
Reasoning about Naming and Time for Credential-based
Systems?

Nathalie Chetcuti1 and Fabio Massacci2

1 Dep. de Informatique, Univ. Artois - France, chetcuti@cril.univ-artois.fr
2 Dip. di Informatica e Telecomunicazioni, Univ. di Trento -Italy,

Fabio.Massacci@unitn.it

Abstract. Reasoning about trust management and credential-based systems such
as SDSI/SPKI, is one of today’s security challenges. The representation and rea-
soning problem for this (simple) public key infrastructure is challenging: we need
to represent permissions, complex naming constructions (“Martinelli’s office-
mate is FAST’s PC-Chair’s Colleague”), intervals of time and metric time for
expiration dates and validity intervals.
Such problem is only partly solved by current approaches. At first because they
focus on Lamport and Rivest’s SDSI and SPKI, the major goal being to show that
the proposed logics and semantics captured exactly SPKI behavior or were better
in this or that respect. Second, reasoning about time is missing. Complicated
logics and algorithms are put in place for name resolution but it is always assumed
that just the valid credentials are evaluated.
What we find missing is what Syverson termed an “independently motivated se-
mantics”. Here, we propose such a semantics with annexed logical calculi. The
semantics has a natural intuitive interpretation and in particular can represent tim-
ing constraints, intersection of validity intervals and naming at the same time.
We also provide a logical calculus based on semantic tableaux with the appeal-
ing feature that the verification of credentials allows for the direct construction
of a counter-model in the semantics when invalid requests are made. This com-
bines semantic tableau method for modal and description logics with systems for
reasoning about interval algebra with both qualitative and metric constraints.

1 Introduction

The security of credential-based systems is one of today’s security challenges. This is
mostly due to the disappearance of the traditional model of client/server interaction and
its replacement by Service Oriented computing [?]: the important data is on some server
which knows the clients and let them just have what they deserve. First of all, clients
are no longer known by servers: the entire idea behind web services is that requests
may come from everybody, provided they have the right credentials . Second, servers
themselves are often distributed and their security policies may come from different
sources and different administrative domains.

? F. Massacci has been partly supported by projects MIUR-FIRB “ASTRO” and EU IST-FET
“WASP” and N. Chetcuti by a post-doc travel scholarship of UPS-Toulouse.

The traditional authentication and authorization questions have been transformed
into another one about trust management: “Does the set of credentials about identifiers
and about permissions proves that the request complies with the set of local policies?”

To perform these tasks without a centralized security infrastructure, a number of
proposals have been put forward by security researchers (see the recent survey by Weeks
[?]). One of the most cited work is Lampson and Rivest’s SDSI (Simple Distributed
Security Infrastructure), later refined into an Internet RFC as SPKI (Simple Public Key
Infrastructure) [?]. Many later proposals such as Binder [?] build upon the intuition of
those works.

Loosely speaking, the appeal of SDSI/SPKI is to have distilled the concept of lo-
cal name and to have reduced the traditional access and authorization decision into a
problem of verifying the combination of credentials linking local names and global
names and credentials linking names and permissions. For example, in FAST’s Chair,
the Chair is a local name, which maps to an individual who is likely to be different from
CSFW’s Chair. The individual standing for Chair may be linked by some certificate
to an individual named Dimitrakos. Dimitrakos’ Colleague may also be mapped into
more than one individual. Suppose now that any Dimitrakos’ Colleague was granted
access to Martinelli’s Computer, should a claim from an FAST’s Chair’s Colleague
be granted by the server? The reasoning is further complicated by time: one can be PC-
chair or colleague for an interval of time and then something may change. Should the
claim be granted in 2004?

The SDSI/SPKI proposal has been the subject of an intense debate and a number of
researchers have formalized this proposal or its alternatives using logics to analyze and
emphasize differences or subtle features. Abadi [?] has used a modal logic, which later
Howell and Kotz [?] have modified, Halpern and Van der Meyden [?,?] have proposed
another modal logic to reason about it, Jha, Reps and Stubblebine have used model
checking for the verification for the time-free fragment of the logic [?]. Li et al. [?,?]
have used Datalog.

So far, the approaches in Computer Security fora have focussed on using logics
for giving “the” semantics to the operational description of SDSI/SPKI [?]. This has a
number of drawbacks. For sake of example, to match the certificate treatment of SPKI,
Halper and van der Meyden semantics [?, Sec. 3.2] is self-referential: a certificate is
valid in a model because it is in the list of valid certificates. The English wording looks
almost unacceptable though this is the exact description of the logical definition in the
paper. This mixes syntax (the presence of a string in a set) and semantics (validity of
the attribution of a key to a principal). The list of “valid” certificates describes what is
in a set. In the world, the certificate may no longer describe the situation (for instance
the key has been cracked and CRLs may not have been issued yet): syntactic would-be-
valid certificates could well not be semantically valid.

A second limitation is the (missing) ability of reasoning about time. Obviously, for
reasoning about validity interval one could simply apply the SPKI algorithm. But the
same reasoning applies to any 40 pages paper describing a logic for the 4 pages name
resolution algorithm. Time is the most intriguing aspect of certificates, in particular
if we have name attribution certificates with validity periods that differs from validity
periods of privileges attribution certificates. So, if Fabio’s co-author is Nathalie since

19/Jan/02, and Fabio’s co-author can write chet-mass-03.tex up to 12/Jul/03 this
is equivalent to say that the model could (semantically) satisfy also a certificate stating
that Nathalie can write the paper from 19/Jan/02 to 12/Jul/03. The certificate may
well not be in the list of valid certificates, as nobody might have actually issued it, but
is nevertheless “semantically valid” as it would describe the status of the world. Even
more sophisticated models such as Jha, Reps, and Stubblebine general authorization
problems [?] cannot reason about such phenomena as their certificates are timeless.

1.1 Our Contribution

Building upon previous formalizations by Abadi, Halpern and van der Meyden, Jha
and Reps we provide a general model for reasoning about naming and identifiers, au-
thorization, credentials, and time. We hope that this would provide the equivalent of
what Syverson termed an “independently motivated semantics” [?]. Last but not least,
we provide a method to reason about them. Nobody is interested in formalizing the
SDSI/SPKI FAST’s PC-Chair’s ConfMan policies if we cannot then decide whether
the remote user making a request signed with the key 0xF34567 is allowed to see the
reviews of paper ES0345.pdf. For the naming and modal part we need to combine
features for advanced work in modal and dynamic logics [?,?]. For the temporal part,
as we shall see, this is a challenge where a CSP-based qualitative reasoning proper of
Allen’s Interval algebra [?] is not sufficient. TCPs (Temporal CSPs) and STPs (Simple
Temporal Problem) are necessary to handle metric temporal relations [?].

In the rest of the paper we sketch the intuitions about SDSI/SPKI, we show the
semantical model for credential based systems, and the intuitions behind it. We give a
sound and complete calculus and conclude the paper with a brief discussion.

2 A Primer on SDSI/SPKI

The idea behind SDSI/SPKI [?] is that servers make access control decision by looking
at public key credentials which either link identifiers to known roles or other identifiers
or link identifiers with privileges.

Each principal has its set of local names1, denoted by n, possibly with subscript.
Name can be composed so that for Lamport, the local name Ron may map into Rivest
and the name Ron ′ Buddy map into what Rivest consider a buddy. In SPKI, Compound
names are denoted by the tuple construct (name n1 n2 ...nk) or by the equiva-
lent expression n ′ n1

′ . . . nk where each n − i is a local name, and n is either a local
name or a public key. When n is a key we have a fully qualified name. The interpre-
tation of a compound name depends on the agent except for fully-qualified names. So
that the interpretation of Ron ′ poker-buddies by one agent depends on its interpre-
tation of Ron, and may be different from another agent’s interpretation of Ron and
Ron ′ poker-buddies.

Strictly speaking, we have no agents interpeting names in SPKI but just keys. We
may say that Ron’s interpretation by the agent Lamport is mapped into the agent Rivest,

1 In absence of a centralized naming authority there are no global names in SPKI whereas SDSI
had global names such as DNS.

but what we can only say in practice is that Ron is mapped into the public key kr. So
that the public key kl (which corresponds to what we call the agent Lamport) takes any
credential verifiable with the public key kr as a statement coming from his fellow Ron.

SPKI has other kinds of principals such as hashes of keys and threshold subject
(”any m out of N of the following subjects”) for joint signatures, or the reserved word
”Self”, representing the entity doing the verification. Here, along the same line of Jha,
Reps and Stubblebine [?], we only consider compound names.

Credentials are represented by certificates. There are various types of certificates
in SPKI: naming certificates, authorization certificates, and certificate revocation lists
(CRLs). Here, we only treat the first two but the framework is designed to give a rea-
sonable account of revocation list.

A naming certificate has the form of a cryptographically signed message with con-
tents (cert (issuer (name k n)) (subject p) valid), where k is a
key (representing the issuer, whose signature is on the certificate), n is a local name, p
is a fully-qualified name, and valid is an optional section describing temporal validity
constraints on the certificate. The valid section describes an interval during which the
certificate is valid, expressed by means of a (not-before date) and/or a (not-
after date). It may also include additional tests for the validation of certificates.

If k is a key, p is a fully-qualified name, A is an authorization (loosely speaking a
set of actions), and valid is a temporal validity section then an authorization certifi-
cate is (cert (issuer k) (subject p) (propagate) A valid). Intu-
itively, the issuer uses such a certificate to grant p the authority to perform the actions
in A. Moreover, if the optional propagation field is present, then the subject is further
authorized to delegate this authority to others2.

The logical syntax is based on the proposals by Abadi [?], Halpern and van der
Meyden [?,?], Jha, Reps et al. [?,?]. We have a set of actions A, a set of keys K, and a
set of names N . A principal can be a key k ∈ K, a local name n where n ∈ N , or p ′ q
where p and q are principals.

The atomic formulae of our logic are p 7→ q and p perm a, where p and q are
principals and a is an action. More complex formulae are built by the usual operators
of negation, conjunction and disjunction. The intuition behind p 7→ q, which is read
”p speaks for q”, is that for the current principal any authorization for p can be mapped
into an authorization for q.

We have two forms of certificates, certk (p 7→ q [tb, te]) to associate names to
other names and certk (p perm a [tb, te]) to associates permissions to names. Here, we
allow one to use compound names as subjects and not just local names. The interpre-
tation of certk (n 7→ p [tb, te]) is that for the principal k the local name n is bound
to the fully qualified name p for the validity period between the instant tb and te. The
interpretation of certk (p perm a [tb, te]) is that k permits action a to p for the validity
period of the certificate. It is possible to have also open ended certificates. Delegation
can be treated by generalizing permission certificates replacing action a with recursive
permissions.

2 This unbounded delegation of powers has been mitigated by other authors. For instance, Li et
al. [?,?] introduce the notion of delegation up to n steps.

With respect to the calculus in [?,?] we have eliminated the says operator because
it is subsumed by the certificate operator. See [?] for an automated reasoning method
for some fragments of Abadi’s et al. calculus.

3 Semantics

The motto of any credential-based security religion could be “Extra public-keys nulla
salus” and we build upon this intuition by making a model where the basic domain is a
set of keys, and where names connect keys with each other and with permissions.

Let’s first give a model without time. So a model is a generalized Kripke structure
that is a triple 〈K,LN,A〉 where K is a set of real keys (such that for all k ∈ K there is
a k ∈ K plus possibly additional keys). The naming relation LN is an indexed family of
partial mappings from keys to subset of keys N −→ K→ 2K. The grant relation A is
a function mapping actions into mappings of keys into subset of keys A −→ K→ 2K.
In the sequel we always use X as the syntactic value and X as the semantic counterpart.

The intuition behind the set K should be obvious. The naming relation associates
to each local name a mapping: who uses this name for whom. So k

′ ∈ LNnk means
that the principal associated to key k associates to the name n at least the key k

′. We
have a set because the same name n may refer to many individuals as in Ron ′ poker−
buddies. Furthermore note that the mapping may be partial because a principal may not
associate anybody to a name. In the sequel, for simplicity we use the relation-oriented
notation to describe the mapping: 〈k,k′〉 ∈ LNn.

The grant relation associates to each key the set of actions that the agent holding the
key is willing to permit to other principals. So 〈k,k′〉 ∈ A(a) means that the principal
associated to the key k is willing to permit action a to k

′.
Names can be lifted to compound names by giving a semantics for the ′ operator:

– N(n) = LN(n) where n ∈ N
– N(k) =

⋃

k′∈K {〈k
′,k〉} where k ∈ K

– N(p ′ q) =
⋃

kp∈K {〈k,kpq〉 | 〈k,kp〉 ∈ Np and 〈kp,kpq〉 ∈ Nq}

The second rule says that syntactic keys are mapped into the corresponding semantics
keys. The last rule is just composition: if k associate kp to the name p and kp associates
kpq to the name q then k should associate kpq to the name p ′ q.

Proposition 1. A principal p0
′ . . . ′ pl is equivalent to some principal q0

′ . . . ′ qm

where q0 is either a key or a name and q1, . . . , qm are names.

So from now on we shall consider only principals in the latter form.
Figure ?? shows an example of a Kripke structure for credential systems without

time. It describes the relation between two co-authors and a PC chair. Keys are repre-
sented as nodes of the graph and the permissions to read or write the paper labels each
node. The key k1 corresponds to Fabio Massacci, whereas the key k3 is Fabio Martinelli
which is k3

′ FAST-03 ′ co-chair. Note how the name Fabio is mapped into different
keys.

To lift our structure to time we introduce the concept of a traceM that is a mapping
from time to models. A trace associates to each instant of time a given modelM@t =

co− chair

k1

k3

k5

k4

k2

Fabio

Fabio

Martinelli

Fabio

Fabio

co− chair

FAST − 03

co− author

Nathalie

Fabio

Dimitrakos

Fig. 1. Timeless Model

〈K@t,LN@t,A@t〉 where t ∈ R. Then K@t : R −→ K is the set of real keys which
are associated to the named keys at time t, LN@t is the local naming relation with the
additional time parameter R×N −→ K→ 2K at time t and A@t is the grant relation:
R×A −→ K→ 2K.

The extension of the semantics to compound names principals is identical, except
for the t subscript. In the sequel, we merge the principal and the time in the same
subscript. So we write Np@t instead of N@t(p), and similarly for other operators.

Intuitively, we can view the same formal structure from two different perspectives.
At first glance, we have a timeline and at each time the entire world may change. This
is hardly appealing: we are used that the world stays the same and something in it
changes. The second perspective is more appealing: the model is composed by parts
(keys, naming relations, and permission relations) that change over time.

In Figure ?? we show a timed version of the model shown in Figure ?? in which we
have added the validity interval of each naming relation.

The timed model allows for fine grained distinctions that are not possible in the
untimed model. If we consider key security properties like dynamic separation of duties,
the timed models allows for a natural description of such constraints and situations.

For instance in the untimed model k3 is always k1
′ FAST ′ Co-chair, and it is at

the same time k2
′ Fabio and k2

′ Martinelli. In the timed modelthe concatenation of
the validity periods is such that k1

′ FAST ′ Co-chair only maps into k3 for the period
[7/03, 9/03] which is by far shorter then each validity period of the component naming
relations. Equally, k3 has never been at the same time k2

′ Martinelli and k2
′ Fabio

(as in the untimed model), but either only one or the other. Thus k3 has never got the
permissions associated with both identifiers.

It is possible to add more security constraints on the model. For instance, should we
have persistence of global keys, i.e. should K@t = K@t′ hold? Basically this says that

co− chair[7/03, 7/04]

k1

k3

k5

k4

Fabio : [00, 03]

Fabio : [0,∞]

k2

Fabio : [67,∞]

FAST − 03 : [4/02, 9/03]

co− chair : [7/03, 7/04]

Martinelli : [97, 98]

Fabio : [02, 03]

co− author : [01, 03]

Nathalie : [00, 03]

Fabio[00, 03]

Dimitrakos : [02, 03]

Fig. 2. Timed Model

all keys have been already invented, just not used. Another possibility is that the only
possible keys are those listed in a given set of syntactic certificates, and thus K@t = K
for all t.

Another question is whether the validity period of keys should always be a con-
nected interval. Suppose that we have 〈k,k′〉 ∈ NFAST ′ Co-chair@12/07/03, that is the real
key k associates the key k

′ to the FAST ′ Co-chair. After an year the certificate ex-
pires and we have 〈k,k′〉 6∈ NFAST ′ Co-chair@12/07/04. Do we want to impose that for all
t ≥ 11/07/2004 we have 〈k,k′〉 6∈ N@tFAST ′ Co-chair? If the answer is yes, this means
that after a certificate is expired we would not accept another re-validation certificate
for the same key. This is one possible scenario and there might be cases when this is
desirable and cases when it is not.

All such possibilities can be captured with suitable axiom schemata. Different cer-
tificate theories (for instance persistence-of-syntactic-keys, no-revalidation) can be char-
acterized by different axiom schemata.

We have now all the necessary material to give a semantics to formulae.

– M@t,k |= p 7→ q iff for all k′ ∈ K@t, if 〈k,k′〉 ∈ Nq@t then 〈k,k′〉 ∈ Np@t

– M@t,k |= p perm a iff 〈k,k′〉 ∈ Np@t implies a ∈ A@t(k′)

As for certificates, we evaluate them as follows:

– M@t |= certk (p 7→ q [tb, te]) if t ∈ [tb, te] impliesM@t,k |= p 7→ q
– M@t |= certk (p perm a [tb, te]) if t ∈ [tb, te] impliesM@t,k |= p perm a

Remark 1. Comparing with Halpern and van der Meyden proposals we have no syn-
tactic list of valid certificates. A model is an independent entity from certificates. It has
its properties and satisfies some formulae. If it satisfies the appropriate formulae, then

it also satisfies some certificates. In this way, as we said, a particular certificate theory
characterizes a particular set of models.

Another characteristics of our model is that we worry about validity of certificates
in model only if they refer to the current time. If a certificate is not at all applicable
there is little interested in knowing whether it describes the current state of the world or
not.

Then we can define the notion of satisfaction by a trace M, that is the notion of
satisfaction for all time instant.

– M |= certk (c [tb, te]) iff ∀t,M@t |= certk (c [tb, te])

As Jha and Reps [?,?] we have a notion of consequence for chains of certificates:

Definition 1. A boolean combinations of certificates χ is a logical consequence of a set
of certificates C if any trace which satisfies all certificates C also satisfies χ.

If χ is a single certificates then we have exactly Jha and Reps notion of consequence.
This generalized notions is more useful for deriving interesting consequences. For in-
stance we can ask whether an invalid certificate implies that another certificate is also
implicitly invalidated.

4 Semantic Tableaux

Once the model is in place, how do we know that a certificate is a logical consequence
of a a set of physical certificates? Furthermore, if this is not the case, how can we get a
counter-example?

We propose a calculus based on semantic tableaux. Intuitively, to prove that a cer-
tificate χ is a logical consequence of a set of other certificates C (see Def. ??) we instead
try to construct a model that falsifies χ and satisfies C. If we succeed, then we have the
counter example. If we fail and we used a fair and systematic procedure, we are sure
that no such countermodel exists and the formula is valid.

If we drop the timed information, our calculus could be a tableaux sibling of the
model checking procedure of Jha and Reps. The additional dificulty is that for each pair
of constraints on the attempted counter-model we must check that

– either there is no temporal interaction and then we simply impose that the temporal
constraints are not overlapping,

– or we update the untimed information with the required constraints during the over-
lapping validity intervals.

The construction starts from the formulae and then try to build the entire model and the
trace by incrementally constructing the naming associations, by attributing permission
and by determining temporal informations.

For tableaux we shall use the usual terminology. For instance, see De Giacomo and
Massacci [?] for the naming and permission part and Kautz and Ladkin [?] for the
temporal part. So a tableau is a collection of branches, each intuitively correspond-
ing to some potential counter-model. A branch has three components for qualitative

information (such as naming relations), for qualitative temporal information and for
quantitative temporal information.

For the naming and permission information we have a triple 〈(K), N, (F, A)〉 where

– K are the syntactic keys plus possibly some new keys
– a function N : N −→ 2K×K are the naming relation constructed so far,
– a function A : A −→ 2K×K are the permissions assigned so far
– F : K −→ 2Fml are the formulae (labelled with validity intervals) which we try to

satisfy

If no contradiction is found at the end of the construction then the countermodel would
be simply K := K, LN := N and A := A.

For the qualitative temporal information about validity of certificates we have an
interval network 〈TI, E〉 where

– TI is a set of variables representing temporal intervals
– a function E : TI × TI −→ 2Allen′s relations corresponds to the qualitative tem-

poral relations that we have forced so far

If v is an interval variable by we represent its beginning and end point as v− and v+

Allen’s interval relations are the following: before, after, meets, met− by, overlaps,
overlapped− by, starts, started− by, during, contains, finishes, finished− by, equals.
Their interpretation is intuitive and we refer to Allen’s work for additional explanations
[?,?], and to Dechter and Meiri [?,?] for reasoning procedures. For instance v1 meets v2

means that when v1 ends, v2 starts.
For the metric temporal information we have a point network 〈TP, ET 〉 where

– TP is a set of variables representing time points
– ETP : TP ×TP −→ 2Intervals represents the metric constraints between the time

points that we contructed so far.

For example ETP (t, t′) = {[1, 5], [100, 201]} means that t is distant by t′ either for a
value on the range 1 − 5 or the range 100 − 201. Using linear inequalities we would
have t + 1 ≤ t′ ≤ t + 5 or t + 100 ≤ t′ ≤ t + 201

Initialization At the very start, K is the set of keys appearing in {χ}∪ C. The sets F, N,
A, TI , and TP are empty.

For each certificate certk (c [tb, te]) in C∪{χ} a new interval variable vc is added to
TI and v−c and v+

c are added to TP . Then E, resp. ETP , is enriched with the constraints
existing between vc, resp. v−c and v+

c , and the remaining interval, resp. point, variables.
The intuition is that the interval variable vc is used to define the validity period of the
certificate.

Finally if χ, the certificate we are trying to disprove, has the form certki
(c [tib, tie]),

we let F(ki)← {¬c : vi} where vi is the interval corresponding to [tib, tie]. Intuitively,
we want a model where the certificate is not valid in the given interval.

Remark 2. At this stage one may ask why do we need at all such validity intervals and
such cumbersome notation of end points: we already know that a certificate spans an

interval of time by simply looking at it. This is actually correct except for one small
but essential point: revocation certificates! The validity period is the maximal potential
period in which a certificate can be valid. If certificates can be revoked, even if tem-
porarily, we no longer knows what validity interval a certificate has just by looking at
the certificate.

There is no space here to introduce revocation certificates but the machinery is nec-
essary to scale up to a reasonable semantic account of revocation3. In particular the
tricky bit is the validity period of revocation certificates. In a general model, there is
no obligation4 for revocation certificates to have validity period outlasting the validity
period of the revoked certificate.

Suppose that certk3
(Dimitrakos ′ Fabio 7→ Fabio [1/1/02, 31/12/03]) is revoked

by a certificate whose validity interval is only [1/1/03, 1/7/03]. It is clear what happens
in the interval [1/1/02, 31/12/02]: the speaks-for naming relation between Fabio and
Dimitrakos ′ Fabio is valid. It is also clear that in the period [1/1/03, 1/7/03] this cer-
tificate is n longer valid5. What happens during the period [2/7/03, 31/12/03] in which
the revocation certificate is no longer valid? The natural semantical interpretation is that
the original certificate is still valid.

4.1 Rules for Tableau Construction

After the initialization step the construction proceeds step-wise by the application of
a rule and the checking of the consistency of the temporal information. It stops either
when all the expressions were processed, or when an inconsistency is found.

We now consider the processing of atomic formulae only. The boolean operators
are handled in the usual way: if a key must satisfy the conjunction of two formulae this
means that the key must satisfy both formulae and thus both formulae are added to the
branch at the appropriate key.

The only tricky bit for the read not familiar with tableau methods is the treatment of
disjunction. Since disjunction means that either one or another formula must be satisfied
we split the current branch in two. Formally this means that we duplicate every sets that
we have constructed so far K, F, N, A, TI , and TP , and add one disjunct to one instance
of F and the second disjunct to the second instance of F. Then the search continues by
pushing one branch on the stack and by exploring the remaining branch. If the search
for counter models is unsuccessful in the first branch, the search resumes the other
alternative. Of course in any tableau implementation the structure is not duplicated and
pointers are used.

To simplify the rules for formulae we need some abbreviations that describe possi-
ble relations between validity intervals of certificates.

Definition 2. Let v, v′ and v∗ be interval variables.
3 Again in Halpern and Van der Meyden [?] we have a syntactic account of revocation, mostly

because they have not considered time. In Jha et al, revocation is not treated.
4 A particular certificate theory may instead impose such obligation. There might be axiom

schemata forcing properties of revocation certificates. Such schemata would be mapped into
conditions for inconsistency in our tableaux setting.

5 The relation may still be valid is there is some other valid certificate.

k1 k2 k2k1

N : p : v1

=⇒

p 7→ k2 : v1

Fig. 3. Illustration of first rule for 7→ (the temporal graphs remain unchanged)

no overlapping validity: v ∩ v′ = ∅ when the following constraint is satisfied:

v{before, meets, met− by, after}v′

overlapping validity: v ∩ v′ 6= ∅ when the following constraint is satisfied:

v

{

starts, started− by, finishes, finished− by,
overlaps, overlapped− by, during, contains, equals

}

v′

containment: v′ ⊆ v when the following constraint is satisfied:

v′{starts, during, finishes, equals}v

The intuition of the first rule is that two intervals have no intersection if either one
interval is before the other, or one interval just finishes when the other just starts.

Proposition 2. To compute the overlap of validity periods we let v∗ = v ∩ v′. Then
the following conditions hold (1) if v{starts, during, finishes, equals}v ′ then v∗ = v,
(2) if v{started− by, contains, finished− by}v′ then v∗ = v′, (3) if v overlaps v′ then
v∗ finishes v and v∗ starts v′, (4) if v overlapped− by v′ then v∗ starts v and v∗ finishes v′.

Certificate. The rule for certificates is the simplest: if certk (c [tb, te]) ∈ C then for the
corresponding vc ∈ TI , add {c : vc} to F(k). In words:if the certificate certk (c [tb, te])
is valid then the corresponding formula must be true for the corresponding key during
the validity interval of the certificate.

Speaking for. The rules consider both positive and negative cases.

– if p 7→ k′ : v ∈ F(k) then add {p : v} to N(k, k′)
– if p 7→ k′ ′ q : v ∈ F(k) then ∀k∗ ∈ K such that q : v′ ∈ N(k′, k∗) either one has

v ∩ v′ = ∅ or let v∗ = v ∩ v′ and add {p : v∗} to N(k, k∗)
– if p 7→ n ′ q : v ∈ F(k) (where q can be null) then ∀k′ ∈ K such that n ′ q : v′ ∈

N(k, k′) either one has v ∩ v′ = ∅ or let v∗ = v ∩ v′ and add {p : v∗} to N(k, k′)
– if ¬(p 7→ q) : v ∈ F(k) then for a new action a∗ we add {p perm a∗) :

v,¬(q perm a∗) : v} to F(k)

The intuition behind the first rule is that if p is associated to k′ for the key k then we
add the labelling to the relation, tagged with the appropriate validity interval v. The
graphical representation is shown in Figure ??

The intuition behind the second rule is the following: suppose that you have a claim
that for the key k the name p has been associated to the name n ′ q for a certain validity

kc

v+v−

information
qualitative temporal

v+
bv−b

qualitative temporal
information

v

vb

overlaps v∗

starts

finishes

k kb

kc

N : bob : vbN : joe : v∗

untimed information

[0, 0]

[0, 0]v+

v+
b

v−

v∗− v∗+

v−b

quantitative temporal information

joe 7→ kb
′ bob : v

untimed information

N : bob : vb

kbk

joe 7→ kb
′ bob : v

v

overlaps

vb

quantitative temporal information

⇓

Fig. 4. Illustration of one of the rules for 7→ (where v overlaps v
′)

interval v. We can have a look at all naming relations between keys that have q as
their name. These naming relations will also have their validity period, say v ′. Now
we have two possibilities. The first one is that the validity periods do not overlap (that
is v ∩ v′ = ∅) and therefore there is nothing that we need to do. The second one is
that the validity periods do overlap and then we must chain the two certificates for the
overlapping periods, namely v∗ = v ∩ v′.

We illustrate the second rule in the special case where v overlaps v′ in Figure ??.
As we can see from the figure we have added the link between k and k∗ but only for
the overlapping interval v∗. The temporal information says that when v finishes then v∗

also finish and when v′ starts then v∗ also starts.

Permission. These rules have the same flavour of the speaks for rules, excpet that they
add permitted actions to each key rather then connecting keys with a naming relation.

– if k′ perm a : v ∈ F(k) then add {a : v} to A(k, k′)

– if k′ ′ q perm a : v ∈ F(k) then ∀k∗ ∈ K such that q : v′ ∈ N(k′, k∗) then either
v ∩ v′ = ∅ or let v∗ = v ∩ v′ and add {a : v∗} to A(k, k∗)

– if n ′ q perm a : v ∈ F(k) (where q can be null) then ∀k′ ∈ K such that n ′ q : v′ ∈
N(k, k′) then either v ∩ v′ = ∅ or let v∗ = v ∩ v′ and add {a : v∗} to A(k, k′)

We also have a rule for negated permissions.

– if ¬k′ perm a : v ∈ F(k) then for a new interval v∗ ⊆ v, add {¬a : v∗} to A(k, k′)

– if ¬k′ ′ q perm a : v ∈ F(k) then for a new k∗ ∈ K and a new interval v∗ ⊆ v, set
N(k′, k∗) to {q : v∗} and A(k, k∗) to {¬a : v∗}

– if ¬n ′ q perm a : v ∈ F(k) (where q can be null) then for a new k∗ ∈ K and a new
interval v∗ ⊆ v, set N(k, k∗) to {n ′ q : v∗} and A(k, k∗) to {¬a : v∗}

Rules for principals. These rules refine the naming relations eliminating compound
names when validity intervals allow to do that.

– if k∗ ′ q : v ∈ N(k, k′) then add {q : v} to N(k∗, k′)

– if n ′ q : v ∈ N(k, k′) then ∀k∗ ∈ K such that n : v′ ∈ N(k, k∗) either v ∩ v′ = ∅
or let v∗ = v ∩ v′ and add {q : v∗} to N(k∗, k′)

– if q : v ∈ N(k, k′) and q′ : v′ ∈ N(k′, k∗) then either v ∩ v′ = ∅ or let v∗ = v ∩ v′

and add {n ′ q : v∗} to N(k, k∗).

Rule for consistency. A principal associated to a key cannot be permitted and forbidden
the same action during overlapping periods.

– if a : v ∈ A(k, k′) and ¬a : v′ ∈ A(k, k′) then

E(v, v′) = E(v, v′) ∩ {before, after, meets, met− by}

Finally, we must guarantee the consistency of the qualitative and the metric temporal
information. To this extent we need to solve the corresponding constraint network and
if the empty interval is present then the original information is inconsistent [?]. This
algorithm is sound but not complete unless the interval network is at least preconvex
[?]. To get completeness of the processing of the temporal information, we modify
slightly some rules: whenever we need to add v ∩ v′ = ∅ we actually split it into
v{before, meets}v′ or v{met− by, after}v′.

Definition 3. A branch is saturated when no new information can appear through the
application of a rule. A branch is closed if an inconsistency is found ; it is open if it is
saturated and not closed. A tableau is closed when all its branches are closed, it is open
if one of its branches is such.

Theorem 1. If a boolean combinations of certificates χ has a closed tableau given a
set of certificates C iff χ is a logical consequence of C.

5 Discussion and Conclusions

In the security literature there has been a number of proposals for the right logical ac-
count for SDSI/SPKI features. Abadi [?] has used the DEC-SRC calculus for access
control [?]. However a number of problems have been found in the DEC-SRC calculus
by other authors [?,?]. Howell and Kotz [?] have proposed an alternative semantics, but
their solution is logically rather awkward (for instance it is not closed under the usual
boolean operators) and does not give a reasoning procedure. Halpern and Van der Mey-
den [?,?] have refined the semantics of Abadi and their proposal is the basic reference
for all subsequent works (including this one). They have proposed two modal logics to
reason about it but their proposal is fairly tailored on the SDSI/SPKI framework. Jha,
Reps and others [?,?] have given a pushdown automata procedure for SPKI certificates
but have only focused on the normal trust relationship assuming time interval fixed.
this is the most comprehensive treatment, and it is a decision procedure for time-free
fragment of Halpern and van der Meyden logic. Dropping time from our framework it
is a sibling of our model. However, in all papers the treatment of time is either absent
(Abadi, Howell and Kotz, Jha and Reps) or refers essentially to the SPKI algorithms
(Halpern and Van der Meyden).

With respect to the trust management systems of Li et al. [?,?] we only have proposi-
tional rules. In contrast, Li et al. constructions based on logic programming and Datalog
allows for quantification. Since term creating functions are absent, quantification is a
just a more efficient and compact representation of the propositional version but does
not introduce new possibilities. However, the semantics is just the term algebra of the
Datalog programs representing a policy. It could be intriguing to have a independent
semantics for the bounded delegation framework.

Conceptually, it is possible to lift our framework to first order reasoning over objects
and it would be interesting to derive syntactic restrictions on quantification in certifi-
cates that would allow for the the same decidability results based on Datalog in Li el
al [?]. The lifting of permissions can be done without difficulties: one could simply
import techniques from first order modal logics. Basically, we could have certificates
like certk (p perm a(o) [tb, te]) when permission to perform action a is only granted on
object o and certk (p perm λx.a(x) [tb, te]) when permission is granted on all objects.

The lifting of naming association is the tricky bit, as there is no simple security
intuition on the meaning of ”key k is associated to name n for the object o” (though it is
possible to write formulae linking them). A convincing semantics could then be given
only for a convincing security intuition of the above concept. Even looking at neighbor
field, such as grammar logics or description logics we don’t have anything remotely
resembling such ternary relation.

Once this framework were lifted to first logic would then be interesting to analyze
the relations between the two frameworks. In particular one could then try to derive
syntactic restriction on the general model that would make possible to use the Datalog
representation and inference engine. Building on this result one could then show the
relation with other works on credential based systems that are based on logic and that
cope with the proper aspect of trust negotiation (which is neglected in the original SPKI
proposal) such as the work of Yu et al. [?] and Bonatti and Samarati [?]

An intriguing subject of future research is the usage of symbolic validity intervals.
For instance, if we had certk (FAST ′ co-chair 7→ Martinelli [12/07/04, NextFAST])
and then have symbolic constraints on intervals such as NextFAST is non-overlapping
with 2004 and overlaps with part of 2002 and starts after [appointment-day,end-of-
conference]. The calculus we have present can indeed cope with such constraints. The
lifting of the SPKI framework to symbolic validity intervals looks promising for some
distributed applications.

Building upon previous attempt of formalizations we provided a general model for
reasoning about naming and identifiers, authorization, credentials, and time. We show
how to construct a general reasoning method for the logic that combines advanced
tableaux methods for modal and description logics [?] with systems for reasoning about
the interval algebra by Allen [?] and advanced proposals that exploit both qualitative
and metric constraints [?,?].

References

1. M. Abadi. On SDSI’s Linked Local Name Spaces. JCS, 6(1-2):3–21, 1998.
2. M. Abadi, M. Burrows, B. Lampson, and G. D. Plotkin. A Calculus for Access Control in

Distributed Systems. TOPLAS, 15(4):706–734, 1993.
3. J.F. Allen. An Interval-Based Representation of Temporal Knowledge. In IJCAI’81, 1981.
4. J.F. Allen. Maintaining Knowledge about Temporal Intervals. CACM, 26(11):832–844,

1983.
5. Piero Bonatti and Pierangela Samarati. Regulating service access and information release on

the Web. In ACM CCS-00, pages 134–143. ACM Press, 2000.
6. J.-F. Condotta. The Augmented Interval and Rectangle Networks. In KR’2000, 2000.
7. G. De Giacomo and F. Massacci. Combining Deduction and Model Checking into Tableaux

and Algorithms for Converse-PDL. Inf. and Comp., 162(1–2):117–137, 2000.
8. R. Dechter, I. Meiri, and J. Pearl. Temporal Constraint Networks. AIJ, 49(1–3):61–95, 1991.
9. J. DeTreville. Binder, a logic based security language. In IEEE S&P-2002, 2002.

10. C. Ellison, B. Frantz, B. Lampson, R. Rivest, B. M. Thomas, and T. Ylonen. SPKI Certificate
Theory, September 1999. IEFT RFC 2693.

11. D. Georgakopoulos and M. Papazouglou. Service-oriented computing. CACM, 2003. To
appear.

12. J. Halpern and R. van der Meyden. A Logic for SDSI’s Linked Local Name Spaces. JCS,
9(1/2):105–142, 2001.

13. J. Halpern and R. van der Meyden. A Logical Reconstruction of SPKI. In CSFW’01, 2001.
14. J. Howell and D. Kotz. A Formal Semantics for SPKI. In ESORICS 2000, 2000.
15. H. A. Kautz and P. B. Ladkin. Integrating Metric and Qualitative Temporal Reasoning. In

AAAI-91, 1991.
16. N. Li. Local names in spki/sdsi. In IEEE CSFW 2000, pages 2–15, 2000.
17. F. Massacci. Tableaux Methods for Formal Verification of Multi-Agent Distributed Systems.

JLC, 8(3):373–400, 1998.
18. I. Meiri. Combining Qualitative and Quantitative Constraints in Temporal Reasoning. In

AAAI’91, 1991.
19. J. Feigenbaum Ninghui Li, B. N. Grosof. A practically implementable and tractable delega-

tion logic. In IEEE S&P 2000, pages 27–42, 2000. Full version appears in ACM TISSEC.
20. T. Reps S. Jha. Analysis of spki/sdsi certificates using model checking. In IEEE CSFW-2002,

2002.

21. S. Schwoon, S. Jha, T. Reps, and S. Stubblebine. On generalized authentication problems.
Technical report, Univ. of Winsconsin, 2003. To appear in CSFW 2003.

22. Paul Syverson. The use of logic in the analysis of cryptographic protocols. In IEEE S&
P-91, pages 156–170, 1991.

23. S. Weeks. Understanding trust management systems. In IEEE S&P-2001, 2001.
24. Ting Yu, Marianne Winslett, and Kent E. Seamons. Supporting structured credentials and

sensitive policies through interoperable strategies for automated trust negotiation. ACM TIS-
SEC, 6(1):1–42, 2003.

