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1. INTRODUCTION

Large open networks where trusted and untrusted parties coexist and where
messages transit through potentially “curious” if not hostile providers pose new
challenges to the designers of communication protocols.

Properties such as authenticity, confidentiality, proof of identity, proof of de-
livery, or receipt are difficult to assure in this scenario. Security protocols, com-
munications protocols with an essential use of cryptographic primitives, aim at
solving this problem [Schneier 1994, Chapters 2-4]. By a suitable use of shared
and public key cryptography, random numbers, hash functions, encrypted and
plain messages, a security protocol may assure an agent that the “invisible”
responder at the other side of the network really is who he claims to be.

Not surprisingly, security protocols are very difficult to design by hand, as
errors may creep in by combining protocols actions in ways not foreseen by the
designer [Burrows et al. 1990]. Indeed, a protocol may be discovered flawed
after many years [Lowe 1996], and even when one proves it correct, shortcuts
to obtain export licenses can make it flawed [Ryan and Schneider 1998]. This
situation is further complicated by the often ambiguous definition of the goals
of a security protocol, which makes it difficult to assess what really counts as a
flaw [Burrows et al. 1990; Gollmann 1996; Lowe 1996; Syverson and Meadows
1996].

Thus, the formal verification of security protocols became the subject of in-
tense research in the last decade, after the seminal paper by Burrows, Abadi,
and Needham [Burrows et al. 1990]. For instance, methods based on beliefs log-
ics [Burrows et al. 1990; Syverson and van Oorschot 1994], model checking and
verification in process algebras [Lowe 1996; Schneider 1998], theorem proving
with induction [Paulson 1998; Bella and Paulson 1998], and state exploration
methods [Mitchell et al. 1997; Meadows 1994] have been successfully used to
verify and debug security protocols.

However, it became apparent that the formalization process itself was a seri-
ous bottleneck in the design process. At first, formalizing a protocol was hardly
doable by somebody different from the proposer of the formal method itself. Sec-
ond, the ambiguity of the goals of the protocol made it possible to find “attacks”
with formal methods that security analysts will never regard as such (see for
instance the debate between Lowe [1996] and Gollmann [1996]). Indeed, a se-
curity analyst can easily define a “security violation” in terms of sent, received,
and missing messages, while the language gap between the analyst and the for-
mal method makes it difficult to formally and exactly capture what is needed.

To bridge the gap, a number of intermediate languages for the description
of protocols and protocol specifications have been proposed in the literature:
for example CASPER [Lowe 1998], CASPL [Brackin et al. 1999], and NAPTRL
[Syverson and Meadows 1996]. The protocol description is close to the opera-
tional description used in the security literature, and a compiler takes care of
mapping it into the target formal language. Nevertheless, this situation is still
unsatisfactory, as the security analyst must still buy, stock and barrel, the defi-
nitions of security goals and other properties (such as properties of private and
public keys, the abilities of an intruder, etc.) which are provided by the formal
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analyst. For instance, it is often not possible for the security analyst to “cus-
tomize” the capabilities of a potential intruder (e.g., the intruder can intercept
all messages coming from Alice but not those coming from Bob, etc.) without
hacking into the formal language.

Thus, one would like to further extend the possibilities of specification lan-
guages, to allow for a flexible description of protocol actions, protocol goals, and
protocol environment.

1.1 The Contribution of this Paper

In this paper we illustrate ALSP (Action Language for Security Protocols
[Carlucci Aiello and Massacci 2000]), an executable specification language for
representing security protocols, and checking the possibility of attacks.

Our goal in the design ofALSP is to provide the designer of security protocols
with a formal environment where the logical formalization of a protocol and the
behavior of an intruder are as close as possible to the operational specification in
terms of message passing as one can find in published descriptions of protocols.
An attack to a protocol should be easily specifiable in terms of the operations
that one would or would not like to happen, without worrying about initiators,
responders, or sessions. Properties of messages, keys, etc., should be easily
formalized in the language.

Finally, the logical formalization should be executable, at least for model
checking: there should be a system that takes the specification and outputs a
model (if any) which shows an attack.
ALSP is based on logic programming with the stable model semantics (LPSM),

and is executable via a model finder, namely smodels [Niemelä 1999].
The choice of LPSM [Apt 1990; Gelfond and Lifschitz 1988] is motivated by

three properties of stable models:

—if a fact is true in a stable model there is a justification for it, and no circular
justification is allowed;

—if something is not explicitly said, it is false by default;
—it is possible to say that some facts must be true in a stable model, and other

facts may be true in it.

As we shall see, this is particularly appropriate in dynamic domains represent-
ing actions and changes, such as security protocols.

The innovative aspect of our proposal is the way we use logic programs to
formalize protocols. The point of view we take comes from robotic planning.
Planning, if seen as an artificial intelligence problem, is the task of automat-
ically generating the sequence of actions a robot should perform to achieve
its goal. The logic approach to planning sees plan generation as a task of au-
tomated reasoning: out of a declarative specification of the world, the (con-
structive) proof of the existence of a goal state can be easily transformed
into a plan (i.e., a sequence of actions) to achieve it. Conversely, the nonex-
istence of a plan can be checked as an unsatisfiability problem: if no model
for a goal state can be found, then we have proven that there is no plan that
achieves it.
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A plan is not different from a trace of a protocol. As in Paulson’s approach for
verifying security protocols [Paulson 1998; Bella and Paulson 1998], we describe
each protocol run as a trace of send and receive actions. Paulson relies on in-
ductive theorem proving for proving a protocol correct; we rely on stable-model
generation for model-checking the protocol and finding traces corresponding to
attacks.

Thus, our method, based on a logical specification for model-checking security
protocols, offers an alternative to process algebras [Lowe 1996; 1998] and state
exploration methods [Meadows 1994; Mitchell et al. 1997], and complements
Paulson’s inductive approach [Paulson 1998].

1.2 Plan of the Paper

In the rest of the paper we introduce security protocols by means of a simple
running example (see Section 2). Then we briefly give some background on logic
programs, stable models and smodels (Section 3), and on the logic approach to
planning (Section 4). We then present the languageALSP (Section 5), and show
how to use it for modeling protocols (Sections 6 and 7) and attacks (Section 8).
Finally, we show how to use them in practice (Section 9) and then discuss the
adequacy of ALSP specifications w.r.t. the standard trace-based semantics of
security protocols (Section 10). A discussion on related works concludes the
paper (Section 11). We refer instead to Carlucci Aiello and Massacci [2001] for
a detailed presentation of some case studies: the Needham-Schroeder protocol,
and the Aziz-Diffie key agreement protocol for mobile communication.

2. SECURITY PROTOCOLS: AN INTRODUCTION

As we anticipated in the introduction, a security protocol is a particular type
of communication protocol in which cryptographic primitives play a key role.
Here we sketch some features of security protocols and refer to Schneier [1994]
for further details and references.

At first, when reasoning about the correctness of security protocols, there
is a simplifying assumption about cryptographic primitives: they are almost
perfect1 so that cryptographic attacks are out of scope.

The basic setting of a security protocol, which has been first proposed by
Dolev and Yao [1983], is constituted by two honest agents (say Alice and Bob),
who want to communicate over a network owned by a potentially hostile agent
(Charlie), and who use the services of one trusted server (Sam). Charlie may
intercept, read, and fake any message in transit, but cannot break, nor alter,
encrypted components (unless he knows the decryption keys). In more sophis-
ticated protocols, such as an e-commerce protocol, we may have a trusted third
party (Trent), who intervenes in case of disputes or who provides unrepudiable
evidence that certain transactions took place. There are of course variations on
this theme: there might be more agents or servers with different tasks; Alice
may not entirely trust Bob, etc.

1For instance, hash functions are injective; correlation attacks on different cipher-texts are not
possible; etc.
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The goals of the particular security protocol that Alice and Bob run are ap-
plication dependent, but may be loosely classified as follows:

—aliveness is sought when Alice follows the protocol and has some assurance
that Bob is alive on the network (even if talking with somebody else);

—authenticity means that whenever Alice follows the protocol and gets a mes-
sage allegedly from Bob, then Bob actually sent the message (possibly to
Alice, depending on how strong we want authentication to be);

—confidentiality is obtained when Alice gets some secret information from Bob
that is only shared by her, Bob, and possibly by some other entity trusted by
her;

—freshness (or timeliness) means that Alice is assured that the message was
sent recently, after she has done a certain action or after a given time;

—proof of identity is obtained when Alice is convinced that Bob is really the
entity she is communicating with;

—proof of delivery means that Alice gets some message that convinces her that
Bob received (and read) some crucial information from her;

—the wording nonrepudiation usually refers to a mixture of the above in which
the evidence in the hands of Alice must be sufficient to convince somebody
else (typically Trent).

Most protocols target more than one goal at the same time, or more complex
goals such as distributed computation. For instance, in a key agreement pro-
tocol, the task of Alice is to get hold of a secret key (confidentiality) so that
all subsequent messages she receives encrypted with that key could only come
from herself or Bob (authenticity). In a protocol which certifies a public key,
the Certification Authority Trent may want a proof of identity: if Alice asks for
the public key K A to be certified as hers, then Trent may ask Alice to sign some
random number with the corresponding private key, to show that she really
knows it.

We use the notation of the classical BAN paper [Burrows et al. 1990] to
represent protocols. The basic building blocks of security protocols are agents’
identifiers, keys, and (possibly random) numbers. Agents, and agents’ identi-
fiers, are denoted by capital letters: A, B, etc.

According to a notation that is standard in the computer security litera-
ture, we call nonces numbers used once, i.e., we assume the availability to each
agent of a generator of random numbers ready to provide a new random num-
ber whenever needed. We denote nonces by capital N, possibly with an index
to specify the agent that produces it. Hence, NA indicates that N is a nonce
generated by agent A.

Security protocols often make use of (at least) two types of encryption keys:
symmetric keys (sometimes also called shared or secret keys) and asymmetric
keys (sometimes also called public/private keys). Basically, we use symmetric
keys when our crypto-algorithm can use the same key for both encryption and
decryption. Thus, it is essential that the key is kept secret and only shared be-
tween those allowed to read the encrypted messages (hence the names “shared”
or “secret” key).

ACM Transactions on Computational Logic, Vol. 2, No. 4, October 2001.



Verifying Security Protocols • 547

We use asymmetric keys when the crypto-algorithm uses a key for encryp-
tion and another key for decryption, and it is difficult (unless NP=P or other
similarly hard problems turns out easy) to obtain one from the other. With
asymmetric keys, Alice can “publish” the encryption key (thus called her “pub-
lic key”) so that everybody can send her secure messages that only she can read
by using the decryption key which she carefully guards (hence the name “pri-
vate key”). Asymmetric keys are also used for signature schemes: when Alice
wants to sign a message M she encrypts it with her (private) key. She is the
only one who can do that. Using the public key, everybody else can recover the
original message, and check that the signature is valid. See Schneider [1994]
for further details.

A key K is decorated by indices that denote the agents that know that key:
K A is a key known (only) to agent A; K AB is a key shared by agents A and B;
etc. Public and private keys are sometimes prefixed by the letters “p” or “s”. For
instance, pK (A) is A’s public key, and sK (A) is A’s secret key.

To compose messages, we can use (at least) concatenation, hashing, and en-
cryption. We denote the concatenation of message m1 and m2 as m1 ||m2. The
hashing of a messagge m is denoted by h(m).

Following the standard practice of security verification literature, the en-
cryption of message m with key k is denoted by {m}k for both symmetric and
asymmetric encryption. The type of encryption is determined by the type of the
key.

To exemplify our specification methodology in ALSP, we focus here on a sim-
ple example: a variant of the ISO Challenge-Response protocol. More complex
examples such as the classical Needham-Schroeder protocol and the Aziz-Diffie
key agreement protocol are discussed by Carlucci Aiello and Massacci [2001].
Further examples, and in particular the whole Clarke-Jacob’s library of au-
thentication protocols [Clark and Jacob 1997], which is the current benchmark
for verification of security protocols, has also been encoded in ALSP [Lorenzon
2000].

Using BAN notation, the Challenge-Response protocol is the following:

A→B : A || {NA}K AB

B→A : B ||NA

The goal of the Challenge-Response protocol is to assure Alice that Bob is
alive on the network. To accomplish this goal, Alice generates a nonce NA and
encrypts it with a secret key which is only shared by her and Bob. Then she
sends the encrypted data to Bob. Bob decrypts the data and sends it in clear.
When Alice receives NA back, which she knows she has just generated in order
to send it to Bob, and thus it is fresh and unguessable by others, she is sure that
only Bob could have sent it by decrypting her challenge, and thus Bob is alive.

Here, each agent participanting in the protocol can play any of the two roles:
challenger and responder. These roles can also be played in parallel. For in-
stance, Alice may challenge Bob and respond to Charlie, who is challenging
Sam, who is responding to Bob’s challenge, etc. All these parallel exchanges of
messages can be seen as a single protocol run.
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However, if the protocol is run by both Alice and Bob in the attempt to provide
a mutual assurance of aliveness, it has a serious flaw. Indeed, there is an attack
(in the security jargon, a mirror attack) where Alice successfully completes a
run of the protocol, allegedly with Bob, but Bob neither sent nor received any
message.

Basically, the intruder intercepts the message from Alice to Bob and feeds
it back to Alice (pretending it comes from Bob). When Alice dutifully replies
with the challenge (her original challenge indeed), the intruder intercepts it
and feeds it back again to Alice claiming to be Bob. The attack is automatically
found by smodels in few seconds, when checking the ALSP specification of the
protocol. See Figure 1 (Section 9) for a sample output session of smodels.

3. LOGIC PROGRAMS WITH NAF, STABLE MODELS, AND SMODELS

In this section we give the basics of logic programming needed for our modeling
tasks, and refer to Apt [1990] for further details.

It is well known that negation can be accommodated into logic programming
as negation as failure (NAF). This is done by extending the language of Horn
Logic by allowing negated literals in the body of clauses. In their simplest form,
programs with negated literals (called normal logic programs) are sets of rules
of the form

a← b1, . . . , bm, not c1, . . . , not cn

where m, n ≥ 0 and a, bi, c j are literals. Literals prefixed by the not operator
are called NAF literals and are to be read as follows: not c is true if all attempts
to prove c failed.

One of the most prominent semantics for normal logic programs is the stable
model semantics proposed by Gelfond and Lifschitz [1988] (see Apt [1990] for a
discussion). The intuition is to interpret the rules of a program P as constraints
on a solution set S for the program itself. S is a set of atoms, and a rule of the
form

a← b1, . . . , bm, not c1, . . . , not cn

is a constraint on S stating that if b1, . . . , and bm are in S and none of c1, . . . ,
and cn are in it, then a must be in S.

We now consider ground rules, i.e., rules where atoms do not contain vari-
ables (but may contain arbitrary terms).

Definition 3.1 [Gelfond and Lifschitz 1988 ]. The reduct P S of a ground
logic program P with respect to a set of atoms S is the definite program obtained
from P by deleting

(1) each rule that has a negative literal not c in its body with c ∈ S;
(2) each negative literal in the bodies of the remaining rules.

The reduct P S is a definite logic program. LetM(P S) =MP S be the seman-
tics of the definite logic program P S , i.e. its minimal model.

Definition 3.2 [Gelfond and Lifschitz 1988 ]. A set of atoms M is a stable
model of a normal logic program P iff M =M(P M ).
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A normal logic program can have none, one, or many stable models.

Example. The logic program P defined by the rules

p←not q, r q←not p, s
r←not s s←not p

has a stable model S = {r, p} because the reduct P S is {p← r. r←} and S is
the deductive closure of P S . P has another stable model, namely {s, q}.

The set S′ = {s, p} is not a stable model of P , as the reduct of the program P S′

with respect to S′ is the rule p← r and its deductive closure is the empty set.

Example. The logic program {p′ ←not p′, p. p←} has no stable model. In
fact, if it had one, say S, then p ∈ S. If p′ ∈ S, then the reduct is just p←
and p′ does not derive from it; hence p′ 6∈ S, a contradiction. If p′ 6∈ S, then the
reduct is {p′ ← p. p←} and p′ derives from it; hence p′ ∈ S, a contradiction.

If we remove the second rule, and the logic program becomes {p′ ←not p′, p}
then it has a stable model, namely the empty set (i.e., everything is false).

The definition of stable models captures the two key properties of solution
sets of logic programs.

(1) Stable models are minimal: a proper subset of a stable model is not a stable
model.

(2) Stable models are grounded: each atom in a stable model has a justification
in terms of the program, i.e., it is derivable from the reduct of the program
with respect to the model.

Minimality and groundedness make logic programming with stable model se-
mantics (LPSM) particularly suited to model actions and change, in particular
in security problems, where we want to model exactly what happened (i.e., we
do not want to leave room for unwanted models), and where everything has a
justification in the model. For example, if an intruder has got a secret key, there
is an explanation in the model in terms of actions that the intruder has per-
formed; it cannot have happened for other reasons not captured by the stable
model itself. These properties of LPSM make it a good choice for representing
dynamic situations, such as planning and security problems, which are non-
monotonic. Hence, LPSM proves to be better for application to security than
other proposed logic formalisms based on (monotonic) modal logics (such as the
BAN logic [Burrows et al. 1990] or the SVO logics [Syverson and van Oorschot
1994]), where together with the intended model we get unwanted ones, and
there is no possibility of ruling them out.

The definition of stable models in terms of fix points is nonconstructive.
Nevertheless, given a set of atoms it can be checked in linear time whether or not
it is a stable model [Apt 1990]. Even though computing stable models has been
proved to be NP-complete, now there are systems that can cope with ground
programs having tens of thousands of rules. The system smodels [Niemelä 1999;
Niemelä and Simmons 1997], is one of them. In order to introduce it, we present
some more notions.
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Logic programs with variables can be given a semantics in terms of stable
models.

Definition 3.3. [Apt 1990 ] The stable models of a normal logic program
P with variables are those of its ground instantiations PH with respect to its
Herbrand universe.

If logic programs are function free, then an upper bound on the number of in-
stantiations is rcv, where r is the number of rules, c the number of the constants,
and v the upper bound on the number of distinct variables in each rule.

Definition 3.4 [Niemelä 1999 ]. A logic program P is domain restricted for
a set of predicates D if, for each rule in P , every variable of the rule appears
also in a positive body literal of the rule and the predicate of the literal is
from D.

Programs where variables are sorted, i.e., where each variable occurring in a
rule also occurs as the argument of a sort predicate2 in the body of the same rule,
are domain restricted to the domain of the sort predicates. This property holds
for the logic programming language ALSP. Actually, we allow for functions in
ALSP programs, but we still keep the domain restrictedness because we impose
that arguments of functions are sorted and range over finite domains.

Definition 3.5 [Niemelä 1999]. Let P be a logic program domain restricted
for a set of predicates D. Let D̂ be a set of ground instances of predicates in D,
and PD̂ be the corresponding grounding of the program P . Then D̂ is complete
for P iff for each ground instance d̂ of a predicate d ∈ D it holds that (i) if d̂ is
in some stable model of P , then d̂ ∈ D̂ and (ii) if d̂ is in some stable model of
PD̂, then d̂ ∈ D̂.

The following theorem holds:

THEOREM 3.1. (See Niemelä [1999].) Let P be a logic program domain re-
stricted w.r.t. D. Let D̂ be a set of ground instances of predicates in D, w.r.t. the
Herbrand universe of P such that D̂ is complete w.r.t. P. Then P and PD̂ have
the same stable models.

Domain restriction is a limitation that still leaves logic programs with expres-
sive power to deal with interesting applications. At the same time the above
theorem ensures that with this limitation the grounding problem and the search
for stable models can be solved very efficiently, in particular if the domain is
nonrecursive, i.e., D does not contain predicates that are recursively defined
in P .

Again, ALSP enjoys this property. In fact, the above theorem tells, that with-
out losing completeness of the search, we may limit the ground instances in PD̂
to those where each literal with a predicate from D belongs to D̂.

smodels [Niemelä and Simmons 1997; Niemelä 1999] is an implementation
of LPSM, logic programming based on the stable model semantics for range-
restricted function-free normal programs. It consists of two modules: the proper

2A positive literal with a monadic predicate.
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smodels, which implementsLPSM for ground programs, and lparse, an efficient
parsing module which works for range-restricted programs with nonrecursive
domains. lparse automatically detects domain predicates, and deals with them
very efficiently. In addition, it has some built-in arithmetic functions.

The implementation of smodels is a mixture of bottom-up and top-down back-
tracking search, where only the negative atoms in the program contribute to
an increase of the search space; hence it is very efficient.

smodels offers the possibility of including a “choice” rule into logic programs:

{c}←a, b

It reads as “if a and b are both true, then c may be in the stable model, but
this is not mandatory.” A program containing the choice rule can be translated
into a normal program by a wise use of NAF. So, this rule is just a shorthand
notation.

The languageALSP borrows the choice rule from smodels, as it proves useful
when representing security problems. For instance, it allows us to easily repre-
sent the fact that an intruder may intercept a message, but he is not compelled
to.

4. LOGICAL APPROACH TO PLANNING

Planning is a research area in artificial intelligence aiming at the construction
of algorithms (planners) that enable an agent to synthesize a course of actions
that achieves its goals. Here we only present the definition of a planning prob-
lem and give enough background on the approach we take to represent the
problem of verifying security protocols as a planning problem. We refer to Weld
[1999] for a comprehensive survey.

A planning problem is a representation, in some formal language, of the
following three aspects:

(1) a description of the initial state of the world;
(2) a description of the goal state the agent has to achieve;
(3) a description of the possible actions that can be performed by the agent.

This is often called domain theory or action theory.

The solution of the problem (if one exists) is a plan: a sequence of actions that,
when executed in a world satisfying the initial state description, achieves the
goal.

In addition to the description of a planning problem, a planner may need a
background theory, i.e., a description of generally known properties about the
world.

A planning problem in the context of security protocols, where agents ex-
change messages and are subject to attacks by intruders, can be formulated as
follows:

(1) the initial state is described in terms of the keys known to agents and
the messages already exchanged (typically none), at the time the protocol
starts;
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(2) the goal state is an unwanted situation where some security violation has
occurred;3

(3) actions are exchanges of messages among agents.

If a solution of the planning problem exists, then it is a sequence of actions
leading to an unwanted situation, i.e., a plan is an attack to the security of the
protocol.

The background theory, in this case, includes the description of how messages
are composed and decrypted by agents, the properties of keys, how knowledge
is attained by the agents participating in the protocol, etc.

In classical planning problems, a number of simplifying assumptions are
made, some of them are absolutely not trivial to be removed: atomic time (or,
equivalently, instantaneous duration of action execution), no exogenous events,
deterministic action effects, etc. and are presently topics of active research.

We live with these assumptions, since they do not create problems with our
application. In our application of planning to security, actions possibly per-
formed by an intruder are not considered exogenous, as they are explicitly
modeled. The intruder is one of the several agents in the scenario, typically
more powerful than others.

A key problem is finding the adequate representation language: we look
for a concise representation of dynamic situations (actions change the state of
the world) that allows for an easy search for plans. Both specialized planning
formalisms and logics have been proposed for representing and solving planning
problems.

Usually, to represent predicates and functions whose value changes over
time, fluents are introduced, i.e., predicates/functions with an extra parameter,
typically the last one, representing the situation s or the time t where they hold.
As an example: got(alice, m, s1), and ¬got(alice, n, s2) indicate that the agent
alice got a message m in situation s1 whereas she did not get it in situation s2.

The term situation is borrowed from the Situation Calculus (SitCal), a “di-
alect” of first-order logic introduced by McCarthy and Hayes [1969], and re-
cently revisited by Reiter [1991]. We borrow more nomenclature from the SitCal
to further illustrate action theories and how security protocols can be accom-
modated into them.

In SitCal actions are denoted by function symbols; they can be performed in
a situation, and the result is a new situation. In general, a situation is a term of
the form do(an, do(an−1, . . . , do(a1, s0) . . .)) where do is a binary function symbol
which, given an action a and a situation s, evaluates to its successor situation,
and the constant symbol s0 denotes the initial situation. Hence, situations can
be seen as histories, or traces, of plan executions.

This description of actions is fairly close to Paulson’s inductive presenta-
tion of security protocols which uses traces of atomic send and receive actions
[Paulson 1998; Bella and Paulson 1998].

Actions modify the current status of the world. This is described by stating
causal laws, i.e., how actions affect the values of the fluents, in the form of the

3For instance, A receives a message allegedly from B, who actually never sent it to A.
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so-called effect axioms. For example, if a number N is part of another message
M, then the action of an agent A sending the message M in a situation S causes
the number N to be used. Thus, in all subsequent times, N has lost the property
of being a freshly generated, unused number. Formally the effect axiom is the
following:

part(N, M ) ⊃ used(N, do(says(A, B, M ), S))

The effect of an agent getting a message can be described as

got(A, M , do( gets(A, M ), S)).

Actions may have preconditions, i.e., requirements to be satisfied in order
for the action to be executable. The predicate symbol Poss is used to indicate
that all the preconditions are satisfied; hence an action is possible: Poss(a, s)
reads as “action a is possible in situation s.” In SitCal, an axiom called action
precondition axiom is associated with each action a. It has the form

Poss(a, S) ≡ 5a(S)

where 5a(S) is a first-order formula with no occurrence of the function symbol
do. Note here that we make a sort of “closure” assumption, i.e., all the necessary
and sufficient conditions for the execution of action a are listed in 5a(S). In
other words, we ignore all the other qualifications for the execution of a, by
considering them irrelevant.4 For example, we have

Poss(intercepts(spy, M ), S) ≡ ∃A∃B. (said(A, B, M , S)∧
¬got(B, M , S)

)
meaning that the (only) preconditions for the capture of a message by the spy
in the situation S is that the message has been sent by A to B and that the
legitimate recipient has not got it already.

In addition to the specification of the effect axioms and the action precon-
dition axioms, we have also to state the “laws of inertia” for our domain, i.e.,
actions change the value of some fluents; all the others are unaffected, so their
truth value persists through the action execution.5 As an example, intercept-
ing a message does not change its content, the status of other messages already
sent by the agents participating in the protocols, the encryption keys used for
them, and so on.

In summary, a domain theory in SitCal consists of a set of actions and a
precondition axiom for each action, and effect and inertial axioms for each
fluent.

With a suitable definition of a domain theory and a rich background theory
we would have had Paulson’s inductive specification of security protocols, but
for notational presentation: the value of each fluent would have been given by
stating inductive definitions over traces of actions. Then we could have used
Reiter’s deductive approach to planning in SitCal [Reiter 1991] to obtain a plan
(i.e., security attacks) out of a constructive proof of the formula ∃S.Violation(S)

4In the artificial intelligence literature, this is known as the Qualification Problem.
5This is known in the artificial intelligence literature as the Frame Problem.
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from the domain theory and the properties of the initial situation. This would
have given us an elegant duality between verification (by inductive theorem
proving) and debugging (by finding attacks as plans).

Unfortunately, such an approach proved to be unworkable in practice: a num-
ber of preliminary experiments run with P. Baumgartner and U. Furbach from
Koblenz University in October, 1999, have shown that state-of-the-art theorem
provers (such as SPASS, FDPLL, or PROTEIN) could not cope even with our
expository Challenge-Response protocol with the standard SitCal formulation.

The source of the problem can be identified, in our opinion, in the representa-
tion of parallel actions by their interleaving into a serial trace. If there are few
possibilities for parallelism, this is not a major problem. If the domain allows
for many unrelated parallel actions (and this is our case), the representation of
interleavings blows up the search space. We illustrate this with an example on
our Challenge-Response protocol. Alice may run the protocol with Bob, while
Charlie runs it with Eve. Clearly, to find an attack on Alice’s run, the outcome of
Charlie’s run is immaterial. However, the planner does not know it, and thus it
will consider all possible interleavings of Alice and Charlie’s runs. In particular,
it will waste its time by considering the interleaving of Alice’s correct runs with
all possible runs by Charlie, whereas the attack is elsewhere.

Thus, we need to look at situations in a different way, which do not force
parallel actions into serialized traces. We may consider a situation as a set of
predicates that are true in it, each situation being distinguished by a times-
tamp, the time when it was generated by the execution of an action. By the
close-world assumption, we read as false all predicates not occurring in the
set.

Time arguments t are associated with values from an initial segment of the
natural numbers; hence we can speak of a time T0 = 0, of a total order among
timestamps, of a successor time to t, namely t + 1, etc. The explicit representa-
tion of time has an added advantage when modeling security protocols which
use timestamps (Kerberos is the paradigmatic example), as many protocols use
digital certificates, and we may want to add checks on the expiration dates of
certificates.

Fluents, instead of being decorated with a situation argument, have a time
argument. We also decorate actions with a timestamp, so do(a, s) now becomes
an action predicate a(t) which is true when action a is executed at time t yielding
some results at time t + 1. Then, we can easily express parallelism: if a(t)
and b(t) are both true then the actions a and b are executed in parallel at
time t. This still leaves the possibility of considering plans as traces of action
executions, with the proviso that (i) two different traces may lead to the same
situation, (ii) we must add conditions to guarantee that parallel actions are
serializable.

Causal laws and laws of inertia can be recast as constraints on the possible
sets of predicates that are admissible for consecutive times t and t + 1. For
instance, if the action predicate says(A, B, M, t) is true, then said(A, B, M , t+1)
must be true. The planning problem becomes the problem of finding a time tg
such that Goal(tg ) holds (where Goal(tg ) is the conjunction of the (relevant)
formulas true in the goal state) and a set of actions (indexed by time instants)
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that leads to tg and respects the causal and inertial laws. In particular, since
situations are no longer totally ordered by a sequence of do’s, and the time
indexing imposes a temporal sequence only on some actions, parallelism among
actions can be exploited to make plans shorter.

Following a proposal by Kautz and Selman [1992], we may solve a planning
problem as model finding. The basic intuition is to limit the size of plans (by
considering plans whose length l is l ≤ n for some fixed n) and then encode the
planning problem as a satisfiability problem in propositional logic by encoding
each causal and inertial constraint as a propositional formula. If we find a model
for the goal and all the formulae, then we have a plan.

Plans can be also generated using logic programs. In particular, this has been
done by Niemelä [1999] and Nebel and coworkers [Dimopoulos et al. 1997].
Both of them encode a planning problem as a ground logic program (written in
LPSM) in such a way that the stable models of the encodings correspond to valid
sequences of actions. Consequently, planning is the problem of finding a stable
model that, for a given instant of time t, assigns true to all fluents that belong
to the final situation. Action predicates that are true in the stable model and
refer to time instants earlier than t constitute a plan that achieves the goal.
Niemelä and Nebel both use smodels for their experiments.

We build on this idea, as smodels can be used for model generation of ALSP
specifications to verify whether plans to attack a protocol exist.

5. THE LANGUAGE ALSP

We start by introducing basic sort predicates to characterize the basic com-
ponents of our language. Some of these predicates are common to many
protocols:

—ag(A) denotes that A is an agent

—nonce(N ) denotes that N is a nonce

—key(K ) denotes that K is a key

Then we have constructors for messages. Some “classical” constructors are
pairing, encryption, hashing, and exclusive-or, which we represent in BAN-like
notation [Burrows et al. 1990]:

—{M }K is the encryption of M with the key K;
—M1 ||M2 is the concatenation of M1 with M2;
—h(M1) is the hash of message M1;
—M1 ⊕ M2 is the bitwise xor of M1 and M2.

Other functions may be added for particular protocols. From the standpoint of
logic programs, they are just function symbols. For instance {M1 ⊕ M2}K is just
a pretty printing of the term crypt(K,xor(M1,M2)).

A special sort predicate is msg(M ), which denotes that M is a valid
(sub)message that may appear in a run of the protocol. The predicate
msg(·) specifies how messages are built with message constructors from basic
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components. For sake of efficiency,6 it is sometimes desirable to have a predicate
protmsg(M ) which distinguishes actual messages that can be sent/received in
a protocol run from valid (sub)messages identified by msg(M ).

We have predicates for defining properties of messages:

—part(M1, M ) denotes that M1 is a submessage of M;
—invKey(K, K I ) denotes that K I is the inverse of K;
—symKey(K ) denotes that K is a symmetric key;
—sharedKey(K , A, B) denotes that K is a (symmetric) key shared between A

and B;
—asymKeyPair(Kpriv, Kpub) denotes that Kpriv and Kpub constitute an asym-

metric key pair.

Other predicates may be introduced on demand.
Next, we introduce fluents corresponding to actions and properties, as we

discussed in Section 4.
First, we have predicates for knowledge and ability to compose messages.

From now on we must introduce time as an additional argument.

—knows(A, M , T ) denotes that agent A knows message M at time T;
—synth(A, M, T ) denotes that A can construct message M at time T.

Then we have predicates for actions:

—says(A, B, M, T ) denotes the attempt7 by A to send message M to B at time
T ;

—gets(B, M, T ) denotes the receipt8 of message M by B at time T;
—notes(A, M , T ) denotes the storage of message M by A at time T.

These actions are basically present in the inductive theory of traces by Paulson
and Bella [Paulson 1998; Bella and Paulson 1998]. Together with the predicate
knows(A, M , T ), they are the only predicates typeset in italics, as they are the
only ones whose truth value we need to know for extracting attacks from stable
models.

We also use the predicates said(A, B, M , T ), got(B, M , T ), and noted(A, M ,
T ), with the obvious meaning that they are true when the corresponding action
happened some time before T . We prefer this solution w.r.t. the explicit temporal
operators, as for instance proposed by Syverson and Meadows [1996], because
it leads to simpler semantics and gives us the flexibility to explicitly axiomatize
when and how information about past runs of the protocol carries on into the
current run. For instance, if we want to model agents with bounded memory,
we may have a Lost action which can make noted(A, M , T ) no longer true.

6In particular to make the ground representation of ALSP specifications smaller.
7Attempt, because the spy might intercept the message, and the intended recipient might never
see it.
8We only specify the recipient in the “get” action, as the sender is unreliable. See also Bella and
Paulson [1998], or Paulson [1998], for a discussion of this modeling choice.
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6. MODELING MESSAGES, KNOWLEDGE, AND ACTIONS IN ALSP

The starting point is the background theory for modeling the ability of agents
to manipulate messages.

First, we specify which messages are valid. The direct approach would be
using msg(·) and defining messages inductively with constructors. For instance

msg(M1 ||M2)←msg(M1), msg(M2)

could be a rule for inductively defining message concatenation. Unfortunately,
inductively defined predicates with function symbols have infinitely many
ground instances.

For our particular application, we do not need inductive definitions for msg(·):
it is sufficient to use only messages that may occur as (sub)messages in a pos-
sible run of a protocol. For instance, the concatenation of thousands of nonces
will never appear in the Needham-Schroeder public key protocol, and if it does
it will be ignored by all honest agents. In most protocols, even complex ones,
the format and number of valid messages is fixed9 and can be expressed by few
applications of the constructors to elements of the basic types.

Therefore we impose two constraints:

Definition 6.1. A basic sort predicate is admissible for ALSP if it is not
recursively defined by logic programming rules.

Definition 6.2. A logic programming rule defining message constructor(s)
with the special sort predicate msg(·) in the head of the rule is admissi-
ble for ALSP only if basic sort predicates alone occur in the body of the
rule.

Obviously if we introduce the additional predicate protmsg(·), which is just a
special case of msg(·), then Definition 6.2 must be extended to it.

This is the only part of ALSP specifications in which we forbid inductively
defined predicates. The gain is substantial: if we have finitely many basic en-
tities (agents, nonces, etc.), then we have finitely many messages in ALSP, and
therefore we have only finite models. The price to pay is that the rules defining
msg(·) depend on the particular protocol we are analyzing. We must define each
submessage in terms of the atomic components.

For our running example this boils down to

msg(A || {N }K )← ag(A), nonce(N ), key(K ) %actual protocol message
msg(B ||N )← ag(B), nonce(N ) %actual protocol message
msg({N }K )← nonce(N ), key(K ) %submessage
msg(N )← nonce(N ) %submessage

This step is entirely mechanical. Thus a translator has been implemented
[Lorenzon 2000] for generating such ALSP-rules from protocol descriptions in
CASPER [Lowe 1998].

Next, we need rules to model the ability of agents of manipulating messages.
Lowe [1996] and Schneider [1998] use one relation to model the abilities to

9The recursive protocol analyzed by Paulson [1998] and Ryan and Schneider [1998] is an exception.
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compose and decompose messages. Paulson [1998] treats these abilities sepa-
rately with two relations. We prefer the latter approach: the presentation is
simpler, and rules are easier to write.

We start by inductively defining the parts of a message:

part(M, M )←msg(M )
part(M, M1 ||M2)← msg(M ), msg(M1), msg(M2),

part(M, M1)
part(M, M1 ||M2)← msg(M ), msg(M1), msg(M2),

part(M, M2)
part(M, {M1}K )← msg(M ), msg(M1), key(K ),

part(M, M1)

Some of our basic objects, typically keys, might have particular properties
that we want to model using logic programming rules. This can be done, pro-
vided the resulting rules are admissible according to Definition 6.1.

To model private and public keys (see again Section 2) we need to state that a
public key is the inverse of the private key and vice versa. To model the fact that
asymmetric keys come in pairs we use a binary predicate asymKeyPair(Ks, Kp)
in which the first argument is the secret key and the second is the
public one.

The following modeling is admissible in ALSP provided that key(·) is a basic
sort predicate.

isPubKey(Kp)← asymKeyPair(Ks, Kp)
isPrivKey(Ks)← asymKeyPair(Ks, Kp)
invKey(Ks, Kp)← key(Ks), key(Kp), asymKeyPair(Ks, Kp)
invKey(Kp, Ks)← key(Ks), key(Kp), asymKeyPair(Ks, Kp)

In most protocols, each agent has only one such pair (Alice’s private key, Bob
private keys, etc.), and thus it is desirable to associate each agent A with a
function which yields the agent’s own private key sK (A), and a function which
yields its public key pK (A). These functions must have the appropriate sort
key(·). This must be done with care as it may destroy the admissibility of the
key(·) sort predicate, or the finiteness of the ground representation of the domain
of key(·). However, the domain of the function is restricted to be a basic object
(an agent in this case). If we have finitely many basic entities, then we have
also a finite ground representation.

We code this new requirement as follows:

asymKeyPair(sK (A), pK (A))← ag(A)
key(sK (A))← ag(A)
key(pK (A))← ag(A)

If ag(·) is not mutually defined in terms of key(·), which is usually the case, as
agents are not keys (although an agent’s name may be used as a key or to build
keys), key(·) is still a basic predicate.

The notation is a bit heavy due to the need of using sort predicates to have
domain-restricted programs. In the sequel, for sake of readability, we omit all
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sort predicates and use the convention that A, B, C, etc. stand for agents, N
stands for nonces, T stands for time, K stands for keys, and M stands for
messages.

With this “omission” in mind, shared keys can be modeled with admissible
predicates as asymmetric keys:

invKey(K, K )← symKey(K )
symKey(K )← sharedKey(K , A, B), ag(A), ag(B)
sharedKey(shK (A, B), A, B)← ag(A), ag(B)
sharedKey(shK (B, A), A, B)← ag(A), ag(B)

The function shK (B, A) should be of the appropriate sort predicate key(·).
Next, we define what an agent can infer from messages and how the agent can

construct messages. In the initial proposals by Lowe [1996], Schneider [1998],
or Paulson [1998], knowledge is captured by complex operations or indirectly. In
the NRL Protocol Analyzer [Meadows 1994], one explicitly represents actions
that change the knowledge of agents, such as decrypting messages.

We build upon Paulson’s approach, as extended by Bella and Paulson [1998],
who make an explicit use of a predicate knows defined over agents, messages,
and traces.

Since the word “knows” has many meaning in the AI and in the secu-
rity literature (see for instance the substantial difference between Bella and
Paulson [1998], Syverson and van Oorshot [1994], and Marrero et al. [Clarke
et al. 1998]), it is important to clarify its meaning: by knows(A, M , T ) we mean
that agent A can get hold of M by breaking down messages that were sent,
received, or somehow got. We use the predicate knows(A, M , T ) to represent
the knowledge that an agent can gather by observing the network traffic di-
rected to himself (or to other agents, if he is the intruder) and by performing
cryptographic operations for which he has the right decryption keys. Obviously,
this knowledge can then be used to compose other messages, but to this end we
will introduce another predicate.

As a consequence of sending and receiving actions, the knowledge of agents
will change. However, we do not change state when reasoning about knowledge.
Reasoning about knowledge of messages is “instantaneous” and deterministic:
as soon as an agent receives the correct bits of information that agent imme-
diately derives all consequences by breaking and decrypting all messages for
which he has a key.

With the above interpretation of knows, we can write the first two rules about
knowledge: you know something because you either got it or said it to somebody.

knows(A, M , T )← got(A, M , T )
knows(A, M , T )← said(A, B, M , T )

As we said in Section 4, this is exactly the way in which model-based plan-
ning works: an action happening at a given time (saying a message) implies
its preconditions (knowing its content); equally, an action happening at a given
time (getting a message) implies its effects at some later time (knowing the
message content). See Kautz and Selman [1992] for a further discussion on
the adequacy of this specification. Since we decided to make reasoning about
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knowledge instantaneous, both things happen at the same time. To avoid frame
axioms for knowledge, we used got(A, M , T ) instead of gets(A, M, T ), and sim-
ilarly for sending messages.

Then we need rules to peel constructors off messages:

knows(A, M1, T )← knows(A, M1 ||M2, T )
knows(A, M2, T )← knows(A, M1 ||M2, T )
knows(A, M , T )← knows(A, {M }K , T ),

knows(A, K I , T ), invKey(K, K I )

An observation is needed on the rule for decryption. Even if it is conceptually
identical to the corresponding rules in other formal verification papers [Burrows
et al. 1990; Lowe 1996; Paulson 1998; Schneider 1998] it is not satisfactory from
an epistemological point of view: in fact, it is not enough for A to know K I and
for K I to be the inverse of K; A should also know that K I is the inverse of
K . In practical implementations of security protocols, the information about
the key to use may not be specified.10 The rationale is that whereas legitimate
parties in a correct run surely know what key to use, one may not want to
make this information available to potential intruders. Here we consider it
implicit, and leave the explicit representation of these epistemic notions to
future work.

We can also exploit the properties of logic programs with negation as failure:
what is not explicitly said is false by default. So, if we do not give a rule for
hashing, then we cannot conclude anything about it, i.e., we can not reconstruct
a message out of its hash (as expected).

Using the stable model semantics of logic programs has another advantage:
we can rule out unwanted models introduced by ungrounded circular reasoning
about cryptographic properties; models that are difficult to eliminate with other
(monotonic) logics. For example, we can model the exclusive-or operation in
ALSP:

knows(A, M1, T )← knows(A, M1 ⊕ M2, T ),
knows(A, M2, T )

knows(A, M2, T )← knows(A, M1 ⊕ M2, T ),
knows(A, M1, T )

Now suppose that with these rules we want to model the knowledge relative to
a pay-TV channel. In a pay-TV channel the video signal is xored together with
a key and then transmitted on the air. So, if you are a legitimate subscriber and
know the key, once you received the encrypted signal video⊕ key you should be
able to recover the video.

So, let P be the logic program with the above two rules only, and oppor-
tunely grounded over the domain alice, bob, video, and key. If we add to P the
two ground facts knows(bob, key, 1) and knows(bob, video⊕ key, 1) then we can
correctly infer that in every stable model of the augmented program it is true
that knows(bob, video, 1).

10The ISO ASN.1 standard only specifies that encrypted messages have the type opaque. Further
details on the key to use must be explicitly concatenated to the message.
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However, if alice is a hacker who just got hold of the encrypted signal on
the air, i.e., we add to P the ground fact knows(alice, video⊕ key, 1), the cor-
rect interpretation would be that alice does not know anything else. In first-
order logic, or any other monotonic belief logic, we would have to take on
board also the model in which A knows M1 and M2. This knowledge will
be self-sustained: we could use the first rule to derive that M1 is there be-
cause M2 is there, and the second rule to conclude that M2 is there because
M1 is there. Stable models forbid this (wrong) circular reasoning in ALSP:
knows(alice, video, 1) and knows(alice, key, 1) are not grounded in the premise
knows(alice, key⊕ video, 1).

To express the knowledge derived by the ability of composing messages we
use another predicate:

synth(A, M, T )← knows(A, M , T )
synth(A, {M }K, T )← synth(A, M, T ),

knows(A, K , T )
synth(A, M1 ||M2, T )← synth(A, M1, T ),

synth(A, M2, T )
synth(A, h(M ), T )← synth(A, M, T )
synth(A, M1 ⊕ M2, T )← synth(A, M1, T )

synth(A, M2, T )

Composition, decomposition, decryption, and encryption are, in a sense, instan-
taneous if you have the right key. It is possible to add explicit enciphering and
deciphering actions, but this would make our formalization less declarative and
our planned attacks longer (and thus harder to find).

We can now build the first part of the action theory in ALSP. The following
successor state axioms are intuitive:

said(A, B, M , T + 1)← says(A, B, M, T )
got(B, M , T + 1)← gets(B, M, T )
said(A, B, M , T + 1)← said(A, B, M , T )
got(B, M , T + 1)← got(B, M , T )

We need similar axioms for the pair notes(A, M , T ) and noted(A, M , T ). The
first two rules model a causal law (saying something now causes it to be said
afterward), and the remaining two rules model the law of inertia.

We have not found the need for forgetful agents in the protocols described
and verified so far in the security literature [Clark and Jacob 1997; Schneier
1994], though there might be esoteric protocols for which we may need to modify
the “law of inertia.”

Reasoning about freshness of messages is a difficult issue in almost all for-
malisms, as freshness guarantees are the pillars on which every proof of au-
thentication or security rests (see our discussion of the Challenge-Response
example in Section 2 or Schneier [1994], Burrows et al. [1990], and Paulson
[1998]). Basically, freshness is guaranteed by the usage of nonces and times-
tamps, and one needs to model in one’s own formalism the following intuition
[Burrows et al. 1990]:
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If you’ve sent Joe a number that you have never used for this pur-
pose before and if you subsequently receive from Joe something that
depends on knowing that number, then you ought to believe that
Joe’s message originated recently—in fact after yours.

In other words, we need to model an endless supply of fresh numbers which, once
used by somebody in some message, lose the qualification of being fresh. The
occurrence of a “once fresh,” “never used by anyone before,” nonce in a message
is the proof that the message is relatively fresh, i.e., it has been composed after
the nonce has been firstly generated and used.

To model freshness in ALSP we first introduce a fluent which specifies when
something is not surely fresh: used(M, T ) is true when message M has been
used by somebody before time T . This is typically used for nonces. The axiom-
atization is simple:

used(M, T + 1)← used(M, T )
used(M, T + 1)← says(A, B, M1, T ), part(M, M1)

Since we have parallel actions, these rules are not sufficient to avoid bad sur-
prises when reasoning about freshness of nonces: we must be sure that two
agents are not trying to use the same nonce in parallel, which might well be
fresh at time T (as none of them used it), but might yield an inconsistent state
at T + 1 if both of them used it as fresh.

We can rule out this event with the following rules:11

usedPar(M, T )← says(A1, B1, M1, T ),
says(A2, B2, M2, T ),
part(M, M1), part(M, M2),
(A1 6= A2 | B1 6= B2 |M1 6= M2)

fresh(M, T )←not used(M, T ), not usedPar(M, T )

Now we have the machinery to write the preconditions of a protocol step
which requires to generate a new nonce N or a new session key K: simply
say that fresh(N, T ) or fresh(K, T ). This allows us to decouple the problem of
specifying that a protocol is using something fresh, from the problem of speci-
fying how many “potentially fresh” things we have. This is sharply in contrast
with the difficulties faced by the CSP-based model-checking approaches [Lowe
1997] where to write the specification of the protocol one must know the avail-
able nonces, keys, and agents beforehand. This happens because “freshness”
is modeled by assigning a set of nonces to each agent and by duplicating CSP
processes, according to which nonce is used in the protocol. In other words,
if agent A can use nonce NA1 and NA2 then agent A is modeled by writing
two processes: one that uses NA1 and one that uses NA2. This hard-to-manage
modeling capability is also one of the reasons behind the development of the
intermediate language CASPER [Lowe 1998].

If we allow for infinitely many nonces, session keys, or whatever needs to be
freshly generated, we would capture precisely the domain. For practicality, we

11We use h←a, b, (c1| c2| c3) as a short-hand notation for the conjunction of the three rules
h←a, b, ci with i = 1 . . .3.
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limit ourselves to finitely many ground instances of the basic sorts and thus
only finitely many fresh things.

So far we have applied the fresh(M, T ) rule to all possible messages in a pro-
tocol. However, the size of the groundedALSP specification grows quadratically
with the number of agents and messages. In some cases it is convenient to adapt
the rule to the protocol and limit M to be a nonce (or key, if fresh sessions keys
are distributed by the protocol), and constrain M1 and M2 to have the form of
the actual messages where such nonces or keys are first introduced. Already
the use of protmsg(Mi) substantially simplifies the size of the ground repre-
sentation. These restrictions are common in other model-checking approaches,
either state-based [Mitchell et al. 1997] or process-based [Lowe 1996].

Now, we define the preconditions for getting and receiving messages that are
independent of the protocol that we want to analyze. As in Bella and Paulson’s
approach [Bella and Paulson 1998], modeling message reception is simple:

{gets(B, M, T )}← says(A, B, M, T )

We use the choice rule (see Section 3) to specify that if A attempts to send a
message M to B at time T , then B may receive it. There are stable models
where the message is delivered (the normal execution of the protocol) and sta-
ble models where B does not receive the message. In these latter models, the
intruder has intercepted the message. Thus, we do not need to explicitly model
the action of message interception, as done by Meadows [1994] or Syverson and
Meadows [1996]. We can also model delayed delivery by replacing “says” with
“said” in the body.

Modeling the intruder, along the classical Dolev and Yao model (see Sec-
tion 2), is simple:

{gets(spy, M, T )}← says(A, B, M, T )
{says(spy, B, M, T )}← synth(spy, M, T )

The intruder may get any message in transit and may say any message (but in
both cases needs not to). There will be stable models of the protocol where the
intruder does nothing (the correct runs) and stable models where he is busy.

A remark is in order. The rule describing message creation by the intruder
can be finitely grounded. For conciseness sake, here we have omitted the domain
predicates for messages and agents, but they are present in the actual rule, and
with Definition 6.2 they make the rules domain restricted.

Of course, other specifications of the intruder’s actions are possible, accord-
ing to one’s own application domain. For instance, the intruder may only read
messages but not intercept them; he may only work along some communica-
tion lines and not others (e.g., may only grab Alice’s messages but not Bob’s
ones), etc.

7. MODELING PROTOCOLS IN ALSP

For planning attacks, we need to complete our action theory with the precon-
ditions for the actions of the protocol we want to analyze. This is the part the
protocol analyst has to write, as this is also the place where she may wish to
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make explicit one or more checks she believes should be made before a message
is sent or accepted.

To write these rules we simply look at the protocol as specified. Assume that
the protocol looks something like

A →Bi1 : mi1% first message A must send
· · ·
Bj1→A : m j1% first message A must receive
· · ·
A →Bis : mis% last message A must send before m
· · ·
Bir →A : m jr % last message A must receive before m
· · ·
A →B : m
· · ·

Then, to write down the axiom precondition saying that agent A may send
message m to B, we identify the messages that should have been received and
sent before m in a correct run, and we write the following choice rule:

{says(A, B, m, T )}← said(A, Bi1 , mi1 , T ), . . . , said(A, Bis , mis , T ),
got(A, m j1 , T ), . . . , got(A, m jr , T ),
protocol-dependent literals

Usually, the preconditions for sending message mi by agent A are the actions
that agent A has performed up to step i according to his view of the protocol run,
plus the additional conditions. The protocol-dependent conditions are typically
freshness of nonces or timestamps or additional checks that the protocol analyst
wants enforced.

The protocol analyst may also weaken the preconditions, w.r.t. those recom-
mended here. For instance, she may state that for sending a message agent A
may just look at the last received message. This is sensible if we want to test
whether the protocol is secure when using stateless but fast implementations.
The choice rule would then become

{says(A, B, m, T )}← got(A, m jr , T ),
protocol-dependent literals

In our Challenge-Response protocol, the rules would be

{says(A, B, A || {N }K, T )}← sharedKey(K , A, B),
fresh(N, T ), A 6= B

{says(B, A, B ||N, T )}← got(B, A || {N }K , T ),
sharedKey(K , A, B), A 6= B

8. SPECIFYING AN ATTACK

The declarative specification of attacks is also the task of the protocol analyst,
as different analysts may disagree on the security properties a protocol should
provide (see Gollmann [1996] versus Lowe [1996]).

The protocol analyst must add a rule for a predicate attack, specifying the
send or receive events which must be present or absent in a protocol run to
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constitute a security violation. Specifying “what an attack is” is easy for a
security analyst, who knows which security property the protocol claims to
achieve. In contrast, finding “how an attack is actually done” is a hard task even
for security specialists, and here the usage of automated reasoning tools pays
off.

For instance, in Challenge-Response protocols, if the challenger receives the
response, he can be assured that the responder actually sent it. So, an attack is
simply a protocol run in which the challenger sent the challenge and received
the response but in which the responder did not actually respond. Finding such
a run, with parallel and interleaved combinations of valid protocol steps, is
the difficult part of the analysis and is left to the planner. In a certification
protocol, if the certification authority certifies a public key as belonging to an
individual, say Alice, then the protocol ought to guarantee that Alice does own
the corresponding private key. Again, an attack is simply a protocol run in which
the certification authority issued Alice’s certificate but Alice did not know the
corresponding private key.

The procedure for specifiying attacks is simple and only requires us to look
at the description of the protocol. We list below some of the most common cases.

As for authentication attacks, we first list the sequence of messages received
by an agent A and the message he sent and received up to the point we want
to analyze, i.e., the run relative to A of a correct run. Then we pick up one
corresponding send (or receive) action from the “right” agent and state that
this action is missing.

Consider again the protocol skeleton presented above, and suppose the run
correctly completed for A: she started by sending mi1 , at last correctly received
m jr , allegedly from Bjr , and sent m to B. Suppose, that according to the analyst
understanding of the security goals of the protocol, there is an authentication
attack if a certain intermediate message m j was received by A but was not sent
by the appropriate agent Bj . Then we write down the rule

attack← said(A, Bi1 , mi1 , T ), . . . , said(A, Bis , mis , T ), %messages correctly sent
got(A, m j1 , T ), . . . , got(A, m jr , T ), %and correctly received
got(A, m j , T ), %a message looks correct
not said(Bj , A, m j , T ), %in reality from the spy
protocol-dependent literals %

This is an authentication attack from the viewpoint of A: the protocol appar-
ently completed up to the ith step, and yet Bj did not send the required message
to A.

It is the task of the planner to find the attack (if it exists) by finding a sta-
ble model of the protocol specifications (background theory and action theory)
where attack is true.

Among the protocol-dependent conditions, we may add A 6= spy, Bj 6= spy,
and Bih 6= spy for all ih as needed. These additional conditions may be weakened
if our protocol is supposed to be secure also when some participants are not
trusted, as it might be the case for e-commerce protocols.

The specification of the attack is a good blend of operational and declara-
tive specification. We say which bits of a run constitute an attack in terms
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of a natural operational semantics; still we are purely declarative. The pro-
tocol analyst must only specify what she considers an attack, and she needs
not know beforehand whether the potential attack she worries about actu-
ally exists.12 Finding how the attack must be carried out, if it exists, is the
task of the planner, which must unroll normal protocol actions into a valid
plan.

In our running example we have

attack← said(A, B, A || {N }K , T ), got(A, B ||N , T ),
not said(B, A, B ||N , T ),
sharedKey(K , A, B), A 6= spy, B 6= spy

To check for confidentiality attacks, we add the literal knows(spy, m, T ) to
the goal (if m is the message which is supposed to remain secret) and write the
rule

attack← said(A, Bi1 , mi1 , T ), . . . , said(A, Bis , mis , T ),
got(A, m j1 , T ), . . . , got(A, m jr , T )
knows(spy, m, T ),
protocol-dependent literals

In some cases, to correctly model authentication and confidentiality at-
tacks, it is necessary to add an oops-rule, where the intruder gets hold of past
confidential data [Paulson 1998]. Typically, one introduces the oops-rule to
check the strength of the protocol w.r.t. compromised past session keys or
nonces. This is essential to reason correctly for protocols such as Needham-
Schroeder.

The typical format of the oops-rule is

{notes(spy, m, T )}← said(A, Bi1 , mi1 , T ), . . . , said(A, Bis , mis , T ),
got(A, m j1 , T ), . . . , got(A, m jr , T )
protocol-dependent literals

where m is the concatenation of all nonces and session keys exchanged up to
m jr . We typically only need one oops-rule for the whole protocol, so that m jr is
also the last message exchanged in a correct protocol run.

Once we have the oops-rule, we need to slightly change the rules to model
attacks by excluding that the oops-rule takes place for the current run:

attack← said(A, Bi1 , m j1 , T ), . . . , said(A, Bis , m jn , T ),
got(A, m j1 , T ), . . . , got(A, m jr , T ),
not noted(spy, m, T ),
got(A, m j , T ), not said(Bj , A, m j , T ),
protocol-dependent literals

This rule just says that the allegedly correct run has not been directly compro-
mised by an oops-rule, but does not say anything about past runs which might
have been compromised by an oops-event.

12If, conversely, our method could be used only for checking whether known attacks exist, it would
be of little practical interest.
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9. MODEL-CHECKING AND VERIFICATION

To summarize, for practical verification of security protocol specifications in
ALSP, we can use the smodels system:

—we use the ALSP specification of the protocol-independent background and
action theories;

—we write the ALSP specification of the protocol-dependent part with choice
rules for representing the correct execution of the protocol;

—we define a rule for the security property (attack) we want to check;
—we merge the three specifications, set the maximum execution time of the pro-

tocol to tmax , and a bound on the number of basic objects (agents, nonces, etc.);
—we use lparse to obtain the finite ground representation of ALSP specifica-

tions;
—we use smodels to look for a stable model of the ground system;
—if no stable model exists, then the attack does not exist for all (possibly

parallel) interleaved runs of the protocol up to tmax ;
—if there is a stable model, then we look for the atoms representing actions

(says(A, B, M, T ), gets(B, M, T ), notes(A, M , T )) that are true in the model,
as they give us the sequence of (possibly parallel) actions that constitute the
attack.

If we are looking for confidentiality attacks, then we must also gather the
atoms knows(spy, M , tmax) that are true in the model. They represent the knowl-
edge of the intruder at the end of the protocol.

To speed up the search, we may add extra constraints on the rules. For in-
stance, in the action preconditions {says(A, B, M, T )}← . . . we may add A 6= B
in the body of the rule or not said(A, B, M , T ). These additional facts substan-
tially reduce the size of the ground program which we use for model-checking
and do not usually change the possibility of finding attacks. For instance, for
A 6= B, in no protocol does an agent knowingly send a message to himself. He
might be fooled into running the protocol with himself (a “mirror attack”), but
this typically happens because he is running two protocol instances in parallel,
one instance as initiator and one instance as responder. It is the intruder who
intercepts the messages and feeds them back to the unsuspecting victim. These
attacks are not prevented by this optimization.

In Figure 1 we give an example of a verification session with the Challenge-
Response protocol.13 smodels found the mirror attack that we have mentioned
in Section 2. The number at the right indicates the time instant at which the
action takes place.

In this case, the attack that is found is not minimal, in the sense that some
steps can be removed from it. Indeed at time 4 we only need the spy to send
the nonce n1 to A for the attack to take place. It is interesting to note that the
attack is found with practically no search.

13The ALSP encoding of the protocol is available in the electronic appendix of this paper. For sake
of readability, in the encoding we removed the name of the agents from the messages.
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Fig. 1. A sample verification session with smodels.

With a larger number of steps the attack is still found, but the number of spu-
rious messages may increase. This depends on the search strategy of smodels:
smodels does not search for a minimal stable model, but only for any stable
model, so some messages that are not necessary may be inserted. A different
ordering of rules in theALSP specification leads to different spurious messages.

It is important to notice that the presence of spurious messages does not
hinder the ability of finding attacks; it just makes it slightly difficult for the
human reader to winnow the chaff and get a minimal error trace. This is a
common problem of all model-checking tools.

This minimization process can also be partly automated by rerunning
smodels with the addition of some constraints that exclude some messages
to see whether the attacks continue to materialize or not. In some cases it is
possible to impose general constraints (such as the spy should not send a mes-
sage to an agent if this agent does not receive it, etc.) with the caveat that they
may cut also attacks.

10. ADEQUACY OF ALSP SPECIFICATIONS

An interesting question at this stage is to know how accurate is the ALSP
description of this challenging domain.

Obviously, it is impossible to “prove” that ALSP specifications are correct de-
scriptions of implemented security protocols. The validity of a modeling and
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verification methodology can only be established w.r.t. its usability and its abil-
ity to help designers in producing better designs.

Still, it is possible to prove the correctness of specifications w.r.t. other formal
models of the same application domain. Here, we focus on the classical Dolev-
Yao model of security protocols [Dolev and Yao 1983] which describes protocols
as traces of send and receive actions over a network under the control of an
active intruder. This is a widely used underlying semantic model adopted by
researchers in formal verification [Abadi and Tuttle 1991; Meadows 1994; Lowe
1996; Paulson 1998; Schneider 1998].

We focus here on a class of protocols generalizing authentication protocols
[Clark and Jacob 1997], which are the current benchmarks of analysis14 for
formal methods in security protocols.

We call them monotonic (parallel-composable) protocols: the intuition is, that
to run the protocol, an agent reacts on the basis of what he has received and sent.
No action requires him to check that in the course of its many parallel instances
he has not sent or not received some other messages. Protocols are monotonic
because of practicality: agents (machines) listen to communication ports over
the net, and each time a new connection is attempted, a new child process is
spawned which runs the protocol over the newly established connection. To
boost parallelism and performance, each process minds its own business, and,
each time an action is done and acknowledged, it moves to the next state until
the protocol is completed.

All protocols in the 1997 reference survey of Clark and Jacob [1997] are of
this kind and, to the best of our knowledge, all security protocols analyzed with
formal methods up to now. In the sequel, when referring to protocols we always
mean a monotonic (parallel-composable) protocol.

10.1 Correctness without an Intruder

At first, we focus on a simple theory without the intruder and show that the
inductive modeling of protocols as traces has a tight correspondence with the
ALSP semantical models. In this preliminary setting, everybody follows the
protocol.15

We assume a common Herbrand domain of messages as sketched in Section 6.
Here functions are injective, and thus equality boils down to syntactic equality.

We assume a domain of agent names and a distinguished domain of traces
of actions built by the concatenation of the primitive actions says(A, B, M ),
gets(B, M ), and notes(A, M ) where A, B are agents and M is a message. We
use the underlined version says(A, B, M ) to denote the action occurring within
a trace and says(A, B, M, T ) to denote the fluent in the ALSP specifications.
Many protocols require reasoning about time, and thus we assume a func-
tion now(·) defined over a trace that identifies what time it is at any point of
the trace. We also allow for natural numbers (time) and the primitive relation

14The analysis of e-commerce and anonymity protocols is still at a preliminary stage, and it is not
clear even what constitutes a good specification [Bella et al. 2000; Meadows and Syverson 1998].
15Attacks are still possible because nobody forces the participants to act, and collusions in multi-
party protocols are always possible.
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“less-than” which allows us to compare numbers with the current time. We
assume that time is monotone and discrete. For instance, if T is a trace and
# the concatenation operator on traces, we have that now(says(a, b, m)#T ) =
now(T )+ 1, and similarly for the other actions. It is possible to make time con-
tinuous, but this complicates the proofs without really improving the modeling
capabilities.

Now we are ready to define the protocol model.

Definition 10.1. A protocolP is an inductively defined set of traces, starting
from the empty trace, such that all inductive rules are instances of the following
schema:
“Let actnext be an action; let A be a set of actions; let M be the set of (fresh)
messages; if the following conditions are satisfied

—T ∈ P and
—for all act ∈ A, act occurs in T and
—for all m ∈M, m does not occur in T (i.e. it is fresh) and
—a conjunction of monadic predicates (or time predicates) over T , the objects

occuring in the actions in A and in the action actnext ;

then actnext#T ∈ P.”

Equality or monadic predicates may specify roles of agents, such as servers or
clients, and temporal relations less-than, greater-than may be used for times-
tamps.

Being inductively defined, traces are finite.
We abuse notation and write p← ∧i qi for the rule p←q1, q2 . . .qn.

Definition 10.2. Let P be a protocol. The ALSP specification P is adequate
for P if for every rule of the protocol’s inductive definition there is a correspond-
ing ALSP rule of the form

{says(a, b, m, T )}← ∧
says(a,bi ,mi )∈A said(a, bi, mi, T ),∧
gets(a,m j )∈A got(a, m j , T ),∧
notes(a,mk )∈A noted(a, mk , T ),∧
ml∈M fresh(ml, T )

other predicates in the inductive rule

and similarly for gets(a, m) and notes(a, m). The laws of inertia and effect ax-
ioms for said(A, B, M , T ), got(A, M , T ), noted(A, M , T ) are the only other rules
for these fluents in P .

Obviously, P includes the rules for defining fresh(M, T ), but we do not need
anything else (for instance, knows(A, M , T ) is not necessary at this stage).

Then we can prove the following lemma:

LEMMA 10.1. Let P be a protocol over a ground domain D̂, and let P be
an adequate ALSP specification of P. Then, for every trace T ∈ P there is a
stable model of P ∪ D̂ such that for every action says(a, b, m) in T (respectively,
gets(a, m), notes(a, m))
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(1) there is a t such that says(a, b, m, t) (respectively, gets(a, m, t), notes(a, m, t))
is in the stable model of P;

(2) if says(a′, b′, m′)#T ∈P (respectively, gets(a′, m′), notes(a′, m′)) then there is a
t ′ ≥ t such that says(a′, b′, m′, t ′) (respectively, gets(a′, m′, t ′), notes(a′, m′, t ′))
is in the stable model of P.

PROOF. The proof is by induction on the length of the trace. Basically, the
trace itself is the stable model, and nothing else happens.

It is trivially verified for a trace of length zero: the model in which nothing
is sent and nothing is received is always a valid stable model of P (all “says”
and “notes” are optional, and all “gets” require a “says”).

Suppose that the claim holds for a trace of length l . We take the corresponding
stable model, which runs up to time tl , and add the (l +1)th action tagged with
tl + 1 by suitably using the fresh constants not yet appearing in any “says”
submessage up to time tl (included).

The opposite direction is more complex because of parallelism. In practice
we need to prove that we can serialize the parallel actions of the protocol while
respecting the ordering constraints.

Remark 10.1. If timestamps and lifetimes are used in the protocol, there
are obvious cases where the parallel execution of the protocol cannot be serial-
ized in a trace if the granularity of time is 1.

For instance, suppose that we get a “ticket for services” (such as in Kerberos
[Schneier 1994]) with a lifetime of 10 units of time. If we are able to make 20
parallel requests of services at each time, we can have 200 requests before the
ticket expires. However, once we serialize everything, we can only ask for 10
requests before the expiration time. Thus, we assume that time is discrete, but
its granularity can be as small as needed.

LEMMA 10.2. Let P be a protocol over a finite ground domain D̂, and let P
be an adequate ALSP specification of P. Then, for every stable model of P ∪ D̂
there is a trace T ∈P such that for every action fluent says(a, b, m, t) (respectively,
gets(a, m, t), notes(a, m, t)) true in the stable model of P one has

(1) says(a, b, m) (respectively, gets(a, m), notes(a, m)) is in T ;
(2) if says(a′, b′, m′, t ′) is in the stable model of P for some t ′ > t (respectively,

gets(a′, m′, t ′) or notes(a′, m′, t ′)) then T can be decomposed as the concate-
nation T ′#says(a′, b′, m′)#T ′′#says(a, b, m)#T ′′′ (respectively, gets(a′, m′) or
notes(a′, m), etc.).

provided the now() function is discrete but not necessarily with a unit step.

PROOF. The proof is constructive: we construct the trace T out of the stable
model. If no “says” action is present in the stable model (and thus no “gets”),
we simply take the empty trace.

Suppose that we can construct a valid trace out of a stable model using the
actions labeled with the time t, we show how to construct a trace by adding the
parallel actions performed at time t + 1.
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Let Tt be the trace corresponding to time t. We simply take an arbitrary
action true at time t + 1, for instance says(a, b, m, t + 1), and create the trace
says(a, b, m)#T . Since the model is stable, there must be some rule to justify
the presence of says(a, b, m, t). Thus its preconditions in terms of what is said,
noted, and got must be also true in the stable model. For each of those fluents
to be true in the stable model, there must be an action predicate also true at a
previous time, e.g., if said(a, bi, mi, t + 1) is in the stable model there must be
an action says(a, bi, mi, t ′) with t ′ < t + 1 in the stable model.

By inductive hypothesis there is the corresponding says(a, bi, mi) already
in the trace constructed so far. A similar reasoning can be done for freshness
constraints: they are not present in any element of the trace encompassing
actions performed before time t+1. Then all the preconditions of the inductive
rule are satisfied, and the newly composed trace is a valid trace or P.

Then we repeat the process of picking the next action true at time t + 1 and
concatenate it to the trace resulting from the previous step. The reasoning is the
same except that now we observe that a fresh object cannot be used in parallel
at the same time. Without this additional constraint, we would not be able to
“serialize” the actions performed in parallel at time t+1: the first “says” action
added to the trace might have already used up the wrong objects.

We also need the hypothesis of monotonic (parallel composable) protocols.
Consider the simple case of two actions done in parallel at time t+1. From the
viewpoint of either action the other action was not done yet. After we serialize
them, when the “second” action is added to the trace, the “first” action has been
already done. With monotonic preconditions this is not a problem, as we have
no precondition on what is not in a trace.

We must now construct the now(.) function. Here we simply construct a func-
tion where the increase step is 1 divided by the number of parallel actions at
each instant. This is the only place where we need the ground domain to be
finite.

Even without an intruder, we can already define the notion of authentication
properties. The definition is borrowed from Schneider [1998] and is substan-
tially equal to Paulson’s properties [Bella and Paulson 1998; Paulson 1998].

Definition 10.3. An authentication property over a set of primitive actions
is a pair of finite sets of actions C (for Causes) and E (for Effects). A protocol P
satisfies the authentication property 〈C, E〉 iff whenever all actions in E occur in
a trace T ∈ P at least one action in C occurs in T .

Definition 10.4. Let 〈C, E〉 be an authentication property over a domain
D and a protocol P, and an ALSP specification P . The definition of attack is
adequate forALSP if for all time instants t ′ there is a time t ≥ t ′ in P and a rule
of the form

attack← ∧
says(a,b,m)∈E said(a, b, m, t)∧
gets(a,m)∈E got(a, m, t)∧
notes(a,m)∈E noted(a, m, t)∧
gets(a,m)∈C not got(a, m, t)
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says(a,b,m)∈C not said(a, b, m, t)∧
notes(a,m)∈C not noted(a, m, t).

No other rule for attack is present.

The condition on the time is essential for the final equivalence result (attacks in
the protocol models correspond to stable models where attack is true) to hold.
Otherwise there might be stable models where an attack is indeed present,
but, because it took longer than expected, the attack atom is not present in the
stable model. If time is finite, we only need one rule (for the tmax + 1 instant).
If time is infinite we need infinitely many rules.

From the previous two lemmas we get the following theorem:

THEOREM 10.3 (SOUNDNESS). Let P be a protocol and 〈C, E〉 an authentication
property over a ground domain D̂. Let P be an admissible ALSP specification
such that the ground instance of P ∪ D̂ is adequate for P and 〈C, E〉. If there is
a stable model for the ground instance of P ∪ D̂ which satisfies the atom attack
then there is a trace of the protocol P that violates the authentication property.

PROOF. If time is finite and we only have one rule for attack (for the largest
possible time instant) we use Lemma 10.2 to obtain the trace ofP corresponding
to the stable model. It clearly violates the authentication property because the
preconditions in the body of the attack rule are satisfied.

However, if the model is infinite or if we have more than one rule for attack
at different time instants, we cannot use Lemma 10.2 to obtain the trace of
P: once we unroll the model in a trace it might be, that along the trace, after
the attack has taken place, we add all causes, and thus, on the final trace, the
authentication property is satisfied. We need to “shorten” the stable model at
the right instant.

Since the attack atom is true in the model, there is an attack rule that fires.
Let t be the first time instant such that the rule fires. We eliminate from the
stable model of P all actions labeled with a time instant equal to or greater
than t. As we have remarked, this can always be done, as we are never forced
to act, in ALSP specifications.

Then, by using a standard compactness argument, we obtain the minimal,
finite set of ground rules which is necessary to derive the atom attack. From this
set of ground rules we obtain a finite subset D̂f of D̂ and use D̂f for grounding
P . Then we still have a stable model of the specification, and to this stable
model we can apply Lemma 10.2.

The opposite direction can also be proven:

THEOREM 10.4 (BOUNDED COMPLETENESS). Let P be a protocol and 〈C, E〉 an
authentication property over a finite ground domain D̂. Let P be an admissible
ALSP specification such that all its ground instances for the time instances t =
1, 2, 3 . . . are adequate for P. If there are (possibly parallel) runs of the protocol
which violate the authentication properties of P with length at most tmax then
there is a stable model of the ground instance for t = tmax + 1.
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10.2 Formal Analysis with the Intruder

In the Dolev-Yao model, the intruder is able to read traffic not directed to him
and to send messages without respecting the protocol. Therefore we must be
able to reason about its abilities to manipulate messages (the “knows” and
“synth” predicates from Section 6).

As for operators on messages, we only need Paulson’s inductively defined op-
erators on set of messages: analz, synth, and parts [Paulson 1998]. Schneider’s
and Lowe’s operator ` for their CSP handling of messages can be reconstructed
in terms of those three basic operators. Thus we need to show how these induc-
tive operators can be reconstructed by ALSP specifications:

Definition 10.5. Let pSet(Et) be an inductively defined set of messages for
some elements Et of the domain D̂ such that

—for the base case m ∈ pSet(Et) if the condition on m and Et is a conjunction of
monadic predicates, equality, or predicates not depending on pSet(Et);

—for the inductive cases all inductive rules have the form “if m1 ∈ pSet(Et) and
. . .and mn ∈ pSet(Et) then m ∈ pSet(Et).”

Then the following ALSP specification is adequate for pSet(Et) if

—for the base case there is a rule of the form
pSet(Et, m, T )← time(T ), msg(m),

monadic and inequality predicates defining pSet( ),
domain predicates for Et

—for every inductive rule there is an ALSP rule of the form

pSet(Et, m, T )← time(T ), msg(m), msg(m1), . . .msg(mn),
pSet(Et, m1, T ), . . . , pSet(Et, mn, T ),
domain predicates for Et.

—There is no other rule for pSet(Et, m, T ) which recursively depends on
pSet(Et, m′, T ) for some m′.

LEMMA 10.5. Let P be an ALSP specification adequate for pSet(Et) over a
domain D̂,M a set of messages over D̂ satisfying the base condition for pSet( ).
For every stable model of P, elements Et, and time t0, if m ∈M iff pSet(Et, m, t0)
is in the stable model then m′ ∈ pSet(Et) iff pSet(Et, m′, t0) is in the stable model.

In one direction the proof is by simple induction on the construction of pSet(Et).
For the other direction we exploit the fact thatALSP models are stable and that
there is no other rule for getting pSet(Et, m, t0) in the model.

As for operators on traces, we need to define an adequate representation of
inductively defined operators of traces of atomic messages:

Definition 10.6. Let pTrace(T ) be an inductively defined set of messages
for some elements Et of the domain D̂ and a trace T of atomic actions such
that

ACM Transactions on Computational Logic, Vol. 2, No. 4, October 2001.



Verifying Security Protocols • 575

pTrace(Et, []) = pSet
0
(Et)

pTrace(Et, says(a, b, m)#T ) =


pSet

1
(Et, m) ∪ pTrace(Et, T ) if c1(a, b, m)

...
pSet

k
(Et, m) ∪ pTrace(Et, T ) if ck(a, b, m)

pTrace(Et, T ) otherwise

where all pSet
i
(Et) are inductively defined set-predicates according to Defini-

tion 10.5 and ci(a, b, m) is a conjunction of (in)equality predicates or other set-
predicates, and similarly for notes(a, m) and gets(a, m).

TheALSP specification is adequate for pTrace(Et, ·) if it is adequate for pSet
i
(Et)

for i = 0, 1 . . . and for every rule for pTrace(Et) there is an ALSP rule of the form

pTrace(Et, m′, 0)← pSet0(m′, Et)
pTrace(Et, m′, T + 1)← says(a, b, m, T ), c1(a, b, m), pSet1(Et, m, m′, T )
· · ·
pTrace(Et, m′, T + 1)← says(a, b, m, T ), ck(a, b, m), pSetk(Et, m, m′, T )
pTrace(Et, m′, T + 1)← pTrace(Et, m, m′, T )

where domain predicates for all variables are omitted for readability. This oc-
curs similarly for notes(a, m) and gets(a, m). Moreover, there is no other rule
for pTrace(Et, m′, T ).

Typically one has p1 = . . . = pk . For example, Paulson uses init(A) as the set
of messages initially known to agent A and parts(M ) as the set of submessages
of message m and then defines the predicate used to be the following:

used([]) = ∪A∈Agentsinit(A)
used(says(a, b, m)#T ) = parts(m) ∪ used(T )
used(gets(a, m)#T ) = parts(m) ∪ used(T )
used(notes(a, m)#T ) = parts(m) ∪ used(T )

Bella’s inductive operator knows is the following:

knows(A, []) = init(A)

knows(A, says(a, b, m)#T ) =
 {m} ∪ knows(A, T ) if A = a
{m} ∪ knows(A, T ) if A = spy
knows(A, T ) otherwise

knows(A, gets(a, m)#T ) =
{ {m} ∪ knows(A, T ) if A = a

knows(A, T ) otherwise

knows(A, notes(a, m)#T ) =


{m} ∪ knows(A, T ) if A = a
{m} ∪ knows(A, T ) if compromised (a)

and A = spy
knows(A, T ) otherwise

The “knowledge of the intruder” is then defined by the combination of the
predicates synth(analz(knows(spy, T ))). This defines the set of messages that
the spy can compose after decrypting all messages she has intercepted in the
traffic. These combinations can be simply captured by the obvious concatenation
of rules.
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The corresponding adequate ALSP specifications are given in Section 6 for
the action predicates knows(A, M , T ) and used(M, T ). In our case, since we
have no independent use of analz, but we (and indeed any formal approach to
security protocols) only use it in combination with knows, we have merged both
of them into our only predicate knows(A, M , T ).

Finally we can upgrade the definition of protocols given in Definition 10.1 by
allowing two additional inductive rules:

—if T ∈ P and m ∈ pSet(pTrace(spy, T )) then says(spy, a, m)#T ∈ P.
—if T ∈ P and says(a, b, m) occurs in T then gets(spy, m)#T ∈ P.

Obviously pSet(·) and pTrace(·) depend on the particular model and abilities of
the intruder. Almost all models incorporate syntactic variants of the combina-
tion of the predicates synth(analz(knows(spy, T ))).

We can now prove the equivalent version of Lemma 10.5 for the trace property
pTrace(·). The proof is again by induction on the construction of T where the base
case exploits that pSet

0
(·)’s encoding in ALSP is adequate. Notice that for this

proof to go through we must define each pSeti(·) separately for each pTrace(·).
It is obviously possible to “recycle” the same definition of pSeti(·) for different
trace functions, but then the proof must be redone on a case-by-case basis.

Then, one can prove the equivalent of Lemma 10.2 and Lemma 10.1 for the
upgraded protocol model with the intruder. These results can be combined,
with the same compactness argument used in Theorem 10.3, yielding the final
theorems:

THEOREM 10.6 (SOUNDNESS WITH INTRUDERS). Let PI be a protocol augmented
with an intruder and 〈C, E〉 an authentication property over a ground domain
D̂. Let P be an admissible ALSP specification such that the ground instance of
P ∪ D̂ is adequate for P and 〈C, E〉. If there is a stable model for the ground
instance of P ∪ D̂ which satisfies the atom attack then there is a trace of the
protocol PI that violates the authentication property.

Clearly the actions which lead to the attack are identified by the action predi-
cates (says(A, B, M, T ), gets(B, M, T ), notes(A, M , T )) that are true in the sta-
ble model. This is also true when the stable model is infinite, e.g., if we allow for
an infinite number of agents and nonces or do not set a bound on the maximum
length of possible runs.

THEOREM 10.7 (BOUNDED COMPLETENESS WITH INTRUDERS). Let PI be a proto-
col augmented with an intruder and 〈C, E〉 an authentication property over a
finite ground domain D̂. Let P be an admissible ALSP specification such that
all its ground instances for the time instances t = 1, 2, 3 . . . are adequate for P.
If there are (possibly parallel) runs of the protocol which violates the authenti-
cation properties of P of length at most tmax then there is a stable model of the
ground instance for t = tmax + 1 which contains the atom attack

Remark 10.2. For e-commerce and fair-exchange protocols the presence of
explicit parallel actions, rather than their interleaving semantics, makes a dif-
ference. The so called “optimistic protocols” introduced by N. Asokan et al.
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[1997] are subject to parallel attacks that can be modeled in ALSP but not with
a trace-based model.

11. RELATED WORKS AND CONCLUSIONS

Throughout the paper we have referred to the differences with some of the state-
of-the-art approaches for protocol verification which have been automated. Here
we just summarize the main differences.

The NRL Protocol Analyzer (NPA) by Meadows [1994] shares with us the
choice of the programming paradigm, as we both use logic programs. A key
difference is that we use the logic programming languageALSP as specification
language, whereas Prolog is used as the implementation language for NPA
[Meadows 1994]. The protocol description and the specifications for NPA are
based on state variables and rules for changing state variables with an explicit
modeling of the words learned by the intruder. This aspect of NPA is closer to
state exploration tools such as Murphi [Mitchell et al. 1997].

Security specifications, whose violation may lead to an attack, must be writ-
ten in a different language either with temporal operators as done by Syverson
and Meadows [1996] or by using the CAPSL intermediate language [Brackin
et al. 1999]. Such specifications are declarative but not executable [Syverson
and Meadows 1996].

Our current formalization does not cope with an infinite search space, which
can be treated by NPA by letting the user introduce some inductive lemmas.
Infinite state space (such as an infinite number of agents or nonces) can be
modeled in our approach by minor modifications (just add a rule also for agents
and nonces indexed by time instants), but the price to pay is that we would lose
the finiteness theorem. Another possibility would be to use iterative deepening
on tmax and the number of basic objects, as this allows us to retain the benefits of
the bounded model-checking completeness. We believe, that w.r.t. other model-
checking approaches, the use of a declarative specification language greatly
simplifies the presentation of actions and events.

The work on multiset rewriting proposed by Cervesato et al. [1999] extends
the semantics of NPA by defining protocols in terms of rewriting rules over
sets of messages known by the participating agents. Multiset rewriting turned
out to be a useful tool for theoretical analysis for relating various formalisms
[Cervesato et al. 2000b; Cervesato et al. 2000a]. However, as a specification
language, multiset rewriting turned out to be unfeasible, and the authors had
to revert to an intermediate specification such as CIL and then ultimately to
CAPSL [Brackin et al. 1999].

As for the approaches based on theorem proving, we have already pointed
out connections between our proposal and Paulson’s inductive method [Paulson
1998; Bella and Paulson 1998]. Indeed, we have in common the operational
semantics for the specification of protocols. In the inductive method one models
a protocol as a set of traces and then uses interactive theorem proving to prove
that the protocol is secure, i.e., prove that all traces satisfy a desired guarantee.
Paulson’s theory is richer than ours (as he uses set theory, functions, inductive
definitions, etc.), as his objective is theorem proving about all traces. The limit
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is that inductive theorem proving is interactive and requires expert knowledge,
even if current tools substantially help in shortening the verification efforts. Our
approach is based on model finding, and thus we look for one trace that satisfies
a given property, i.e., a security violation. Thus, by combining techniques from
logic programming and planning, we can fully automatize the search for attacks.
ALSP combines these various approaches into a coherent framework. Our

formal language allows for a declarative description of the properties of proto-
cols and their operational behavior in term of traces. The use of stable model
semantics makes it possible to use powerful tools such as smodels for the auto-
matic verification of the protocol.
ALSP is a good blending of the three contrasting needs: being close to the de-

scription of protocols as specified in the security literature, specifying security
properties at a high level of abstraction, automating the analysis of the proto-
cols, and the search for bugs (i.e., security attacks). Gollmann [1996, page 53]
writes

High level definitions of entity authentication may obscure the pre-
cise goals an authentication protocol should achieve. On the other
hand, a low level description of the cryptographic mechanisms em-
ployed in the protocol may obscure their intended purpose.

We believe that our specification language ALSP is a step toward making these
ends meet.

To ease comparison and integration with other approaches, a translator from
CASPER specifications [Lowe 1998] into ALSP specifications has also been im-
plemented [Lorenzon 2000]. This makes it possible to obtainALSP specifications
for all protocols described in CASPER in an almost16 automatic way.

We refer to Carlucci Aiello and Massacci [2001] for a detailed presentation of
case studies in ALSP: the Needham-Schroeder protocol, and the Aziz-Diffie key
agreement protocol for mobile communication. We plan to extend our verifica-
tion methodology to more complex protocols such as SET by Visa and Master-
Card and test to what extent, in terms of the size of specifications, we can use
only general-purpose tools such as smodels for verifying specifications written
in ALSP.

ELECTRONIC APPENDIX

The electronic appendix for this article can be accessed in the ACM
Digital Library by visiting the following URL: http://www.acm.org/pubs/
citations/journals/tocl/2001-2-4/p542-carlucci-aiello.
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