
Maintaining Privacy on Derived Objects

Nicola Zannone
University of Trento

Via Sommarive 14, 38050
Povo, Trento, Italy

zannone@dit.unitn.it

Sushil Jajodia
Center for Secure Information

Systems
George Mason University

Fairfax, VA 22030
jajodia@gmu.edu

Fabio Massacci
University of Trento

Via Sommarive 14, 38050
Povo, Trento, Italy

massacci@dit.unitn.it

Duminda Wijesekera
Center for Secure Information

Systems
George Mason University

Fairfax, VA 22030
dwijesek@gmu.edu

ABSTRACT
Protecting privacy means to ensure users that access to their per-
sonal data complies with their preferences. However, information
can be manipulated in order to derive new objects that may disclose
part of the original information. Therefore, control of information
flow is necessary for guaranteeing privacy protection since users
should know and control not only who access their personal data,
but also who access information derived from their data. Actu-
ally, current approaches for access control do not provide support
for managing propagation of information and for representing user
preferences.

This paper proposes to extend the Flexible Authorization Frame-
work (FAF) in order to automatically verify whether a subject is
entitled to process personal data and derive the authorizations as-
sociated with the outcome of data processing. In order to control
information flow, users may specify the range of authorizations that
can be associated with objects derived from their data. The frame-
work guarantees that every “valid” derived object does not disclose
more information than users want and preserves the permissions
that users want to maintain. To make the discussion more concrete,
we illustrate the proposal with a bank case study.

Categories and Subject Descriptors: H.2.7 [Database Adminis-
tration]: Security, integrity, and protection

General Terms: Security, Languages.

Keywords: Data protection, Access control, Information flow.

1. INTRODUCTION
Privacy protection is becoming important because enterprises are

becoming conscious of losing market share if they do not imple-
ment proper privacy practices. Many countries have promulgated

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
WPES’05, November 7, 2005, Alexandria, Virginia, USA.
Copyright 2005 ACM 1-59593-228-3/05/0011 ...$5.00.

privacy legislation to enforce data protection. The US privacy leg-
islation is essentially based on Privacy Act of 1974 [1]. The Pri-
vacy Act defines a number of privacy guidelines on disclosure of
data, accounting of certain disclosures, access to data, and agency
requirements and rules in order to guarantee data protection. One
of the central principles is the principle of transparency, i.e., when
enterprises store data about customers they should disclose to cus-
tomers which data is collected and how it is used. Therefore, an
enterprise should declare who can access customers’ personal data
and how data is processed by the enterprise itself.

Data protection is a critical issue since systems may release in-
formation as part of their functionalities [7]. The outcome of a
data processing can be seen as a new object, for example a report,
containing information derived from those objects used to create
it. If data owners do not maintain the control on such new objects,
they could lose control on their own information, and so their pri-
vacy is not guaranteed. In order to avoid unauthorized propagation
of information, data owners may directly specify their preferences
on who can access their information and how it can be used, and
then the system matches them with the authorizations it has com-
puted before disclosing information. However, current access con-
trol proposals [5, 9, 11, 21] and privacy-aware technologies [3, 4,
8, 13] do neither automatically capture authorizations on derived
information nor compare them with user preferences in order to
enforce privacy protection.

Control of information flow [17] is essential to ensure that infor-
mation flow does not disclose sensitive information to unauthorized
entities, that is, entities not authorized by data owners. Some pro-
posals have tried to overcome this weakness of access control sys-
tems by complementing them with some form of flow control [10,
16, 18, 24]. Some approaches [16, 24] associate with each object
an access control list that is propagated together with the informa-
tion in the object. Other approaches [10, 18] mainly protect against
unauthorized outflow of information. However, these approaches
are not flexible enough to take into account user preferences, spe-
cially, they do not guarantee the data owner right to control that its
data is not misused.

In this paper, we extend the Flexible Authorization Framework
(FAF) [12], a logic-based framework developed to specify and en-
force access control policies, in order to deal with propagation of
information with respect to user preferences. When a bank em-

ployee processes our personal data, we want to ensure that the em-
ployee is entitled to process it and, at the same time, we want to
know and control who can access the object derived from our data
and how it is used. On one side, we propose to verify if a subject
has enough rights to create the object. On the other side, we de-
fine the notion of access control policy associated with an object as
the set of authorizations involving that object and propose an ap-
proach to automatically derive the policy associated with objects
created by using it. To represent user preferences, we introduce the
notions of at least policy and at most policy that define the range
in which authorizations can be granted. We also provide a taxon-
omy of functions that can be used to create objects. Based on the
type of function, we define how policies for new objects can be au-
tomatically derived from those associated with the objects used to
create it. Further, we discuss the conditions under which the au-
thorizations associated with derived objects comply with user pref-
erences. Defining the policies associated with derived objects, we
will take into account the guidelines proposed by the US privacy
legislation [1]. This ensures that the framework can be applied to
real scenarios.

The remainder of the paper is structured as follows. Next (§2)
we introduce a Bank Information System used as running example
throughout the paper. Then, we provide a brief overview of FAF
and describe some concepts we have introduced in order to specify
policies (§3). We illustrate our approach for ensuring that objects
are created only by authorized users and associating policies with
such objects (§4). Next, we discuss the properties that are guaran-
teed by the framework (§5). Finally, we discuss related work (§6)
and conclude with some directions for future work (§7).

2. RUNNING EXAMPLE
This section presents a sketch of the structure and access control

policies for a bank branch that will be used throughout the paper as
a running example.

A bank branch is directed by a general manager who has the task
to guarantee correct data processing and ensure law enforcement.
The bank branch is composed of several divisions. For sake of
simplicity, we only consider Customer Service (CS) Division and
Investment and Financial (IF) Division. Each division has its direc-
tor, respectively CS-Director and IF-Director, and many divisional
managers – respectively CS-Manager and IF-Manager – who have
the task to help their directors to guarantee correct data processing.
Finally, cashiers and analysts are basic employees, respectively, in
CS Division and in IF Division. Further, CS-Managers can also act
as cashiers.

Only CS-Staff can access personal and account data of bank cus-
tomers, while IF Division should provide a report stating the finan-
cial status of the bank branch monthly to the general manager. The
general manager has also a secretary who helps him to interact with
the central bank management and branch divisions.

The Bank Information System manages clients information. Ac-
cording to the Privacy Act [1], the system should provide client ac-
count information if and only if consent is obtained from the client
in question, unless disclosure of information would be to those offi-
cers and employees of the bank who need the data to perform their
duties. Clients may refuse to share their data if they do not trust the
system or feel they do not have sufficient control over the use of
their own data. The Bank Information System also provides some
automatic procedures in order to help employees to manage clients
data and perform data processing.

3. FLEXIBLE AUTHORIZATION FRAME-
WORK

The Flexible Authorization Framework (FAF) [12] is a logic-
based framework developed to manage access to data by users.
This framework is enough flexible to allow system administrators
to specify multiple access control policies that can be enforced
within a single system.

FAF provides a Data System (DS) that consists of users (U),
groups (G), the objects (Obj) and sets of objects (types) (T) they
are accessing, together with the roles (R) they may play, and access
modes (A) they may use. Classification hierarchies on the various
components are defined by meaning of partial orderings, namely
≤OT for object-type, ≤UG for user-group and ≤R for role. DS is
formally defined as a 5-tuple (OTH,UGH,RH,A,Rel) where

• OTH = (Obj,T,≤OT) is an object-type hierarchy where
Obj is a set of identifiers of objects, T is a set of type, and
≤OT is a partial ordering such that ∀o ∈ Obj and t ∈ T, o ≤OT

t iff o is of type t.

• UGH = (U,G,≤UG) is a user-group hierarchy where U is a
set of identifiers of users, G is a set of identifiers of collec-
tion of users, and ≤UG is a partial ordering such that ∀u ∈
U and g ∈ G, u ≤UG g iff user u is in group g.

• RH = (∅,R,≤R) is a role hierarchy where R is a set of roles,
and ≤R is a partial ordering such that x ≤UG y iff x is a spe-
cialization of y. Notice that there is not the concept of prim-
itive role and that users do not appear in the role hierarchy.

• A is a set of access modes;

• Rel is a set of (first order) predicates used to specify the ac-
cess control policies.

According to [12], the expression authorization subject (AS) de-
notes those entities for which accesses are authorized (users, groups
and roles), and the expression authorization object (AO) denotes
those entities on which accesses are authorized (objects, types and
roles). An authorization is a triple of the form (o, s, 〈sign〉a) where
o ∈ AO, s ∈ AS, “sign” is either “+” or “−”, and a ∈ A. Es-
sentially, the triple (o, s,+a) means that subject s is authorized to
execute action a on object o. Similarly, the triple (o, s,−a) means
that subject s cannot execute action a on object o. The set of autho-
rizations is denoted by AUTH, while AUTH+ and AUTH− denote,
respectively, the sets of positive and negative authorizations.

The architecture of FAF is based on four modules: a propagation
module, a conflict resolution module, a decision module, and an
integrity enforcement module. Each module corresponds to a phase
for managing authorizations. The first module provides some basic
facts, such as component hierarchies and a set of authorizations
along with rules to derive additional authorizations. The second
module uses conflict resolution policies to eliminate contradictory
authorizations. In the third module, decision policies are applies to
ensure the completeness of authorizations. The last module is used
to check integrity constraints.

Based on this architecture, FAF uses a locally stratified logic pro-
gramming language, Authorization Specification Language (ASL),
in order to specify authorizations. Next, we provide a brief overview
of its syntax. A summary of the syntax is given in Table 1 [12].

• A ternary predicate symbol cando representing authoriza-
tions directly defined by the system administrator. The first
argument is a subject, the second is an object, and the third is
a signed action terms. Depending on the sign, authorizations
are permissions or prohibitions.

Predicate Rules defining predicate
hie-predicates base relations.
rel-predicates base relations.
done base relation.
cando body may contain done, hie- and rel-literals.
over body may contain cando, done, hie- and rel-literals.
dercando body may contain cando, over, dercando, done, hie-, and rel- literals. Occur-

rences of dercando literals must be positive.
do in the case when head is of the form do(o, s,+a), body may contain cando,

dercando, done, hie- and rel- literals.
do in the case when head is of the form do(o, s,−a), body contains just one

literal ¬ do(o, s,+a).
error body may contain do, dercando, cando, done, hie- and rel-literals.

Table 1: Syntax of the component of ASL

• A ternary predicate symbol dercando that has the same ar-
guments of predicate cando and is used to represent autho-
rizations derived through propagation policies.
• A ternary predicate symbol do that has the same arguments

of predicate cando and represents effective permissions de-
rived by applying conflicts resolution and decision policies.
• A 5-ary predicate symbol done. In particular, done(o, s, r, a, t)

that holds if subject s playing role r has executed action a on
object o at time t.
• Two 4-ary predicate symbols overAO and overAS where overAO

takes as arguments two object terms, a subject term, and a
signed action term, and overAS takes as arguments a subject
term, two object terms, and a signed action term. They are
used to express overriding policies.
• A propositional symbol error used to represent violation of

integrity constraints.
• A set of hie-predicate symbols. In particular, the ternary

predicate in(x, y,H) denotes that x ≤ y in hierarchy H.
• A set of rel-predicate symbols. In particular, the unary predi-

cate symbols isuser, isgroup, isrole, isobject and istype which
are true if their argument is a user, a group, a role, an object,
or a type, respectively.

Let p be a predicate symbol with arity n, and t1, . . . , tn be its
appropriate terms. Then, p(t1, . . . , tn) is called atom. Further, the
expression literal denotes an atom or its negation.

In this paper we mainly focus on the first module of the archi-
tecture. Therefore, we define only the rules used by the system ad-
ministrator for deriving authorizations. Essentially, authorizations
are specified by using authorization rules [12] that have the form

cando(o, s, 〈sign〉a)← L1 & · · · & Ln.

where o, s and a are, respectively, elements of AO, AS and A,
n ≥ 0, sign is either + or−, and L1, . . . , Ln are done, hie-, or rel-
literals. Then, the collection of derived cando literals represents
the set of authorizations.

3.1 Role Domination Hierarchy
FAF supports a notion of role classification hierarchy based on

the concept of specialization where a role is a specialization of an-
other role if it refers to more specialized activities. Roles also may
be organized with respect to the concept of domination. We define
role domination hierarchy as follows.

DEFINITION 1. Let R be the set of roles. A role domination
hierarchy RDH is a triple (∅,R′,≤RD) where:

1. R′ ⊆ R,

General
Manager

IF-ManagerIF-DirectorSecretary AnalystCS-Director Cashier

CS-Staff IF-Staff

CS-Manager

Employee

(a) Classification Hierarchy

Manager
General

IF-Director

IF-Manager

Analyst

CS-Director

CS-Manager

Cashier

Secretary

(b) Domination Hierarchy

Figure 1: Role Hierarchies

2. ≤RD is a partial order on R′. We say that x ≤RD y if y
dominates x (or, equivalently, x is dominated by y).

EXAMPLE 1. Figure 1(a) and Figure 1(b) show, respectively,
the role classification hierarchy and role domination hierarchy re-
lated to our running example. Since the secretary should explain
and justify her work to the general manager, this dominates the
secretary. In symbols,

Secretary ≤RD General Manager

In ASL, it is represented as

in(Secretary ,General Manager ,RDH)

FAF does not support the concept of primitive role and users do
not appear in role classification and role domination hierarchies.
In order to associate users to roles, FAF uses an explicit activation
expressed in the form of authorizations.

EXAMPLE 2. To express that Bob is the user playing the role of
director in CS Division, the following authorization is used

cando(CS-Director ,Bob,+activate)

3.2 Constraints
Entities can be seen as pairs of attributes and values. This allows

policy writers to formulate system requirements in terms of con-
straints on the values of attributes. Since FAF is based on a logic
programming language, we base our notion of constraint on that
presented in Constraint Logic Programming [15].

The constraint domainD is composed of elements, together with
a language for dealing with them. The language is defined by a set
of function symbols, and relation symbols. The constraint domain
defines the rules for building constraints. In our constraint domain,
the set of variables V takes values over the sets Obj, T, U, G, R, A,
and natural numbers IN . The set of predicate symbols Γ contains
predicates for comparing natural numbers and members of Obj, T,
U, G, R, A. The set of function symbols F contains constants, that
is, every member of Obj, T, U, G, R, A and IN .

Given a constraint domain D, the basic form of constraint is
the primitive constraint. A primitive constraint consists of a rela-
tion symbol from D together with the appropriate number of well-
typed1 arguments. These are constants and variables.

DEFINITION 2. Let Γ be the set of predicates, F be the set of
functions and V be the set of variables. A primitive constraint is a
literal built on 〈Γ,F ,V〉. We assume that true and false are prim-
itive constraints where true always holds, and false never holds.

By replacing variables by all possible values, a primitive con-
straint becomes a variable-free constraint which may be either true
or false. Therefore, we can determine the values of variables for
which the primitive constraint holds, that is, a ground instantiation
of the primitive constraint that is true in the constraint domain.

Next, we redefine authorization rules.

DEFINITION 3. An authorization rule is a rule of the form

cando(o, s, a)← L1 & . . . & Ln.

where L1, . . . , Ln are done, do, hie-, or rel-literals, and primitive
constraints.

The use of do literals in the body of authorization rules will be
clear in Section 4. However, the architecture of FAF should be
modified for integrating these “new” authorization rules into the
entire process used to determine whether an access is granted. We
refer to Appendix A for a brief overview of this process.

3.3 Access Control Policies and User Prefer-
ences

Authorizations are derived through authorization rules and are
used to determine which entities are entitled to access an object
and which actions they can perform on it. Based on this intuition,
we define the access control policy of an object as the set of positive
authorizations referring to the object.

DEFINITION 4. An access control policy associated with an ob-
ject o is a set of positive authorizations where o occurs as autho-
rization object.

Notice that we only focus on positive authorizations. Surely,
specifying also negative authorizations in the access control pol-
icy allows us to express more sophisticate policies, but requires to
solve problems, such as conflict resolution, that go well beyond the

1Essentially, well-typed means that arguments have the same type
of those required by the definition of the relation.

aims of this paper. So here we assume that only positive autho-
rizations can be specified in an access control policy, and leave the
possibility of specifying negative authorizations to future work.

More complicated access control policies can be built from au-
thorization rules by using union, intersection, set difference, and
complement. To be able to incrementally compute policies upon
changes to the specification, we maintain a materialized view [12]
that stores the policy terms derived from authorization rules.

DEFINITION 5. The materialization structure for an authoriza-
tion specification is a set of pair (A,S), where A is a ground atom
in the authorization specification language and S is a set of (index
of) rules whose head unifies with A.

Given a materialization structure MS of an authorization rule
A, the modelM ofA is the projection over the first element of the
pair, that is,M(A) = Π1(MS(A)).

DEFINITION 6. Access control policies are constructed using
the following rules:

1. If A is an authorization rule, then P =M(A) is an access
control policy;

2. IfP1 andP2 are access control policies, then so areP1∪P2,
P1 ∩ P2, P1 \ P2, and P1.

Notice that, ifA and B are authorization rules, the union of their
models, M(A) ∪ M(B), is equal to the model of their union,
M(A ∪ B), since authorization rules are not recursive. In the re-
mainder, we refer to “set of authorization rules” for indicating the
union of authorization rules and represent the union of their mod-
els as the model of their union. Further, intersection, set difference
and complement could be directly implemented in the specification
[25], but this requires changing the specification itself.

Since a policy refers to a specific object, for sake of simplicity
we omit the object whenever it is fixed and clear from the context.
So we represent a policy as a set of elements of the form (s,+a)
where s is a subject and a is an action.

DEFINITION 7. Let AO be the set of authorization objects and
AUTH+ be the set of positive authorizations. The function policy :
AO 7→ ℘(AUTH+) associates a set of authorization pairs with an
object o such that

policy(o) = {(s, a)|(o, s,+a) ∈ AUTH+}

Essentially, function policy returns the access control list asso-
ciated with a given object.

A data owner may want to maintain some permissions on objects
created by using his data for checking that they are not misused,
and, at the same time, he may want to restrict access to them. This
represents user preferences that can be modeled through two sets of
authorizations. The first set is compounded by the authorizations
that at least an object should have associated with.

DEFINITION 8. Let AO be the set of authorization objects and
AUTH+ be the set of positive authorizations. The function policy≥ :

AO 7→ ℘(AUTH+) associates with an object the set of authoriza-
tions that it should at least have. Given an object o, policy≥(o) is
called at least policy of o.

To restrict access, we introduce the set of authorizations that at
most an object should have associated with.

DEFINITION 9. Let AO be the set of authorization objects and
AUTH+ be the set of positive authorizations. The function policy≤ :

AO 7→ ℘(AUTH+) associates with an object the set of authoriza-
tions that it should at most have. Given an object o, policy≤(o) is
called at most policy of o.

In this paper, we assume that users can express their preferences
only by defining positive authorizations. Then, negative authoriza-
tions can be easily computed from the positive ones: when a pos-
itive authorization is missing, this means that there is the corre-
sponding negative authorization.

At least and at most policies are defined by users with respect
to their preferences and together represent the range in which au-
thorizations can be granted. Obviously, conflicts can arise between
enterprise policies and user preferences.

DEFINITION 10. For every authorization object o the following
relation must hold

policy≥(o) ⊆ policy(o) ⊆ policy≤(o)

If the policies associated with an object do not respect this rela-
tion, we call it zombie object and assume that every access to it is
blocked until conflicts are resolved.

Zombie objects are objects that either disclose more information
that data owners want or do not guarantees data owners to maintain
the right to verify that their information is not misused. Therefore,
they are objects for which privacy requirements are not satisfied.

To model the concepts we have introduced in this section, we
extend ASL by introducing the ternary predicates cando≥(o, s, a)
and cando≤(o, s, a), and the unary predicate zombie(o). The first
two predicates are used to represent, respectively, at least and at
most policy, and their behavior is similar to predicate cando. The
predicate zombie(o) holds if authorization object o is a zombie ob-
ject. To derive zombie objects, we use the following rules:

zombie(o)← cando≥(o, s, a) & ¬cando(o, s, a).
zombie(o)← cando(o, s, a) & ¬cando≤(o, s, a).

These rules can be seen as integrity constraints used to verify the
validity of subset relations.

4. CREATING OBJECTS
Enterprises process data in order to provide services to their cus-

tomers, where data processing refers to a class of procedures used
to organize and manipulate data. The outcome of a data processing
can be seen as a new object that could contain information belong-
ing to those objects used to create it. Current approaches for access
control and privacy-aware technologies enforce control on the dis-
closure of information but not its propagation [17]. In other words,
they deal with data directly stored in the system (in the remain-
der of the paper, we call such kind of data primitive objects) but
not with information derived by the system itself from such data.
Controlling information flow is a critical issue since derived infor-
mation may improperly release to unauthorized users information
about the primitive objects used to derived it.

Without loss of generality we assume that functions are used to
derive objects and that such objects do not belong to the system un-
til they are created. Indeed procedures that manipulate more than
one object can be seen as function on the object “collection of ob-
jects”. Further, objects created without making use of other objects
can be describe by functions with no arguments. In order to avoid
unauthorized propagation of information, we start looking at what

happen when a subject wants to derive an object. For example,
suppose that the function f is used to create the object o.

f(id , s, o1, . . . , om) = o

where id is a unique identifier that univocally identifies the object,
s is the subject that wants to create o, and o1, . . . , om are the objects
needed to create o and are called source objects. In order to enforce
data protection, we should be able to answer two questions:

1. Is the subject s entitled to create the derived object o?
2. Who is authorized to access the derived object o?

In agreement with the transparency principle, this information
should be provided by an enterprise to its customers before they
disclose their data. For example, if a customer thinks that bank
policies are not “reasonable”, he could decide to change the bank.

This principle is also at the basis of the assumption that the sys-
tem exactly knows the objects used by data processing. Suppose
to execute a function f1 that invokes a hidden function f2 that ac-
cesses objects o1 and o2. If the system does not advise the owner
of o1 and o2 that these objects are used by function f1, his privacy
could be not preserved. Further, there may be cases where a subject
cannot execute f1 since he is not authorized to access o1 and/or o2.

Notice that this assumption is absolutely realistic for all business
IT systems. Indeed whereas the actual users (and even administra-
tors) of the bank IT system may not know that the hidden function
is called when they open the ”checkLoan” form, the developers of
the system surely knew it as they actually put the hidden call! So we
simply need to have this information made available to the privacy
subsystem and then it is immediate that the system itself would
know exactly which objects are necessary for creating a new one.

4.1 Authorizations for creating objects
To create an object, subjects may need to use exiting objects (ei-

ther primitive objects or objects already created). Further, only sub-
jects that play a certain role or belong to a certain group may be
entitled to create the object. The Privacy Act declares that agencies
that maintain personal data should adopt appropriate administrative
and technical measures to enforce the security and confidentiality
of the data, and so to protect it against any threats which could
result in harm to any individual’s data. In other words, data ac-
cess should be granted only to authorized subjects. This means that
authorization systems must verify whether the subject has enough
rights to access all objects used to create the new one and whether
the subject can create the object.

The idea is to make explicit the conditions under which a subject
can create an object in order to verify his responsibilities and capa-
bilities. Based on this intuition, we redefine the function f used to
create the object o as

f(id , s, o1, . . . , om) =

o if C is true
⊥ otherwise

where C represents the condition that must be satisfied and⊥means
that object o cannot be created since s does not have sufficient
rights to execute the function. In ASL, this can be implemented
with rules of the form

isobject(f(id , s, o1, . . . , om))← L1 & . . . & Ln.

where L1, . . . , Ln are done, do, hie-, or rel-literals, and primitive
constraints such that their conjunction is equal to C, and do literals
refer only to o1, . . . , om (see Appendix A for more details). To cre-
ate objects we need to verify whether subjects have enough right on
the source objects. Thus, we propose to use do literals since they

represent effective authorizations2 on objects. Notice also that we
have used f(id , s, o1, . . . , om) as argument of predicate isobject
instead of o only to point out that it is a derived object and empha-
size which objects are used to derive it. Notice that function sym-
bols can be introduced into the specification language without loos-
ing decidability of the specification provided all terms in a rules are
range restricted by (non-recursive) unary domain predicates. In the
previous example we would have had to add the literals name(n),
shipping addr(sa), bank account(openBA(. . .)) etc. in the body
of the rule. We don’t add these domain predicates because this will
hamper the readability of the rules in the examples.

From a practical standpoint this is not a limitation because even
in sophisticated ERP systems the user (once again in contrast to
the developer) can create objects only using predefined functions
and these are never recursive and thus domain predicates can al-
ways be defined. For example, to create the loan form one needs
to have a bank account, and bank accounts require an address, and
addresses may be broken down in street and city names. Though
we can complicate the picture down to floor in the storey, each
time we use different types and at the end the name of the city
is essentially a primitive object. Figure 5 gives another example
of non-recursive structured information that is perfectly decidable
with domain predicates.

EXAMPLE 3. Suppose that a customer wants to open a bank
account. A bank policy states that the officer responsible for open-
ing bank accounts must have the permission to access customers’
personal data, namely name (n), shipping address (sa), and phone
number (p). Further, only a manager of the Customer Service Di-
vision is able to open a bank account, and the manager’s name is
associated with the account for security reason.3 The Bank Infor-
mation System provides the function openBA for creating a bank
account. This function is also used to insert the balance of the ac-
count (the first deposit (d)) into the Bank Information System. The
bank also requires that the deposit is greater than 0.

isobject(openBA(id , s, n, sa, p, d))← isuser(s) & do(n, s,+read)
& do(sa, s,+read) & do(p, s,+read)
& do(d, s,+read) & d > 0 &
do(CS-manager , s,+activate).

EXAMPLE 4. IF Division has the task to monthly provide a fi-
nancial status report to the general manager. Let Account be the
type of objects openBA(id , s, n, sa, p, d) stored into Bank Infor-
mation System and createFSR be the function to create the report.

isobject(createFSR(id , s, sum(Account)))← in(s, IF-Staff ,RH)
&do(sum(Account), s,+read).

4.2 Authorizations on derived objects
Once an object is created, the owners of the primitive objects

used to create it want to know who can access it and how it is used.
To this end, a policy should be associated with such object. Since
the new object is not independent from the objects used to derived
it, the policy associated with it should take into account the effec-
tive authorizations associated with the objects used to derive it.

However, when we define the policy for a derived object we
should take into account that not all data processing disclose in-
dividually identifiable information. For example, the sum of ac-
count balances at a bank branch does not disclose data that allows
2We remark that do literals are derived after conflicts resolution
and decision policies.
3This impersonation is closer to reality than one may think: the law
requires to assign the responsibility of each entity to human beings.

to recover information associating a user with his own account bal-
ance. Therefore, we need a taxonomy of functions used to create
objects. Here, we have identified three main types of functions:
non parametric functions, disclosure functions, and non disclosure
functions. Next, we present such functions and show the policies
associated with derived objects for each function.

4.2.1 Non Parametric Function (NPF)
The basic case is when an object is created by using no additional

objects. Thus, we introduce non parametric functions for creating
fresh objects such as new files. In this case, arbitrary policies can
be used to express policies for derived objects.

policy(fNPF (id , s)) = P
policy≥(fNPF (id , s)) = P≥
policy≤(fNPF (id , s)) = P≤

where P , P≥ and P≤ are policies such that P≥ ⊆ P ⊆ P≤.

EXAMPLE 5. Let R be the set of roles and BulletinBoard be
the type of objects bulletin . Let writeB be the function to write
a bulletin. The access control policy associated with the bulletin
should allow all the roles that dominate the one which has written
the bulletin to read and modify it. The policy associated with the
bulletin is the model of the following authorization rules

cando(writeB(id , t), S,A)← in(t, S,RDH) & A = +modify.
cando(writeB(id , t), S,A)← in(t, S,RDH) & A = +read.

Suppose that the general manager delegates to his secretary the
task to write the notice concerning the closing dates for holidays
to the branch staff, the policy associated with the notice allows the
general manager to read and modify the notice.

4.2.2 Disclosure Function (DF)
When a subject creates an object, this may disclose information

about the objects used to create it. To protect such information, the
policy associated with the object should be the intersection of the
policies associated with the source objects [16]. However, some
information must be disclosed for satisfying availability require-
ments. The Privacy Act allows an agency to disclose data without
the consent of the data owner to those officers and employees of the
agency who have a need for the data to perform their duties. There-
fore, an employee that should provide a certain task for which the
data is necessary should be entitled to access to the data. Further,
some accesses could be restricted. For example, a bank does not
consider “reasonable” that a client modifies his account balance by
himself. Based on these observations, we define the policy associ-
ated with an object created by using a disclosure function as

policy(fDF (id , s, o1, . . . , om)) =

 ⋂

i∈[1,...,m]

policy(oi)

∪ P1

\P2

where policy P1 is used to grant access for guaranteeing availabil-
ity requirements and policy P2 to limit the access to the object.

EXAMPLE 6. Referring to Example 3, the sets of authorization
rules associated with a new bank account are defined in Figure 2.
The first represents the policies associated with the objects used to
derive it, while the second refers to the bank policy stating that only
employees working in the CS Division can read and modify infor-
mation on customer bank account. The last refers to the capability
of a client to modify information about his account by himself. The
policy associated with the bank account is given by

policy(openBA(id , s, n, sa, p, d)) =
`M(A1)∪M(A2)

´\M(A3)

A1 cando(openBA(id , t, n, sa, p, d), S, A)← do(n, S,A).
cando(openBA(id , t, n, sa, p, d), S, A)← do(sa, S,A).
cando(openBA(id , t, n, sa, p, d), S, A)← do(p, S,A).
cando(openBA(id , t, n, sa, p, d), S, A)← do(d, S,A).

A2 cando(openBA(id , t, n, sa, p, d), S, A)← in(S,CS-Staff ,RH) & A = +read.
cando(openBA(id , t, n, sa, p, d), S, A)← in(S,CS-Staff ,RH) & A = +modify.

A3 cando(openBA(id , t, n, sa, p, d), S, A)← owner(n, S) & A = +modify.

Figure 2: Policy associated with bank account

A1 cando(createFSR(id , t, sum(Account)), S,A)← do(sum(Account), S,A).
A2 cando(createFSR(id , t, sum(Account)), S,A)← in(S, IF-Staff ,RH) & A = +modify.
A3 cando(createFSR(id , t, sum(Account)), S,A)← S = General Manager & A = +read.

cando(createFSR(id , t, sum(Account)), S,A)← S = General Manager & A = +modify.
A4 cando(createFSR(id , t, sum(Account)), S,A)← in(S,CS-Staff ,RH) & A = +modify.

Figure 3: Policy associated with financial status report

EXAMPLE 7. The sets of authorization rules associated with
the financial status report (Example 4) are defined in Figure 3. The
first set represents the policies associated with the objects used to
derive it. The second refers to the capability of employees of IF
Division to modify the report, and the third to the capability of the
general manager to read and modify the report. The last refers to
the capability of CS-Staff to modify the report. The policy associ-
ated with the financial status report is given by

policy(createFSR(id , s, sum(Account))) =`M(A1) ∪ `M(A2) ∪M(A3)
´´ \M(A4)

The first part establishes that CS-Staff is authorized to read the re-
port for verifying whether the value of the sum is correct (Example
6). The second policy grants the permission to employees of IF Di-
vision to modify the report and authorize the general manager to
read and modify the report. Notice that the explicit permission for
the general manager is not necessary if authorization propagation
is applied. The last policy denials CS-Staff to modify the report.

At least and at most policies associated with the derived object
should be in agreement with the range defined by the user prefer-
ences associated with the object used to derive it. Thus, the derived
at least policy should contain all at least policies associated with
origin objects, and the derived at most policy should not allow to
disclose more information than each at most policy associated with
origin objects does. In symbols,

policy≥(fDF (id , s, o1, . . . , om)) =
[

i∈[1,...,m]

policy≥(oi)

policy≤(fDF (id , s, o1, . . . , om)) =
\

i∈[1,...,m]

policy≤(oi)

It is up to policy developers to define appropriate policies for im-
plementing access restriction and availability requirements. These
policies should respect basic privacy properties. Therefore, policy
P1 should be not too “restrictive” since any individual should con-
trol his data [1]. Further, policy P2 should not provide more access
than ones are needed since agencies should manage only such data
about an individual as is relevant and necessary to accomplish the
purpose for which data is maintained [1], or simply more than that
data owner wants to grant. Therefore, these policies have to be
compared with user preferences to ensure privacy protection.

PROPOSITION 1. Let o be an object derived by using a disclo-
sure function and o1, . . . , om be the non zombie objects used to
derive it. Let P1 be the policy used to grant additional rights and

P2 be the policy used to limit the access to o. Object o is not a
zombie object if and only if

1. ∀i ∈ [1, . . . ,m] policy≥(oi) ∩ P2 = ∅;
2. P1 \ P2 ⊆

T
i∈[1,...,m] policy≤(oi).

3. ∀j, i ∈ [1, . . . ,m] policy(oj) ⊆ policy≤(oi)

4. ∀j, i ∈ [1, . . . ,m] policy≥(oj) ⊆ policy(oi)

Intuitively the first conditions says that the restrictions should
only affect authorizations beyond the basic ones, which should be
granted anyhow. The third and the fourth conditions imply that the
only essential differences between the objects is the way permis-
sions are classified among what one should at least have, actually
has or should at most have. Loosely speaking, they belong to very
similar security domains. This is what is intuitively expected for
disclosure functions: trying to compose objects with radically dif-
ferent authorizations into an object whose components can be re-
constructed would result in zombie objects. The second condition
is trickier as it states that the additional privileges granted to ac-
tually use the compound object should not exceed the total set of
privileges assigned to the overall collections of component objects.
We remark that zombie objects cannot be used to derive new ob-
jects since any access to them is denied until conflicts are resolved.

EXAMPLE 8. Alice opening a bank account declares in her user
preferences that she wants to have the permission not only to read
but also to modify all the objects derived from her data. These
user preferences are shown in Figure 4. In this case, the account
openBA(id , s, n, f, sa, p, d) is a zombie object since her prefer-
ences are in conflict with the bank policy that denials clients to
modify their account by them selves (M(A3) in Example 6).

4.2.3 Non Disclosure Function (NDF)
Functions such as statistical operations (sum, average and so on)

do not disclose sensitive information, that is, the disclosure of in-
formation is not sufficient to trace the origin of the information
itself. In this case policies can be “relaxed”. This is also in agree-
ment with the Privacy Act that does not impose any conditions on
aggregate statistical data without any personal identifiers. From
these considerations, we define the policy associated with an object
derived by using a non disclosure function as the union of all the
policies associated with the source objects. This is also compatible
with the notion of declassification presented in [7]. As for disclo-
sure functions, this is not sufficient and additional policies may be
defined to denial or grant accesses. Thus, we define the policies
associated with an object created from non disclosure functions as

policy(fNDF (id , s, o1, . . . , om)) =

 ⋃

i∈[1,...,m]

policy(oi)

∪ P1

\P2

cando≥(n, S,A)← owner(n, S) & a = +read.
cando≥(sa, S,A)← owner(sa, S) & a = +read.
cando≥(p, S,A)← owner(p, S) & a = +read.
cando≥(n, S,A)← owner(n, S) & a = +modify.
cando≥(sa, S,A)← owner(sa, S) & a = +modify.
cando≥(p, S,A)← owner(p, S) & a = +modify.

Figure 4: User Preferences for at least policy

where policy P1 is used to grant access for guaranteeing availabil-
ity requirements and policy P2 to limit the access to the object.
As for the access control policy, also at least and at most policies
should be relaxed since the derived object does not disclose indi-
vidually identifiable information. In particular, the derived at least
policy should contain only authorizations that the at least policies
associated with source objects have in common, and the derived at
most policy should allow to grant all the authorizations that each at
most policy associated with source objects does. In symbols,

policy≥(fNDF (id , s, o1, . . . , om)) =
\

i∈[1,...,m]

policy≥(oi)

policy≤(fNDF (id , s, o1, . . . , om)) =
[

i∈[1,...,m]

policy≤(oi)

Notice that at least and at most policies for non disclosure func-
tions are dual to those defined for disclosure functions. Further, we
have proposed to derive the access control, at least and at most poli-
cies from source objects instead of defining arbitrary policies. This
choice is due to the fact that we believe the the owners of source
objects are in turn the owners of the derived object. These owners
may want to maintain the control of their objects even if the object
does not disclose sensitive information. Otherwise, if we assume
that the owner is the entity who creates the object, for example the
system administrator, the policies should be defined differently.

Enterprise policies and user preferences could be in conflict, and
so the derived object could be a zombie objects. Next, we provide
some conditions under which the policy associated with the derived
object respects user preferences.

PROPOSITION 2. Let o be an object derived by using a non dis-
closure function and o1, . . . , om be the non zombie objects used to
derive it. Let P1 be the policy used to grant additional rights and
P2 be the policy used to limit the access to o. Object o is not a
zombie object if and only if

1.
T
i∈[1,...,m] policy≥(oi) ∩ P2 = ∅;

2. P1 \ P2 ⊆
S
i∈[1,...,m] policy≤(oi).

EXAMPLE 9. Let Account be the type of objects created by us-
ing function openBA and sumbal be the function that returns the
sum of all account balance at branch. The derived policy is defined
as the model of the following authorization rules.

cando(sumbal(id , t,Account), S,A)← do(O,S,A) &
in(O,Account,OGH).

cando(sumbal(id , t,Account), S,A)← in(S, IF-Staff ,RH) &
A = +read.

Essentially, the policy associated with sumbal(id , t,Account) is
the union of all the policies associated with each account. The
last rule is introduced since IF-Staff is not authorized to access to
clients data (Example 6) and they need that information to create
the financial status report (Example 4).

. . .

djd1 sajnjp1sa1n1 pj

openBA(baj, tm, nj, saj, pj, dj)openBA(ba1, t3, n1, sa1, p1, d1)

sumbal(sbi, t2, Account)

createFSR(rk, t1, sumbal(sbi, t2, Account))

Figure 5: Derivation Tree

5. GUARANTEEING DATA PROTECTION
The outcome of data processing may be used as input for other

data processing. The process to derive an object can be seen as
a tree, derivation tree, where the root is the “final” object and the
leaves are either primitive objects or objects derived from non para-
metric functions.

EXAMPLE 10. Figure 5 shows the derivation tree of the finan-
cial status report created by IF-Staff. In the picture, full edges are
used to indicate that the up level object is derived by using a dis-
closure function and dotted edges that the up level object is derived
by using a non disclosure function. We call them disclosure step
and non disclosure step, respectively.

Next, we present some properties that are guaranteed by our
framework. Their proofs are given in Appendix B.

The following result establishes that valid (i.e., no zombie) ob-
jects whose derivation tree contains only disclosure steps, do not
propagate information to unauthorized subject and that data own-
ers maintain the control on objects derived from their data.

THEOREM 1. Let o be an object whose derivation tree contains
only disclosure steps, and o1, . . . , on be the primitive objects used
to derive it. If zombie objects do not occur in the tree, the access
control policy associated with the derived object is such that

∀i ∈ [1, . . . , n] policy≥(oi) ⊆ policy(o) ⊆ policy≤(oi)

Notice that the assumption for which zombie objects do not oc-
cur in the derivation tree is not too strong since the system cannot
access such objects.

Additional properties can be guaranteed considering non disclo-
sure functions. For any object whose derivation tree contains only
non disclosure steps and no restrictions are introduced, the access
control policy associated with each primitive object is a subset of
the policy associated with the object derived by using them.

THEOREM 2. Let o be an object whose derivation tree contains
only non disclosure steps, and o1, . . . , on be the primitive objects
used to derive it. If no restriction policies are introduced, the access
control policy associated with the derived object is such that

∀i ∈ [1, . . . , n] policy(oi) ⊆ policy(o)

Further, under some conditions objects derived only by non dis-
closure functions are always valid objects.

THEOREM 3. Let ∆ be a derivation tree contains only non dis-
closure steps. If no restriction or additional policies are introduced,
every object occurring in ∆ is not a zombie object.

Finally, we argue that the conditions given in Proposition 1 and
Proposition 2 are enough expressive to guarantee data protection.

THEOREM 4. Let ∆ be a derivation tree where every disclosure
step complies with the conditions in Proposition 1 and every non
disclosure step complies with the condition in Proposition 2. Then,
every object occurring in ∆ is not a zombie object.

6. RELATED WORK
The last decades have seen an increasing awareness that privacy

plays a key role in organizations. One of the first approach ad-
dressing to privacy concerns was statistical databases [2] that allow
only requests of statistical information through aggregate queries.
In the cryptography field, the work on anonymizing has a long his-
tory since Chaum’s first proposals [6]. One could even say that
trust negotiation [22, 23] was inspired by privacy concerns of non-
disclosure of sensitive credentials to unknown subjects. We argue
that these approaches are not sufficient to guarantee privacy since
privacy means giving the data owners the right to say what can be
done with their data [1].

Among the privacy-aware technologies, Agrawal et al. propose
Hippocratic databases [3] that use purpose as central concept around
which privacy protection is built. Their aim is to negotiate the per-
sonal data between customers and enterprises and to enforce the
enterprise to look up to its privacy policies. The P3P standard [8]
provides mechanisms that allow users to check web site privacy
policies before they discloses their personal data to the site. Karjoth
et al. [13] improve P3P by proposing mechanisms for enforcing
sites to act according to their stated policies. The Enterprise Pri-
vacy Authorization Language (EPAL) [4] enables an enterprise to
exactly formalize the privacy policies that shall be enforced within
the enterprise itself. However, these technologies are not able to
control the information flow. Further, purpose-based approaches
require the presence of an external authority that monitors the be-
havior of data recipients. Actually, once a subject has gotten access
to sensitive information (even fairly), there is no way to enforce
him to use data correctly.

Access control is fundamental for building secure information
systems and, more specifically, for protecting the confidentiality of
information manipulated by such systems [19, 20]. However, cur-
rent approaches for access control do not provide complete support
for managing propagation of information and representing users
preferences. Ponder [9], Cassandra [5] and dRBAC [11] are devel-
oped to specify and manage access control policies in large-scale
distributed systems. Essentially, they specify policies as rules that
govern access control decisions and define the behavior of a system.
However, these frameworks deal only with delegation of primitive
information, and do not support propagation of information. Other
access control frameworks address to these issues only partially.
Some approaches [16, 24] propagate the access control list asso-
ciated with an object, while others [10, 18] mainly protect against
unauthorized outflow of information. However, these approaches
are not expressive enough to model and enforce user preferences.

7. CONCLUSION
The main contribution of this paper is a procedure for automati-

cally verifying permissions to create objects and deriving their ac-
cess control policies which are enforced by the authorization frame-
work with respect to user preferences. Although our approach has
been implemented in FAF, it is quit general and can be applied to
other authorization frameworks. Further, the approach is based on
the the US privacy legislation. This allows us to apply the frame-
work to real scenarios.

Future works will involve to extend the notion of access control
policy and user preferences in order to take into account negative

authorizations. This entails defining some mechanisms to solve
possible conflicts that arise when objects used to create another
object have associated incompatible policies. Further, the entire
process for enforcing access control policies concerning derived
objects should be formalized. Once the framework is fully formal-
ized we plan to implement it into DLV system [14].

Acknowledgments. This work has been partially supported by the
National Science Foundation under the grants CCR-0113515, IIS-
0430402, and IIS-0242237, by the IST programme of the EU Com-
mission, through a FET under the IST-2001-37004 WASP project,
by the FIRB programme of MIUR under the RBNE0195K5 and
RBAU01P5SS projects, by MOSTRO and SMTPPs projects of PAT.

8. REFERENCES
[1] Privacy Act of 1974. 5 USC, Section 552A. Available at

http://www.usdoj.gov/foia/privstat.htm “Privacy of
Consumer Financial Information; Final Rule.” 16 CFR Part 313. Federal
Register 65, No. 101.

[2] N. R. Adam and J. C. Worthmann. Security-control methods for statistical
databases: a comparative study. CSUR, 21(4):515–556, 1989.

[3] R. Agrawal, J. Kiernan, R. Srikant, and Y. Xu. Hippocratic Databases. In Proc.
of VLDB’02, pages 143–154. Morgan Kaufmann, 2002.

[4] M. Backes, B. Pfitzmann, and M. Schunter. A Toolkit for Managing Enterprise
Privacy Policies. In Proc. of ESORICS’03, LNCS 2808, pages 162–180.
Springer, 2003.

[5] M. Y. Becker and P. Sewell. Cassandra: distributed access control policies
with tunable expressiveness. In Proc. of POLICY’04, pages 159–168. IEEE
Press, 2004.

[6] D. L. Chaum. Untraceable electronic mail, return addresses, and digital
pseudonyms. CACM, 24(2):84–90, 1981.

[7] S. Chong and A. C. Myers. Security Policies for Downgrading. In Proc. of
CCS’04, pages 198–209. ACM Press, 2004.

[8] L. Cranor, M. Langheinrich, M. Marchiori, and J. Reagle. The Platform for
Privacy Preferences 1.0 (P3P1.0) Specification. W3C Recommendation, Apr.
2002.

[9] N. Damianou, N. Dulay, E. Lupu, and M. Sloman. The Ponder Policy
Specification Language. In Proc. of POLICY’01, LNCS 1995, pages 18–39.
Springer, 2001.

[10] E. Ferrari, P. Samarati, E. Bertino, and S. Jajodia. Providing flexibility in
information flow control for object oriented systems. In Proc. of Symp. on Sec.
and Privacy, pages 130–140. IEEE Press, 1997.

[11] E. Freudenthal, T. Pesin, L. Port, E. Keenan, and V. Karamcheti. dRBAC:
distributed role-based access control for dynamic coalition environments. In
Proc. of ICDCS’02, pages 411–420. IEEE Press, 2002.

[12] S. Jajodia, P. Samarati, M. L. Sapino, and V. S. Subrahmanian. Flexible
support for multiple access control policies. TODS, 26(2):214–260, 2001.

[13] G. Karjoth, M. Schunter, and M. Waidner. Platform for Enterprise Privacy
Practices: Privacy-enabled Management of Customer Data. In Proc. of
PET’02, LNCS 2482, pages 69–84. Springer, 2002.

[14] N. Leone, G. Pfeifer, W. Faber, T. Eiter, G. Gottlob, S. Perri, and F. Scarcello.
The DLV System for Knowledge Representation and Reasoning. TOCL, 2005.
To appear.

[15] K. Marriott and P. J. Stuckey. Programming with constraints: an introduction.
MIT Press, 1998.

[16] C. D. McCollum, J. R. Messing, and L. Notargiacomo. Beyond the pale of
MAC and DAC-defining new forms of access control. In Proc. of Symp. on
Sec. and Privacy, pages 190–200. IEEE Press, 1990.

[17] A. Sabelfeld and A. C. Myers. Language-Based Information-Flow Security.
IEEE J. on Selected Areas in Comm., 21(1):5–19, 2003.

[18] P. Samarati, E. Bertino, A. Ciampichetti, and S. Jajodia. Information flow
control in object-oriented systems. TKDE, 9(4):524–538, 1997.

[19] P. Samarati and S. D. C. di Vimercati. Access Control: Policies, Models, and
Mechanisms. In FOSAD 2001/2002, LNCS 2946, pages 137–196. Springer,
2001.

[20] R. Sandhu and P. Samarati. Authentication, access control, and audit. CSUR,
28(1):241–243, 1996.

[21] R. S. Sandhu, E. J. Coyne, H. L. Feinstein, and C. E. Youman. Role-based
access control models. IEEE Comp., 29(2):38–47, 1996.

[22] K. Seamons, M. Winslett, and T. Yu. Limiting the Disclosure of Access
Control Policies during Automated Trust Negotiation. In Proc. of NDSS’01,
pages 109–125. IEEE Press, 2001.

[23] K. E. Seamons, M. Winslett, T. Yu, L. Yu, and R. Jarvis. Protecting Privacy
during On-line Trust Negotiation. In Proc. of PET’02, LNCS 2482, pages
129–143. Springer, 2002.

[24] A. Stoughton. Access flow: A protection model which integrates access
control and information flow. In Proc. of Symp. on Sec. and Privacy, pages
9–18. IEEE Press, 1981.

[25] T. Syrjänen. Lparse 1.0: User’s Manual. Helsinki University of Technology,
2000.

APPENDIX
A. CREATING OBJECTS IN FAF

The architecture of FAF consists of some components: a history
table, an authorization table, propagation policies, conflict reso-
lution policies, decision policies, and a set of integrity constraints.
Each of these module is mapped into a stratum in the stratified logic
program that implements the authorization system. The material-
ized view of each module is the input for the next module. We refer
to [12] for full details.

This solution works correctly when authorizations refer only to
primitive objects, that is, objects directly stored from users, but it is
not able to fully enforce access control policies when derived ob-
jects are dynamically introduced into the system. One of the prob-
lem is when derived objects should be introduced and then when
authorizations on these objects should be determined. Currently, if
we introduce derived objects before applying propagation policies,
they could not be created since some authorizations required by the
information system in order to allow subjects to process data are
not yet computed. Otherwise, if we introduce them after applying
propagation policies, we cannot propagate authorizations on de-
rived objects. In the remainder, we give a brief overview of the
process to enforce access control policies when derived object are
considered, while a complete description and proofs are left for fu-
ture work.

The basic idea is to iterate FAF approach for n+1 times where n
is the greatest depth of derivation trees. In the first step, only prim-
itive objects and objects derived by using non parametric functions
are considered. Authorizations on these objects are propagated,
possible conflicts are resolved, and decisions are taken. If autho-
rizations complies with integrity constraints, the output of the first
step is used as input for the second iteration where objects derived
by one derivation step are considered. Then, the process is reiter-
ated until all derived objects are considered.

Rules to create derived objects (Section 4.1) are applied in stra-
tum 0, and authorization rules (Section 3.2) in stratum 1 (see [12]
for a description of FAF strata). In particular, rules for creating
object have the form

isobject(o)← L1 & · · · & Ln.

where o is an elements of AO, and L1, . . . , Ln are done, do, hie-,
or rel-literals, and primitive constraints. do literals are permitted
only when o is a derived object and they refer only to the objects
used to derive it. Rules for deriving access control policies (autho-
rization rules) have the form

cando(o, s, a)← L1 & · · · & Ln.

where o, s and a are elements of AO, AS and A respectively, and
L1, . . . , Ln are done, do, hie-, or rel-literals, and primitive con-
straints. do literals are permitted only when o is a derived object
and they refer only to the objects used to derive it. Notice that we
use do literals since they represent effective authorizations on ob-
ject. Actually, they are computed after applying conflicts resolution
and decision policies. In stratum 1, user preferences are also deter-
mined for derived objects. Rules for user preferences are similar
to authorization rules. Then, access control policies are compared
with user preferences, and so zombie objects are identified.

B. PROOFS OF CLAIMS IN SECTION 5

LEMMA 1. Let o be an object whose derivation tree contains
only disclosure steps and o1, . . . , om be the primitive objects used
to derive it. Then, for each primitive object oi, policy≥(oi) ⊆
policy≥(o) and policy≤(o) ⊆ policy≤(oi).

Proof: Let ∆ be the derivation tree of object o with depth p. The
proof is by induction on derivation tree depth.

base case: If ∆ has depth equal to 1, it is immediate to verify that
policy≥(oi) ⊆ policy≥(o) by the definition of at least policy
for disclosure function and policy≤(o) ⊆ policy≤(oi) by the
definition of at most policy for disclosure function.

ind. case: Suppose that derivation tree ∆ has depth p > 1. Thus,
∆ is constituted by subtrees which have smaller depth. By
induction, the at least (at most) policy associated with each
object oj that is root of a subtree is such that policy≥(opi) ⊆
policy≥(oj) (policy≤(oj) ⊆ policy≤(opi)) where i ∈ [1, . . . ,m]
and op1 , . . . , opm are the primitive objects used to derive oj .
The at least (at most) policy associated with object o is such
that policy≥(opi) ⊆ policy≥(o) (policy≤(o) ⊆ policy≤(opi))
since, for each object ojk used to derived o, policy≥(o) =S
k∈[1,...,n] policy≥(ojk) ⊇ policy≥(ojk) (policy≤(o) =T
k∈[1,...,n] policy≤(ojk) ⊆ policy≤(ojk)). ¤

Proof of Theorem 1: It is immediate by Def. 10 and Lemma 1. ¤

Proof of Theorem 2: Let ∆ be the derivation tree of object o with
depth p. The proof is by induction on derivation tree depth.

base case: If ∆ has depth equal to 1, it is immediate that policy(oi) ⊆
policy(o) by the definition of access control policy.

ind. case: Suppose that ∆ has depth p > 1. Thus, ∆ is con-
stituted by subtrees which have smaller depth. By induc-
tion, the policy associated with each object oj that is root of
a subtree is such that policy(opi) ⊆ policy(oj) with i ∈
[1, . . . ,m] and op1 , . . . , opm the primitive objects used to
derive oj . The policy associated with object o is such that
policy(opi) ⊆ policy(o) since, for each object ojk used to

derived o, policy(o) =
“S

k∈[1,...,n] policy(ojk)
”
∪ P ⊇

policy(ojk) where P is the policy used to grant additional
right. ¤

Proof of Theorem 3: Let ∆ be the derivation tree of object o with
depth p. The proof is by induction on derivation tree depth.

base case: If ∆ has depth equal to 1, it is immediate to verify that
o is a valid object by Def. 10, the definitions of access control,
at least and at most policy.

ind. case: Suppose that ∆ has depth p > 1. Thus, ∆ is con-
stituted by subtrees which have smaller depth. By induc-
tion, each object oj that is root of a subtree is a valid object,
that is, policy≥(oj) ⊆ policy(oj) ⊆ policy≤(oj). Further,
policy≥(o) ⊆ policy≥(oj) by the definitions of at least pol-
icy, and policy(oj) ⊆ policy(o) by the definition of access
control policy. Then, policy≥(o) ⊆ policy(o). On the other
side, policy(o) =

S
k∈[1,...,n] policy(ojk) and policy≤(o) =S

k∈[1,...,n] policy≤(ojk). By induction, for every object ojk
the relation policy(ojk) ⊆ policy≤(ojk) holds, then policy(o) ⊆
policy≤(o). ¤

