
Planning Attacks to Security Protocols:

Case Studies in Logic Programming

Luigia Carlucci Aiello1 and Fabio Massacci2

1 Dip. di Informatica e Sistemistica - Univ. Roma “La Sapienza” - Italy
aiello@dis.uniroma1.it

2 Dip. di Ingegneria dell’Informazione - Univ. Siena - Italy
massacci@dii.unisi.it

Abstract. Formal verification of security protocols has become a key
issue in computer security. Yet, it has proven to be a hard task often
error prone and discouraging for non-experts in formal methods.
In this paper we show how security protocols can be specified and verified
efficiently and effectively by embedding reasoning about actions into a
logic programming language.
In a nutshell, we view a protocol trace as a plan to achieve a goal, so that
protocol attacks are plans achieving goals that correspond to security
violations. Building on results from logic programming and planning, we
map the existence of an attack to a protocol into the existence of a model
for the protocol specification that satisfies the specification of an attack.
To streamline such way of modeling security protocols, we use a descrip-
tion language ALSP which makes it possible to describe protocols with
declarative ease and to search for attacks by relying on efficient model
finders (e.g. the smodels systems by Niemela and his group). This paper
shows how to use ALSP for modeling two significant case studies in pro-
tocol verification: the classical Needham-Schroeder public-key protocol,
and Aziz-Diffie Key agreement protocol for mobile communication.

1 Introduction

The design of secure communication protocols over an insecure medium such as
the internet is a daunting task. Notwithstanding the increasingly sophisticated
cryptographic primitives for digitally signing messages, encrypting documents,
getting notarized timestamps on files etc., most security protocols are often found
seriously flawed, even after they make their way up to become a standard.

Interestingly, most of the errors encountered in security protocols are logical
error, which do not depend on the strength of the underlying cryptographic
algorithms. For instance, if we receive a document digitally signed by Alice, we
may think that Alice actually signed this message and sent it to us. However,
depending on how the protocol is designed, it might well be that Alice never
intended to send that document to us, but rather to a certain Bob, who never
asked for it. It is just a malicious hacker who, by intercepting and subtly cutting
and pasting messages together, has made such an awkward situation possible.
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An interesting collection of examples can be found in the book by Schneider [36,
Chap. 3] or the classical articles by Abadi, Needham et al. [7,2].

This phenomenon is somehow surprising because security protocols are not
overly complex: academic protocols are seldom above 6 messages, whereas de-
ployed and widely used protocols such as Kerberos or TLS/SSL (the internet
secure payment protocol) hardly go beyond twenty ((see [36, Chap. 3] or [7,10]
for some characteristic examples), and even a “monster protocol” such the Secure
Electronic Transaction protocol (SET) by Visa and Mastercard is substantially
composed by 6 suites of “normal” protocols [32]. Nothing even comparable to
the intrinsic complexity of current CPU design with billion of gates.

The hardness of the design task can be explained by two different factors.
First, security protocols try to achieve difficult and sometimes unclear goals such
as entity authentication, confidentiality, proof of receipts etc.in a substantially
untrusted medium. It is often not clear what authentication means (see for in-
stance Gollmann [16] vs Lowe [21]).

Second, the medium itself allows for unsuspected interactions, parallelism
of actions and events that are difficult to foresee. Consider electronic payment
protocols. Even though we think in terms of Alice willing to buy something, and
Bob wishing to sell it, Alice and Bob are processes and not persons. Alice (the
person) cannot simultaneously go to the grocery and to the bakery. Bob, the
grocer, will hardly serve more than one person at a time. Alice cannot really
run away with few kilos of pasta to avoid paying Bob. In contrast Alice (the
shopping softbot of Alice) can practically simultaneously open a connection with
Bob, the web server of a DVD movies e-shop and Charlie, her CD supplier. Bob,
on his own, can have thousands of these connections who may all be in parallel
and ought to be served with minimum delay. He cannot run after Alice to
grab back his DVD if she “forgets” to pay. Moreover, their orders are channeled
through many intermediate untrusted nodes.

It is therefore not a surprise that formal methods have gained such a wide-
spread use in the analysis of security protocols [26,25]. Unfortunately, it turned
out that formal verification itself its quite an intensive task as to discourage
the application of a formal method by anybody else than the developer of the
method itself. As correctly pointed out by Brackin, Meadows and Millen in [6]:

It became evident that it was difficult for analysts other than the
developers of the various techniques to apply them. One reason for this
difficulty is that the protocols had to be re-specified formally for each
technique and it was not easy to transform the published description
of the protocol into the required formal system. Some tool developers
began work on translators or compilers that would perform the trans-
formation automatically. The input to any of such translators still re-
quires a formally-defined language, but it can be made similar to the
message-oriented protocol description that are typically published in ar-
ticles, books and protocol standard documents.

The research efforts resulted in languages such as CAPSL [6] and CASPER [22],
that are “front-ends” to formal systems, intermediate between formal specifica-
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tions and the language used in the published descriptions of protocols. Indeed,
these languages allow the operational specification of the protocol in terms of
messages sent and received, and in terms of the operations made.

Nevertheless, these languages tie the hand of the protocol analyst and bind
him to adopt the interpretations of protocol properties made by the designers
of the compiler, who usually coincide with the developers of the target formal
method. The security analyst must still buy, lock, stock and barrel, the definition
of authentication, secrecy, non-repudiation etc. which are hardwired in the tool.

Moreover, the intermediate language proved to be too weak for specifying
more complex protocols. For instance, in a public key infrastructure, each agent
may have a certificate for its public key, and certificates usually have expiration
dates. In the design of a security protocol, a designer may want to specify that
the validity period of a certificate must be appropriate: a server may reject a
document supposed to be valid for 10 years which is signed with a private key
expiring in a month. To overcome this modeling difficulty, front-ends allow the
specifiers to hack directly such constraints into the target formal language [22].

So, one would like to combine the best of two worlds: an operational descrip-
tion of a protocol and a declarative specification of its properties.

1.1 Our Contribution

We proposed ALSP (Action Language for Security Protocols, see [8,9]), an exe-
cutable specification language for representing security protocols, and checking
the possibility of attacks. The intuitions are the following:

– The operational description of a security protocol (what security designers
would like) can be quite naturally cast into the general framework of an AI
planning problem with simple actions such as sending and receiving. Checks
on the protocol actions (such as verifying expiration dates on certificates)
are naturally cast into action preconditions. Attacks are just plans to reach
security violations.

– The preconditions for the executions of protocol actions and the properties
of a protocol should be easily specifiable, as declaratively as possible.

– Modeling nonmonotonic behaviors is essential in this framework, as we may
want to say that if something is not specified then it is false by default.
Once we modeled the capability of an intruder and – with this capability –
no attack is found, then we would like to conclude that no attack exists.

– The number of objects and agents would potentially be unbounded; therefore
the language must allow for free variables and function symbols to describe
properties of objects, compound objects (such as concatenation of messages)
and agents, without forcing the analyst to hardwire each particular object
into a particular message of particular protocol steps.

– As soon as we set a bound on the number of objects and agents that are
around, it should be possible to check for attacks with fast state-of-the-art
systems in a automatic way (that is, debugging should be mostly automatic).
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– Decidability and expressiveness of the language matter more than complex-
ity, because we do not verify a protocol on-line (whereas a robot must move
in the real world), but we want to specify complex protocols without bit-
oriented programming in logic, process algebras or other formal languages.

For all the above reasons, logic programming stands out as an extremely nice
formalism upon which to build our specification language ALSP . However, for
our formalization of security protocols not everything of logic programming can
be bought; therefore ALSP borrows selected features from logic programming .
ALSP is based on logic programming with stable model semantics (LPSM )

[3,14]. This choice is motivated by three properties guaranteed by LPSM :

– if a fact is true in a stable model, there is a justification for it and no circular
justification is allowed;

– if something is not explicitly said, it is false by default;
– it is possible to say that some facts must be true in a stable model, and other

facts may be true in it.

This is particularly appropriate to represent actions and changes, which is needed
to model security. For example, consider modeling an intruder. If the intruder
decrypted some messages, we want a well-founded justification for the intruder
to know the key. Moreover, we want to say that the intruder may disrupt each
step of the protocol, but he is not obliged to; he may disrupt some steps and let
others remain unchanged.

Logic programming languages — hence ALSP — allow for a declarative for-
malization of the operational behavior of the protocol and the possible attacks of
an intruder. As mentioned, we borrow this formalization from robotic planning:
out of a declarative specification of the world, the proof of the existence of a
model for a goal state can be easily transformed into a plan (i.e. a sequence of
actions) to achieve it. Conversely, the non-existence of a plan can be checked as
an un-satisfiability problem. If no model for a goal state can be found, then we
have proven that there is no plan that achieves it.

To achieve decidability for bounded model checking we impose some restric-
tion on the form that free variables occurring in rules may have. Thus we obtain
domain restricted logic programs. When a bound on the protocol resources,
agents and time is set, we obtain a finite ground model of our specification.

Finally, we search for attacks on the finite ground representation using ef-
ficient model finders for the stable model semantics [30,31] which can handle
hundreds of thousands of rules in few seconds. This makes ALSP executable.

1.2 Plan of the Paper

In this paper we show how to model in ALSP two important case case studies:
the classical Needham-Schroeder public-key protocol [29,7] and the Aziz-Diffie
key agreement protocol for mobile communication [4,38].

Thus, we first introduce some background on the logic approach to planning
(Section 2). Then we shortly introduce the languageALSP (Section 3) and sketch
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how it can be used in practice (Section 4). Then we illustrate the formalization
in ALSP of the Needham-Schroeder protocol (Section 5) and the Aziz-Diffie key
agreement protocol (Section 6). We conclude the paper with a brief comparison
with related works (Section 7).

2 Logical Approach to Planning

Planning is a research area in AI aiming at the construction of algorithms —
called planners — that enable an agent (a robot or a “softbot”) to synthesize a
course of actions that will achieve its goals (see Weld [39] for a recent survey).

A planner has to be provided with a background theory, i.e. a description of
generally known properties about the world, and with a planning problem:

1. a description of the initial state of the world;
2. a description of the goal state the agent has to achieve;
3. a description of the possible actions that can be performed by the agent.

This is often called domain theory or action theory.

The solution of the problem (if one exists) is a plan, i.e. a sequence of actions
that, when executed in any world satisfying the initial state description, will
achieve the goal.

Actions may have preconditions, i.e. requirements to be satisfied in order for
the action to be executable. Actions modify the current status of the world;
this is described by stating the “causal laws”, i.e. how they affect the values of
predicates and functions, in the form of the so called effect axioms. In addition,
the “laws of inertia” for the domain are to be stated, i.e. which values are
unaffected by each action, so they persist through its execution.

A planning problem in the context of security protocols, where agents ex-
change messages and are subject to attacks by intruders, is the following:

1. the initial state is described in terms of the keys known to agents and the
messages already exchanged (typically none), at the time the protocol starts;

2. the goal state is an unwanted situation where some security violation has
occurred (e.g. A receives a message allegedly from B who actually never sent
it to A.);

3. actions are exchanges of messages among agents.

A solution of the planning problem, if any, is a sequence of actions leading to an
unwanted situation, and thus a plan is an attack to the security of the protocol.

The background theory, in this case, includes the description of how messages
are composed and decrypted by agents, the properties of keys, how knowledge
is attained by the agents participating in the protocol, etc.

Causal laws and laws of inertia can be cast as constraints on the possible sets
of predicates that are admissible for consecutive times t and t+1. For instance,
if the action predicate says(A, B, M, t) is true, then said(A, B, M, t + 1) is true.

In this way, the planning problem becomes the problem of finding a time
t such that Goal(t) holds, where Goal(t) is the conjunction of the (relevant)
formulas true at time t such that all constraints are satisfied.
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The relation between logic programming on the one side, and reasoning about
action and planning on the other side, has been studied quite extensively, e.g.
by Gelfond and Lifschitz [15], Denecker et al [11] in the context of the Event
Calculus, or Subrahmanian and Zaniolo [37]. Kautz and Selman in [17] proposed
to cast a planning problem as a model finding problem via an encoding of plans
as propositional formulas. We do not adopt their encoding, but share with their
proposal the idea that planning can be solved as model finding. Following ideas of
Nebel and coworkers [12] and Niemelä [30], our basic intuition is to limit the size
of plans (by considering plans whose length l is less than n for some fixed n) and
then encode the planning problem as a satisfiability problem of logic programs,
by encoding each causal and inertial constraint as a logic programming rule. If
we find a stable model for the goal and all formulae, then we have a plan.

Plans can be generated using logic programs with the stable model semantics
[14,3]. Stable models capture the two key properties of solution sets to logic
programs: they are minimal and grounded, i.e. each atom in a stable model
has a justification in terms of the program. Minimality and groundedness make
logic programming with stable model semantics (LPSM ) particularly suited to
modeling actions and change, in particular in security problems, where we want
to model exactly what happened (i.e. we do not want to leave room for unwanted
models), and where everything has a justification in the model. For example, if
an intruder has got a secret key, there is an explanation in the model in terms
of actions that he has performed, it cannot have happened for other reasons not
captured by the stable model itself.

Even though computing stable models has been proved NP-complete, the
techniques for computing stable models for ground programs have advanced and
there are systems that can cope with tens of thousands of rules. The system
smodels, developed by Niemelä and his group [30,31], is one of them.

In order to introduce it, we present some more notions. Logic programs with
variables can be given a semantics in terms of stable models. The stable models of
a normal logic program P with variables are those of its ground instantiations PH

with respect to its Herbrand universe. If logic programs are function free, then
an upper bound on the number of instantiations is rcv, where r is the number of
rules, c the number of the constants, and v the upper bound on the number of
distinct variables in each rule. Hence, to keep the Herbrand Universe of a logic
program finite, we need to restrict variables to range over finite domains.

Programs where variables are sorted are domain restricted to the domain
of the sort predicates. This property holds for the logic programming language
ALSP . Functions are allowed in ALSP programs, but domain restrictedness is
kept by imposing that arguments of functions range over finite domains.

Domain restrictedness is a limitation that still leaves logic programs with
expressive power to deal with interesting applications. At the same time, with
this limitation, the grounding problem and the search for stable models can be
solved efficiently, in particular if the domain is nonrecursive, i.e. D does not
contain predicates that are recursively defined in P . ALSP enjoys this property.
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smodels [31,30] is an implementation of LPSM , for range restricted function
free normal programs. It consists of two modules: the proper smodels, which
implements LPSM for ground programs and parse, the grounding procedure,
or better lparse a more efficient parsing module which works for domain re-
stricted programs with nonrecursive domains. lparse automatically detects do-
main predicates and deals with them very efficiently. In addition, it has some
built in arithmetic functions.

The stable model semantics for ground programs as implemented in smodels
is a bottom-up backtracking search, where only the negative atoms in the pro-
gram contribute to an increase of the search space, hence it is very efficient.

smodels offers the possibility of including a “choice” rule into logic programs:

{c} ←−a, b

It reads as: if a and b are both true, then c may be in the stable model, but this
is not mandatory. Actually, a program containing the choice rule can in fact be
translated into a normal program. The language ALSP borrows the choice rule
from smodels, as it is useful when representing security problems. For instance,
it allows us to easily represent the fact that an agent may send a message, but
he is not compelled to do it.

3 The Language ALSP

As already said, ALSP is logic programming with negation as failure and stable
model semantics. We here illustrate the primitives ALSP offers, i.e. the logic
programming rules common to the representation of (almost) all security proto-
cols. ALSP provides the user with basic sort predicates to characterize the basic
components of protocols’ specifications:

– ag(A) denotes that A is an agent
– nonce(N) denotes that N is a nonce1

– key(K) denotes that K is a key2

– timestamp(TS) denotes that TS is a timestamp.

ALSP provides the user with constructors for messages. Some “classical”
constructs are pairing, encryption, hashing, and exclusive-or, which we represent
in BAN-like notation [7]:

– {M}K is the encryption of M with the key K;
– M1||M2 is the concatenation of M1 with M2;
– h(M1) is the hash of message M1;
– M1 ⊕M2 is the bit-wise xor of M1 and M2.

1 Nonce is a security jargon for “Number Used Once”; typically, an unguessable ran-
dom number.

2 Wemay have different keys such as shared, private or agreement keys. We distinguish
them with additional predicates.
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A special sort predicate is msg(M), which denotes that M is a valid (sub)message
that may appear in a run of the protocol. The predicate msg(·) specifies how
messages are built with message constructors from basic components.

The direct approach would be using msg(·) and defining messages inductively
with constructors. For instance

msg(M1||M2)←−msg(M1), msg(M2)

could be a rule for inductively defining message concatenation. Unfortunately,
inductively defined predicates with function symbols have infinitely many ground
instances. In our application, we do not need inductive definitions for msg(·): it
is sufficient to use messages that may occur as submessages in a possible run
of a protocol. For instance, the concatenation of thousands of nonces will never
appear in the Needham-Schroeder public key protocol, and – if it does – it will be
ignored by all honest agents. In most protocols, even complex ones, the format
and number of valid messages is fixed3 and can be expressed by few applications
of the constructors to elements of the basic types (see [27]).

Therefore we impose two constraints:

Definition 1. A basic sort predicate is admissible for ALSP if it is not recur-
sively defined by logic programming rules.

Definition 2. A logic programming rule with the special sort predicate msg(·)
in the head is admissible for ALSP only if basic sort predicates alone occur in
the body of the rule.

If we have finitely many basic objects (agents, nonces, etc.), then we have finitely
many messages in ALSP and therefore we have finite models. This is the only
part of ALSP specifications in which we forbid inductively defined predicates.

The trade off is that the rules defining msg(·) depend on the particular pro-
tocol we are analyzing. We must define each submessage in terms of the atomic
components. This tedious part of ALSP specifications has been automated [18].
ALSP has predicates for defining properties of messages :

– part(M1, M) denotes that M1 is a submessage of M ;
– invKey(K, KI) denotes that KI is the inverse of K;
– symKey(K) denotes that K is a symmetric key;
– sharedKey(K, A, B) denotes that K is a (symmetric) key shared between A

and B;
– asymKeyPair(Kpriv, Kpub) denotes that Kpriv and Kpub are an asymmetric

key pair.

Other predicates may be introduced on demand.
Next, we have predicates for knowledge and ability to compose messages.

From now on we must introduce time as an additional argument.

3 The recursive protocol analyzed in [33,35] is an exception.
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– knows(A, M, T ) denotes that agent A knows message M at time T ;
– synth(A, M, T ) denotes that A can construct message M at time T .

Then we have predicates for actions :

– says(A, B, M, T ) denotes the attempt4 by A to send message M to B at
time T ;

– gets(B, M, T ) denotes the receipt5 of message M by B at time T ;
– notes(A, M, T ) denotes the storage of message M by A at time T .

These actions are present in the inductive theory of traces by Paulson and Bella
[33,5]. Together with the predicate knows(A, M, T ), they are the only predicates
typeset in italics, as they are the only ones whose truth value we need to know
for extracting attacks from stable models.

We use the predicates said(A, B, M, T ), got(B, M, T ), and noted(A, M, T ),
with the obvious meaning that they are true when the corresponding action
happened some time before T . We prefer this solution wrt the explicit temporal
operators as for instance proposed by Syverson and Meadows [38] because it
leads to simpler semantics and gives us the flexibility to explicitly axiomatize
when and how information about past runs of the protocol carries on into the
current run.

4 ALSP at Work

In order to verify the security of protocols, building on the above primitives, we
write specifications in ALSP , and then use the smodels systems, according to
the following steps:

– we use the ALSP specification of the general background and action theories;
– we write the ALSP specification of the protocol dependent part, with choice

rules for representing the correct execution of the protocol;
– we define a rule for the security property (attack) we want to check;
– we merge the three specifications, set the maximum execution time of the

protocol to tmax, and a bound on the number of basic objects (agents, nonces,
etc.);

– we use lparse to obtain the finite ground representation of ALSP specifica-
tions;

– we use smodels to look for a stable model of the ground system.

If no stable model exists, then the attack does not exist for all (possibly
parallel) interleaved runs of the protocol up to tmax.

If a stable model is found, then we look for the atoms representing actions
(says(A, B, M, T ), gets(B, M, T ), notes(A, M, T )) that are true in the model:
they give us the sequence of (parallel) actions that constitute the attack.
4 Attempt because the spy might intercept the message and the intended recipient
might never see it.

5 We only specify the recipient in the “get” action as the sender is unreliable. See also
[5,33] for a discussion of this modeling choice.
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If we are looking for confidentiality attacks, then we must gather the atoms
knows(spy, M, tmax) that are true in the model. They represent the knowledge
of the intruder at the end of the protocol.

To speed up the search, we may add extra constraints on the rules that
describe the protocol, for instance by limiting the possibility of agents to receive
or send messages etc.

In a nutshell, search can be constrained by adding more determinism to
the protocol description. Provided these constraints are reasonable and corre-
spond to the “natural” implementation of the protocol, they do not preclude the
possibility of finding attacks. Some of these optimizations are described in the
subsequent case studies.

5 Needham-Schroeder Public-Key

The Needham-Schroeder Public-Key protocol is a classical workbench for formal
analysis. It was introduced by Needham and Schroeder in the 70s and its aim is
to allow two agents to exchange two independent secret numbers.

The basic idea is simple: Alice wants to talk to Bob, but doesn’t know him
directly. So she contacts a trusted server to provide her with the public key of
Bob. Then, by using the protocol, Alice and Bob get hold of two shared secrets
in the form of nonces which can then be used for subsequent communication6.

The protocol is interesting because it has been formally analyzed using a
belief logic [7], but a substantial weakness7 has only been detected using model
checking within process algebra [19].

The intuitive description of the protocol is the following:

1. Alice contacts Sam, a trusted server, who knows the public key of Bob;
2. Sam replies by sending Bob’s public key signed with his private key;
3. Alice sends Bob a fresh nonce and her name encrypted with Bob’s public

key;
4. Bob reads the message and contacts Sam to get Alice’s public key;
5. Sam replies by sending Alice’s public key signed with his private key;
6. Then Bob creates a fresh nonce and sends it back to Alice together with her

own nonce, all encrypted with Alice’s public key;
7. Alice checks her nonce, and then sends back Bob’s nonce encrypted with his

public key, to show him that she has got hold of it.

6 To be precise, this goal has been ascribed to the protocols by Needham, Abadi and
Burrows in [7]. The original paper [29] uses the more vague term of authentication.

7 Given the rather vague terms used in the original paper, it has been a subject of an
intense debate whether Lowe’s “attack” is indeed an attack (see [16]).
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Formally, it corresponds to the following:

A−→S : A||B
S−→A : {pK(B)||B}sK(S)

A−→B : {Na||A}pK(B)

B−→S : B||A
S−→B : {pK(A)||A}sK(S)

B−→A : {Na||Nb}pK(A)

A−→B : {Nb}pK(B)

Leaving outside the steps involving Sam, which just distributed public keys, the
security of the protocol rests upon the following reasoning (borrowed from [7]):

– if Alice sent Bob a number (the nonce Na) that she has never used for
that purpose before, and if she receives from Bob something that depends
on knowing that number (the message {Na||Nb}pK(A)), then she ought to
believe that Bob’s message originated recently, in fact after hers.

– if Alice believes that pK(B) is Bob’s public key, then she should believe that
any message encrypted as pK(B) can only be decrypted by Bob;

– if Alice believes that her private key sK(A) has not been compromised then
any message encrypted with pK(A) can only be decrypted by her;

– thus, upon receiving {Na||Nb}pK(A), Alice can be assured that Bob is alive,
and only her and Bob know Na and Nb.

The same reasoning can be done for Bob, when he receives {Nb}pK(B).
Thus, “each principal knows the public key of the other, and has the knowl-

edge of a shared secret which he believes the other will accept as being shared
only by the two principals. [. . . ] From this point, A and B can continue to ex-
change messages using Na, Nb and public-key encryption. In this way they can
transfer data or other keys securely” [7].

As Lowe has shown [19], this is not exactly the case. There are runs of the
protocol where Bob believes that he has been running the protocol with Alice,
whereas Alice has been running the protocol with Charlie and has never heard
about Bob.

For simplicity sake, as in Lowe’s analysis, we omit messages to and from S.
The first step is the specification in ALSP of the valid messages of the pro-

tocol, to guarantee that the ALSP specification is admissible (see Definition 2
or [8,9] for further discussion). To this extent, we must define each sub-message
in terms of the atomic components:

msg({N ||A}K)←−key(K), isPubKey(K), nonce(N), ag(A)
msg({N ||N ′}K)←−key(K), isPubKey(K), nonce(N), nonce(N ′)
msg({N}K)←−key(K), isPubKey(K), nonce(N)
msg(N ||A)←−nonce(N), ag(A)
msg(N ||N ′)←−nonce(N), nonce(N ′)
msg(N)←−nonce(N)
msg(A)←−ag(A)
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This step is entirely mechanical and tedious. To avoid it, a translator from pro-
tocol descriptions in CASPER into ALSP has been recently implemented at the
Department of Informatica e Sistemistica [18] and a graphical interface is under
way.

Next, we need rules to model the ability of agents to manipulate messages.
We start by inductively defining the parts of a message on the basis of our
constructors:

part(M, M)←−msg(M)
part(M, M1||M2)←− msg(M), msg(M1), msg(M2),

part(M, M1)
part(M, M1||M2)←− msg(M), msg(M1), msg(M2),

part(M, M2)
part(M, {M1}K)←− msg(M), msg(M1), key(K),

part(M, M1)

In the sequel, for sake of readability, we omit all sort predicates and use the
convention that A, B, C, etc. stand for agents, N stands for nonces, T stands
for time, K stands for keys, and M stands for messages.

Keys have particular properties, which can be modeled provided the resulting
rules are admissible according to Definition 1. For instance, we need to state that

1. public and private keys go in pairs,

isPubKey(Kp)←−asymKeyPair(Ks, Kp)
isPrivKey(Ks)←−asymKeyPair(Ks, Kp)

2. each private key is the inverse of the corresponding public key, and vice
versa,

invKey(Ks, Kp)←−asymKeyPair(Ks, Kp)
invKey(Kp, Ks)←−asymKeyPair(Ks, Kp)

3. each agent has a public/private key pair.

asymKeyPair(sK(A), pK(A))←−ag(A)

Since Herbrand Equality (i.e. the unique name assumption) is implicit in our
model, we obtain that each agent’s public (private) key is different from all
other asymmetric keys. We can explicitly impose these constraints:

←−asymKeyPair(Ks, Kp), asymKeyPair(Ks, Kp′), Kp �= Kp′

←−asymKeyPair(Ks, Kp), asymKeyPair(Ks′, Kp), Ks �= Ks′

If the above rules are the only rules about asymmetric keys, by stable model
semantics we have that a public key cannot be another agent’s private key. This
constraint (which is not necessarily true for all crypto-systems, e.g. RSA [36])
can also be added:

←−asymKeyPair(Ks, Kp), asymKeyPair(Kp, Kp′)
←−asymKeyPair(Ks, Kp), asymKeyPair(Ks′, Ks)
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Shared keys can be modeled in a similar fashion (see [8,9]).
Next, we define what an agent can infer from other messages and how he can

construct messages; that is we model knowledge. Most of these rules are protocol
independent. The reader may find a comprehensive description in [8,9].

For instance, we may need to specify that if you get something then you
obviously know it.

knows(A, M, T )←−got(A, M, T )

Beside sending and receiving messages, we need rules to peel constructors off.
For the N-S protocol, we just need rules for concatenation and encryption:

knows(A, M1, T )←−knows(A, M1||M2, T )
knows(A, M2, T )←−knows(A, M1||M2, T )
knows(A, M, T )←− knows(A, {M}K , T ),

knows(A, KI , T ), invKey(K, KI)

In some cases concatenation is modeled as an associative operator. This can
be captured by the following rule:

knows(A, (M1||M2)||M3, T )←−knows(A, M1||(M2||M3), T )

In first-order logic programs, this rule may lead to non termination. We would
avoid this problem, as we use the ground representation for actual search.

However, we drop the rule altogether as it is not appropriate for modeling
well-implemented protocols: ISO Distinguished Encoding Rules (DER) distin-
guishes precisely between the concatenation A||(B||C) and the concatenation
(A||B)||C even from a bitwise point of view. Since the formal verification of
badly implemented protocols have little sense we decided to leave it out.

Then we can model message composition as follows:

synth(A, M, T )←−knows(A, M, T )
synth(A, {M}K , T )←− synth(A, M, T ),

knows(A, K, T )
synth(A, M1||M2, T )←− synth(A, M1, T ),

synth(A, M2, T )

Now we can build the first part of the protocol independent action theory in
ALSP . Again, some successor state axioms are identical for all protocols and we
refer to [8,9] for further details. For instance, we have axioms to model what
happens when a message is received:

got(B, M, T + 1)←−gets(B, M, T )
got(B, M, T + 1)←−got(B, M, T )

The first axiommodels a causal law (getting something now causes it to be got af-
terwards) and the second one models the law of inertia (once you got something,
you got it). We need identical axioms for the notes(A, M, T ), says(A, B, M, T ),
etc.



546 Luigia Carlucci Aiello and Fabio Massacci

We have not found the need for “forgetful” agents in the protocols we have
seen so far [10], thought there might be protocols for which we may need to
modify this law of inertia.

Next, we define the preconditions for getting and receiving messages that
are independent of the protocol that we want to analyze. For instance, message
reception:

{gets(B, M, T )} ←−says(A, B, M, T )

We use the choice rule (see Section 2) to specify that if A attempts to send
a message M to B at time T then B may receive it. There are stable models
where the message is delivered (the normal execution of the protocol) and stable
models where B does not receive the message. A possible interpretation is that
in these latter models, the intruder has intercepted the message, or that the
communication lines went down. Thus, we do not need to explicitly model the
action of message interception as done in [24,27,38].

Modeling the intruder according the classical Dolev-Yao model [13] is simple:
he may get any message in transit and he may say any message (but in both cases
he needs not to). We do not need to model the ability of intercepting messages
as we have already modeled faulty channels by specifying that messages may
not be delivered. Therefore, there will be stable models of the protocol where
the intruder does nothing (the correct runs) and stable models where he is busy.
Formally

{gets(spy, M, T )} ←−says(A, B, M, T )
{says(spy, B, M, T )} ←−synth(spy, M, T )

As we mentioned, we may add more constraints on the action preconditions to
cut meaningless attacks and cut the search in the verification stage. For instance,
we may strengthen the action preconditions:

{gets(spy, M, T )} ←−says(A, B, M, T ), A �= spy, B �= spy
{says(spy, B, M, T )} ←−synth(spy, M, T ), B �= spy

In security protocols the notion of freshness plays a key role. The whole
reasoning in the Needham-Schroeder protocol rests on the nonces being freshly
generated. To model freshness, we introduce at first a fluent used(N, T ) which
is true when message M has been used by somebody before time T . We use the
fluent usedPar(M, T ) when two agents try to use the same message in parallel,
or when an agent tries to send the same message to two different agents in
parallel. Out of these two axioms we have rules to denote when something is
fresh, i.e. when the fluent fresh(M, T ) holds. Since the treatment of freshness is
a bit subtle, we refer to [8,9] for further details.

Finally, we are left with the rules specifying the protocol’s action. We just
need to “copy” them from the protocol description making just explicit all fresh-
ness checks:
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{says(A, B, {Na||A}pK(B), T )} ←− fresh(Na, T )
{says(B, A, {Na||Nb}pK(A), T )} ←− got(B, {Na||A}pK(B), T ),

fresh(Nb, T )
{says(A, B, {Nb}pK(B), T )} ←− said(A, B, {Na||A}Kb

, T ),
got(A, {Na||Nb}pK(A), T )

As we have eliminated the exchanges with S, we have directly used the func-
tions pK(A) and pK(B) to identify the corresponding public keys. In the full
protocol, where agents do not know each other’s public keys in advance, the
check that the public key is appropriate must be made explicit:

{says(B, A, {Na||Nb}Ka , T )} ←− got(B, {Na||A}Kb
, T ),

isPubKey(Kb), invKey(Kb, sK(B))
isPubKey(Ka), got(B, {Ka||A}sK(S), T ),
fresh(Nb, T )

Once again, we can restrict the search by imposing further operation con-
straints on each action precondition. It is up to the security analyst to decide
which checks are reasonable, depending on the way he thinks the protocol will
be implemented. For instance, we can impose that an agent never knowingly
sends a message to himself by setting:

{says(A, B, . . . , T )} ←− . . . A �= B

for all the above rules.
This is a typical limitation common to all formal approaches to the verifi-

cation of security protocols. Obviously, Alice might be fooled into running the
protocol with herself (a classical “mirror attack”), but this typically happens
because she is running two protocol instances in parallel, one instance as initia-
tor and one instance as responder. So she sends her messages to Bob, but Bob
never sees them: the intruder intercepts the messages and feeds them back to
Alice, who might then believe that they come from Bob. These attacks are not
prevented by this optimization.

These additional constraints substantially reduce the size of the ground pro-
gram. Since each constraint eliminates some possible models from consideration,
its introduction must be evaluated on a case by case basis, to be sure that we
only eliminate models which do not correspond to meaningful attacks.

Last but not least, is the goal of the protocol. This depends on what the
security analyst is interested in verifying. The procedure to specify an attack to
a confidentiality or authentication goal is simple [8,9]:

1. we consider the view point of the agent for which the property must be
verified;

2. we list all messages that he has sent or received up to the point of the
protocol (typically the end) that we want to verify;

3. for authentication properties, we add the negation of the event(s) that we
expected to have happened if the protocol was correct (e.g. Bob should have
got some message but in reality has not);
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4. for confidentiality properties, we say that the spy knows the messages that
ought to have remained secret;

5. add additional checks that the security analyst may deem necessary (e.g.
constraints on time or on nonces).

We obtain a rule of the form attacks(T ) ←− . . . and we can finally ground
the specification and look for stable models where attack(tmax) is true (see
Section 4). The intuition behind this rule and indeed behind what an attack is
can be also explained in the vernacular:

1. Look at the problem from the perspective of an agent A wishing to securily
buy an item from a merchant B.

2. A has sent all appropriate messages to the network, allegedly to B or to
another bunch of trusted guys and has received all appropriate answers (and
thus we list all messages that he has sent or received up to now).

3. For sake of example, suppose that A wants to be sure that the message
about B’s bank coordinates did actually come from B, i.e. B’s message is
authentic. If the protocol is correct, there is no run (i.e. stable model) of the
protocol in which A could have run for so long without apparent errors and
without B actually issuing this message. So, to look for a an authentication
bug we add the negation of the event whose authenticity we wish to verify.
If there is a model for attack, then in this model B didn’t actually send his
bank coordinates, even though A received it, allegedly from B. Something
fishy is going on. . .

4. Looking for a secrecy bug is similar: in all our intended model the intruder is
not supposed to get A’s credit card number. So we should add the negation
of the event (not getting the credit card number) that we wish to verify.
Then, loosely speaking, we cancel double negation and just ask for a model
where the spy knows the secret.

5. Additional checks may be necessary to avoid attacks that the security anal-
ysist may deem uninteresting. For a secrecy attack we may want B to be
trusted (lousy merchants may well lose credit card numbers without need of
buggy protocols) whereas for authentication or non-repudiation attack we
may want the security of the protocol guaranteed within a certain temporal
interval (after which the low level connection may time-out or certificates be
no longer relevant.

Let’s exemplify this procedure in the Needham-Schroeder protocol. At first
we may consider the authentication guarantee that the protocol offers to Al-
ice, the initiator of the protocol: if Alice sent {Na||A}pK(B) to B, received
{Na||Nb}pK(A) and sent {Nb}pK(B), she can be sure that Bob actually sent
{Na||Nb}pK(A) to her.

attack(T )←−
said(A, B, {Na||A}pK(B), T ),
got(A, {Na||Nb}pK(A), T ),
said(A, B, {Nb}pK(B), T ),


 %The protocol is correct for A

not said(B, A, {Na||Nb}pK(A), T )%yet B didn’t participate
A �= spy, B �= spy %and all agents are honest
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The authentication guarantee from B’s viewpoint is stated in dual form:

attack(T )←−
got(B, {Na||A}pK(B), T ),
said(B, A, {Na||Nb}pK(A), T ),
got(B, {Nb}pK(B), T ),


 %The protocol is correct for B

not said(A, B, {Na||A}pK(B), T ),
not said(A, B, {Nb}pK(B), T )

}
%yet A didn’t participate at all

A �= spy, B �= spy %and all agents are honest

In some protocols we may also be worried about attacks in which only some
steps are missing. In other words, we may consider attacks in which A parteci-
pated only in a part of the protocol: e.g. in e-commerce protocol we want A to
get the goods and to pay them. Obvioulsy, we have an attack if B completed
the run successfully, apparently with A and A neither paid not got the goods;
but we also have an attack if A got the goods but “forgot” to pay.

In this example, we can weaken the attack, by eliminating either the literal
(i) not said(A, B, {Na||A}pK(B), T ) or the literal (ii) not said(A, B, {Nb}pK(B), T )
from the body of the rule. This means that we accept as valid attacks those in
which A indeed participated in the protocol but only in part.

Of course the meaning of the attacks that is possibly found is different:

1. if a model where attack(t) is found and both (i) and (ii) are true in the pre-
condition, it means that we have found an attack where A never participated
in the protocol at any stage. So A doesn’t know at all that B even exists.
This is indeed Lowe’s attack [19].

2. If no model is found with both (i) and (ii), but a model is found with (i) true,
it means that A actually never started the protocol run with B. However, for
some unfatomable reasons she sent the last message. Therefore she knows
Nb.

3. If no model is found with both (i) and (ii), but a model is found with (ii)
true, it means that A actually started the protocol run with B but didn’t
complete it (at least she didn’t completed it with B). Now we can only
conclude that she knows Na.

It is up to the security analyst to decide which attack is worth looking for.
However, notice that the analyst does not need to specify how the attack is
found by combining the protocol actions. He must only specify what should not
happen. It is the task of the model finder to find the appropriate model that
satisfies these declarative constraints.

Confidentiality properties can be equally well specified by imposing that the
protocol completed and yet the spy happened to get the messages that ought
to be secret. We can specify them either with respect to a particular agent (the
run completed correctly for one agent and yet the spy knows the secret) or for
all honest participants (the runs are correct for all participants, and yet the
spy knows the secret). Whereas the first case is usually coupled with a lack of
authentication (the spy grabbed some secret message because the protocol failed
for the other agent), the last case is an example of a total break of the protocol.
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In case of the Needham-Schroeder protocol, a confidentiality attack from the
viewpoint of B is the following:

attack←−
got(B, {Na||A}pK(B), T ),
said(B, A, {Na||Nb}pK(A), T ),
got(B, {Nb}pK(B), T ),


%The protocol is correct for B

knows(spy, Nb, T ) %yet spy knows Nb

A �= spy, B �= spy %and all agents are honest

We can formalize the protocol and this attack in ALSP and run smodels to
see what happens. Indeed, we have used the Casper2ALsp translator by Loren-
zon [18] to generate the ALSP specification of the protocol from the Casper
specification used by Lowe [20]. We have added some general rules for trimming
down useless steps (e.g. there is no sense for the intruder to send a message
to somebody if the intruder itself intercepts this very message, etc.), put some
restriction on freshness similar to those imposed by Lowe on its CSP encoding
and run smodels by setting a bound on time to 4, 5, and 6.

The result is shown in Figure 1. Each says(A, B, M, T ) action in the fi-
nal stable model corresponding to the attack is indicated by T. A --->B : M,
gets(A, M, T ) actions are indicated by T. -> A:M and the notes(A, M, T ) is indi-
cated by T. # A:M. The ellipsis indicates that we have eliminated some obviously
spurious messages8 that have been also sent by the intruder.

Since we have no control on smodels search heuristics, it is often the case
that the attack (i.e. the stable model) is not minimal and that there are some
spurious actions. In a nutshell, the attack found by smodels is still an attack
but the intruder might have wasted some time (i.e. the plan is not optimal).

A total break of the confidentiality of the protocol would be represented by

attack ←−
said(A, B, {Na||A}pK(B), T ),
got(B, {Na||A}pK(B), T ),
said(B, A, {Na||Nb}pK(A), T ),
got(A, {Na||Nb}pK(A), T ),
said(A, B, {Nb}pK(B), T ),
got(B, {Nb}pK(B), T ),



%The protocol is correct

for both A and B

knows(spy, A, Nb)T %yet spy knows Nb

A �= spy, B �= spy %and all agents are honest

6 Aziz-Diffie Key Agreement

The Aziz-Diffie key agreement protocol for mobile communication [4] as simpli-
fied by Meadows and Syverson [38] aims at establishing a shared key between a
mobile unit A and a base station B.
8 For instance, when the intruder sends to B a message encrypted with A’s public key
that B can’t obviously read.
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massacci{goldrake}: nice-filter.sh ns-pk-trial.lp domain.lp generic.lp 4

****** Model Checking ns-pk-trial.lp up to 4 steps **********

Pre-processing Domain

Original program has 41 rules

Ground program has 20924 rules

- Searching for attacks with smodels

******* NO attack found in 1.250 second (after 0 choices)*******

massacci{goldrake}: nice-filter.sh ns-pk-trial.lp domain.lp generic.lp 5

****** Model Checking ns-pk-trial.lp up to 5 steps **********

Pre-processing Domain

Original program has 41 rules

Ground program has 26129 rules

- Searching for attacks with smodels

******* NO attack found in 1.700 second (after 0 choices)*******

massacci{goldrake}: nice-filter.sh ns-pk-trial.lp domain.lp generic.lp 6

****** Model Checking ns-pk-trial.lp up to 6 steps **********

Pre-processing Domain

Original program has 41 rules

Ground program has 31334 rules

- Searching for attacks with smodels

******* ATTACK found in 4.140 second ******

with 108 choices of which 0 are wrong ones *******

1. A ---> I : {na,A}pk_I

1. -> I : {na,A}pk_I

...

2. I ---> B : {na,A}pk_B

2. -> B : {na,A}pk_I

...

3. B ---> A : {na,nb}pk_A

3. -> A : {na,nb}pk_A

...

4. A ---> I : {nb}pk_I

4. -> I : {nb}pk_I

...

5. I ---> B : {nb}pk_B

5. -> B : {nb}pk_B

...

6. # B : {nb}pk_B

...

******* The SPY Learned *******

na

nb

nm

Fig. 1. smodels running on Needham-Schröder
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This protocol is called key agreement protocol because both A and B “con-
tribute” to the generation of the key, and thus they have to agree on its value
(and hence the name of the protocol). The agreement is typically done by hav-
ing A and B each proposing a share of the key and the final key composed by
applying some function to the two shares. In this case, the function is simple
an exclusive-or of the two shares, but more complicated forms of key agreement
can be found in the literature [36, Cap.22].

The informal description of the protocol is the following:

1. The mobile unit Alice sends her certificate and a fresh nonce to the base
unit Bob.

2. Bob checks the certificate and replies with his certificate, a fresh share of
the agreement key KB (encrypted with Alice’s public key) and binds the
encrypted share and the nonce, by signing them with his private key.

3. Alice checks that everything is correct and generates her fresh share of the
agreement key KA, binds KA and KB together by signing the pair and sends
it to Bob.

If the protocol successfully completes, then Alice and Bob agree on the key
KA ⊕ KB for further communication. The first nonce is used by Alice as a
guarantee that Bob’s share of the key is fresh, under the obvious assumption
that Bob’s signature key has not been compromised. Bob’s share of the key
plays also the role of a nonce, guaranteeing that Alice’s share is fresh.

With respect to the original protocol, we have omitted the possibility of
choosing the encryption algorithm. From the viewpoint of the formal analysis
all algorithms are equivalent (as we abstract most of their details away), so this is
usually modeled with an extra message field which would just make the present
description more complex.

Formally, it boils down to three messages:

A−→B : CertA||N
B−→A : CertB ||{KB}pK(A)||SignBforA{KB, N}
A−→B : {KA}pK(B)||SignAforB{KA, KB}

where A is the mobile unit, B is the base unit, N a fresh nonce. The message
CertX is an abbreviation for {X, pK(X), Tnot−before, Tnot−after, . . .}sK(CA), a
certificate issued by a trusted certification authority CA. We also use the abbre-
viations

SignBforA{KB, N} .= {h({KB}pK(A)||N)}sK(B)

SignAforB{KA, KB} .= {h({KA}pK(B)||{KB}pK(A))}sK(A) .

The first step is always the modeling of the cryptographic primitives and the
theory of knowledge and messages. To this extent we borrow from Section 5 all
the corresponding rules and add more rules for modeling exclusive-or and the
hash function.
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The first rules about message composition are obvious:

part(M, M1 ⊕M2)←−msg(M), msg(M1), msg(M2), part(M, Mi)
part(M, h(M1))←−msg(M), msg(M1), part(M, M1)

Reasoning about knowledge is subtler, as it heavily exploits the stable model
semantics of logic programs:

knows(A, M1, T )←−knows(A, M1 ⊕M2, T ), knows(A, M2, T )
knows(A, M2, T )←−knows(A, M1 ⊕M2, T ), knows(A, M1, T )

First, we should notice that we only mention xor, and not the hash function.
Infact, we have no rule for knowing the content of a message out of its hash.
Thus, there is no way to derive knows(A, M, T ) from the sole knowledge of
knows(A, h(M), T ), as it should be.

Second, the stable model semantics rules out unwanted models of the xor-
rules that are very difficult to cope with when using monotonic logic formalisms.
Suppose that we asked for a model with the additional fact that knows(A, M1⊕
M2, T ). The correct interpretation is that A doesn’t know anything else. In
any monotonic logic we would have the model in which A knows also M1 and
M2. This knowledge would be self sustained: intuitively we will use the first
rule to derive that M1 is there because M2 is there and the second to rule
to conclude that M2 is there because M1 is there. Here, knows(A, M1, T ) and
knows(A, M2, T ) are not grounded in the premise knows(A, M1 ⊕M2, T ).

When using exclusive-or, it is useful to add some of its simplest algebraic
properties, as many attacks exploit them [35]. Commutativity is one of them
and the simplest way to cope with it is to add the axiom:

knows(A, M1 ⊕M2, T )←−knows(A, M2 ⊕M1, T )

It is convenient to use abbreviations in the actual ALSP code. To this
extent we can use a relational translation: in every rule where an abbrevi-
ation f(m1, . . . , mn) occurs as symbol (or where its use can make the rule
more readable), replace the abbreviation with a fresh variable M , add a new
atom is f(M, m1, . . . , mn), and then define is f appropriately. For instance for
SignAforB{KB, N} we can use the following:

is sign({h({KB}pK(A)||N)}sK(B), B, A, KB||N).
is sign({h({KA}pK(B)||{KB}pK(A))}sK(A), A, B, KA||KB).

The rules for sending and receiving actions are identical to the general case
described in [8,9] and sketched in Section 5. So we are only left with the axioms
for the protocol dependent parts.

Since we have an explicit notion of time, we can verify that certificates have
not expired when writing down action preconditions for the choice rules.

To this extent, we introduce a defined fluent validCert(A, B, KB, Cert, T )
which specifies whether at time T , the agent A considers Cert a valid certificate
for the public key KB of B.
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ALSP gives the security analyst the flexibility to specify the validity con-
ditions. For instance, certificates are emitted by a suitably trusted certification
authority, they must refer to a public key, and the current time should be within
the validity period of the certificate.

validCert(A, B, KB, {B||KB||Tnb||Tna}sK(CA), T )←−
trusts(A, CA), isPubKey(KB), Tnb ≤ T, T ≤ Tna

During the model-checking phase, the grounder lparse will directly compile
away the cases where the certificate is expired.

To start the protocol, A picks up a valid certificate for her public key and
generates a fresh nonce:

{says(A, B, CertA||N, T )} ←−mobile(A), base(B),
validCert(A, A, pK(A), CertA, T ),
fresh(N, T )

Notice that the certificate must be valid for A, as in principle A might trust
different certification authorities than B.

The agent B responds when the message he receives is valid, and has appro-
priately generated his fresh share of the key. He also attaches a valid certificate:

{says(B, A, CertB||{KB}pK(A)||{h({KB}pK(A))}sK(B), T )} ←−
mobile(A), base(B),
got(B, CertA||N, T )
validCert(B, A, pK(A), CertA, T )
validCert(B, B, pK(B), CertB , T )
fresh(KB, T )

The last step of the protocol is carried forward by A:

{says(A, B, {KA}pK(B)||{h({KA}pK(B)||{KB}pK(A))}sK(A), })←−
mobile(A), base(B),
said(A, B, CertA||N, T )
got(A, CertB ||{KB}pK(A)||{h({KB}pK(A))}sK(B), T )
validCert(A, A, pK(A), CertA, T )
validCert(A, B, pK(B), CertB , T )
fresh(KA, T )

Notice that by adding the fluent validCert(A, A, pK(A), CertA, T ) we impose
that A replies only if the certificate she sent to B is still valid at the time in
which the third message is issued.

Other checks can be encoded in different ways. For instance, a security analyst
may impose that a certificate is valid only if the timespan [Tnb, Tna] is not larger
than a predefined constant. It is rather straightforward to incorporate this check
into the definition of the validCert(A, B, K, C, T ) fluent.

Another analyst may impose tougher constraints on the timeliness of mes-
sages: A only replies to B if B’s message comes back within a certain time limit
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tlim from her initial request. In such a way the protocol implementation may
avoid checking the validity of A’s certificate a second time, by imposing that the
timespan must exceed tl.

validCert(A, B, KB, {B||KB||Tnb||Tna}sK(CA), T )←−
trusts(A, CA), isPubKey(KB), Tnb ≤ T, T + tlim ≤ Tna

Forcing these checks as preconditions on protocol actions is particularly tricky
in process algebras approaches which have only an indirect notion of time. In
our case it is rather simple to incorporate this check. We revise the action pre-
conditions by replacing “Said” with “Says” and adding the time constraints.

{says(A, B, {KA}pK(B)||{h({KA}pK(B)||{KB}pK(A))}sK(A), })←−
mobile(A), base(B),
says(A, B, CertA||N, Ti)
got(A, CertB ||{KB}pK(A)||{h({KB}pK(A))}sK(B), T )
validCert(A, B, pK(B), CertB , T )
Ti + tlim ≤ T,
fresh(KA, T )

These three rules are not sufficient to completely model the protocol. Indeed,
the protocol description specifies that B accepts the key only after having made
a number of additional checks. Thus, from the viewpoint of B the protocol can
be considered completed only after these extra checks have been made.

The final “agreement step” is formalized with an action notes(X, KAB, T )
that takes place after all messages are sent and checks made, to mark the event
that X noted the final agreement key for future use.

{notes(B, KA ⊕KB, T )} ←−mobile(A), base(B),
got(B, CertA||N, T ),
said(B, A, CertB ||{KB}pK(A)||{h({KB}pK(A))}sK(B), T ),
got(B, {KA}pK(B)||{h({KA}pK(B)||{KB}pK(A))}sK(A), T ).

We have used the messages exactly as they appear in the protocol description.
We could use a similar rule for A, which would however be redundant.

For this complex protocol, it makes sense to define events which compromise
the current value of the key agreement pair to see whether future runs of the
protocol can be compromised. This is done with an oops-rule following the tech-
nique introduced by Paulson [33]: we take all short term secrets, all nonces and
key which appear in the messages exchanged during a successful protocol run
and let the spy note their value.

{notes(spy, N ||KA||KB, T )} ←−
said(A, B, CertA||N, T ),
said(B, A, CertB ||{KB}pK(A)||{h({KB}pK(A))}sK(B), T ),
said(A, B, {KA}pK(B)||{h({KA}pK(B)||{KB}pK(A))}sK(A), T ),
noted(B, KA ⊕KB, T )
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The loss of old agreement keys is an additional event wrt the “normal” attacks
that the spy can perform on the protocol by just intercepting and manipulating
messages. When adding this rule, we want to test the robustness of the protocol
if past keys can be lost to the spy.

If we add the oops-rule we must slightly change the definition of attack, oth-
erwise trivial attacks will always be found during the verification phase: complete
a run of the protocol and then pipe all secret values to the spy with an oops
rule. In contrast, what really matters when checking an attack is the following:
suppose that the protocol run completed successfully, and the spy didn’t get the
secret value by means of an oops rule, were the value compromised nonetheless?

In this way, we only block the oops rule for the current run of the protocol, but
we do not forbid older protocol runs to be compromised and that compromised
runs might be used by the spy to compromise the current run.

attack←−mobile(A), base(B), A �= spy, B �= spy,
said(A, B, CertA||N, T ),
got(A, CertB ||{KB}pK(A)||SignBforKB,N{, }T ),
said(A, B, {KA}pK(B)||SignAforKA,KB{, }T ),
not noted(spy, N ||KA||KB, T ),
knows(spy, KA ⊕KB, T ).

The intuition is the following: we have an attack if we have completed a run of
the protocol, the current agreement keys have not been compromised by some
unfortunate oops-action and yet the spy knows the agreement key.

7 Discussion

Throughout the paper we have referred to the differences with some of the state-
of-the-art approaches for protocol verification which have been automated. Here
we just summarize the main differences.

We have already pointed out that there are many connections between our
proposal and Paulson’s inductive method [33,34,5]. Indeed, we have in common
the operational semantics for the specification of protocols. In the inductive
method one models a protocol as a set of traces and then uses interactive theo-
rem proving to prove that the protocol is secure, i.e. prove that all traces satisfy
a desired guarantee. The price to pay is that inductive theorem proving is inter-
active and requires expert knowledge, even if current tools substantially help in
shortening the verification efforts. Our approach is based on model finding and
thus we look for one trace that satisfies a given property, i.e. a security violation.
Thus, we can substantially automate the search for attacks.

The NRL Protocol Analyzer (NPA) shares with us the choice of the pro-
gramming paradigm, as we both use logic programs. A key difference is that we
use the logic programming language ALSP as specification language whereas,
Prolog is used as implementation language for the NPA [24,27]. The protocol
description and the specifications for the NPA are based on state variables and
rules for changing state variables with an explicit modeling of the words learned
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by the intruder. This aspect of NPA is closer to state exploration tools such
as Murphi [28]. Security specifications, whose violation may lead to an attack,
must be written in a different language either with temporal operators as done
by Syverson and Meadows [38] or by using the CAPSL intermediate language
[6]. Such specifications are declarative but not executable [38].

Our current formalization does not cope with an infinite search space, which
can be treated by NAP at the price of becoming interactive rather than fully
automatic. Infinite state space (such as an infinite number of agents or nonces)
can be modeled in our approach by minor modifications, but the price to pay is
that we would also lose decidability: we could use iterative deepening on tmax

and the number of basic objects, as this allows us to retain the benefits of the
bounded model checking completeness.

We believe that, wrt other model checking approaches, the use of a declar-
ative specification language greatly simplifies the presentation of actions and
events [20,21,27,28,38]. Indeed, ALSP is a good compromise between three con-
trasting needs: being close to the description of protocols as specified in the
security literature, specifying security properties at a high level of abstraction,
automating the analysis of the protocols and the search for bugs (i.e. security
attacks). Gollmann in [16, pag. 53] writes:

High level definitions of entity authentication may obscure the precise
goals an authentication protocol should achieve. On the other hand, a
low level description of the cryptographic mechanisms employed in the
protocol may obscure their intended purpose.

Our specification language ALSP is a step towards making these ends meet.
We plan to apply our verification methodology to more complex protocols

such as SET [23] and test to what extent, in terms of the size of specifications,
can we use only general purpose tools such as smodels for verifying ALSP speci-
fications. To ease comparison and integration with other approaches, a translator
from CASPER specifications [22] to ALSP specifications has been built [18].
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