:

Theorem 20. If 8 has a validity proof then 8 is valid for CPDL.

For completeness, we also have an established path [11, 13, 18]: apply a
systematic and fair procedure to the tableau and if it does not close, choose an open
branch to build a model for the initial formula c8, i.e., a counter-model for 8. The
key is the following model existence theorem.

Theorem 21. If B is an open branch then there is (W, I) where it is SAT.

Proof. Construct the model as follows:

W.[_ | _ is present in B]

aI.[(_, _ .a .n) | _ and _ .a .n are present in B]

_ [(_ .a& .n, _) | _ and _ .a& .n are present in B]

PI.[_ | _ : P # B].

To take loops and repetitions into account, we modify slightly the above definition:
if _ is a copy of some fully reduced prefix _0 then we delete _ from W, replace _
with _0 in all transitions aI, and construct the mapping @( ).

@(_)={_0

_
if _ is a copy of a fully reduced _0

otherwise.

Next we prove that if (_ : .) # B then @(_)<. by induction on the construction
of .. We focus on modal connectives and iteration operators.
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Suppose that (_ : (a) .) # B. If _ is fully reduced then we apply exactly the
argument of [11, 13, 18]. If _ is a copy then the mapping @( ) maps _ on _0 , which
is fully reduced, and the above reasoning applies. Similarly for a&.

For the necessity operator we show the case for a&. Suppose that (_ : c(a&) .
is in B and that _ is fully reduced (the argument for not fully reduced prefixes is
analogous to the previous case). By construction the only possible pairs such that
(_, _$) # (a&)I are:

1. the pairs (_, _ .a& .n) for some n;

2. the pair (_0 .a .n, _0) if _ has the form _0 .a .m;

3. (_, _$0) where _$0 is fully reduced copy of a prefix _$ which satisfies one the
two previous conditions.

For case (1) then for every _ .a& .n present in B it is (_ .a& .n : c.) # B by
?-completion w.r.t. [a&]F. Hence, @(_ .a& .n)<c. by inductive hypothesis. For
case (2) consider ?-completion w.r.t. the rule [a&]B: the prefixed formula
(_0 : c.) occurs in B. Case (3) is a repetition of the previous two since _ is fully
reduced and the relevant rule to _$ has been applied already. Since _$0 is a copy then
we have _$0 : c. and we are done. Thus, for all @(_$) it is @(_$)<c. by inductive
hypothesis and therefore, by definition of <, it is @(_)<c(a&) ..

For ( \*) . we have to prove that whenever _ : X appears the corresponding
( \*) . is satisfied. The proof is by double induction: on the formula size and on
the number of O steps in path(_ : X ), using Lemma 17. One chooses as a base for
the latter induction the top prefix _| such that (_| : .) is present. By induction
hypothesis it is @(_|)<. and by definition it is @(_|)<( \*) .. For the induction
step consider a pair (_j : Xj) O(_j+1 : Xj+1) in path(_ : X ) so @(_ j+1)<( \*) .
by inductive hypothesis. If Xj collapsed into Xj+i then _j is a copy of _ j+1 and the
result follows trivially: @( ) maps them on the same world. For the other case this
means that Xj+i #X j #X. Hence the only way to introduce _j+1 : X is to reduce
completely _j : ( \) X. By induction on the construction of \ (with a technique
similar to those used in [6]) it is possible to verify that (_j , _j+1) is in \I and
therefore the claim follows by definition of <. For instance if \#/; { then by
?-completion _j : (/)({) X is on the branch and therefore there must be _$ such
that (_j , _$) # /I and _$ : ({) X is present. This also yields (_$, _j+i) # {I and the
claim follows by induction. K

A completeness theorem follows with standard argument [11, 13, 18]

Theorem 22. If 8 is valid then 8 has a validity proof for CPDL.

7. FROM NEXPTIME TABLEAUX TO EXPTIME ALGORITHMS

Tableaux lead to the following naive algorithm:

�� select a formula from the branch and reduce it;

�� if the reduction requires branching, then choose one branch and add the
other to the stack;
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�� repeat until the branch is contradictory, ignorable, or open;

�� in the first two cases discard the branch and backtrack.

This algorithm computes each time from scratch without keeping track of discarded
branches; i.e., it does not learn from failures. This makes sense for logics in PSPACE
[14] but not for PDLs. In fact the naive algorithm works in NEXPTIME, while
CPDL is EXPTIME complete [10, 21].

A worst case EXPTIME algorithm can be developed as in [22] or [17,
Sections 5.1�5.4]: use a suitable data structure where all possible subsets of the
formulae that may appear in the tableau are listed. As soon as our expansion proce-
dure introduces a new formula with a certain prefix, we collect the formulae with
the same prefix and look in our database: if this set is already marked then we do
not expand it further, otherwise we mark it. We use the pairs��set of formulae,
arriving program��as elements of the database.

At the end, we start a marking algorithm which deletes bad pairs as in [22].
A key difference is that we discard at once all prefixes with an X making the branch
ignorable. This is more effective than [22] also for PDL since we do not compute
the transitive closure of O but just look for Xs locally.

Marking each set with the ``arriving programs'' and ``using cut'' implies that, for
each atomic program A, our database could contain all propositionally consistent
subsets of [�, (A) �, c(A) � | � # CL(8)]. This gives an upper bound for the
database size exponential in O( |Act(8)|_|8|2), where Act(8) are the direct or
converse atomic programs in 8 and hence the desired EXPTIME bound.

We can transform this algorithm into an on-the-fly method by creating the data
structure dynamically as in [3, 17, Section 5.5] or in [11, 18] for modal logics
rather than starting from an already fully developed one. Each time we find a new
set of formulae S�_ we add the pair (S�_, last(_)) to the database. Before
expanding new formulae we check whether the corresponding pair is not already
among the visited ones.

Again, the use of the bookkeeping system anticipates the closure of branches due
to unfulfilled eventualities. By using X variables, the check for closure is substan-
tially identical to the methods used for temporal logics where the duplication of an
eventuality in a visited set is enough to close the branch.

Still the flavor of the algorithm is breadth first. Its transformation into a
depth-first algorithm is similar to the techniques of [3]. We first present the
algorithm for PDL to clarify the intuitions and afterward we extend it to CPDL.

For a segment S we say that S�_.A.n is a successor [17] of S�_ if the prefix
_ .A .n has been introduced by an application of an (A)-rule to a prefixed formula
_ : (A) . in S. Next we can define a ``bad'' set as follows:

Definition 23. Let T be a tableau, S a segment and _ a prefix occurring in
T, then the set S�_ is an inconsistent set (=-set) for T iff either

1. ., c. # S�_ for some formula . (contradiction);

2. X, c. # S�_ for some X.( \*) . and S�_ is a copy of a fully reduced
_0 for a (_0 , S0) shorter than (_, S) (unfulfilled eventuality);
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3. S�S�_ for some =-set S;

4. S terminates into a disjunction and both Sl �_ and Sr �_ are =-sets;

5. S�_ has a =-set successor S�_ .a .n.

The depth-first algorithm is then immediate:

�� select a segment S and a prefix _ which have some unreduced formulae

�� if S�_ is a =-set (already seen or by using the two local conditions) then
mark all its prefixed formulae as reduced and apply Definition 9 to generate new
=-sets;

�� else if S�_ is a copy (among the visited nodes) then mark all its prefixed
formulae as reduced;

�� else select a formula and reduce it; if any of the resulting segment S$ is
such that S$�_ is fully reduced then add S$�_ among the visited nodes;

�� loop until either the root has become a =-set (UNSAT) or an open branch
can be found (SAT).

Not all selection rules may work properly with this algorithm. It suffices that they
are copy preserving: if, at the certain stage of the computation, S�_ has been
detected as a copy of another S0 �_0 it should remain so for the rest of the computa-
tion. For instance applying :, &-like rules first (which do not introduce branching
or new prefixes) preserves copies for PDL.

The correctness of the algorithm can be proved by a ``cut and paste'' argument:
whenever we closed a branch due to a bad set we just replace the previously
generated subtree for the bad set, and so on inductively.

For its complexity observe that the number of prefixes of an open branch is
bounded by the number of visited sets (less =-sets) and these are exponentially
bounded by the size of the Fisher�Ladner closure. Each closed branch introduces
at least one new bad set and those are also bounded by the Fisher�Ladner closure.

For instance suppose we want to close Sl �_ and then Sr �_. These two may be
equal or both already seen but S�_ is surely added as a new =-set (otherwise we
would not have applied the ;-rule but directly closed the branch).

For CPDL things are more involved. The first modification, already mentioned,
is to use pairs (S�_, last(_)) for visited nodes. The second step is to introduce the
notion of temporary copy in a similar fashion of [13, 18] for symmetric and
Euclidean modal logics. When S�_ is found to be a copy its unreduced formulae
are simply frozen and eventually reactivated when a new prefixed formula with
prefix _ or _0 is introduced (note that a set may be reactivated at most |8|-times).
Moreover, in the =-set condition (2), cut-formulae must have been applied in all
possible ways.

Finally we must also change the notion of successor and add the notion of a
predecessor. For instance the formula cP 7 (a)[a&] P has the tableau

[1 : cP 7 (a)[a&] P > 1 : cP > 1 : (a)[a&] P > 1.a .2 : [a&] P > 1 : P]
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With the PDL-definition the =-set would only have been [P, cP] while also
[cP, (a)[a&] P] is clearly a =-set.

In practice we cannot only rewind downward from S�_ .A .n to S�_ through the
application of the (A)-rule. So, if S�_ is found to be a =-set as in the example
above then we must rewind upward from S�_ to S�_ .A .n through the
[A&]B-rules until we have rewinded them all and then downward again with the
(A)-rules. At the end of the process we arrive at the same prefix _ in a shorter
segment S0 and S0 �_ is the new =-set.

8. CONCLUSION

One characterizing feature of PDLs is the presence of fixpoint operators. In
comparison with tableaux for modal logics [11, 13, 14, 18], the tableaux for modal
fixpoint logics are conceptually divided in two: (1) build a (pseudo)model expanding
the modal part; (2) check this model for the satisfiability of fixpoint formulae. The
notion of ignorable branches stems out from the idea of merging the second step
into the first one.

Such a merging requires one to keep track, during the expansions phase, of
iterated eventualities and of their fulfillment, and to this extent we adopted the
techniques used for modal +-calculus in [24, 25]. The necessity of (successful and
unsuccessful) loop checking for eventualities has been pointed out in [20, 22] for
PDL and is even stronger for the modal +-calculus [25].

We think that the combination of model checking and deductive techniques,
improves the efficiency and readability of the calculus. In this setting our tableaux
calculus is a first step9 toward effective decision procedures for CPDL and the
corresponding description logics.
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