
The Taming of the (X)OR

Peter Baumgartner1 and Fabio Massacci2?

1 Institut für Informatik, Universität Koblenz-Landau
D-56073 Koblenz, Germany

peter@uni-koblenz.de http://www.uni-koblenz.de/˜peter/
2 Dip. di Ingegneria dell’Informazione
Università di Siena, 53100 Siena, Italy

massacci@dii.unisi.it , http://www.dii.unisi.it/˜massacci/

Abstract. Many key verification problems such as bounded model-checking,cir-
cuit verification and logical cryptanalysis are formalized with combined clausal
and affine logic (i.e. clauses with xor as the connective) and cannot be efficiently
(if at all) solved by using CNF-only provers.
We present a decision procedure toefficientlydecide such problems. TheGauss-
DPLL procedure is a tight integration in a unifying framework of a Gauss-Elimina-
tion procedure (for affine logic) and a Davis-Putnam-Logeman-Loveland proce-
dure (for usual clause logic).
The key idea, which distinguishes our approach from others, is the full interac-
tion bewteen the two parts which makes it possible to maximize (deterministic)
simplification rules by passing around newly created unit or binary clauses in ei-
ther of these parts. We show the correcteness and the termination ofGauss-DPLL
under very liberal assumptions.

1 Introduction

In many application areas such as formal verification [Cla90,BCC+99], logical crypt-
analysis [Mas99,MM00], planning [KS96,GMS98], and AI in general [SKM97] the tra-
ditional formulation of a logical inference problem as a satisfiability problem in clausal
normal form (CNF) is becoming unsatisfactory.

“Real world” problems are seldomly formulated in CNF and must always be con-
verted to it. The natural formulations of real problems make use of many logical connec-
tives: definitions (e.g. gates in circuit verifications), exclusive or (e.g. Feistel-operations
in logical cryptanalysis), disjunctions (e.g. non-deterministic actions in planning) etc.

When such formulae are transformed into CNF the performance of the system is not
very impressive, unless special heuristic information on the problem domain is used (see
e.g. [GMS98] on planning and [WvM99] on the DIMACS parity bit problems).

Our motivating application was logical cryptanalysis, the encoding of cryptographic
problems as SAT problems [Mas99,MM00]. Known plaintext attacks to the US Data
Encryption Standard can be encoded as a SAT problem with formulae of increasing
complexity. The experimental analysis in [Mas99,MM00] showed that the performance
of state-of-the-art CNF solvers such asrel sat [BS97],sato [Zha97],ntab [CA96], and

? F. Massacci acknowledges the support of a STM CNR grant.

J. Lloyd et al. (Eds.): CL 2000, LNAI 1861, pp. 508–522, 2000.
c© Springer-Verlag Berlin Heidelberg 2000

http://www.uni-koblenz.de/~peter/
http://www.dii.unisi.it/~massacci/

The Taming of the (X)OR 509

satz [Li99] degraded as soon as formulae containing exclusive-or appeared in the orig-
inal formulation. Thus, solving real crypto-problems with CNF-provers looks unlikely.

A similar situation is found in circuit verification where the usage of successful
BDD-packages [BRB90] has proven to be utterly ineffective when coping with fairly
basics circuits such as multipliers. Parity bit problems, based on logically simple formu-
lae, proved to be extremely hard for CNF based provers [SKM97,WvM99,JT96,Li00].

“The taming of the xor” has therefore become one of the major research efforts
in the SAT community to tackle real world applications. The first solution is to cast
the problem into CNF using advanced translations beyond Teitsin definitional trans-
lation [Wil90,GW00]. Otherwise one can use a dual-phase algorithm that solves the
xor-part separately [WvM99], or more complex algorithms using multiple polynomials
[WvM00]. Other researchers have focused on direct handling of xors as a black box
subroutine of classicalDPLL algorithms [Li00]. In the BDD community a number of
“*DD” (where “*” may be instantiated to almost any alphabetic string) decision dia-
grams has been proposed to solve this problem [BDW95,DBR97].

Most of these works start from the observation that satisfiability of affine logic –
sets of xor-clauses, i.e. clauses made up with xor as the connective – can be decided in
polynomial time [Sch78]. In particular, one can use a Gaussian Elimination procedure
(GE procedure) to decide a given affine logic problems in quadratic time.

It seems therefore possible to include GE as a black-box subroutine in a procedure
for a more general logic, and this is indeed done in [Li00,WvM99,WvM00]. We will not
directly do so, because the problems in our application domain (logical cryptanalysis),
are beyond affine clause logic: after an appropriate transformation we end up withtwo
sets of clauses, a set of usual or-clauses, and a set of xor-clauses. Our task is to decide
the satisfiability of the combined problem, and, if satisfiable, output a model.

The experimental analysis reported by [Li00,WvM99,WvM00] showed that incor-
porating the GE procedure as a black-box subroutine definitely pays off if the affine
logic part is overwhelming. This is the case for artificial DIMACS problems such as the
bit parity problem or Pretolani’s encoding of Urquhart’s formulae [JT96,Li00,WvM99].
However, they also all agree that this is not sufficient when the affine logic part is only
a part of the overall formula. This is indeed the case for DES encodings whereas xor
clauses are just the hard core part (4% of whole) [Mas99,Li00]. This is true for many
other problems such as model checking [BCC+99,Li00].

So we want to have affine-logic reasoning in our calculus and, at the same time, we
do not want to abandon the good, old and after all extremely efficientDPLL procedure.
Our contribution is a revisedDPLL where or-clauses and xor-clauses mutually co-exist.

In order to achieve a homogeneous architecture, we treat xor-clauses by more tradi-
tionallystyled inference rules. In this way, the inferences carried out on either or-clauses
or xor-clauses can heavily influence each other. This allows for performance optimiza-
tions by passing around newly created unit or binary clauses in the or-clause logic part
to the xor-clause logic part (and vice versa). In both parts they can be used tosimplify
the currently derived clauses. By giving preference to simplifications, branching of the
search space due to the or-logic part is delayed until unavoidable or even prevented.

Of course, our inference-rule based mechanism specializes to a variant of the GE
procedure when restricted to affine logic. When applied to a pure inclusive-or clause

510 Peter Baumgartner and Fabio Massacci

logic problem, the method instantiates to the (propositional version of the) well-known
Davis-Putnam-Logeman-Loveland (DPLL) procedure [DLL62]. This choice is moti-
vated by the nice properties ofDPLL: its conceptual simplicity, space efficiency, few
inference rules, efficient and adaptable implementations (the most efficient systematic
propositional methods are based onDPLL [BS97,Zha97,CA96,Li99]), and the possibil-
ity to immediately extract a model in case that no refutation exists.

The suggested calculus in this paper can also be understood as an attempt to “lift”
these properties to the case of a combined inclusive/exclusive-or logic. The underlying
inference rules can roughly be divided in three classes:Resolution-type inferences to
implement GE (however, one parent clause isalwaysdeleted),simplificationinference
rules (which do not cause branching) and thecut rule (aka split) to force a case analysis
A –¬A to advance the derivation when other rules are no longer applicable.

This is only part of the story: one major difference between ours and the classical
DPLL procedure is that we do not insist on explicitly computing a model; instead, we
allow our procedure to terminate earlier, once afunctional description of a modelis
computed. For instance, an equivalence likeA ≡ B is not subject to further case anal-
ysis to actually compute truth assignments forA andB. Instead it serves a functional
description of our model. If we really want to have a truth assignment, we can choose a
random value for, say,B and then the value ofA can be easily calculated.

The rest of this paper is structured as follows: we start with some preliminary defi-
nitions. Then we introduce the basic ingredients of our calculus (simplification and GE
inference rules). These are then combined with some more inference rules in a single
calculus calledGauss-DPLL. Finally, we sketch its correctness.

2 Preliminaries
We apply the usual notions of propositional logic, in a way consistent to [CL73].

An atom is either a propositional variable or the symbol> (“ true”). A literal is
an atom or a negated atom. For a literalL, its complementL is the atomA, if one has
L = ¬A, or elseL is¬L. For a literalL we denote by|L| the atom ofL, i.e. |A| = A and
|¬A|= A for any atomA.

An assignmentis a pairA/L, whereA is an atom different from>, andL is a literal.
An or-clauseis a possibly empty multiset{L1, . . .,Ln} of literals, usually written

asL1 ∨ · · ·∨ Ln if n > 0, and2 if n = 0. Similarly, axor-clauseis a possibly empty
multiset{L1, . . .,Ln} of literals, usually written asL1⊕· · ·⊕Ln if n> 0, and2 if n= 0.
The atoms of a clauseC, denoted by|C| are computed in the obvious way as|C| =
{|L| : L ∈C}. A clauserefers to an or-clause or a xor-clause.

Remark 1 (Special Cases).A clause with exactly one literal (i.e. a unit clause) can be
seen as an or-clause, as a xor-clause or as an assignment where the value> or ¬> is
assigned to the atom of the literalaccording the sign of theliteral in the obvious way.
A xor-clause with two literals can also be seen as an assignment. For instance¬A can
be seen as the assignmentA/¬>, whereasA⊕¬B can be seen as the assignmentB/A
or the assignmentA/B. The calculus below contains rules for such transitions.

In the sequel we useA,B, . . . for atoms,K,L, . . . for literals andC,D, . . . for clauses.
The calligraphic lettersA , C andX are reserved to denote sets of assignment, sets of

The Taming of the (X)OR 511

or-clauses, and sets of xor-clauses, respectively. When writing down or-clauses, we use
the notationL∨C to denote{L}∨C, andC∨D to denoteC∪D (and similarly for
xor-clauses by using⊕). Also, we write “C, C ” instead of “{C}∪ C ”, where C is a
(x)or-clause set.

Literal occurrences in xor-clauses can be flagged asselected. Selection is indicated
by underlining, as inL⊕C. The purpose is to stateC as a “definition” ofL.

Quite frequently, we need theset of selected atoms ofX , which is sel(X) = {|L| |
L is selected inC, for someC∈ X}.

Translation to normal form.We have a strict separation in our clause sets: in the one
part, only “∨” occurs, and in the other part only “⊕” occurs. Treating arbitrary propo-
sitional formulae is conceivable as well. However, due to the presence of xor-clauses,
we can transform the initial formula into two separate sets, in a much simpler way than
with CNF transformations.

For instance the formulaA∨B∨(C⊕D⊕E) can be transformed into the two clauses
A∨B∨F and¬F ⊕C⊕D⊕E introducing the new symbolF. It is easy to see that this
is a satisfiability preserving transformation. Even with optimized CNF transformation
we cannot get away with less than 6 clauses.

In our target application [MM00] we have only formulae of the formL↔ L1⊕· · ·⊕
Ln or L = L1∨ · · ·∨ Ln. So, a transformation into normal form will be definitely easy.
Hence we assume as given a clause-normal-form transformation that transforms the
given formulaϕ (containing arbitrary connectives) equivalently into a set of or-clauses
and a set of xor-clauses (read conjunctively).

3 Simplification by Boolean Reduction
Simplification by boolean reduction means to transform a clause into normal form by
exploiting trivial boolean reductions. This is achieved by the inference rulesRBool shown
in Figure 1; they are also used in the preprocessing step of the encoding of DES in
[MM00], and they extend to the xor-case the rules given in [Mas98,HS98].

More precisely,reduction of a clause C by theRBool inference rulesmeans to repeat-
edly replaceC by the result of a single application of an inference rule fromRBool to C,
resulting finally in a normal form ofC.

Proposition 1. The reduction of a clause C by theRBool inference rules terminates.

The proof is straightforward and is omitted (the proof of Lemma 2 below makes the
ordering explicit that guarantees termination).

Remark 2 (Transparent Selection).In the reduction process, the inference rules are ap-
plied to xor-clausestransparentlywrt. selected literalsaccording to the following rules:
(i) selection withinC (referring to the actual instance of the meta-variable in the infer-
ence rulesRBool) is preserved. (ii) selection ofL, A, ¬A, B or ¬B carries over to the
resulting clause, if the respective literal still is present (in complemented form, how-
ever) in the conclusion.

The reason to preserve selection is to make in the calculus a re-orientation of a definition
impossible, where e.g.¬A is just as good a definition name asA.

512 Peter Baumgartner and Fabio Massacci

Elimination of logical constants Elimination of redundancies

L⊕>⊕C → L⊕C

¬>⊕C → C

>∨C → >
¬>∨C → C

L⊕L⊕C → C

A⊕¬A⊕C → >⊕C

¬A⊕¬B⊕C → A⊕B⊕C

L∨L∨C → L∨C

A∨¬A∨C → >

Fig. 1.The inference rulesRBool for boolean reduction; in “ϕ → ψ” the left hand sideϕ
is the premise and the right hand sideψ is the conclusion. The caseC = 2 is permitted
in all rules, except of>∨C→>.

In general, a normal form derived in the way just described is not unique. Still, all
normal forms are logically equivalent and this is what we are interested in. Thus we let
C ↓ denote some arbitrary normal form ofC.

For instance,¬A⊕¬B⊕¬C has three normal forms and¬A⊕¬B⊕¬C ↓ may be
A⊕B⊕¬C (notice how selection carries over). The single normal form ofA⊕A⊕B is
B (however, such cyclic definitions are impossible to construct in the calculus).

4 Simplification by Boolean Assignments
The device introduced here is comparable to the uniform substitution rule by Teitsin. It
has been already introduced in [Mas98,HS98].

Remark 3 (Assumptions about Sets of Assignments).From now on, when considering a
setA of assignments, we insist that wheneverA/L ∈ A andA/K ∈ A thenL = K (func-
tionality), and wheneverA/L ∈ A then|L|/K /∈ A , for every literalK (idempotency).

Notice that idempotency guarantees in particularA/A /∈ A andA/¬A /∈ A .

Definition 1 (Simplification by Assignments).Thesimplification of a clauseC by a
set of assignmentsA = {A1/L1, . . .An/Ln}, denoted by C//A , is obtained by simultane-
ous substitution of each occurrence of Ai (resp.¬Ai) in C by Li (resp.Li), for 1≤ i ≤ n.

Simplification is applied transparently to selected literals in a “destructive” way: ifA
(or ¬A) is selected in a xor-clauseC and a simplificationC//{A/L, . . .} is performed,
the literal occurrenceL (resp.L) in the resulting clause does not get selected.

Definition 2. An atom A isdefined in a set of assignmentsA iff A/L ∈ A , for some
literal L. It is undefinediff it is not defined.

Definition 3 (Extending a Set of Assignments).Let A be a set of assignments and
A/L be an assignment such that both A and|L| are undefined inA . Then, theextension
of A by A/L, denoted byA ◦ (A/L), is the set of assignments{B/(K//{A/L}) | B/
K ∈ A}∪{A/L}. In this definition the literal K is read as a unit clause.

If the atom A is undefined inA , thenA ◦A= A ◦ (A/>), andA ◦¬A= A ◦ (A/¬>)

The Taming of the (X)OR 513

Lemma 1 (Preservation of Properties).If A is functional and idempotent, then, under
the conditions stated in Def. 3, bothA ◦ (A/L) andA ◦L are functional and idempotent.

Proof. (Sketch) Consider the general caseA ◦ (A/L). SinceA is undefined inA and
only the right hand sides are modified by extension, functionality is preserved.A ◦
(A/L) is idempotent because the right hand sides inA are subject to substitution by
the new assignmentA/L and that|L| is undefined inA . This makes non-idempotency
impossible.

5 Gauss Resolution Rules

The Gauss Elimination (GE) procedure can be represented by two resolution-like rules:

Gauss−
L⊕C L⊕D

C⊕D
Gauss+ L⊕C L⊕D

>⊕C⊕D

For theGauss− rule, we say thatC⊕D is the Gauss-resolvant of L⊕C on L intoL⊕D,
and similarly forGauss+ rule.

As for resolution, these rules are sound, i.e. the conclusion is a consequence of
the premises. However, in sharp contrast to resolution, in both rules each premise is a
consequence of the conclusion and the other premise:

Proposition 2. All of the following hold:

1. {L⊕C, L⊕D} |= C⊕D and{L⊕C, C⊕D} |= L⊕D
2. {L⊕C, L⊕D} |= >⊕C⊕D and{L⊕C, >⊕C⊕D} |= L⊕D

Using proposition 2 we can delete one of the premises once the Gauss-resolvant has
been added to the xor-clause setwithout loosing completeness, because it is an equiva-
lence preserving transformation. The intuition is that the deleted clause can always be
restored by applying the inference rules. Thus one can avoid the exponential explosion
of resolution: the number of clauses never grows more than the initial set of clauses. If
we apply boolean reduction rules, one can eliminate duplicated literals in a clause, and
hence the length of each clause never exceeds the number of available atoms.

These two rules, together with a deletion strategy, describe a Gauss-Elimination
procedure as known from high-school which has a quadratic complexity. Take the given
xor-clausesX = {C1, . . .,Cn} as a system of linear equations in a boolean ring⊕C1 =
1, . . .,⊕Cn = 1, where each variable is assigned a value 0 or 1,⊕ is addition modulo 2,
and¬A is A⊕1. In this view, the overall strategy to determine whetherX is satisfiable
is first to derive (if possible) a triangular form ofX . For this, select a clause with a
literal, sayL, and eliminate with the two rules all occurrences ofL and L from the
remaining clauses. This is possible by design of the inference rules, as the conclusion
contains neitherL norL. If necessary, we apply boolean reduction rules untileach clause
contains at most one occurrence ofL or L. Next, the clause containingL is put aside and
the variable elimination process continues in this way until all clauses are processed.

If the empty clause comes up, the xor-clause set is unsatisfiable. If a triangular
matrix results, a unique model can be computed by propagating the assignments forced

514 Peter Baumgartner and Fabio Massacci

by the shorter clauses towards the longer clauses. For a non-triangular form, the system
is under-determined and more than one model exists.

Unfortunately, unrestricted application of theGauss− andGauss+ rules to a set of
xor-clauses may be a non-terminating process. The system might cycle among a finite
set of logically equivalent forms without reaching a fix point.

As an example considerX = {A⊕C, ¬A⊕D}. ResolvingA⊕C on A into¬A⊕D
yieldsX ′ = {A⊕C, C⊕D}. Next, resolvingA⊕C onC into C⊕D results inX again
(after reduction).

This problem is solved by using the strategy described above to derive a triangular
form. It would be acceptable if the xor-clause set is fixed, but this is not our case: first,
new unary or binary xor-clauses may come up as the derivation proceeds, and it can be
advantageous to delay the decision on the variables to eliminate. Second, the initial xor-
clause set is undetermined in most cases [Li00], and the value of many “independent”
variables is determined only by the constraints expressed by the or-clauses.

6 Gauss-DPLL
In this section we introduce the inference rules which are at the basis of a generalization
of the Davis-Putnam-Logeman-Loveland Procedure, which we callGauss-DPLL.

The inference rules, but one, are of the form

Name
A C X
A ′ C ′ X ′ Condition

whereA is a set of assignments,C is a set of or-clauses,X is a set of xor-clauses,
possibly with some selected literals. The primed versions are the sets derived by the
rule.

The intuition is that inA we store the definitionsA/L which say how to set the value
of an atomA on the basis of the value of another atom or a logical constant. The setsC
andX contain the (x)or-clauses that have not been completely processed yet.

The main idea behind selected literals is that a xor-clauseC containing a selected
literal L can be seen as a definition of the corresponding atom|L| in terms of the value
of the other literals ofC. For the whole system to be consistent, the clauseC can only
be used as the definition ofonly oneatom. Further, the calculus achieves that there is
only one such definition – be it in just one single xor-clause or as an assignment.

The twist to implement the GE procedure in this way is, that, when no rule is ap-
plicable, the setX and the selected literals in it implicitly describe a triangular form of
the linear modulo 2 equations inX . For instance, ifX = {A⊕B, C⊕B} this implicitly
describe a triangular form which is (partly) undetermined:A andC have been “solved”
as functions ofB. In terms of linear equation this is obvious: we have two equations and
three variables.

We are now turning to the inference rules ofGauss-DPLL.
The following inference rules are used to reduce clauses; to avoid trivial loops, the

applicability conditionC 6= C ↓ is assumed:

∨-Red
A C, C X
A C ↓, C X

⊕-Red
A C C, X
A C C ↓, X

The Taming of the (X)OR 515

The following inference rules simplify a clause by the current assignments; the appli-
cability conditionC 6= C//A is assumed:

∨-Simp
A C, C X
A C//A , C X

⊕-Simp
A C C, X
A C C//A , X

An inference rule for the simplification ofA wrt. A is not necessary, becauseA is
both functional and idempotent (cf. Remark 3) as being constructed.

Now we turn to the inference rules to implement the GE procedure as described in
Section 5. First, we need a rule to select a literalL for elimination.

Select
A C L⊕C, X
A C L⊕C, X

{
if sel({L⊕C}∪X)∩atoms(L⊕C)= {}
and|L| 6= >

The intuition behind the applicability condition is that we can use a xor-clause as
definition of only one literal at a time, i.e. sel(L⊕C)∩atoms(L⊕C)= {}. To guarantee
that no trivially cyclic definition as inA⊕A⊕B comes up, the⊕-Red inference rule
must be preferred toSelect (all the required preferences are stated in Def. 4 below). The
subcondition sel(X)∩atoms(L⊕C) = {} states that the new definition must not depend
from other definitions. If it were absent, a cyclic situation as in{A⊕B, A⊕¬B} comes
up easily.

Then we have the proper Gauss-Resolution rule:

Gauss
A C L⊕C, D, X
A C L⊕C, D′, X

{
if D′ is Gauss resolvent ofL⊕C
onL into D

Intuitively, this rule says that we takeL⊕C as a definition ofL and replace inD the
literal L (or L) by its definition. To guarantee that there is no occurrence ofL (or L) left
in D′, the⊕-Red inference rule must be preferred toGauss. TheGauss rule is applied
transparently wrt. selected literals, i.e. a possibly selected literal inD remains selected
in D′ (the literalL (or L) in D′ cannot be selected anyway, cf. invariant (ii) in Lemma 2).

Example 1.Consider the following derivation whereA andC have been removed for
readability and numbers are for reference:

(1) A⊕B⊕E, A⊕C, B⊕C start
(2) A⊕B⊕E, A⊕C, B⊕C by Select
(3) C⊕B⊕E⊕>, A⊕C, B⊕C by Gauss+ of A⊕C onA into A⊕B⊕E
(4) ¬C⊕B⊕E, A⊕C, B⊕C by⊕-Red onC⊕B⊕E⊕>
(5) ¬C⊕B⊕E, A⊕C, B⊕C by Select
(6) B⊕B⊕E, A⊕C, B⊕C by Gauss− of B⊕C onC into¬C⊕B⊕E
(7) E, A⊕C, B⊕C by⊕-Red onB⊕B⊕E
(8) E, A⊕B⊕>, B⊕C by Gauss+ of B⊕C onC into A⊕C
(9) E, A⊕¬B, B⊕C by⊕-Red onA⊕B⊕>
(10) E, A⊕¬B, B⊕C by Select

Now we can apply neitherGauss, norSelect, and indeed we terminated with an unde-
termined set of equations whereA andC are defined in terms ofB.

516 Peter Baumgartner and Fabio Massacci

This example explains well the importance of giving precedence to the⊕-Red rule
over theGauss rule. Consider step (6): without simplifying the twoBs we will not be
able to eliminate them:Gauss alone will introduce twoCs, or twoAs etc.

To see the importance of the applicability condition ofSelect, let us look at the last
step. Without it, we could have continued as follows:

(11′) E, A⊕¬B, B⊕C bySelect
(12) E, A⊕C, B⊕C byGauss−
(13) E, A⊕B⊕>, B⊕C byGauss+

(14) E, A⊕¬B, B⊕C by⊕-Red

So we are usingA⊕C sometimes as a definition ofA and sometimes as a definition of
C. This will clearly lead to a non-terminating sequence.

The rules presented so far constitute the core of the GE procedure as described in
Section 5. The next set of inference rule transforms unit (x)or-clauses into assignments,
with the purpose to trigger new simplification steps.

∨-Unit
A L, C X

A ◦L C X
⊕-Unit

A C L, X
A ◦L C X

Here,L may or may not be selected.

Remark 4.Since we give preference toRed andSimp over theUnit rules, the extension
of A to A ◦L is defined, i.e.|L| is undefined inA . Thus, functionality and idempotency
are preserved by Lemma 1, and the set of assignments strictly increases.

Now, the well-known DPLL splitting rule is introduced. The purpose is to advance
a derivation once no other rule is applicable.

Split
A C X

A ◦A C X A ◦¬A C X
if A∈ atoms(C), for someC∈ C

This is the sole rule with two consequences. Observe that the splitting in the two cases
A and¬A is expressed in our notation as two respective assignmentsA/> andA/¬>.

Remark 5.Once again we have no condition such as “A is undefined inA” because
we give preference toRed andSimp overSplit, and therefore the same reasoning as in
Remark 4 applies.

The applicability condition inSplit is not necessary for completeness, but is useful
for stopping the search without going to compute explicitly any of the models that
would be possible by assigning all combinations of> and¬> to the “independent”
atoms occurring in definitions represented by theX . However, for the atoms occurring
in C , applyingSplit is mandatory as the last resort to make progress in processingC .

Remark 6 (Explicit Models).If we arrive at a stage where no rule is applicable, and
the empty clause has not been found, we have a functional description of a model. To
obtain a model as a set of assignments of logical constants to atoms, we can add toA an
arbitrary truth value assignment for each atom that is not selected in a xor-clause inX .
The exhaustive application of theSimp, Red andUnit rules leads to the desired result in
A then.

The Taming of the (X)OR 517

The next rules for equivalences are not necessary for completeness but they allow
for a substantial speed-up as they correspond to powerful forms of pruning: some hard
DIMACS problems are solved by using rules of equivalent form alone in [Li00].

∨-Eqv-1
A A∨B, ¬A∨¬B, C X

A ◦ (A/¬B) C X
if B /∈ sel(X)

∨-Eqv-2
A A∨¬B, ¬A∨B, C X

A ◦ (A/B) C X
if B /∈ sel(X)

⊕-Eqv
A C A⊕L, X

A ◦ (A/L) C X
if |L| /∈ sel({A⊕L}∪X)

Remark 7.Similarly as said above in Remark 4 for theSplit rule, we insist to prefer the
Simp andRed rules over theEqv rules. Therefore, all stated extensions ofA in theEqv
rules are defined, thus both functionality and idempotency are preserved (cf. Lemma 1),
and alsoA is undefined inA .

To avoid loops, the turning of (x)or-clauses into assignments by theEqv rules must
not contradict the implicit ordering of literals as determined by the selected literals in
X (this ordering is made explicit in the proof of Lemma 2). This is what the stated
applicability conditions are good for.

The⊕-Eqv rule is formulated general enough, because any binary xor-clause of the
form¬A⊕¬B can be turned intoA⊕B by boolean reduction.

7 An Effective Calculus for Proof Search
Finally, it has to be said how to combine the inference rules of Section 6:

Definition 4 (Affine Logic Tree (ALT)). We consider (incomplete) binary trees where
every node N is labelled with a tuple(A ,C ,X). The label of N is denoted byλ(N).

Affine logic trees, ALTs, forC andX , whereC (resp.X) is an or-clause set (resp.
xor-clause set) are defined inductively in the following way:

Initialization Step: the treeT consisting of a root node N only and such thatλ(N) =
({} ,C ,X) is an ALT forC andX .

Non-branching Extension Step: if N ′ is a leaf of an ALTT ′ for C andX , and one of
the non-branching inference rules is applicable toλ(N′), thenT is an ALT forC
andX , whereT is obtained fromT ′ by attaching one new child node N below N′,
andλ(N) is obtained by a single application of one of the non-branching inference
rules toλ(N′). Applicability of these inference rules is given preference as follows:

– ⊕-Simp and⊕-Red must be applied beforeGauss andSelect
– ⊕-Simp and⊕-Red must be applied before⊕-Unit and⊕-Eqv
– ∨-Simp and∨-Red must be applied before∨-Unit, ∨-Eqv-1 and∨-Eqv-2.

Branching Extension Step: if N ′ is a leaf of an ALTT ′ for C andX , and non-branch-
ing extension steps are not applicable to N′, andSplit is applicable toλ(N′), then
T is an ALT forC and X , whereT is obtained fromT ′ by attaching two new
child nodes Nl and Nr below N′, and λ(Nl) and λ(Nr) are obtained by a single
application ofSplit to λ(N′).

518 Peter Baumgartner and Fabio Massacci

We abbreviate “ALT forC andX ” as “ALT” if context allows.

Definition 5 (Open, Closed, Derivation, Finishedness, Fairness).A branchB in an
ALTT is closediff for some node N ofB it holds2 ∈ C ∪X , whereλ(N) = (A ,C ,X).
Otherwise it isopen. An ALT T is closed iff every branch ofT is closed, otherwise
it is open. The branchB is finishediff B is closed or no extension step is applicable
to the leaf ofB. An ALTT is finished iff every branch ofT is finished. The termun-
finishedmeans not “not finished”. AderivationD (for givenC andX) is a sequence
T0,T1, . . .,Tn, . . . of ALTs, such thatT0 is obtained by an initialization step, and for
i > 0, Ti is obtained by an extension step applied toTi−1. A derivationD is fair iff it
does not end in an unfinished ALT.

Remark 8.The ALTs are the objects that are actually computed with. Observe that a
fair derivation either ends in a closed ALT (which means that the setC ∪X is unsatis-
fiable), or ends in an open ALT with at least one open and finished branch (which, as
will be shown, represents afunctional descriptionof a model forC ∪X), or does not
terminate (which will be shown to be impossible in Lemma 2).

An effective proof procedurecan be constructed by the simplest greedy strategy:
start with an ALT forC andX by an initialization step, and apply extension steps as
long as possible. Thereby, one would actually pursue only one branch at a time, not
further extend closed branches and delete closed branches from memory as soon as
derived. Under these regime, only polynomial space is consumed.

We do not specify a sophisticated proof procedure here, in particular since the de-
sign of anefficientproof procedure that takes advantage of good strategies for the un-
specified parameters (selection of literals, actual preference of inference rules) depends
from practical experiments which have not been carried out yet. For instance, it seems
natural to choose, among the possible selections of literals in xor-clauses, those that
maximize the future application of theEqv or Unit rules. Fortunately, the correctness
proof in the next section guarantees that any setting within the inference rule prefer-
ences stated in Definition 4 is complete.

8 Correctness
The soundnessproof – that any closed ALT forC andX indicates unsatisfiability of
C ∪X – is done by standard means and is omitted. To showcompleteness, we first show
that exhaustive application of the inference rules always terminates:

Lemma 2 (Termination). Any derivationD for givenC andX is finite.

Proof. It suffices to show that no branch can be endlessly extended. At the heart of this
proof are well-founded, strict partial orderings��N on clauses associated to the nodesN
of the constructed ALTs. As a preliminary step, let>N be a binary relation over atoms
associated to nodeN, which is defined inductively as follows:

>N =




{(A,>) | A is an atom}, if N is the root node

>N′ ∪ {(A/L) | (A/L) ∈ A}
∪ {(|K|, |L1|), . . ., (|K|, |Lk|) | K ⊕L1⊕· · ·⊕Lk ∈ X} ,

whereλ(N) = (A ,C ,X), if N has the immediate ancestor nodeN′.

The Taming of the (X)OR 519

That is,>N starts in a trivial way, and gets enlarged as new assignments come up or
selections are done when going down the branches. An important detail is that>N
monotonically increases in this process.

The transitive closure of>N is denoted by�N. In order to compare clauses take the
usual multiset extension��N of the literal ordering in whichL1 is strictly greater than
L2 iff |L1| �N |L2| or elseL1 = ¬L2 (i.e.¬A is greater thanA). It is well-known that if
�N is a strict, well-founded ordering (on atoms), as will be shown below, so is��N (on
clauses).

We need severalinvariantsto hold for eachnodeN, whereλ(N) = (A ,C ,X):

(i) If |K|>N |L|, then (a)|K| is the left hand side of an assignment inA , or (b)K or K
is the selected literal in some xor-clause inX .

(ii) For each selected atomA∈ sel(X) there is exactly one xor-clauseC∈ X such that
A or¬A is a selected literal inC. Furthermore, this literal is the only selected literal
occurrence inC.

(iii) If N has an immediate ancestor nodeN′ and sel(X) ⊂ sel(X ′), whereλ(N′) =
(A ′,C ′,X ′), then either the⊕-Simp rule or the⊕-Unit rule or the⊕-Eqv rule is
applied toN′ to obtainN (but no other rule). That is, if a selection is lost, these are
the only possible sources.

(iv) The relation�N is a strict partial ordering on atoms.
(v) If N has an immediate ancestor nodeN′ andSelect is applied toN′, then>N ⊃ >N′ .

The proof of the invariants is omitted here for space reasons; it can be found in the full
version. They are used now to argue for termination. We feel no need for a completely
formal presentation of the lexicographic ordering underlying the following argumenta-
tion.

Suppose, to the contrary, there is an infinite sequence of branchesB0,B1, . . . such
that, for j ≥ 0, B j is a branch of someTi of the given derivation (written as in Def. 5),
and that an extension step is applied to the leaf ofB j , and B j+1 is a branch result-
ing from this application. We are now investigating possible sources for this branch
sequence to be infinite.

First, from some point in time on, the>N-relation is the same (referring to the leaves
of the branches in the considered branch sequence), because only finitely manyliterals
are at disposal, and>Nj ⊆ >Nj+1 by construction of>N, whereNj is the leaf ofB j .

Consequently, together with invariant (v), theSelect rule is applied alast time along
the considered branch sequence.

Second,each of∨-Unit,⊕-Unit, andSplit is applied a last time, because each of them
strictly increases the set of assignment it modifies. This was argued for in Remarks 4
and 5. Clearly, this strictness suffices as a proof for the claim.

Third, eachEqv rule is applied a last time. The arguments are the same is in “sec-
ond”, by using Remark 7.

Fourth, the rules mentioned at “second” and “third” are the only ones to extend
assignments. Hence, from some point in time on, the set of assignments is the same in
each leaf of the considered branch sequence.

Fifth, from “fourth” and the idempotency of assignments (cf. again Remarks 4, 5
and 7) it follows immediately that theSimp rules are applied a last time.

Sixth, hence, only theGauss andRed rules remain as sources for infiniteness of the
branch sequence. To show this impossibility, observe that with “first” the ordering��N

520 Peter Baumgartner and Fabio Massacci

is the same from some point in time on (invariant (iv) guarantees that��N is indeed
a well-founded, strict partial ordering). Further, the ordering��N is made such that
theGauss andRed rules both work strictly decreasing. More precisely, theGauss rule
refers to theGauss− andGauss+ rules. These are applied with a left premise, in which
L is the only selected literal (cf. the applicability condition ofGauss and invariant
(ii)) and which is strictly larger than each of the restliterals (by construction of the
ordering). Hence, the right premise strictly decreases wrt.��N. For theRed rules it is
straightforward to check that they work strictly decreasing wrt.��N, provided they are
applicable. An important detail is to make¬A bigger thanA.

Hence, in sum, withGauss andRed working strictly decreasing wrt.��N, which is
the same from some point in time on, both of them are applied a last time.

All inference rules are now shown to be applied a last time along the considered
branch sequence. Hence it must be finite, and thus the lemma is proven.

Theorem 1 (Completeness).Let D be a fair derivation for a set of or-clausesC and
a set of xor-clausesX . Then,D is finite, and if the last ALTT in D is open, thenC ∪X
is satisfiable.

This is our main result. Observe that in the contrapositive direction it just expresses
refutation completeness.

Proof. Finiteness ofD is given by Lemma 2. Therefore suppose thatT is the last ALT
in D, and thatT is open. We are concentrating on an open and finished branchB in T ,
which must exist according to Remark 8. LetN be the leaf ofB, andλ(N)= (A ,C ,X).
The first observation is thatC = {} or C = {>} (which is equivalent). The proof is
by contradiction: the case thatC contains the empty clause is impossible, because then
B would be closed. Also, ifC would consist of clauses containing the symbol> only
(with the single exception of the clause>), it would would have been simplified to
eitherC = {}, C = {>} or C = {2} (contradicting the finishedness ofB). HenceC
contains at least a clause with a literal different from>. Let L be such a literal. But
then,Split with |L| would have been applied, contradicting finishedness ofB again.
This completes the proof thatC = {} or C = {>}.

Thus, to construct a model, we have to considerA andX only. We use the strategy
indicated in Remark 6: we give an arbitrary value to the variables that are not selected
in X , and we show how to extend to a model.

Fact: in each clauseC∈ X there is exactly one occurrence of a selected literal, and
all the selected literals are pairwise different (modulo sign). This is due to invariant (ii)
in the proof of Lemma 2, and the finishedness ofB. For, if in someC ∈ X no literal
would be selected, andSelect is not applicable toC , then some literal inC is selected
in a different clause (modulo sign), and thusGauss would be applicable, contradicting
finishedness.

Now take any literalL occuring inX but such that|L| /∈ sel(X). Add it as an assign-
ment|L|/> (or |L|/¬>) to A . A must still be idempotent and functional, because as a
consequence of finishedness,|L| must be undefined inA , and so Lemma 1 is applicable.
Repeat this, until all non-selected literals receive an explicit (arbitrary) truth value inA .

Finally, only the selected literals inX do not have explicit truth values inA . Since
each of them occurs only once in a clause inX (by the abovefact), their truth values can

The Taming of the (X)OR 521

be chosen locally to the containing clauses as the appropriate parity for the rest clause,
which has been completely specified by the arbitrary assignments. Furthermore, by the
fact again, this can be done foreveryxor-clause inX . Hence, for each such selected
literal L and its appropriate truth value, add a respective assignment|L|/> (or |L|/¬>)
to A . This is possible, because, by finishedness again,L must be undefined inA (by
the⊕-Simp rule). Finally, explicit truth assignments for all the literals occuring as right
hind sides inA are added arbitrarily. This procedure results in a functional assignment
to either> or¬> for all atoms, which is just a model.

9 Conclusions

In this paper we have presented a decision procedure calledGauss-DPLL for combined
clausal and affine logic (i.e. clauses with xor as the connective).

We have argued that procedures to solve such problems are needed toefficientlyde-
cide respective problems, which occur frequently in real-world applications like circuit
verification and logical cryptanalysis. Gauss-DPLL is a tight integration in a unifying
framework of a Gauss-Elimination procedure (for affine logic) and a Davis-Putnam-
Logeman-Loveland procedure (for usual clause logic).

The main ideas, which distinguishes our approach from other approaches in the
literature, are the following: at first, we provide a coherent approach of the treatment
of both or and xor-clauses which specialized to optimized decision procedures when
the input is restricted to either of them. Second we allow for a heavy interleaving of
the two parts with the purpose to maximize (deterministic) simplification by passing
around newly created unit or binary clauses in either of these parts. Last, but not least,
we are able to stop the search and output a functional description of the model rather
than a completely specified model.

As noted in [Li00], the explicit handling of equivalences makes it possible to trans-
form exponentially long proofs of hard DIMACS benchmarks by Dubois and Pretolani
[JT96,Li00] using classical DPLL into short polynomial proofs. This result isaccom-
plished by Li using rules corresponding to restricted versions of boolean reduction,
simplifications and equivalences. The Gauss-DPLL procedure also inherits that speed-
up over classical DPLL.

The calculus is not implemented yet, but we plan to do so in the near future.

References
BCC+99. A. Biere, A. Cimatti, E. Clarke, M. Fujita, and Y. Zhu. Symbolic model checking

using SAT procedures instead of BDDs. InProc. of ACM/IEEE DAC-99, pages 317–
320. ACM Press, 1999.

BDW95. B. Becker, R. Drechsler, and R. Werchner. On the relation between BDDs and FDDs.
Inf. and Comp., 123(2):185–197, 1995.

BRB90. K. Brace, R. Rudell, and R. Bryant. Efficient implementation of a BDD package. In
Proc. of ACM/IEEE DAC-90, pages 40–45. IEEE Press, 1990.

BS97. R. Bayardo and R. Schrag. Using CSP look-back techniques to solve real-world SAT
instances. InProc. of AAAI-97, pages 203–208. AAAI Press/The MIT Press, 1997.

CA96. J. Crawford and L. Auton. Experimental results on the crossover point in random
3SAT. AIJ, 81(1-2):31–57, 1996.

522 Peter Baumgartner and Fabio Massacci

CL73. C. Chang and R. Lee.Symbolic Logic and Mechanical Theorem Proving. Academic
Press, 1973.

Cla90. L. Claesen, ed.Formal VLSI Correctness Verification: VLSI Design Methods, vol-
ume II. Elsevier, 1990.

DBR97. R. Drechsler, B. Becker, and S. Ruppertz. Manipulation algorithms for K*BMDs. In
Proc. of TACAS-97, LNCS 1217, pages 4–18. Springer-Verlag, 1997.

DLL62. M. Davis, G. Logeman, and D. Loveland. A machine program for theorem proving.
CACM, 5(7), 1962.

GMS98. E. Giunchiglia, A. Massarotto, and R. Sebastiani. Act and the rest will follow: Explit-
ing nondeterminism in planning as satisfiability. In Proc. of AAAI-98, pages 948–952.
The MIT Press, 1998.

GW00. J. Groote and J. Warners. The propositional formula checker HeerHugo.JAR, 2000.
To appear.

HS98. U. Hustadt and R. Schmidt. Simplification and backjumping in modal tableau. In
Proc. of TABLEAUX-98, LNAI 1397 , pages 187–201. Springer-Verlag, 1998.

JT96. D. Johnson and M. Trick, eds.Cliques, Coloring, satisfiability: the second DIMACS
implementation challenge, volume 26 ofAMS Series in Discr. Math. and TCS. AMS,
1996.

KS96. H. Kautz and B. Selman. Pushing the envelope: Planning, propositional logic and
stocastic search. InProc. of AAAI-96, pages 1194–1201. The MIT Press, 1996.

Li99. Chu-Min Li. A constraint-based approach to narrow search trees for satisfiability.IPL,
71(2):75–80, 1999.

Li00. Chun-Min Li. Integrating equivalency reasoning into Davis-Putnam procedure. To
appear inProc. of AAAI-00.

Mas98. Fabio Massacci. Simplification: A general constraint propagation technique for propo-
sitional and modal tableaux. InProc. of TABLEAUX-98, LNAI 1397, pages 217–231.
Springer-Verlag, 1998.

Mas99. Fabio Massacci. Using Walk-SAT and Rel-sat for cryptographic key search. InProc.
of IJCAI-99, pages 290–295. Morgan Kaufmann, 1999.

MM00. Fabio Massacci and Laura Marraro. Logical cryptanalysis as a SAT-problem: Encod-
ing and analysis of the u.s. Data Encryption Standard.JAR, 2000. To appear.

Sch78. T. Schaefer. The complexity of satisfiability problems. InProc. of STOC-78, pages
216–226. ACM Press, 1978.

SKM97. Bart Selman, Henry Kautz, and David McAllester. Ten challenges in propositional
resoning and search. InProc. of IJCAI-97, pages 50–54. Morgan Kaufmann, 1997.

Wil90. J. Wilson. Compact normal forms in propositional logics and integer programming
formulations.Comp. and Op. Res., 17(3):309–314, 1990.

WvM99. J. Warners and H. van Maaren. A two phase algorithm for solving a class of hard
satisfiability problems.Op. Res. Lett., 23(3-5):81–88, 1999.

WvM00. J. Warners and H. van Maaren. Recognition of tractable satisfiability problems through
balanced polynomial representations.Discr. Appl. Math., 2000.

Zha97. H. Zhang. SATO: An Efficient Propositional Theorem Prover. InProc. of CADE 97,
LNAI 1249, pages 272–275, 1997. Springer-Verlag.

	Introduction
	Preliminaries
	Simplification by Boolean Reduction
	Simplification by Boolean Assignments
	Gauss Resolution Rules
	Gauss-DPLL
	An Effective Calculus for Proof Search
	Correctness
	Conclusions
	References

