The Taming of the (X)OR

Peter Baumgartnéand Fabio Massacti

1 Institut fir Informatik, Universiét Koblenz-Landau
D-56073 Koblenz, Germany
peter@uni-koblenz.de http:/ www.Urii-KonienZ.uer Deters
2 Dip. di Ingegneria dell'lnformazione
Universi di Siena, 53100 Siena, Italy
massacci@dii.unisi.it s LD/ WWW. QL UTNISLIU_11dSSacCl

Abstract. Many key verification problems such as bounded model-checking, cir-
cuit verification and logical cryptanalysis are formalized with combined clausal
and affine logic (i.e. clauses with xor as the connective) and cannot be efficiently
(if at all) solved by using CNF-only provers.

We present a decision proceduresficientlydecide such problems. Ti@auss-

DPLL procedure is a tight integration in a unifying framework of a Gauss-Elimina-
tion procedure (for affine logic) and a Davis-Putnam-Logeman-Loveland proce-
dure (for usual clause logic).

The key idea, which distinguishes our approach from others, is the full interac-
tion bewteen the two parts which makes it possible to maximize (deterministic)
simplification rules by passing around newly created unit or binary clauses in ei-
ther of these parts. We show the correcteness and the terminatizuss-DPLL
under very liberal assumptions.

1 Introduction

In many application areas such as formal verificatian.lti[a90 RALT |ogical crypt-
analysisiivasyfinanan o], plannin(iikstin Lan15598], and Al in generfaliskiV97] the tra-
ditional formulation of a logical inference problem as a satisfiability problem in clausal
normal form (CNF) is becoming unsatisfactory.

“Real world” problems are seldomly formulated in CNF and must always be con-
verted to it. The natural formulations of real problems make use of many logical connec-
tives: definitions (e.g. gates in circuit verifications), exclusive or (e.g. Feistel-operations
in logical cryptanalysis), disjunctions (e.g. non-deterministic actions in planning) etc.

When such formulae are transformed into CNF the performance of the system is not
very impressive, unless special heuristic information on the problem domain is used (see
e.g. [GMSY93] on planning anfiZitazmid9] on the DIMACS parity bit problems).

Our motivating application was logical cryptanalysis, the encoding of cryptographic
problems as SAT problemfiiviaciay MV 00]. Known plaintext attacks to the US Data
Encryption Standard can be encoded as a SAT problem with formulae of increasing
complexity. The experimental analysisinin=asuuni100] showed that the performance
of state-of-the-art CNF solvers suchraisat [2591], sato [[znadl], ntab [leavd], and

* F. Massacci acknowledges the support of a STM CNR grant.

J. Lloyd et al. (Eds.): CL 2000, LNAI 1861, pp. 5(EE522, 2000.
(© Springer-Verlag Berlin Heidelberg 2000

http://www.uni-koblenz.de/~peter/
http://www.dii.unisi.it/~massacci/

The Taming of the (X)OR 509

satz [[E8Y] degraded as soon as formulae containing exclusive-or appeared in the orig-
inal formulation. Thus, solving real crypto-problems with CNF-provers looks unlikely.

A similar situation is found in circuit verification where the usage ofcassful
BDD-packagesiiBrr90] has proven to be utterly ineffective when coping with fairly
basics circuits such as multipliers. Parity bit problems, based on logically simple formu-
lae, proved to be extremely hard for CNF based provers.istivadzaniinads a3 [i00].

“The taming of the xor” has therefore become one of the major research efforts
in the SAT community to tackle real world applications. The first solution is to cast
the problem into CNF using advanced translations beyond Teitsin definitional trans-
lation [fAisiGinicw]. Otherwise one can use a dual-phase algorithm that solves the
xor-part separateNCRAAiN9], or more complex algorithms using multiple polynomials
[lanaand]. Other researchers have focused on direct handling of xors as a black box
subroutine of classicadPLL algorithms[Liti)]. In the BDD community a number of
“*DD” (where “*” may be instantiated to almost any alphabetic string) decision dia-
grams has been proposed to solve this probiemi=giinus 1B RI7].

Most of these works start from the observation that satisfiability of affine logic —
sets of xor-clauses, i.e. clauses made up with xor as the connective — can be decided in
polynomial time ISE558]. In particular, one can use a Gaussian Elimination procedure
(GE procedure) to decide a given affine logic problems in quadratic time.

It seems therefore possible to include GE as a black-box subroutine in a procedure
fora more general logic, and this is indeed donEE AGGAAIESAIMO0]. We will not
directly do so, because the problems in our application domain (logical cryptanalysis),
are beyond affine clause logic: after an appropriate transformation we end upvaith
sets of clauses, a set of usual or-clauses, and a set of xor-clauses. Our task is to decide
the satisfiability of the combined problem, and, if satisfiable, output a model.

The experimental analysis reported BZIIGINAAANSSXAAZIA00] showed that incor-
porating the GE procedure as a black-box subroutine definitely pays off if the affine
logic part is overwhelming. This is the case for artificial DIMACS problems such as the
bit parity problem or Pretolani’s encoding of Urquhart’s formuBELCHal[T0GiniM99].
However, they also all agree that this is not sufficient when the affine logic part is only
a part of the overall formula. This is indeed the case for DES encodings whereas xor
clauses are just the hard core part (4% of whdiELidSSSILi00]. This is true for many
other problems such as model checkind IRCACITTT0].

So we want to have affine-logic reasoning in our calculus and, at the same time, we
do not want to abandon the good, old and after all extremely efficiebt procedure.

Our contribution is a revisedPLL where or-clauses and xor-clauses mutually co-exist.

In order to achieve a homogeneous architecture, we treat xor-clauses by more tradi-
tionally styled inference rules. In this way, the inferences carried out on either or-clauses
or xor-clauses can heavily influence each other. This allows for performance optimiza-
tions by passing around newly created unit or binary clauses in the or-clause logic part
to the xor-clause logic part (and vice versa). In both parts they can be usedpgiify
the currently derived clauses. By giving preference to simplifications, branching of the
search space due to the or-logic part is delayed until unavoidable or even prevented.

Of course, our inference-rule based mechanism specializes to a variant of the GE
procedure when restricted to affine logic. When applied to a pure inclusive-or clause

510 Peter Baumgartner and Fabio Massacci

logic problem, the method instantiates to the (propositional version of the) well-known
Davis-Putnam-Logeman-Lovelan®FLL) procedurelliiiiin?]. This choice is moti-
vated by the nice properties OPLL: its conceptual simplicity, space efficiency, few
inference rules, efficient and adaptable implementations (the most efficient systematic
propositional methods are basedmPi L [SSSIZ0a9CASH T 9]), and the possibil-

ity to immediately extract a model in case that no refutation exists.

The suggested calculus in this paper can also be understood as an attempt to “lift”
these properties to the case of a combined inclusive/exclusive-or logic. The underlying
inference rules can roughly be divided in three clasBesolutiortype inferences to
implement GE (however, one parent clausaligaysdeleted) simplificationinference
rules (which do not cause branching) and¢herule (aka split) to force a case analysis
A——-Ato advance the derivation when other rules are no longer applicable.

This is only part of the story: one major difference between ours and the classical
DPLL procedure is that we do not insist on explicitly computing a model; instead, we
allow our procedure to terminate earlier, oncéuactional description of a modés
computed. For instance, an equivalence Bke B is not subject to further case anal-
ysis to actually compute truth assignments foandB. Instead it serves a functional
description of our model. If we really want to have a truth assignment, we can choose a
random value for, saB and then the value & can be easily calculated.

The rest of this paper is structured as follows: we start with some preliminary defi-
nitions. Then we introduce the basic ingredients of our calculus (simplification and GE
inference rules). These are then combined with some more inference rules in a single
calculus calledsauss-DPLL. Finally, we sketch its correctness.

2 Preliminaries

We apply the usual notions of propositional logic, in a way consistefitindCL73].

An atomis either a propositional variable or the symbbl(“true’). A literal is
an atom or a negated atom. For a litdraits complement. is the atom4, if one has
L = —A, or elsel is —L. For a literalL we denote byl | the atom of_, i.e.|A| = A and
|-A| = Afor any atomA.

An assignmenis a pairA/L, whereAis an atom different fronT, andL is a literal.

An or-clauseis a possibly empty multiseils, ..., Ly} of literals, usually written
asLiVv---VL,if n> 0, andd if n= 0. Similarly, axor-clauseis a possibly empty
multiset{Ly,...,Ln} of literals, usually written ak1 ®- - -® L if n> 0, anddif n=0.
The atoms of a claus€, denoted by/C| are computed in the obvious way g3 =
{IL] : L € C}. A clauserefers to an or-clause or a xor-clause.

Remark 1 (Special Cased).clause with exactly one literal (i.e. a unit clause) can be
seen as an or-clause, as a xor-clause or as an assignment where the valué is
assigned to the atom of the literatcording the sign of thiteral in the obvious way.

A xor-clause with two literals can also be seen as an assignment. For instaraan

be seen as the assignmént-T, whereasA@ —B can be seen as the assignmBpia

or the assignmer/B. The calculus below contains rules for such transitions.

In the sequel we usA, B, ... for atoms,K,L,... for literals andC, D, ... for clauses.
The calligraphic letteré\, C andX are reserved to denote sets of assignment, sets of

The Taming of the (X)OR 511

or-clauses, and sets of xor-clauses, respectively. When writing down or-clauses, we use
the notationL v C to denote{L} Vv C, andC Vv D to denoteCUD (and similarly for
xor-clauses by usingp). Also, we write ‘C, C” instead of {C} UC”, whereC is a
(x)or-clause set.

Literal occurrences in xor-clauses can be flaggesksescted Selection is indicated
by underlining, as il & C. The purpose is to sta@as a “definition” ofL.

Quite frequently, we need tteet of selected atoms Kf, which is se{X) = {|L| |
L is selected irC, for someC € X }.

Translation to normal form.We have a strict separation in our clause sets: in the one
part, only “v” occurs, and in the other part onlye™ occurs. Treating arbitrary propo-
sitional formulae is conceivable as well. However, due to the presence of xor-clauses,
we can transform the initial formula into two separate sets, in a much simpler way than
with CNF transformations.

For instance the formulav BV (C&D @ E) can be transformed into the two clauses
AV BVF and—F &C& D & E introducing the new symbdt. It is easy to see that this
is a satisfiability preserving transformation. Even with optimized CNF transformation
we cannot get away with less than 6 clauses.

In our target applicatioriinanaiio] we have only formulae of the fders L1 & - - - &
LhorL=L1V---VLy So, atransformation into normal form will be definitely easy.
Hence we assume as given a clause-normal-form transformation that transforms the
given formulad (containing arbitrary connectives) equivalently into a set of or-clauses
and a set of xor-clauses (read conjunctively).

3 Simplification by Boolean Reduction

Simplification by boolean reduction means to transform a clause into normal form by
exploiting trivial boolean reductions. This is achieved by the inference Rggsshown
in Figurel; they are also used in the preprocessing step of the encoding of DES in
[T, and they extend to the xor-case the rules givelDioialSI=1HS98].

More preciselyreduction of a clause C by ths,, inference rulesneans to repeat-
edly replaceC by the result of a single application of an inference rule figg, to C,
resulting finally in a normal form of.

Proposition 1. The reduction of a clause C by tRg,. inference rules terminates.

The proof is straightforward and is omitted (the proof of Lenfllha 2 below makes the
ordering explicit that guarantees termination).

Remark 2 (Transparent Selectioir).the reduction process, the inference rules are ap-
plied to xor-clauseransparentlywrt. selected literalaccording to the following rules:

(i) selection withinC (referring to the actual instance of the meta-variable in the infer-
ence ruleRg,q) is preserved. (ii) selection adf, A, —A, B or —B carries over to the
resulting clause, if the respective literal still is present (in complemented form, how-
ever) in the conclusion.

The reason to preserve selection is to make in the calculus a re-orientation of a definition
impossible, where e.gA is just as good a definition name As

512 Peter Baumgartner and Fabio Massacci

Elimination of logical constants Elimination of redundancies
LeLeC - C
Ad-AgeC — TaC

LpTeC — LaC

-TeaC —C
-A®&-BpC — AeBaC
TVC — T
LvLVC — LVvC
-TvC—C

AvV-AVC — T

Fig. 1. The inference ruleRg,, for boolean reduction; in¢' — Y the left hand sidep
is the premise and the right hand sifiés the conclusion. The cage= O is permitted
in all rules, except off VC — T.

In general, a normal form derived in the way just described is not unique. Still, all
normal forms are logically equivalent and this is what we are interested in. Thus we let
C | denote some arbitrary normal form ©f

For instancesA@® —B@ —C has three normal forms angA® -B@ —C | may be
A® B& —C (notice how selection carries over). The single normal forAefA® Bis
B (however, such cyclic definitions are impossible to construct in the calculus).

4 Simplification by Boolean Assignments

The device introduced here is comparable to the uniform substitution rule by Teitsin. It
has been already introduced [nn=ux £S98].

Remark 3 (Assumptions about Sets of Assignmérten now on, when considering a

setA of assignments, we insist that whenergt. € A andA/K € A thenL =K (func-

tionality), and whenevef/L € A then|L|/K ¢ A, for every literalK (idempotency).
Notice that idempotency guarantees in particdlgh ¢ A andA/—-A ¢ A.

Definition 1 (Simplification by Assignments).Thesimplification of a claus€ by a
set of assignmen®& = {A;/L1,...Ay/Ln}, denoted by /A, is obtained by simultane-
ous substitution of each occurrence ¢f(fesp.—A;) in C by L (resp.Lj), for1 <i <n.

Simplification is applied transparently to selected literals in a “destructive” way: if
(or —A) is selected in a xor-clausg and a simplificatiorC//{A/L, ...} is performed,
the literal occurrenck (resp.L) in the resulting clause does not get selected.

Definition 2. An atom A isdefined in a set of assignmenfsiff A/L € A, for some
literal L. Itis undefinedff it is not defined.

Definition 3 (Extending a Set of Assignments)Let A be a set of assignments and
A/L be an assignment such that both A dhpare undefined ifA. Then, theextension
of A by A/L, denoted byA o (A/L), is the set of assignmen{8/(K//{A/L}) | B/
K € A}U{A/L}. In this definition the literal K is read as a unit clause.

If the atom A is undefined iy, thenAc A=A o (A/T),andAo-A=Aoc (A/=-T)

The Taming of the (X)OR 513

Lemma 1l (Preservation of Properties)If A is functional and idempotent, then, under
the conditions stated in Ddll 3, bo#w (A/L) andA oL are functional and idempotent.

Proof. (Sketch) Consider the general case (A/L). SinceA is undefined inA and
only the right hand sides are modified by extension, functionality is presefved.
(A/L) is idempotent because the right hand sideéiare subject to substitution by
the new assignmemt/L and thatl| is undefined irA. This makes non-idempotency
impossible.

5 Gauss Resolution Rules
The Gauss Elimination (GE) procedure can be represented by two resolution-like rules:

_ LeC L&D LaC LD
Gauss Gauss™
CaeDbD THpCahD

For theGauss™ rule, we say that @ D is the Gauss-resolvant of.C on L intoL® D,
and similarly forGauss™ rule.

As for resolution, these rules are sound, i.e. the conclusion is a consequence of
the premises. However, in sharp contrast to resolution, in both rules each premise is a
consequence of the conclusion and the other premise:

Proposition 2. All of the following hold:

1. {L&C,LeD} =Ce®Dand{L&C,CsD} L&D
2. {L&C,LeD} = T@CaeDand{L&C, T&CaD} =LaD

Using propositiof® we can delete one of the premises once the Gauss-resolvant has
been added to the xor-clause séthout loosing completenedsecause it is an equiva-
lence preserving transformation. The intuition is that the deleted clause can always be
restored by applying the inference rules. Thus one can avoid the exponential explosion
of resolution: the number of clauses never grows more than the initial set of clauses. If
we apply boolean reduction rules, one can eliminate duplicated literals in a clause, and
hence the length of each clause never exceeds the number of available atoms.

These two rules, together with a deletion strategy, describe a Gauss-Elimination
procedure as known from high-school which has a quadratic complexity. Take the given
xor-clauseX = {Cy,...,Cy} as a system of linear equations in a boolean i@} =
1,...,8C,= 1, where each variable is assigned a value 0 @y i addition modulo 2,
and-Ais Ag 1. In this view, the overall strategy to determine whetKes satisfiable
is first to derive (if possible) a triangular form &f. For this, select a clause with a
literal, sayL, and eliminate with the two rules all occurrencesLoandL from the
remaining clauses. This is possible by design of the inference rules, as the conclusion
contains neithelr norL. If necessary, we apply boolean reduction rules watih clause
contains at most one occurrenceLadr L. Next, the clause containingis put aside and
the variable elimination process continues in this way until all clauses are processed.

If the empty clause comes up, the xor-clause set is unsatisfiable. If a triangular
matrix results, a unique model can be computed by propagating the assignments forced

514 Peter Baumgartner and Fabio Massacci

by the shorter clauses towards the longer clauses. For a non-triangular form, the system
is under-determined and more than one model exists.

Unfortunately, unrestricted application of tBauss™ andGauss™ rules to a set of
xor-clauses may be a non-terminating process. The system might cycle among a finite
set of logically equivalent forms withou¢aching a fix point.

As an example considé¢ = {A®&C, ~A¢D}. ResolvingA&C onAinto A& D
yieldsX’ = {A®&C, Ce D}. Next, resolvingA@ C onC into C 4 D results inX again
(after reduction).

This problem is solved by using the strategy described above to derive a triangular
form. It would be acceptable if the xor-clause set is fixed, but this is not our case: first,
new unary or binary xor-clauses may come up as the derivation proceeds, and it can be
advantageous to delay the decision on the variables to eliminate. Second, the initial xor-
clause set is undetermined in most cafESLi00], and the value of many “independent”
variables is determined only by the constraints expressed by the or-clauses.

6 Gauss-DPLL

In this section we introduce the inference rules which are at the basis of a generalization
of the Davis-Putnam-Logeman-Loveland Procedure, which weGalissbPLL.
The inference rules, but one, are of the form

Name H Condition
whereA is a set of assignment§, is a set of or-clauses{ is a set of xor-clauses,
possibly with some selected literals. The primed versions are the sets derived by the
rule.

The intuition is that inA we store the definition&/L which say how to set the value
of an atomA on the basis of the value of another atom or a logical constant. ThE sets
andX contain the (x)or-clauses that have not been completely processed yet.

The main idea behind selected literals is that a xor-cl&sentaining a selected
literal L can be seen as a definition of the corresponding adkgnm terms of the value
of the other literals o€. For the whole system to be consistent, the clalisan only
be used as the definition ohly oneatom. Further, the calculus achieves that there is
only one such definition — be it in just one single xor-clause or as an assignment.

The twist to implement the GE procedure in this way is, that, when no rule is ap-
plicable, the seX and the selected literals in it implicitly describe a triangular form of
the linear modulo 2 equations ¥. For instance, iK = {A® B, C & B} this implicitly
describe a triangular form which is (partly) undeterming@@ndC have been “solved”
as functions oB. In terms of linear equation this is obvious: we have two equations and
three variables.

We are now turning to the inference rules@iussbPLL.

The following inference rules are used to reduce clauses; to avoid trivial loops, the
applicability conditionC # C | is assumed:

V-Red A G C X ®-Red A C G X
A c|,C X A C cC|X

The Taming of the (X)OR 515

The following inference rules simplify a clause by the current assignments; the appli-
cability conditionC # C//A is assumed:

c,C X A C CX

-Si -Si
VSMP AT e A e X ™ AT ¢ c/ALX

An inference rule for the simplification &% wrt. A is not necessary, becauBeis
both functional and idempotent (cf. Rem#likk 3) as being constructed.

Now we turn to the inference rules to implement the GE procedure as described in
Sectiorlb. First, we need a rule to select a litérédr elimination.

Select

C La&CX {ifsel({L@C}UX)matom:éL@C){}
A C LeC X |andL|#T

The intuition behind the applicability condition is that we can use a xor-clause as
definition of only one literal at a time, i.e. g&loC) NnatomgL & C) = {}. To guarantee
that no trivially cyclic definition as ilA@© A¢ B comes up, theb-Red inference rule
must be preferred t8elect (all the required preferences are stated in llef. 4 below). The
subcondition s¢X) natomgL ©C) = {} states that the new definition must not depend
from other definitions. If it were absent, a cyclic situation a§A®m B, A® -B} comes
up easily.

Then we have the proper Gauss-Resolution rule:

Gauss

C LeC,D, X {if D’ is Gauss resolvent af&C
A C LecCcD,X lonLintoD

Intuitively, this rule says that we take® C as a definition oL and replace iD the
literal L (or L) by its definition. To guarantee that there is no occurrende(of L) left

in D', the®-Red inference rule must be preferred®auss. The Gauss rule is applied
transparently wrt. selected literals, i.e. a possibly selected liteialremains selected
in D’ (the literalL (or L) in D’ cannot be selected anyway, cf. invariant (i) in Lenfha 2).

Example 1.Consider the following derivation whe® andC have been removed for
readability and numbers are for reference:

(1) A®B@E, AeC,BpC start

(2) A®B®E, A®C,B®C by Select

(3) CeBaE&T, A®C, B&CbyGauss™ of AC onAintoAGB&E
(4) —-CoBa®E, A®C,BHC byd-RedoNnCOBOE® T

(5) —-CoBaE, AeC, B&C by Select

(6) BeBaE, A6C, B4C byGauss™ of BeConCinto-CHBSE
(7) E, A®C, BsC by ®-Red onBO&BGE

(8) E, A¢Ba&T,BasC byGausst of B&ConCintoA&C

(9) E, A-B, BeC by ®&-Red onA®Ba T

(10) E, Ae-B, BaC by Select

Now we can apply neithasauss, norSelect, and indeed we terminated with an unde-
termined set of equations whekeandC are defined in terms .

516 Peter Baumgartner and Fabio Massacci

This example explains well the importance of giving precedence tetRed rule
over theGauss rule. Consider step (6): without simplifying the tvds we will not be
able to eliminate thenGauss alone will introduce twdCs, or twoAs etc.

To see the importance of the applicability conditiorsefect, let us look at the last
step. Without it, we could have continued as follows:

(17) E, Ae—-B, B&C bySelect
(12) E, A¢C, B&C byGauss™
(13) E,A®Ba T, B&C byGauss™
(14) E, Ae-B,B®C by®-Red

So we are using@ C sometimes as a definition 8fand sometimes as a definition of
C. This will clearly lead to a non-terminating sequence.

The rules presented so far constitute the core of the GE procedure as described in
Sectiorb. The next set of inference rule transforms unit (x)or-clauses into assignments,
with the purpose to trigger new simplification steps.

V-Unit A LC X @-Unit A ¢ L X
Aol C X Aol C X

Here,L may or may not be selected.

Remark 4.Since we give preference Red andSimp over theUnit rules, the extension
of A to A oL is defined, i.e|L| is undefined irA. Thus, functionality and idempotency
are preserved by Lemnllh 1, and the set of assignments strictly increases.

Now, the well-known DPLL splitting rule is introduced. The purpose is to advance
a derivation once no other rule is applicable.

A C X
AoA C X Ao-A C X

Split if A € atomgC), for someC € C
This is the sole rule with two consequences. Observe that the splitting in the two cases
Aand—Ais expressed in our notation as two respective assignmgntandA/—T.

Remark 5.0nce again we have no condition such 4si§ undefined inA” because
we give preference tBed andSimp over Split, and therefore the same reasoning as in
Remarkl applies.

The applicability condition irSplit is not necessary for completeness, but is useful
for stopping the search without going to compute explicitly any of the models that
would be possible by assigning all combinationsTond—T to the “independent”
atoms occurring in definitions represented by XheHowever, for the atoms occurring
in C, applyingSplit is mandatory as the last resort to make progress in proceSsing

Remark 6 (Explicit Models)f we arrive at a stage where no rule is applicable, and
the empty clause has not been found, we have a functional description of a model. To
obtain a model as a set of assignments of logical constants to atoms, we ca\aaiu to
arbitrary truth value assignment for each atom that is not selected in a xor-claXise in
The exhaustive application of tisgmp, Red andUnit rules leads to the desired result in

A then.

The Taming of the (X)OR 517

The next rules for equivalences are not necessary for completeness but they allow
for a substantial speed-up as they correspond to powerful forms of pruning: some hard
DIMACS problems are solved by using rules of equivalent form alon=aGiLi00].

A AV B, -Av-B, C X

“Eqv-1 if B X
V-Eqv Ao (A/=B) c if B¢ selX)
A Av-B, -AvB,C X
-Eqv-2 - - if B X
VR R AB) C x 1BselX)

A C AaL X .
-E — : flL ApLIUX
W o o X L #sellaeLiuX)

Remark 7.Similarly as said above in Remdlk 4 for t@plit rule, we insist to prefer the

Simp andRed rules over thé&qv rules. Therefore, all stated extensionsfoin the Eqv

rules are defined, thus both functionality and idempotency are preserved (cf. llBmma 1),
and alsaA is undefined irA.

To avoid loops, the turning of (x)or-clauses into assignments byEtjverules must
not contradict the implicit ordering of literals as determined by the selected literals in
X (this ordering is made explicit in the proof of Lemillla 2). This is what the stated
applicability conditions are good for.

The®-Eqv rule is formulated general enougledause any binary xor-clause of the
form =A@ —B can be turned intd & B by boolean reduction.

7 An Effective Calculus for Proof Search
Finally, it has to be said how to combine the inference rules of Sefiition 6:

Definition 4 (Affine Logic Tree (ALT)). We consider (incomplete) binary trees where
every node N is labelled with a tupl@,C, X). The label of N is denoted ByN).

Affine logic trees, ALTs, folC andX, whereC (resp.X) is an or-clause set (resp.
xor-clause set) are defined inductively in the following way:

Initialization Step: the treeT consisting of a root node N only and such théN) =
({},C,X)isan ALT forC andX.

Non-branching Extension Step: if N’ is a leaf of an ALTT / for C andX, and one of
the non-branching inference rules is applicableMd’), thenT is an ALT forC
andX, whereT is obtained froml / by attaching one new child node N below N
andA(N) is obtained by a single application of one of the non-branching inference
rules toA(N’). Applicability of these inference rules is given preference as follows:

— @-Simp and@-Red must be applied befoi®auss andSelect
— @-Simp and@-Red must be applied before-Unit and®-Eqv
— V-Simp andV-Red must be applied before-Unit, V-Eqv-1 and V-Eqv-2.

Branching Extension Step: if N is a leaf of an ALTT / for C andX, and non-branch-
ing extension steps are not applicable t§ Bind Split is applicable toA(N’), then
T is an ALT forC and X, whereT is obtained froml ’ by attaching two new
child nodes Nand N below N, andA(N;) and A(N;) are obtained by a single
application ofSplit to A(N).

518 Peter Baumgartner and Fabio Massacci

We abbreviate “ALT foilC andX” as “ALT” if context allows.

Definition 5 (Open, Closed, Derivation, Finishedness, Fairnessh branchB in an
ALTT is closediff for some node N d it holdsO € C U X, whereA(N) = (A,C,X).
Otherwise it isopen An ALTT s closed iff every branch of is closed, otherwise
it is open The branchB is finishediff B is closed or no extension step is applicable
to the leaf ofB. An ALTT is finished iff every branch df is finished. The termn-
finishedmeans not “not finished”. AlerivationD (for givenC andX) is a sequence
To, T1,...,Tn,... of ALTs, such thaly is obtained by an initialization step, and for
i > 0, T; is obtained by an extension step appliedlto;. A derivationD is fair iff it
does not end in an unfinished ALT.

Remark 8.The ALTs are the objects that are actually computed with. Observe that a
fair derivation either ends in a closed ALT (which means that th€ seX is unsatis-
fiable), or ends in an open ALT with at least one open and finished branch (which, as
will be shown, representsfanctional descriptiorof a model forC U X), or does not
terminate (which will be shown to be impossible in Lendha 2).

An effective proof procedurean be constructed by the simplest greedy strategy:
start with an ALT forC andX by an initialization step, and apply extension steps as
long as possible. Thereby, one would actually pursue only one branch at a time, not
further extend closed branches and delete closed branches from memory as soon as
derived. Under these regime, only polynomial space is consumed.

We do not specify a sophisticated proof procedure here, in particular since the de-
sign of anefficientproof procedure that takes advantage of good strategies for the un-
specified parameters (selection of literals, actual preference of inference rules) depends
from practical experiments which have not been carried out yet. For instance, it seems
natural to choose, among the possible selections of literals in xor-clauses, those that
maximize the future application of thegv or Unit rules. Fortunately, the correctness
proof in the next section guarantees that any setting within the inference rule prefer-
ences stated in Definitidlh 4 is complete.

8 Correctness

The soundnesgroof — that any closed ALT fo€ and Xindicates unsatisfiability of
C UX —is done by standard means and is omitted. To stmwpletenessve first show
that exhaustive application of the inference rules always terminates:

Lemma 2 (Termination). Any derivatiorD for givenC andX is finite.

Proof. It suffices to show that no branch can be endlessly extended. At the heart of this
proof are well-founded, strict partial orderingsy on clauses associated to the nodes

of the constructed ALTs. As a preliminary step, g be a binary relation over atoms
associated to node, which is defined inductively as follows:

{(A, T) | Ais an aton}, if N is the root node

>n U{(A/L) [(A/L) €A}
U {(‘K‘v‘Ll‘)va(‘K‘v‘LkD ‘K@Ll@@LkGX})
whereA(N) = (A,C, X), if N has the immediate ancestor ndde

>N =

The Taming of the (X)OR 519

That is, >y starts in a trivial way, and gets enlarged as new assignments come up or
selections are done when going down the branches. An important detail is-ghat
monotonically increases in this process.

The transitive closure afy is denoted by-y. In order to compare clauses take the
usual multiset extension-y of the literal ordering in whichv is strictly greater than
Lo iff |L1| >N |L2| Or elseL; = —Ly (i.e. —Ais greater tham). It is well-known that if
>~n IS a strict, well-founded ordering (on atoms), as will be shown below, sengon
clauses).

We need severahvariantsto hold for eactnodeN, whereh(N) = (A,C, X):

(i) If [K| >n|L|, then (a)K| is the left hand side of an assignmentiinor (b)K orK
is the selected literal in some xor-clause&Xin

(i) For each selected atofe sel(X) there is exactly one xor-clau§ee X such that
Aor—Ais a selected literal i€. Furthermore, this literal is the only selected literal
occurrence irC.

(iii) If N has an immediate ancestor nodéand selX) C sel(X’), whereA(N') =
(A’,C’ X"), then either thep-Simp rule or the®-Unit rule or the®-Eqv rule is
applied toN’ to obtainN (but no other rule). That is, if a selection is lost, these are
the only possible sources.

(iv) The relation-y is a strict partial ordering on atoms.

(v) If N has animmediate ancestor nddfeandSelect is applied ta\’, then>yN D >y

The proof of the invariants is omitted here for space reasons; it can be found in the full
version. They are used now to argue for termination. We feel no need for a completely
formal presentation of the lexicographic ordering underlying the following argumenta-
tion.

Suppose, to the contrary, there is an infinite sequence of braBghBs, ... such
that, forj > 0, Bj is a branch of somé&; of the given derivation (written as in Ddll 5),
and that an extension step is applied to the leaBpfandBj1 is a branch result-
ing from this application. We are now investigating possible sources for this branch
sequence to be infinite.

First, from some pointin time on, they-relation is the same (referring to the leaves
of the branches in the considered branch sequence), because only finiteliiterais
are at disposal, an]s,{Nj C >N, by construction of>n, whereN; is the leaf ofB;.

Consequently, together with invariant (v), tbelect rule is applied dasttime along
the considered branch sequence.

Secondeach ofv-Unit, &-Unit, andSplit is applied a last time, because each of them
strictly increases the set of assignment it modifies. This was argued for in Rellharks 4
and®. Clearly, this strictness suffices as a proof for the claim.

Third, eachEqv rule is applied a last time. The arguments are the same is in “sec-
ond”, by using RemarHl7.

Fourth, the rules mentioned at “second” and “third” are the only ones to extend
assignments. Hence, from some point in time on, the set of assignments is the same in
each leaf of the considered branch sequence.

Fifth, from “fourth” and the idempotency of assignments (cf. again Renflrlks 4, 5
and) it follows immediately that th&imp rules are applied a last time.

Sixth, hence, only th&auss andRed rules remain as sources for infiniteness of the
branch sequence. To show this impossibility, observe that with “first” the ordefing

520 Peter Baumgartner and Fabio Massacci

is the same from some point in time on (invariant (iv) guarantees:thatis indeed
a well-founded, strict partial ordering). Further, the orderi#g, is made such that
theGauss andRed rules both work strictly decreasing. More precisely, Gaiss rule
refers to theauss™ andGauss™ rules. These are applied with a left premise, in which
L is the only selected literal (cf. the applicability condition ®auss and invariant
(ii)) and which is strictly larger than each of the rdiserals (by construction of the
ordering). Hence, the right premise strictly decreases sw{. For theRed rules it is
straightforward to check that they work strictly decreasing w#iy, provided they are
applicable. An important detail is to makeA bigger tharA.

Hence, in sum, witltauss andRed working strictly decreasing wrt-y, which is
the same from some point in time on, both of them are applied a last time.

All inference rules are now shown to be applied a last time along the considered
branch sequence. Hence it must be finite, and thus the lemma is proven.

Theorem 1 (Completeness).et D be a fair derivation for a set of or-claus&€and
a set of xor-clauseX . ThenD is finite, and if the last ALT in D is open, thel® UX
is satisfiable.

This is our main result. Observe that in the contrapositive direction it just expresses
refutation completeness.

Proof. Finiteness oD is given by LemmdR. Therefore suppose thais the last ALT
in D, and thaifl is open. We are concentrating on an open and finished biBunicf
which must exist according to Remdlk 8. Ibe the leaf 0B, andA(N) = (A,C, X).
The first observation is thd& = {} or C = {T} (which is equivalent). The proof is
by contradiction: the case th@tcontains the empty clause is impossible, because then
B would be closed. Also, i€ would consist of clauses containing the symiobnly
(with the single exception of the clauge), it would would have been simplified to
eitherC = {}, C = {T} or C = {O} (contradicting the finishedness Bf. HenceC
contains at least a clause with a literal different frdmLet L be such a literal. But
then, Split with |L| would have been applied, contradicting finishednesB afgain.
This completes the proof th@t= {} orC = {T}.

Thus, to construct a model, we have to consilandX only. We use the strategy
indicated in Remarffl6: we give an arbitrary value to the variables that are not selected
in X, and we show how to extend to a model.

Fact: in each claus€ € X there is exactly one occurrence of a selected literal, and
all the selected literals are pairwise different (modulo sign). This is due to invariant (ii)
in the proof of Lemmdl2, and the finishednes$BofFor, if in someC € X no literal
would be selected, angklect is not applicable t&, then some literal i is selected
in a different clause (modulo sign), and thesuss would be applicable, contradicting
finishedness.

Now take any literal occuring inX but such thail | ¢ selX). Add it as an assign-
ment|L|/T (or |L|/=T) to A. A must still be idempotent and functionakdause as a
consequence of finishednels,must be undefined iA, and so LemmB 1 is applicable.
Repeat this, until all non-selected literadseive an explicit (arbitrary) truth value M.

Finally, only the selected literals i do not have explicit truth values . Since
each of them occurs only once in a claus& itby the abovdact), their truth values can

The Taming of the (X)OR 521

be chosen locally to the containing clauses as the appropriate parity for the rest clause,
which has been completely specified by the arbitrary assignments. Furthermore, by the
fact again, this can be done feweryxor-clause inX. Hence, for each such selected
literal L and its appropriate truth value, add a respective assigntght (or [L|/—T)

to A. This is possible, because, by finishedness adamust be undefined iA (by
the®-Simp rule). Finally, explicit truth assignments for all the literals occuring as right
hind sides inA are added arbitrarily. This procedure results in a functional assignment
to eitherT or =T for all atoms, which is just a model.

9 Conclusions

In this paper we have presented a decision procedure cadless-DPLL for combined
clausal and affine logic (i.e. clauses with xor as the connective).

We have argued that procedures to solve such problems are neatfcieatlyde-
cide respective problems, which occur frequently in real-world applications like circuit
verification and logical cryptanalysis. Gauss-DPLL is a tight integration in a unifying
framework of a Gauss-Elimination procedure (for affine logic) and a Davis-Putnam-
Logeman-Loveland procedure (for usual clause logic).

The main ideas, which distinguishes our approach from other approaches in the
literature, are the following: at first, we provide a coherent approach of the treatment
of both or and xor-clauses which specialized to optimized decision procedures when
the input is restricted to either of them. Second we allow for a heavy interleaving of
the two parts with the purpose to maximize (deterministic) simplification by passing
around newly created unit or binary clauses in either of these parts. Last, but not least,
we are able to stop the search and output a functional description of the model rather
than a completely specified model.

As noted in[[Zi6)], the explicit handling of equivalences makes it possible to trans-
form exponentially long proofs of hard DIMACS benchmarks by Dubois and Pretolani
[ECSiiitn)] using classical DPLL into short polynomial proofs. This resu#tdsom-

plished by Li using rules corresponding to restricted versions of boolean reduction,
simplifications and equivalences. The Gauss-DPLL procedure also inherits that speed-
up over classical DPLL.

The calculus is not implemented yet, but we plan to do so in the near future.

References

BCC'99. A. Biere, A. Cimatti, E. Clarke, M. Fuijita, and Y. Zhu. Symbolic model checking
using SAT procedures instead of BDDs.Rroc. of ACM/IEEE DAC-99ages 317—
320. ACM Press, 1999.

BDWO95. B. Becker, R. Drechsler, and R. Werchner. On the relation between BDDs and FDDs.
Inf. and Comp.123(2):185-197, 1995.

BRB90. K. Brace, R. Rudell, and R. Bryant. Efficientimplementation of a BDD package. In
Proc. of ACM/IEEE DAC-90pages 40-45. IEEE Press, 1990.

BS97. R. Bayardo and R. Schrag. Using CSP look-back technigues to solve real-world SAT
instances. IProc. of AAAI-97 pages 203—-208. AAAI Press/The MIT Press, 1997.

CA96. J. Crawford and L. Auton. Experimental results on the crossover point in random
3SAT. AlJ, 81(1-2):31-57, 1996.

522

CL73.

Cla90.

DBR97.

DLL62.

GMS98.

GWOO0.

HS98.

JT96.

KS96.

Li99.

LioO.

Mas98.

Mas99.

MMOO.

Sch78.

SKM97.

Wil90.

WvM99.

WvMOO.

Zha97.

Peter Baumgartner and Fabio Massacci

C. Chang and R. Le&Symbolic Logic and Mechanical Theorem Providgademic
Press, 1973.

L. Claesen, edFormal VLSI Correctness Verification: VLS| Design Methods-

ume Il. Elsevier, 1990.

R. Drechsler, B. Becker, and S. Ruppertz. Manipulation algorithms for K*BMDs. In
Proc. of TACAS-97LNCS 1217, pages 4-18. Springer-Verlag, 1997.

M. Davis, G. Logeman, and D. Loveland. A machine program for theorem proving.
CACM, 5(7), 1962.

E. Giunchiglia, A. Massarotto, and R. Sebastiani. Act and the rest will follow: Explit-
ing nondeterminism in planning as satisfléyp In Proc. of AAAI-98 pages 948-952.
The MIT Press, 1998.

J. Groote and J. Warners. The prapimsal formula checker HeerHugdAR 2000.
To appear.

U. Hustadt and R. Schmidt. Simplification and backjumping in modal tableau. In
Proc. of TABLEAUX-98LNAI 1397 , pages 187—-201. Springer-Verlag, 1998.

D. Johnson and M. Trick, ed€liques, Coloring, satisfiability: the second DIMACS
implementation challengeolume 26 ofAMS Series in Discr. Math. and TCBMS,
1996.

H. Kautz and B. Selman. Pushing the envelope: Planning, ptiopas logic and
stocastic search. IRroc. of AAAI-96pages 1194-1201. The MIT Press, 1996.
Chu-Min Li. A constraint-based approach to narrow search trees for satisfidBility.
71(2):75-80, 1999.

Chun-Min Li. Integrating equivalency reasoning into Davis-Putnam procedure. To
appear inProc. of AAAI-00

Fabio Massacci. Simplification: A general constraint propagation technique for propo-
sitional and modal tableaux. Proc. of TABLEAUX-98LNAI 1397, pages 217-231.
Springer-Verlag, 1998.

Fabio Massacci. Using Walk-SAT and Rel-sat for cryptographic key searemdn

of IJCAI-99 pages 290-295. Morgan Kaufmann, 1999.

Fabio Massacci and Laura Marraro. Logical cryptanalysis as a SAT-problem: Encod-
ing and analysis of the u.s. Data Encryption StanddfdR 2000. To appear.

T. Schaefer. The complexity of satisiligbproblems. InProc. of STOC-78pages
216-226. ACM Press, 1978.

Bart Selman, Henry Kautz, and David McAllester. Ten challenges in pitajes
resoning and search. Froc. of IJCAI-97 pages 50-54. Morgan Kaufmann, 1997.

J. Wilson. Compact normal forms in profti@nal logics and integer programming
formulations.Comp. and Op. Resl7(3):309-314, 1990.

J. Warners and H. van Maaren. A two phase algorithm for solving a class of hard
satisfiability problemsOp. Res. Lett.23(3-5):81-88, 1999.

J. Warners and H. van Maaren. Recognition of tractable satisfiability problemagthr
balanced polynomial representatiofsscr. Appl. Math, 2000.

H. Zhang. SATO: An Efficient Propitienal Theorem Prover. IRroc. of CADE 97
LNAI 1249, pages 272-275, 1997. Springer-Verlag.

	Introduction
	Preliminaries
	Simplification by Boolean Reduction
	Simplification by Boolean Assignments
	Gauss Resolution Rules
	Gauss-DPLL
	An Effective Calculus for Proof Search
	Correctness
	Conclusions
	References

