
Electronic Notes in Theoretical Computer Science 47 (2001)
URL: http://www.elsevier.nl/locate/entcs/volume47.html pp. 1 – 18

Attacking Fair-Exchange Protocols:
Parallel Models vs Trace Models 1

Luigia Carlucci Aiello 2

Dip. Infomatica e Sistemistica - Univ. di Roma “La Sapienza”,
via Salaria 113, 00198 Roma - ITALY

Fabio Massacci 3

Dip. Ingegneria dell’Informazione - Univ. di Siena
via Roma 56, 53100 Siena – ITALY

Abstract

Most approaches to formal protocol verification rely on an operational model based
on traces of atomic actions. Modulo CSP, CCS, state-exploration, Higher Order
Logic or strand spaces frills, authentication or secrecy are analyzed by looking at
the existence or the absence of traces with a suitable property.

We introduced an alternative operational approach based on parallel actions and
an explicit representation of time. Our approach consists in specifying protocols
within a logic language (ALSP), and associating the existence of an attack to the
protocol with the existence of a model for the specifications of both the protocol
and the attack.

In this paper we show that, for a large class of protocols such as authentication and
key exchange protocols, modeling in ALSP is equivalent – as far as authentication
and secrecy attacks are considered – to modeling in trace based models.

We then consider fair exchange protocols introduced by N. Asokan et al. show-
ing that parallel attacks may lead the trusted third party of the protocol into an
inconsistent state. We show that the trace based model does not allow for the
representation of this kind of attacks, whereas our approach can represent them.

1 We thank the anonymous reviewers for many useful suggestions and C. Marchetti for
discussing the tricky issue of (fault-tolerant) local and distributed implementations of the
Fair-Exchange protocol. This work is partly supported by ASI, CNR, and MURST grants.
F. Massacci acknowledges the support of the CNR Fellowship 203-7-27.
2 Email:aiello@dis.uniroma1.it
3 Email:massacci@dii.unisi.it

c©2001 Published by Elsevier Science B. V.

mailto:aiello@dis.uniroma1.it�
mailto:massacci@dii.unisi.it�

Carlucci Aiello and Massacci

1 Introduction

The formal verification of security protocols has been the subject of intense
research in the last decade. Beliefs logics [8,7,27], model checking and veri-
fication in process algebras using CSP [13,22] or CCS [12], theorem proving
with induction [19,5] or refinements [6], state exploration methods [18,16] or
strand spaces [28,26], have been successfully applied to security protocols.

Notwithstanding the differences, there is a red thread running through
CSP, CCS, state-exploration, higher order logic or strand spaces frills: a com-
mon operational model based on traces of atomic actions, so that authentica-
tion or secrecy can be analyzed by looking at the existence or the absence of
traces with a suitable property.

For instance, Schneider [22] defines authentication as a pair of predicates
(R and T) so that whenever a trace of the protocol satisfies R (i.e. some receive
event happened) then it must also satisfy T (i.e. some transmission event must
have happened). Lowe proposed refined concepts of authentication where not
only the existence but also the number of traces with a given property is
important [14]. In Paulson’s approach to authentication [19], properties are
exactly theorems over all traces. Using Bolignano’s refinement approach [6],
we prove that an abstract model of the actual traces is indeed correct. Strand
spaces by Fabrega et al. [28] or Meadows’ model behind the NPA [16,17] can
also be brought under the same roof.

Expressing authentication as a property over traces is not necessarily a
compulsory choice for some formalisms. However, reasoning about traces is
most comfortable and it is widely believed that nothing is lost.

In [9,10] we introduced an alternative operational approach based on par-
allel actions and an explicit representation of time. Our approach consists in
specifying protocols within a logic programming language (ALSP), and asso-
ciating each run of the protocol, possibly described by many parallel actions,
with a stable model of the protocol’s specification. The existence of an attack
can then be mapped into the existence of a model for the specifications of
both the protocol and the attack.

Obviously, if we impose that only one action can be executed at a time,
our model boils down again to the standard trace-based model, where time
is just an index over a trace. This makes it possible to state soundness and
completeness for bounded model checking over the classical model [9].

However, things are not so simple when we allow for truly parallel actions.

1.1 Contribution of this paper

We show that, for many protocols such as authentication and key exchange
protocols, modeling in ALSP and in trace based models is equivalent, as far
as the representation of authentication and secrecy attacks are concerned.

We follow upon the analysis of fair exchange protocols by Asokan et al.

2

Carlucci Aiello and Massacci

[2,3] started by Shmatikov and Mitchell [24]. We show that there are par-
allel attacks that may lead the trusted third party in the protocol into an
inconsistent state. The trace based model approach does not allow for the
representation of this kind of attacks (so that the protocol is “secure by de-
fault”), whereas our approach can represent them.

This result shows that verification is sensitive to the model we use to
represent protocols, and that we can classify protocols in two major classes:
monotone and nonmonotone protocols. To execute an action in a monotone
protocol an agent must only look at what happened, whereas an agent running
a nonmonotone protocol must take care of the past and of what is currently
happening in parallel with his intended action. An alternative way to look at
the same problem is to say that in a monotone protocol we can always merge
two “distinct” traces of the protocol and obtain another trace of the same
protocol. With a nonmonotone protocol, we can no longer do so.

This makes also a difference for implementors: monotone protocols can
have parallel implementations — just fork a new thread for each TCP/IP
request and forget what’s happening at your side —, for nonmonotone ones
even variable synchronization might not be enough to avoid a disaster.

2 A Trace-based Model

Here we define an operational trace-based model of protocols. Mostly we
borrow from Paulson [19,5] and Schneider [22]. However, the features are
shared with all cited verification papers.

We assume a sorted Herbrand domain of messages Hm, where equality
boils down to syntactic equality. The basic building blocks are agents A, B,
etc. nonces NA, NB, etc. and cryptographic keys. We have at least two types
of encryption keys: symmetric keys and asymmetric (public/private) keys. A
key K is decorated by indices that denote the agents that know that key, e.g.
KA is a key known (only) to agent A; KAB is a key shared by agents A and
B etc. Public and private keys are sometimes prefixed by the letters “p” or
“s”. For instance pKA is A’s public key and sKA is A’s secret key.

We denote the concatenation of message m1 and m2 as m1||m2. The hash-
ing of a message m is h(m). The encryption of m with key k is denoted by
{m}k and the type of encryption is determined by the type of the key.

We assume a distinguished domain of traces of actions HT built by the
concatenation of the primitive actions, i.e. elements of the Herbrand do-
main Hact representing the set of all possible says(A,B,M), gets(B, M), and
notes(A, M), where A and B are agents and M is a message. Many protocols
require reasoning about time; we thus assume a function now(·) defined over a
trace that identifies what time it is at any point of the trace. We also allow for
natural numbers (time) and the primitive relation “less-than”, which allows us
to compare numbers with the current time. We assume that time is discrete:
if T is a trace and # the concatenation operator on traces, we may have that

3

Carlucci Aiello and Massacci

cr1 A−→B : {A||N}pKB

cr2 B−→A : {B||N}pKA

cr3 A−→B : N

cr1: if T ∈ Pcr and N 6∈ T and ag(A) ∧ ag(B) ∧ nonce(N)
then says(A,B, {A||N}pKB)#T ∈ Pcr

cr3: if T ∈ Pcr and says(A,B, {A||N}pKB) ∈ T and gets(A, {B||N}pKA) ∈ T
and ag(A) ∧ ag(B) ∧ nonce(N)

then says(A,B, {B||N}pKB)#T ∈ Pcr

Fig. 1. A simple protocol and some inductive rules

now(says(a, b, m)#T) = now(T) + 1, and similarly for the other actions.
Now we are ready to define the protocol model:

Definition 2.1 A protocol P is an inductively defined set of traces, starting
from the empty trace, such that all inductive rules are instances of the follow-
ing schema:
Let actnext be an action in Hact; let A ⊆ Hact be a subset of primitive actions;
let M be the set of (fresh) messages, i.e. M⊆ Hm.

if • T ∈ P and
• for all act ∈ A, act occurs in T and
• for all m ∈M, m does not occur in T (i.e. it is fresh) and
• a conjunction of monadic predicates (or time predicates) over T , the ob-

jects occuring in the actions in A and in the action actnext.

then actnext#T ∈ P .

Equality or monadic predicates may specify roles, such as servers or clients,
and temporal relations less-than, greater-than may be used for timestamps.

Each inductive rule of a protocol can also be seen as a prefix of a strand,
in the sense of Guttman et al. [28,26].

In Figure 1 we show a simple protocol and some inductive rules character-
izing it. We use capital letters to indicate (implicitly) universally quantified
variables. We also abuse notation and we write act ∈ T for ”the action act
occurs in the trace T ” and m ∈ T for ”the message m occurs in the trace T ”.

The condition on the set M does not make possible (unless the protocol is
broken) to mismatch the ordering of nonces so that an old reply is taken as an
answer for a new challenge. Suppose that we have a trace like the following
one (traces grow to the left):

gets(a, {b||n}pKa)# · · ·#says(a, b, {a||n′}pKb)# · · ·

· · ·#gets(a, {b||n}pKa)# · · ·#says(a, b, {a||n}pKb)# · · ·

4

Carlucci Aiello and Massacci

Clearly we do not want that the reply gets(a, {b||n}pKa), which uses n, is
accepted as an acknowledgement of the second challenge, which uses n′.

The rule cr3 in Figure 1 will fire for the first two actions and add the
acknowledgement says(a, b, n) to the trace. The action gets(a, {b||n}pKa) will
never be considered a response for the challenge says(a, b, {a||n′}pKb) because
the nonces n and n′ do not match and thus rule cr3 does not fire.

So far we have no intruder, but we can still define the notion of authen-
tication properties. The definition is borrowed from Schneider [22]. Other,
more refined properties can be defined following Lowe [14].

Definition 2.2 An authentication property over a set of primitive actions is
a pair of finite sets of actions C (for Causes) and E (for Effects). A protocol P
satisfies the authentication property 〈C, E〉 iff whenever all actions in E occur
in a trace T ∈ P at least one action in C occurs in T .

In other words, C is the set of all (possibly alternative) causes for all the
effects in E . In most cases the sets C and E are singletons. It is also possible
to change the wording “at least one action” into “all actions” and viceversa,
to consider disjunction of effects and conjunction of causes etc. With infinite
domains this can be translated into family of pairs or, as done by Schneider,
into arbitrary predicates over traces.

Verifying security properties without an intruder has little sense: in the
Dolev-Yao model, the intruder is able to read traffic not directed to him, and
to send messages without respecting the protocol. Thus we need to define
operators on traces which take a trace and return a set of messages (the
messages grabbed by the intruder) and operators on messages which take a
set of messages and return the set of messages (the messages inferred by the
intruder out of the knowledge of the input set of messages).

For instance, Bella uses init(A) as the set of messages initially known to
agent A and defines the inductive operator knows as in Figure 2: A similar
definition, modulo notational changes, is introduced in the CSP modelling
by Schneider and Lowe, where the intruder process is labelled by a set S,
the set of known messages, which grows as soon as the intruder receives (i.e.
synchronizes, in process algebra’s terminology) a message.

For operators over messages, Schneider [22] and Lowe [14] use the induc-
tively defined operator S ` m, where S is a set of messages and m is a message.
Paulson [19] chose to split ` into two different operators, one for analyzing
and one for composing message (resp. called analz, and synth). The “knowl-
edge of the intruder” is then defined by the combination of the predicates
synth(analz(knows(spy, T))). This defines the set of messages that the spy
can compose after decrypting all messages she has intercepted in the traffic.

Now, we can upgrade the definition of protocols given in Definition 2.1 by
allowing two additional inductive rules :
• if T ∈ P and M ∈ pSet(pTrace(spy, T)) then says(spy, A,M)#T ∈ P .

5

Carlucci Aiello and Massacci

knows(C, []) = init(C)

knows(C, says(A,B,M)#T) =

{M} ∪ knows(C, T) if C = A

{M} ∪ knows(C, T) if C = spy

knows(C, T) otherwise

knows(C, gets(A,M)#T) =

{M} ∪ knows(C, T) if C = A

knows(C, T) otherwise

knows(C, notes(A,M)#T) =

{M} ∪ knows(C, T) if C = A

{M} ∪ knows(C, T) if bad(A)

and C = spy

knows(C, T) otherwise

Fig. 2. A sample inductive predicate over traces

• if T ∈ P and says(A,B,M) occurs in T then gets(spy,M)#T ∈ P .

Obviously pSet(·) and pTrace(·) depend on the particular model and abilities
of the intruder. Almost all models incorporate syntactic variants of the com-
bination of the predicates M ∈ synth(analz(knows(spy, T))) by Paulson or
knows(spy, T) ` M by Lowe.

3 A Time-based Model

We consider the same Herbrand domains of agents, nonces, keys, messages etc.
as for traces, but model the “state-of-the-world” differently. We just sketch
the key ideas here, and refer to Aiello and Massacci [9,10] for further details.

First, we assume a number of predicates over the same domains, called
fluents 4 , which denote properties of the world and whose value changes over
time, i.e. the predicates have an extra parameter (a natural number) de-
noting the time t when they hold. As an example: got(alice,m, t1), and
¬got(alice, n, t2) indicate that the agent alice got a message m at time t1,
whereas she didn’t get it at time t2.

Action predicates are denoted by predicate symbols with an extra time
parameter, in one-to-one correspondence with the actions of the trace-based
model. To distinguish the two sorts, we use the underlined says(A,B,M) to
denote the action occurring within a trace, and says(A,B,M, T) to denote
the corresponding action predicate. The time argument of the action predi-
cates indicate the time at which the action is performed: says(bob, alice, m, t1)
indicates that the agent bob sends message m to agent alice at time t1. It is
assumed that actions are instantaneous, i.e. their execution initiates at time

4 Our nomenclature is borrowed from Reiter [21].

6

Carlucci Aiello and Massacci

t and terminates at time t + 1.
Then, we consider a situation as a set of predicates having the same time

instant as parameter, and denoting the true properties of the world at the
corresponding time. By close world assumption, we read as false all predicates
not occurring in the set. The action predicates true in a situation mean that
the corresponding actions have been all started in parallel at time t. In this
way we can model communication concurrency.

A run is a finite sequence of situations indexed by the time instants 0,
1, 2, A protocol run is a run that satisfies some additional constraints
concerning the particular protocol specification, and some general properties
concerning causes and effects.

“Causal laws” specify how the truth value of action predicates affect the
values of the fluents, in the form of the so called successor state axioms. For
example, the effect of an agent getting a message is the logical constraint

got(A,M, T + 1) ← gets(A,M, T).

The preconditions for sending a response after having received the appropriate
challenge can be described with the following constraint:

{says(A,B, N, T)} ← said(A,B, {A||N}pKB , T),

got(A, {B||N}pKA , T), . . .

The “laws of inertia” specify which fluents are unaffected by particular actions,
so their truth values persist through the action execution. As an example, in-
tercepting a message does not change its content, the status of other messages
already sent by the agents participating in the protocol, the encryption keys
used for them, and so on. For instance, sent messages remain sent:

said(A,B,M, T + 1) ← said(A,B, M, T).

Freshness of nonces is enforced by additional rules: we introduce the predi-
cate used to specify that an object has occurred in a protocol action, hence
freshness amounts to not used. Additional care must be taken when we allow
for parallel actions. Intuitively, fresh(N, T) is true in a stable model if N does
not occur in any says(A,B, M, T ′) in the stable model for T ′ < T and is not
used as fresh by two distinct agents (or by the same agent in two distinct
messages) in parallel at time T . See [9,10] for details. This treatment is close
to the “uniquely originates here” of strand models [28,26].

All laws can be recast as constraints on the possible sets of predicates that
are admissible for consecutive times t and t+1. These constraints are specified
using the logic language ALSP . So all stable models of the specification of the
protocol, i.e. of the logical formulae in ALSP describing the protocols plus
the effect and inertial axioms, describe a possible protocol run.

In a nutshell, in a trace based model the “state-of-the-world” is a trace,
i.e. a sequence of actions. The inductive definition of a protocol just specifies
which worlds are possible. Here, the “world” is a time indexed sequence of
situations, where each situation is a set of actions which happen in parallel at

7

Carlucci Aiello and Massacci

the specified time instant. The ALSP specifications indicate which worlds are
possible, i.e. which protocol runs, with possibly parallel actions, correspond
to stable models of the specification.

So far we have not imposed a limitation on the finiteness of the Herbrand
domain. To keep decidability we impose finitenes: that is we only deal with a
finite number of agents and other atomic types (e.g. keys); see [10] for details.

4 Equivalence for Monotone Protocols

So far we have only spoken about protocols. To be, precise we should call
protocols defined according to Definition 2.1, monotone protocols. In this
section we show how we can recast this trace-based description of (monotone)
protocols into equivalent logical constraints in ALSP .

To this end, we assume some familiarity with logic programming notation 5 ,
as for instance introduced in [1], and refer to [9] for the definition of the se-
mantics of ALSP rules.

Definition 4.1 Let P be a protocol. The ALSP specification P is adequate
for P if for every rule of the protocol’s inductive definition as defined in Def-
inition 2.1 where actnext = says(a, a, b)m there is an ALSP rule of the form

{says(a, b,m, T)} ←−
∧

says(a,bi,mi)∈A said(a, bi,mi, T),
∧

gets(a,mj)∈A got(a,mj, T),
∧

notes(a,mk)∈A noted(a,mk, T),
∧

ml∈M fresh(ml, T)

other predicates in the inductive rule

and similarly for gets(a,m) and notes(a,m). The laws of inertia and effect
axioms for said(A,B, M, T), got(A,M, T), noted(A,M, T) are the only other
rules for these fluents in P , and P includes the rules for defining fresh(M, T).

The definition of fresh(M, T) can be found in [9,10].
Then we can prove the following lemma:

Lemma 4.2 Let P be a protocol over a ground domain D̂ and let P be an
adequate ALSP specification of P. Then for every trace T ∈ P there is a
stable model of P∪D̂ such that for every action says(a, b, m) in T , respectively
gets(a,m) or notes(a,m),

(i) there is a time t such that says(a, b, m, t), respectively gets(a,m, t) or
notes(a,m, t), is in the stable model of P ;

5 We recall that a ←−
∧

i bi ∧
∧

j not cj means that a must be in all stable models of
the specifications which contain all bi and none of the cj [1]. The choice rule {a} ←−
∧

i bi ∧
∧

j not cj means that a may be in a stable model satisfying all bi and no cj .

8

Carlucci Aiello and Massacci

(ii) if says(a′, b′,m′)#T ∈P, resp. gets(a′, m′)#T ∈P or notes(a′,m′)#T ∈
P, then there is a time t′ ≥ t such that says(a′, b′,m′, t′), respectively
gets(a′,m′, t′) or notes(a′,m′, t′), is in the stable model of P .

The proof is by induction on the length of the trace (see [10]).
To prove the opposite direction we must weaken the hypothesis that the

granularity of time is 1. Thus, we assume that time is discrete but its gran-
ularity can be as small as needed, i.e. now(says(a, b, m)#T) = now(T) + ε
where ε is a small positive quantity. Otherwise, there will be obvious cases
where the parallel execution of the protocol cannot be serialized in a trace.
For instance, suppose that we get a “ticket for services” (such as in Kerberos
[23]) with a lifetime of 10 seconds. If we are able to make 20 parallel requests
of services per each second, we can have 200 requests before the ticket expires.
Once we serialize everything – one action per second – we can only ask for 10
requests before the expiration time.

Lemma 4.3 Let P be a protocol over a finite ground domain D̂ and let P be
an adequate ALSP specification of P . For every stable model of P ∪ D̂ there
is a trace T ∈ P such that for every action fluent says(a, b, m, t), respectively
gets(a,m, t) or notes(a,m, t), true in the stable model of P one has

(i) says(a, b,m), respectively gets(a,m) or notes(a,m), is in T ;

(ii) if says(a′, b′,m′, t′), respectively gets(a′,m′, t′) or notes(a′,m′, t′), is in
the stable model of P for some t′ > t then the trace T can be decomposed
as the concatenation T ′#says(a′, b′,m′)#T ′′#says(a, b, m)#T ′′′, respec-
tively with gets(a′,m′) or notes(a′,m) etc.

provided the now() function is discrete but not necessarily with a unit step.

In the proof we need the hypothesis that protocols are defined according
to Definition 2.1. Consider the simple case of two actions done in parallel at
time t. From the view point of either action, the other action was not done
yet. After we serialize them, when the “second” action is added to the trace,
the “first” action has been already done. With monotonic preconditions this
is not a problem, as we have no precondition on what is not in a trace.

Then we can define the notion of adequate specifications in ALSP of the
inductive predicates pSet(~t) and pTrace(~t, ·) and specify an adequate repre-
sentation for an authentication property:

Definition 4.4 Let 〈C, E〉 be an authentication property over a domain D
and a protocol P, and a ALSP specification P . The definition of attack is
adequate for ALSP if for all time instants t′ there is a time t ≥ t′ in P and a

9

Carlucci Aiello and Massacci

rule of the form

attack ←−
∧

says(a,b,m)∈E said(a, b,m, t),
∧

gets(a,m)∈E got(a,m, t),
∧

notes(a,m)∈E noted(a,m, t)
∧

gets(a,m)∈C not got(a,m, t),
∧

says(a,b,m)∈C not said(a, b,m, t),
∧

notes(a,m)∈C not noted(a,m, t)

No other rule for attack is present.

The condition on time is essential for the final equivalence result to hold:
attacks in the protocol models correspond to stable models where attack is
true. Otherwise, there might be stable models where an attack is indeed
present but, because it took longer than expected, the attack atom is not
present in the stable model. If time is finite, we only need one ground rule
(for the tmax + 1 instant), otherwise we need infinitely many ground rules.

Then, one can prove the equivalent of Lemma 4.2 and Lemma 4.3 for the
upgraded protocol model with the intruder. These results can be combined
yielding the final theorem:

Theorem 4.5 Let PI be a protocol augmented with an intruder and 〈C, E〉 an
authentication property over a finite ground domain D̂. Let P be an admissible
ALSP specification such that all its ground instances for the time instants
t = 1, 2, 3 . . . are adequate for P. There is a trace of the protocol P of length
at most tmax which violates the authentication properties iff there is a stable
model of the ground instance P for t = tmax + 1 which contains the atom
attack.

Clearly the actions which lead to the attack are identified by the action
predicates (says(A,B, M, T), gets(B,M, T), notes(A,M, T)) that are true in
the stable model. This is also true when the stable model is infinite, e.g. if we
allow for an infinite number of agents and nonces or do not set a bound on
the maximum length of possible runs.

Similar definitions and theorems can be given for secrecy properties.

5 (Optimistic) Fair-exchange protocols

Fair exchange protocols have been introduced by Asokan et al. [3], and have
also been formally verified for fairness by Shmatikov and Mitchell [24]. We
take the description of the protocol from Asokan’s PhD thesis [2, Sec.2.2].

The protocol is run by two agents, O and R, who want to sign a con-
tract, occasionally calling a third agent, a trusted third party TTP , in case of
disputes. Given the inherent asymmetry of electronic communication, O and
R do not want to commit to something and then be blocked forever waiting
for the other party to commit, just because the other party is lousy or the
communication is unreliable. The word “optimistic” in the definition stems

10

Carlucci Aiello and Massacci

from the assumption that both O and R are usually committed to sign the
contract or exchange the goods and thus the TTP will be called into play only
when things drag for too long. It is assumed that the communication channel
between TTP and any other party is resilient (i.e. all sent messages will be
eventually received), that the TTP behaves correctly, or at least always send
a syntactically valid reply (not necessarily the right one) to every request.

Once we abstract away from the cryptographic details, the protocol is
constituted by three subprotocols [2, Sec.2.2]: one for the normal exchange,
one for aborting, and one for resolving the protocol. In the sequel we denote
by mei the i-th message of the exchange protocol, by mrj the j-th message of
the resolve a protocol, and so on.
Normal Exchange. O creates a random number NO and then sends R a
signed message including the hash of NO, the text of the contract, the name
of TTP and both O and R public verification keys that is

me1 = {pKO||pKR||TTP ||text||h(NO)}sKO .

If R wants to continue, he generates another random number NR, concatenates
the received message with the hash of NR, signs the whole lot, and sends it
to O: me2 = {me1||h(NR)}sKR . O responds by sending NO, and R concludes
the protocol by returning NR.

me1 O−→R : {pKO||pKR||TTP ||text||h(NO)}sKO

me2 R−→O : {me1||h(NR)}sKR

me3 O−→R : NO

me4 R−→O : NR

O Aborts. If the first reply from R is late for whatever reason, O may
decide to abort. Then she sends TTP a signed message including her first
message to R and the abort token: ma1 = {abort||me1}sKO . The TTP checks
whether the protocol has been already resolved — e.g. it has already received
the missing reply me2 from R — and then issues a replacement contract,
i.e. it signs the pair comprising O first signed message and R first signed
message: ma2 = {me1||me2}sKTTP . If the contract has not been resolved,
it stores the information that me1 aborted and returns the message ma2 =
{abort||ma1}sKTTP .

ma1 O −→TTP : {abort||me1}sKO

ma2 TTP−→O : if resolve == true

then {me1||me2}sKTTP

else abort = true

{abort||ma1}sKTTP

11

Carlucci Aiello and Massacci

O or R Resolves. If either NO or NR are late for whatever reason, either
R or O may decide to contact TTP to resolve the contract. To this end,
one sends TTP both messages me1 and me2, i.e. mr1 = me1||me2. The TTP
checks whether the protocol already aborted — e.g. it has already received
the abort token from O — and then issues an abort message i.e. mr2 =
{abort||ma1}sKTTP . Otherwise, it checks that both parties have duly signed
the text and then issues a replacement contract i.e. mr2 = {me1||me2}sKTTP .

ma1 O −→TTP : me1||me2

ma2 TTP−→O : if abort == true

then {abort||me1}sKTTP

else resolve = true

{me1||me2}sKTTP

Valid Contracts. A valid contract has either the form me1||NA||me2||NB,
the normal exchange went through, or the form {me1||me2}sKTTP , the resolve
protocol was called upon. Notice, as pointed out in [24], that abort does not
mean that the exchange has been canceled, but just a promise from TTP to
respond the same way in the future.

he tricky bit is modelling the condition “if the protocol has not yet been
resolved” in our trace based model. A natural way is to use the action notes
to model the boolean variable: rather than checking whether aborted is true
we check whether notes(ttp, aborted) is in the trace, and similarly for resolved.

This protocol has been already verified by Shmatikov and Mitchell [24] and,
though a number of attacks have been found (e.g. O can obtain a contract
which is inconsistent with a contract obtained by R), no substantial weakness
of the TTP -side of the protocol has been noted.

We now consider the following basic security property, which is implicitly
assumed in the proof of verifiability of TTP by [2,3]:

Claim 5.1 A honest trusted third party cannot be misled to issue two con-
flicting statements concerning the final outcome of the protocol.

Indeed, in [2,3] a stronger claim is made: the protocol may be unfair to O, that
is O gets an abort token from TTP whereas R gets a replacement contract,
only if TTP misbehaves.

The natural trace based description of the abort and resolve steps of the
TTP actions is shown in Figure 3 where we denote Pfe the fair exchange
protocol. The preconditions of the inductive definition are shown above the
rule and the consequence is added below the rule.

It is immediate to see that with this model no attack is possible. Since there
is a total order on actions, and only one action at a time can be concatenated to
a trace, as soon as notes(TTP, abort) is inserted into the trace, it is no longer
possible to insert notes(TTP, resolve) into an extension of that trace. So, in

12

Carlucci Aiello and Massacci

AbortResolved.
if T ∈ Pfe and gets(TTP, {abort||me1}sKO) ∈ T and

notes(TTP, resolve||me1||me2) ∈ T
then says(TTP, O, {me1||me2}sKTTP)#T ∈ Pfe

AbortNotResolved.
if T ∈ Pfe and gets(TTP, {abort||me1}sKO) ∈ T and

notes(TTP, resolve||me1||me2) 6∈ T
then says(TTP, O, {abort||ma1}sKTTP)#notes(TTP, abort||ma1)#T ∈Pfe

ResolveAborted.
if T ∈ Pfe and gets(TTP, me1||me2) ∈ T and notes(TTP, abort||ma1) ∈ T
then says(TTP, O, {abort||ma1}sKTTP)#T ∈ Pfe

ResolveNotAborted.
if T ∈ Pfe and gets(TTP, me1||me2) ∈ T and notes(TTP, abort||ma1) 6∈ T
then says(TTP, O, {me1||me2}sKTTP)#notes(TTP, resolve||me1||me2)#T ∈Pfe

Fig. 3. Inductive Rules for the TTP of the Abort-Resolve subprotocols

% AbortResolved

{says(TTP,A, {me1||me2}sKTTP , T)} ←−

got(TTP, {abort||me1}sKA , T),

noted(TTP, resolve||me1||me2, T)

% AbortNotResolved:

{notes(TTP, abort||ma1, T)} ←− got(TTP, {abort||me1}sKA , T),

not noted(TTP, resolve||me1||me1, T)

says(TTP,A, {abort||ma1}sKTTP , T + 1) ←−notes(TTP, abort||ma1, T)

Fig. 4. ALSP “Natural” Definition of Abort Subprotocol

every trace either notes(TTP, abort)may occur or notes(TTP, resolve) may
occur, but not both.

The “natural” ALSP translation of the above Abort steps (the resolve part
is dual), obtained by extending Definition 4.1 is shown in Figure 4. Notice
that we used a choice rule only for the “Notes” subaction and the normal
rule for the “Says” subaction. This is due to the fact that the second step is
compulsory: the TTP , following the protocol, must store the outcome of the
abort action and then communicate the result to O.

13

Carlucci Aiello and Massacci

Now we can look for models satisfying the goal:

attack ←− said(TTP, O, {abort||ma1}sKTTP , T),

said(TTP,R, {me1||me2}sKTTP , T)

we find that a model exists, and this model can be transformed into an attack
to the actual protocol from [2, Fig. 2.2], even in presence of synchronization
primitives on the individual variables abortand resolve.

To carry on the attack, we must deliver to the TTP a resolve and an abort
message in parallel. This may be obtained in a variety of ways: the intruder
can delay the abort message by O until R issues a resolve, R herself can send
an abort and a resolve ticket at the same time, etc. At this point, since the
standard “adequate” preconditions refer to the past, both the rule for abort
and the rule for resolve fire, and we are done.

From a practical point of view, the fact that the values of the precondition
are examined in parallel is reasonable: it corresponds to synchronizing on
individual variables, which is coherent with current web and internet servers
technology. Obviously it is possible to force the abort and resolve subprotocols
to be transactions, by using a syncronizing primitive at the beginning and
end of the entire subprotocol. However, this would make the entire protocol
unmanageable for a large number of users.

It is possible to change the rule, but now we have no clear cut way to do
it: should resolution be given priority over abortion? Should one of them be
chosen non-deterministically? Should the TTP deadlock? Each choice leads to
a different ALSP specification, which can be motivated on different grounds.

6 Monotone and nonmonotone protocols

At this stage, one may wonder whether this problem — the difference between
trace and parallel models — is just present in fair-exchange protocols, as no
other protocol seems to have suffered from this problem before.

We argue that the problem is more general, and indeed that it is in the
definition of protocol from Definition 2.1. A similar definition can be derived
from the strand-space model by Guttman et al. [28], from Paulson’s models
[19] and from the current CSP [22,14] and CCS [12] modelling of protocols.

The key issue is that one usually imposes constraints on what is in a trace,
but has no constraint on what is not in a trace. This didn’t seem to be a
problem as all protocols in Clark and Jacob library [11], i.e. practically all au-
thentication and key exchange protocols, can be framed within this definition,
and industrial protocols such as SET [15] or TLS follow the rule [4,20].

Fair-exchange protocols, and all auction protocols, contravene this rule: a
protocol is resolved only if there is not already an abort message in the trace,
a bid is winning if there is not already another winner in the trace, etc.

This makes it possible to define two major classes of protocols: monotone

14

Carlucci Aiello and Massacci

bid A −→M : {A||NA}sKA

assign M−→A : if A arrived first with N ′
A

{A||N ′
A||NA}sKM

else some B arrived first with NB

{B||NB||A||NA}sKM

Fig. 5. A Simple Nonmonotone Protocol: a first-pass-the-post auction

protocols and nonmonotone protocols. To execute an action in a monotone
protocol an agent must only look at what did happen, whereas an agent run-
ning a nonmonotone protocol must consider what did happen, what did not
happen, and what may be happening in parallel with his intended action.

We chose the wording monotone and nonmonotone, because they can also
be distinguished by the following procedure:

(i) take a valid trace of a protocol,

(ii) replace all nonces or timestamps with fresh ones and swap freely agents
that play the same roles;

(iii) interleave the original and the modified trace (respecting timestamp or-
dering if needed);

(iv) is the resulting trace still a valid trace of the protocol?

In a monotone protocol the answer is yes: the protocol is monotone because
adding (interleaving) a valid trace with another (different) valid trace is still
a valid trace. With a nonmonotone protocol, we can no longer do so.

For instance, in role-based protocol models, like those used by Lowe [14],
Song [25], and Stoller [26], a bounded degree of (unsynchronized) parallellism
can be modeled by a protocol transformation, which statically takes, for in-
stance, two copies of a role of the original protocol, and interleaves the copies
in various ways. However, this only works for monotone protocols.

In Figure 5 we show a simple auction protocol where interleaving cannot
be done. A and B bid for a good and M simply certifies who arrived first.
Any of the participants might want to refresh the “winning” certificates, so
the protocol does not necessarily terminate with the first announcement.

It is easy to see that if we take the trace where alice sends the first bid,
followed by bob, and then by another bid from alice, and just rename nonces
and change alice with bob, there is no way in which the two traces can be inter-
leaved. In any trace there can only be one message of the form {A||N ′

A}sKM .
Thus, in a trace-based model it is not possible to attack this protocol. How-
ever, as soon as we allow for parallel messages to arrive, the way in which we
implement the check “A arrived first” makes a difference as M may be led
into an inconsistent state.

This classification is not just important for formal verification purposes

15

Carlucci Aiello and Massacci

but also for practical implementations. Monotone protocols can have parallel
implementations — just fork a new thread for each TCP/IP request and forget
all the rest —, for nonmonotone ones things are not so simple.

For instance, for the optimistic fair exchange protocol, if we assume a local
implementation (e.g. one single Trusted Third Party for the whole Internet)
even a local synchronization on individual variables (resolve/abort) would not
be sufficient. We would need to have a synchronization step at the begin-
ing and ending of each protocol step. If we go for more realistic distributed
implementations, more sophisticated low level protocols and synchronization
primitives such as write-once registers are needed.

It is an intriguing goal to determine which formalisms can cope with non-
monotone protocols in their full generality. For instance, we conjecture that
strand-spaces, where protocols are defined by roles, e.g. as done by Song [25]
or Stoller [26], can only cope with monotone protocols. Moreover, it remains
to be seen which are adequate ALSP rules for dealing with nonmonotone pro-
tocols. We leave these issues open for future investigations.

References

[1] K. Apt. Logic programming. In J. van Leeuwen, editor, Handbook of Theoretical
Computer Science. Elsevier Science Publishers (North-Holland), Amsterdam,
1990.

[2] N. Asokan. Fairness in Electronic Commerce. PhD thesis, University of
Waterloo, Canada, 1998.

[3] N. Asokan, M. Schunter, and M. Waidner. Optimistic protocols for fair
exchange. In Proceedings of the Fourth ACM Conference on Communications
and Computer Security (CCS’97), pages 8–17. ACM Press and Addison Wesley,
1997.

[4] G. Bella, F. Massacci, L. Paulson, and P. Tramontano. Formal verification
of Card-Holder Registration in SET. In F. Cuppens, Y. Deswarte, and
D. Gollman, editors, Proceedings of the Sixth European Symposium on Research
in Computer Security (ESORICS 2000), volume 1895 of Lecture Notes in
Computer Science, pages 159–174. Springer-Verlag, 2000.

[5] G. Bella and L. C. Paulson. Kerberos version IV: Inductive analysis of the
secrecy goals. In Proceedings of the Fifth European Symposium on Research in
Computer Security (ESORICS’98), volume 1485 of Lecture Notes in Computer
Science, pages 361–375. Springer-Verlag, 1998.

[6] D. Bolignano. An approach to the formal verification of cryptographic
protocols. In Proceedings of the Third ACM Conference on Communications
and Computer Security (CCS’96), pages 106–118, 1996.

16

Carlucci Aiello and Massacci

[7] S. Brackin. Automatic formal analyses of two large commercial protocols. In
Proceedings of the DIMACS Workshop on Design and Formal Verification of
Security Protocols, September 1997.

[8] M. Burrows, M. Abadi, and R. Needham. A logic for authentication. ACM
Transactions on Computer Systems, 8(1):18–36, 1990.

[9] L. Carlucci Aiello and F. Massacci. An executable specification language for
planning attacks to security protocols. In P. Syverson, editor, IEEE Computer
Security Foundation Workshop, pages 88–103. IEEE Computer Society Press,
2000.

[10] L. Carlucci Aiello and F. Massacci. Verifying security protocols as planning
in logic programming. ACM Transactions on Computational Logic, 2001.
Accepted for publication November 2000. Available on the web.

[11] J. Clark and J. Jacob. A survey of authentication protocol literature: Version
1.0. Technical report, University of York, Department of Computer Science,
November 1997. Available on the web at
http://www-users.cs.york.ac.uk/∼jac/.

[12] R. Focardi and R. Gorrieri. The compositional security checker: A tool for
the verification of information flow security properties. IEEE Transactions on
Software Engineering, 23(9):550–571, 1997.

[13] G. Lowe. Some new attacks upon security protocols. In Proceedings of the Ninth
IEEE Computer Security Foundations Workshop (CSFW’96), pages 162–169.
IEEE Computer Society Press, 1996.

[14] G. Lowe. A hierarchy of authentication specifications. In Proceedings of the
Tenth IEEE Computer Security Foundations Workshop (CSFW’97), pages 31–
43. IEEE Computer Society Press, 1997.

[15] Mastercard & VISA. SET Secure Electronic Transaction Specification: Business
Description, May 1997. Available electronically at
http://www.setco.org/set specifications.html.

[16] C. Meadows. The NRL Protocol Analyzer: An overview. Journal of Logic
Programming, 26(2):113–131, 1994.

[17] C. A. Meadows. Analyzing the Needham-Schroeder public key protocol: A
comparison of two approaches. In E. Bertino, H. Kurth, G. Martella, and
E. Montolivo, editors, Proceedings of the Fourth European Symposium on
Research in Computer Security (ESORICS’96), volume 1146 of Lecture Notes
in Computer Science, pages 351–364. Springer-Verlag, 1996.

[18] J. Mitchell, M. Mitchell, and U. Stern. Automated analysis of cryptographic
protocols using Murphi. In Proceedings of the Sixteenth IEEE Symposium on
Security and Privacy (SSP’97), pages 141–151. IEEE Computer Society Press,
1997.

17

http://www-users.cs.york.ac.uk/~jac/�
http://www.setco.org/set_specifications.html�

Carlucci Aiello and Massacci

[19] L. C. Paulson. The inductive approach to verifying cryptographic protocols.
Journal of Computer Security, 6:85–128, 1998.

[20] L. C. Paulson. Inductive analysis of the internet protocol TLS. ACM
Transactions on Information and System Security, 2(3):332–351, 1999.

[21] R. Reiter. Knowledge in Action: Logical Foundations for Describing and
Implementing Dynamical Systems. Springer-Verlag, 2001. Draft monograph
available at http://www.cs.toronto.edu/∼cogrobo.

[22] S. Schneider. Verifying authentication protocols in CSP. IEEE Transactions
on Software Engineering, 24(9):741–758, 1998.

[23] B. Schneier. Applied Cryptography: Protocols, Algorithms, and Source Code in
C. John Wiley & Sons, 1994.

[24] V. Shmatikov and J. Mitchell. Analysis of a fair exchange protocol. In Proc. of
NDSS 2000, pages 119–128, San Diego, 2000.

[25] D. Song. Athena: An automatic checker for security protocol analysis. In
Proceedings of the Twelfth IEEE Computer Security Foundations Workshop
(CSFW’99). IEEE Computer Society Press, 1999.

[26] S. Stoller. A bound on attacks on payment protocols. In Proceedings of the
Sixteenth IEEE Symposium on Logic in Computer Science (LICS 2001). IEEE
Computer Society Press, 2001.

[27] P. F. Syverson and P. C. van Oorschot. On unifying some cryptographic
protocols logics. In Proceedings of the Thirteenth IEEE Symposium on Security
and Privacy (SSP’94). IEEE Computer Society Press, 1994.

[28] F. Thayer Fabrega, J. Herzog, and J. Guttman. Honest ideals on strand spaces.
In Proceedings of the Eleventh IEEE Computer Security Foundations Workshop
(CSFW’98). IEEE Computer Society Press, 1998.

18

http://www.cs.toronto.edu/~cogrobo�

